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Abstract

Multi-modal Large Language Models001
(MLLMs) have gained significant attention002
in both academia and industry for their003
capabilities in handling multi-modal tasks.004
However, these models face challenges in005
mathematical geometric reasoning due to the006
scarcity of high-quality geometric data. To007
address this issue, synthetic geometric data008
has become an essential strategy. Current009
methods for generating synthetic geometric010
data involve rephrasing or expanding existing011
problems and utilizing predefined rules and012
templates to create geometric images and013
problems. However, these approaches often014
produce data that lacks diversity or is prone015
to noise. Additionally, the geometric images016
synthesized by existing methods tend to exhibit017
limited variation and deviate significantly from018
authentic geometric diagrams. To overcome019
these limitations, we propose GeoFM, a020
novel method for synthesizing geometric data.021
GeoFM uses formal languages to explore022
combinations of conditions within metric023
space, generating high-fidelity geometric024
problems that differ from the originals while025
ensuring correctness through a symbolic026
engine. Experimental results show that our syn-027
thetic data significantly outperforms existing028
methods. Models trained with our data surpass029
the proprietary GPT-4o model by 18.7% on030
geometry problem-solving tasks in MathVista031
and by 16.5% on GeoQA. Additionally, our032
approach exceeds the performance of the033
state-of-the-art open-source model by 5.7% on034
MathVista and by 2.7% on GeoQA.035

1 Introduction036

Large language models (LLMs) exhibit excellent037

reasoning capabilities. There has been a signif-038

icant amount of research dedicated to applying039

large language models to solve text-based mathe-040

matical problems, resulting in substantial progress041

(Aaron Hurst, 2024; Luo et al., 2023; Shao et al.,042

Figure 1: Comparison of different methods for synthe-
sizing geometric data. (a) Generate geometric Q&A
data by using MLLMs to rephrase existing problems or
create new Q&A from collected geometric images. (b)
Utilize a rule-based data engine to generate template-
based Q&A and low-fidelity images. (c) Employ formal
language to explore the combinations of geometric met-
ric conditions and synthesize new problems, ensuring
solution accuracy through symbolic reasoning, and gen-
erate high-fidelity geometric images.

2024; Yang et al., 2024). Recently, there has also 043

been a growing focus on using Multi-modal Large 044

Language Models (MLLMs) to address multi- 045

modal mathematical problems that include images 046

(Gao et al., 2023; Shi et al., 2024; Zhang et al., 047

2024a; Li et al., 2024a). Although MLLMs per- 048

form well in general tasks such as Visual Ques- 049

tion Answering (VQA), their performance often 050

falls short when tackling multi-modal mathematical 051

problems (Lu et al., 2024; Wang et al., 2024a). In 052

particular, geometry problems, which are a typical 053

example of multi-modal mathematical problems 054

with wide-ranging applications, require the inte- 055

gration of both visual and textual information for 056

reasoning and solution. However, MLLMs struggle 057

with these problems. One of the primary reasons 058
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for this difficulty is the lack of high-quality geomet-059

ric data for training MLLMs. Compared to natural060

scene tasks like VQA, the sources and quantity of061

geometric data are relatively limited, which hinders062

the advancement of MLLMs’ abilities in geometry.063

To address the shortage of geometric data, some064

approaches have employed synthetic data genera-065

tion. A straightforward method involves rewriting066

the problem statements and answers (Gao et al.,067

2023). However, simple rewrites do not alter the068

underlying meaning of the problems. Although069

this increases the quantity of problems, it does not070

enhance the diversity. Other approaches have at-071

tempted to use MLLMs to modify original geo-072

metric problems and generate answers (Gao et al.,073

2023), or to directly create new problems and cor-074

responding responses based on collected geometric075

images (Shi et al., 2024), as shown in Figure 1(a).076

Nevertheless, these methods rely on the geometric077

reasoning capabilities of MLLMs. Given the cur-078

rent limitations of MLLMs in solving geometric079

problems, these approaches are prone to introduc-080

ing noise into the synthetic data. Recently, there081

have been attempts to synthesize geometric prob-082

lems using predefined rules and templates (Kazemi083

et al., 2023; Zhang et al., 2024a). For example,084

new shapes are generated by continuously extend-085

ing basic geometric figures such as triangles and086

quadrilaterals outward along their edges. The rea-087

soning paths and final answers are obtained through088

programming, as illustrated in Figure 1(b). While089

this method ensures the correctness of the reason-090

ing and answers, the low fidelity of the synthesized091

images and the restricted variety of problems result-092

ing in a significant disparity from real geometric093

problems. This discrepancy limits the progress of094

MLLMs in developing geometric capabilities.095

To address the challenges present in current ap-096

proaches, we propose a novel method for synthesiz-097

ing geometric data. We have observed that existing098

geometric datasets often associate a single geomet-099

ric diagram with only one or two problems, despite100

the fact that geometric diagrams often contain rich101

metric information that are not fully covered by102

the existing problems. Therefore, we propose Ge-103

oFM, a method that employs formal languages to104

explore the combinations of conditions within met-105

ric spaces of geometric diagrams, thereby gener-106

ating high-fidelity geometric problems differ from107

the original ones but whose correctness is guaran-108

teed using a symbolic engine. Existing work on ge-109

ometric formal languages is scattered across differ-110

ent fields, such as geometric problem solving (Lu 111

et al., 2021; Peng et al., 2023; Zhang et al., 2024b), 112

theorems proving (Trinh et al., 2024) and geomet- 113

ric drawing (Krueger et al., 2021a). Furthermore, 114

these studies frequently necessitate human interven- 115

tion, such as manual formalization, to accomplish 116

the associated tasks (Zhang et al., 2024b; Krueger 117

et al., 2021a), which prevents their application for 118

large-scale automatic synthesis of geometric data. 119

To address this issue, we propose a comprehen- 120

sive framework for geometric data synthesis that 121

automates the formalization of seed problems, the 122

synthesis of new problems, and the generation of 123

images. Utilizing this approach, we have developed 124

a highly accurate and realistic geometric synthetic 125

dataset GeoFM80K. Experimental results demon- 126

strate our synthetic data can effectively enhance the 127

geometric capabilities of MLLMs. We will release 128

this dataset to facilitate further geometric research. 129

Our contributions are summarized as follows: 130

1. We propose GeoFM, a geometric data synthe- 131

sis method using formal languages and symbolic 132

reasoning to generate accurate solutions and new 133

geometric diagrams, addressing data noise and dis- 134

crepancies in existing data synthesis methods. 135

2. We introduce a strategy for synthesizing new 136

geometric problems through the combination of 137

geometric metric conditions, resulting in the Ge- 138

oFM80K dataset. Models trained on GeoFM80K 139

outperform those trained on representative syn- 140

thetic data by 8.2% on MathVista-GPS (Lu et al., 141

2024) and 11.1% on GeoQA (Chen et al., 2021). 142

3. Experimental results show our method en- 143

hances the geometric reasoning of MLLMs. The 144

GeoFM-8B model surpasses GPT-4o by 18.7% 145

on MathVista-GPS and 16.5% on GeoQA, and 146

exceeds the best open-source model by 5.7% on 147

MathVista-GPS and 2.7% on GeoQA. 148

2 Method 149

2.1 Overview 150

In this section, we present our method for gen- 151

erating synthetic geometric problems. We start 152

by converting seed problems into a formal lan- 153

guage for problem-solving. New problems are 154

created by combining metric conditions from the 155

seed problems and solved using symbolic reason- 156

ing, enabling natural language solution synthesis 157

and result verification. These formal representa- 158

tions are then translated into a drawing language 159

to produce geometric diagrams. This process re- 160
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Figure 2: The Framework of Geometric Data Synthesis GeoFM

sults in a synthetic dataset with solutions verified161

by a symbolic engine and newly synthesized dia-162

grams, ensuring data accuracy and diversity. The163

framework is illustrated in Figure 2.164

2.2 Seed Geometry Problem Formalization165

Formalizing geometric problems is a significant166

research area in geometry. Various formalization167

schemes have been proposed, including InterGPS168

(Lu et al., 2021), AlphaGeometry (Trinh et al.,169

2024; Chervonyi et al., 2025), and FormalGeo170

(Zhang et al., 2024b), each employing different171

approaches. In this study, we utilize FormalGeo172

as it more effectively represents metric geometry173

than AlphaGeometry and offers a broader range of174

geometric theorems than InterGPS. FormalGeo em-175

ploys the Conditional Declaration Language (CDL)176

to represent geometric problems, which includes177

construction CDL, text CDL, image CDL, and goal178

CDL. Construction CDL conveys geometric struc-179

ture information, such as basic shapes, collinear-180

ity, and cocircularity. Text CDL and image CDL181

capture geometric and algebraic relations from the182

problem statement and diagram, respectively, while183

goal CDL defines the problem-solving objective.184

An illustrative example is shown in Figure 2.185

For the text parser, we propose a new construc-186

tion method based on training a large language187

model with synthetic data. Since the text parser188

focuses on mapping natural language to formal189

language without considering the validity or solv-190

ability of the problem, we propose a method for191

generating synthetic training data based on formal 192

language back-translation. Initially, for each for- 193

mal language expression in FormalGeo, we use 194

GPT-4o to generate 20 corresponding natural lan- 195

guage templates, which are then manually reviewed 196

and corrected. During data synthesis, we randomly 197

select formal language conditions and goals to be 198

solved, insert randomly generated geometric points 199

to create a formal language problem, and then con- 200

vert it into a natural language problem description 201

using the natural language templates. This descrip- 202

tion is rewritten using the large language model 203

Qwen2.5-72B-Instruct (An Yang, 2025) to increase 204

the diversity of expressions. In this way, we con- 205

struct synthetic training data for the text parser 206

that maps natural language problems to formal lan- 207

guage problems. Using this method, we synthe- 208

sized 30k training data samples and trained Llama- 209

3-8B-Instruct (Aaron Grattafiori, 2024), resulting 210

in the development of a text parser. 211

For the diagram parser, we constructed it by inte- 212

grating the geometric shape parsing method PGDP- 213

Net (Zhang et al., 2022), OCR tool (Du et al., 2021), 214

and rule-based processing. PGDPNet can identify 215

various geometric elements, including points and 216

lines, their coordinates, and geometric relationships 217

like parallelism and perpendicularity. To enhance 218

the accuracy of text and symbol recognition, we em- 219

ploy OCR to re-recognize the information within 220

the detection boxes extracted by PGDPNet. Based 221

on all the parsed information, we convert it into 222

construction CDL and image CDL through rule- 223
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based processing.224

The seed problems are processed using the text225

parser and the diagram parser to derive their formal226

representations. After filtering out invalid condi-227

tions using formal language grammar validation,228

seed problems represented in formal language are229

generated. These seed problems are then used for230

subsequent geometric problem synthesis. It is im-231

portant to note that while parsing errors by the text232

parser and diagram parser may cause discrepancies233

between the formalized problems and the original234

ones, the final synthesized data remains consis-235

tent and error-free. This is because both the new236

problems and the corresponding images are gener-237

ated solely based on the formalized seed problems,238

rather than the original ones.239

2.3 Geometric Problem Generation240

In this section, we will introduce the process of241

generating new geometry problems based on for-242

malized seed problems. Since each geometric di-243

agram contains rich metric information such as244

lengths, angles, and areas, we can utilize the for-245

mal language representation to combine the metric246

information in various ways, thereby generating247

new problems with different conditions and goals.248

Specifically, the synthesis process primarily con-249

sists of three components: calculating the geomet-250

ric metric information of the seed problems, synthe-251

sizing data in formal language, and converting this252

data into natural language geometric instruction253

data. The process is detailed in Algorithm 1.254

2.3.1 Gathering Geometric Metrics255

To extract as much metric information as possible256

from the seed problems, we utilize the FormalGeo257

problem solving engine. During the solving pro-258

cess, we employ a breadth-first search approach to259

determine the applicability of predefined geometric260

theorems to the problems, continuing until a solu-261

tion is found or a timeout occurs. Regardless of262

whether the solution is ultimately successful, the263

reasoning process yields substantial metric infor-264

mation about various geometric elements in the265

problem. We extract this metric information Mall266

for the subsequent synthesis of new problems.267

2.3.2 Synthesizing Data in Formal Language268

After obtaining geometric metric conditions Mall269

for a seed problem P , we can combine these con-270

ditions to generate new geometric problems. Let271

Mp be the set of metric conditions of the original272

Algorithm 1 Geometric Problem Generation

Input formalized seed problem set FS, number of synthetic
problems m

Output synthetic problem set S
1: for P ∈ FS do
2: Mp← MetricInfoOfProblemStatement(P)
3: Mall← GatheringMetricInfo(P)
4: mp = m
5: while mp > 1 do
6: n← Random(1,min(|Mp|, |Mall| − |Mp|))
7: Mdel← RandomSelect(Mp, n)
8: Madd← RandomSelect(Mall −Mp, n)
9: Pnew ← P –Mdel +Madd

10: Anew ← FormalGeoSolver(Pnew)
11: Psyn, Asyn← Template&LLM(Pnew, Anew)
12: if AnswerVerify (Asyn, Anew) then
13: S.add([Psyn, Asyn])
14: mp ← mp – 1
15: end if
16: end while
17: end for
18: Return S

problem statement. We first sample a random num- 273

ber n (where n ≤ min(|Mp|, |Mall| − |Mp|)). 274

Next, we replace n metric conditions from Mp 275

with n new conditions sampled from the remain- 276

ing metric set Mall −Mp and randomly choose 277

one metric condition different from the new prob- 278

lem statement as the goal, thereby creating a new 279

problem. This ensures that the new problem has 280

the same number of metric conditions as the seed 281

problem, minimizing issues related to insufficient 282

metric conditions for deriving valid conclusions 283

and avoiding redundancy from having too many 284

conditions. Furthermore, we randomly allocate the 285

metric conditions to text CDL and image CDL. The 286

metric conditions in image CDL will only appear 287

in the synthesized images and not in the problem 288

statements, thereby forcing the model to interpret 289

the problem by reading the images rather than rely- 290

ing solely on textual information. 291

Once the formal language problem is obtained, 292

we solve the synthesized problem using the Formal- 293

Geo symbolic engine to derive the corresponding 294

symbolic solutions. The symbolic solution includes 295

the geometric theorems applied and the derivation 296

process. Since the goal of the synthesized problem 297

is randomly selected and may not always be solv- 298

able, if the goal is not achieved, we select the last 299

valid inference from the symbolic engine’s reason- 300

ing path as the new goal. This ensures the validity 301

of the problem. Through this process, we can syn- 302

thesize multiple formal language problems with 303

symbolic solutions from each seed problem. 304
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2.3.3 Geometric Instruction Data Synthesis305

After obtaining the formalized problems and their306

symbolic solutions, it is necessary to convert them307

into natural language instruction data to facilitate308

subsequent training of the MLLMs. This conver-309

sion process begins by transforming all FormalGeo310

formalized language and the geometric theorems311

used in problem-solving into natural language tem-312

plates. These templates are manually verified to313

ensure their accuracy. Subsequently, we use these314

templates to convert the formalized problems and315

their symbolic solutions into natural language.316

The lack of diversity in template-based solutions317

can lead to mode collapse when used directly for318

model training. To address this issue, we employ319

the large language model Qwen2.5-72B-Instruct320

to rewrite the template-generated solutions, pro-321

ducing more fluent and varied problem-solving so-322

lutions. The prompt for rewriting is provided in323

Appendix C. To minimize rewriting errors, we also324

use the LLM to compare the final answers of the325

rewritten problems with the results derived from326

FormalGeo through answer extraction and verifi-327

cation following the MathVista (Lu et al., 2024)328

evaluation methodology, retaining only those prob-329

lems where the answers are consistent. Compared330

to directly generating problem solutions using a331

strong MLLM, our method references the reason-332

ing process of a symbolic engine during solution333

generation and the final answers are cross-verified334

for consistency with the results from the symbolic335

engine, thereby significantly reducing the probabil-336

ity of errors in the synthesized problem solutions.337

2.4 Geometry Diagram Generation338

Synthesizing geometric images for each generated339

problem is challenging due to the need to meet ge-340

ometric constraints. Some methods use specialized341

drawing programs, but these often produce a lim-342

ited variety of images that conform to predefined343

patterns (Kazemi et al., 2023; Zhang et al., 2024a).344

Tools like GeoGebra (Hohenwarter and Preiner,345

2007) require manual manipulation for drawing.346

The Geometry Model Building Language (GMBL)347

(Krueger et al., 2021b) uses a formal language and348

computational geometry to approximate target im-349

ages through numerical optimization. However, it350

requires manually creating the formal language for351

the target image and evaluating if the synthesized352

image meets expectations, making it impractical353

for large-scale automated synthesis.354

To address the limitations of existing methods, 355

we developed a new engine capable of automat- 356

ically synthesizing large-scale geometric images 357

based on GMBL. This engine contains a formal lan- 358

guage converter that automatically transforms con- 359

struction CDL and image CDL statements, which 360

illustrate geometric diagrams, into GMBL formal 361

language. This conversion requires the prior con- 362

struction of a mapping table from the FormalGeo 363

language to the GMBL language. When generating 364

the GMBL description of a problem, a heuristic 365

rule-based method is first employed to determine 366

the definition order of geometric points. Subse- 367

quently, the relevant geometric constraints repre- 368

sented in the FormalGeo language for each geomet- 369

ric point are translated into the GMBL language 370

based on predefined rules and the mapping table. 371

We categorize the computational geometry ob- 372

jects in GMBL used to assess whether geometric 373

constraints are met based on the strictness of these 374

constraints. For example, the requirement for a 375

point to lie on a line is stricter than that for two line 376

segments to be of equal length, as deviations from 377

the former are more apparent. We then establish 378

different loss thresholds for each group, filtering 379

out images that do not meet these thresholds after 380

numerical optimization to maintain the quality of 381

synthetic images. For geometric images that satisfy 382

the constraints, we incorporate image CDL infor- 383

mation, such as segment lengths and angles, into 384

the diagram. This inclusion ensures that MLLMs 385

must interpret the image to extract necessary in- 386

formation for problem-solving, thereby enhancing 387

the model’s image perception capabilities. This ap- 388

proach allows us to automatically generate images 389

corresponding to synthesized geometric problems 390

represented by the FormalGeo formal language. 391

3 Experiments 392

3.1 Experimental Setup 393

We synthesized 80k data points for our experiments 394

based on the training sets of the FormalGeo7K 395

(Zhang et al., 2024b) and PGPS9K (Zhang et al., 396

2023) geometric datasets. Synthetic images are 397

generated with a 4:3 aspect ratio, where the shorter 398

edge is randomly chosen to be either 112, 224, 399

or 336 pixels in length. The effectiveness of our 400

synthesized data was validated using the LLaVA- 401

NeXT-8B (Liu et al., 2024), a model trained with 402

limited geometric data, which facilitates the assess- 403

ment of how the addition of various geometric data 404
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Model Dorigin Dsyn

LLaVA-NeXT-8B 11.2 9.5
Qwen2-VL-7B 28.2 15.8
InternVL2-8B-MPO 40.7 27.7
Qwen2-VL-72B 38.1 28.9
InternVL2-Llama3-76B 32.9 28.5
GPT-4o 39.2 36.6
Gemini-2.0-Flash-Thinking-Exp 57.8 40.5

Table 1: Comparison of MLLM performance on open
source geometric data Dorigin and synthetic data Dsyn.

affects the model’s geometric capabilities. Addi-405

tionally, we employed InternVL2-8B-MPO (Wang406

et al., 2024c), a model trained with a larger amount407

of geometric data, to determine whether synthe-408

sized data can further enhance the performance of409

models with higher geometric capabilities. Both410

models were trained with full-parameter tuning for411

two epochs, with detailed hyper-parameters pro-412

vided in Appendix A. We utilized two most widely413

adopted benchmarks for evaluation: the MathVista414

for geometry problem-solving (GPS) (Lu et al.,415

2024) and the GeoQA (Chen et al., 2021). Model416

performance was assessed through response gen-417

eration, answer extraction, and score calculation,418

following the MathVista methodology. Top-1 accu-419

racy was used as the evaluation metric.420

3.2 Necessity of Metric Space Exploration421

Some MLLMs are trained using open-source ge-422

ometric datasets, where each image is associated423

with only a few questions. This raises the ques-424

tion of whether MLLMs can generalize to other425

variations of questions related to the same geo-426

metric diagram. To investigate this, we conducted427

an experiment using synthetic data. We sampled428

500 questions each from two commonly used open-429

source geometric datasets, GeoQA (Chen et al.,430

2021) and Geometry3K (Lu et al., 2021), to create431

a test set Dorigin. Correspondingly, we generated432

a synthetic test set Dsyn, by creating an equal num-433

ber of problems based on Dorigin but with different434

conditions or problem-solving objectives.435

As illustrated in Table 1, all models, including436

both small and large open-source models in Qwen2-437

VL (Wang et al., 2024b) and InternVL2 (Wang438

et al., 2024c) series, as well as proprietary models439

like GPT-4o and Gemini-2.0-Flash-Thinking-Exp,440

demonstrated lower performance on synthetic data441

Dsyn compared to original data Dorigin. The per-442

formance gap is quite significant, with three out443

of seven models showing a gap exceeding 10%,444

Training Data Vol. MathVista GeoQA

Base Model 19.7 20.0
w/ Seed Data 5k 17.8 22.7
w/ GPT-4o CoT 5k 25.9 22.9
w/ CoT + Rephrase 25k 20.7 23.5
w/ CoT + MLLM Aug 25k 26.3 25.8
w/ GeoFM Data 25k 27.9 32.0

Table 2: Results of different geometric seed data utiliza-
tion methods on MathVista-GPS and GeoQA.

the largest reaching 17.3%. This indicates that 445

many existing MLLMs struggle to generalize from 446

known problems to related scenarios. The sub- 447

optimal performance on Dsyn, generated via met- 448

ric space exploration, suggests that utilizing same 449

large-scale data synthesis method in model training 450

could enhance geometric capabilities. This hypoth- 451

esis will be validated in subsequent sections. 452

3.3 Effectiveness of GeoFM 453

3.3.1 More Effective Utilization of Seed Data 454

Effectively utilizing geometric seed data to enhance 455

the geometric problem-solving abilities of MLLMs 456

is a significant research question. In this section, 457

we compare our GeoFM data synthesis method 458

with various data construction approaches, includ- 459

ing direct use of seed data, constructing chain of 460

thought solutions based on GPT-4o (Aaron Hurst, 461

2024), rewriting problems and CoT solutions, and 462

augmenting problems and solutions with MLLMs 463

as described by (Gao et al., 2023). We sampled 464

5k geometric problems from the FormalGeo7K 465

dataset as seed data and conducted experiments 466

using LLaVA-NeXT-8B, training each dataset for 467

two epochs as further training did not enhance per- 468

formance. The results are presented in Table 2. 469

As demonstrated, utilizing GPT-4o’s CoT data 470

could enhance model performance. While simple 471

rewrites show varying effectiveness across datasets, 472

synthesizing new problems improve performance. 473

The most significant improvement is achieved with 474

the GeoFM data synthesis method, which increases 475

performance by 10.1% on the MathVista-GPS and 476

9.3% on the GeoQA compared to the seed data. 477

This indicates that our data synthesis method can 478

more effectively utilize existing geometric data to 479

help enhance model performance. 480

3.3.2 Comparison with Existing Geometric 481

Synthetic Datasets 482

To assess the impact of using solely synthesized 483

data, we compare GeoFM with existing geomet- 484
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Figure 3: Comparison with existing geometric synthesis data at different data scales using LLaVA-NeXT-8B. The
baseline corresponds to the performance of the original model.

ric synthetic datasets. The GeoGPT4V (Cai485

et al., 2024) dataset contains 4.9k synthetic data486

points, which is small in quantity. The GermVerse487

(Kazemi et al., 2023) dataset performs subopti-488

mally on benchmarks. Therefore, our primary489

comparison is between GeoFM and the recently490

proposed MAVIS-Geometry (Zhang et al., 2024a)491

dataset, a representative dataset generated through492

rule-based data engine. To evaluate the model’s493

performance across various data scales, we sam-494

pled 10k, 20k, 40k, and 80k data points from each495

dataset. The experimental results presented in Fig-496

ure 3 evident that both datasets show performance497

improvements after training. However, GeoFM sig-498

nificantly outperforms MAVIS-Geometry, with an499

average improvement of 8.2% on MathVista-GPS500

and 11.1% on GeoQA. We speculate that this is501

primarily due to the rule-based synthetic geometric502

problems in MAVIS-Geometry differing substan-503

tially from real data, as illustrated in Appendix F,504

thereby limiting its effectiveness.505

3.3.3 Performance Boost from GeoFM506

To assess the benefits of adding GeoFM synthetic507

data to existing open-source datasets, we conducted508

experiments using the Geo170K-QA (Gao et al.,509

2023) and MathV360K-GPS (Shi et al., 2024) ge-510

ometric datasets. We trained two base models,511

LLaVA-NeXT-8B and InternVL2-8B-MPO, using512

both the open-source data alone and the open-513

source data combined with GeoFM data. The ex-514

perimental results, presented in Table 3, demon-515

strate that models trained with the addition of Ge-516

oFM data achieved consistent improvements on the517

MathVista-GPS and GeoQA benchmarks. Specifi-518

cally, LLaVA-NeXT-8B showed improvements of519

1.9% and 2.3%, while InternVL2-8B-MPO exhib-520

ited gains of 4.8% and 3.2%, respectively.521

We compare GeoFM-8B which trained on the522

InternVL2-8B-MPO backbone with GeoFM data523

Model MathVista GeoQA

GM-LLaVA-NeXT-8B 54.8 68.3
GeoFM-LLaVA-NeXT-8B 56.7 70.6

GM-InternVL2-8B-MPO 74.5 74.7
GeoFM-InternVL2-8B-MPO 79.3 77.9

Table 3: Performance Improvements from GeoFM:
"GM-" models are trained on Geo170K-QA and
MathV360K-GPS datasets; "GeoFM-" models incor-
porate an additional 80k GeoFM data.

Model MathVista GeoQA

Closed-source MLLMs

GPT-4o (Aaron Hurst, 2024) 60.6 61.4
GPT-4V (OpenAI, 2023) 50.5 -
Gemini 1.0 Ultra (Rohan Anil, 2024) 56.2 -

Open-source MLLMs

LLaVA-LLaMA-2-13B (Liu et al., 2023) 29.3 20.3
Qwen-VL-Chat-7B (Bai et al., 2023a) 35.6 26.1
InternVL2-Pro (InternVL, 2024) 65.4 -
InternVL2-8B-MPO (Wang et al., 2024c) 73.6 53.1

Mathematical MLLMs

Math-LLaVA-13B (Shi et al., 2024) 57.7 47.8
G-LLaVA-7B (Gao et al., 2023) 53.4 62.8
MAVIS-7B (Zhang et al., 2024a) - 66.7
EAGLE (Li et al., 2024a) 54.3 67.1
GeoGPT4V (Cai et al., 2024) 64.4 -
GOLD (Zhang and Moshfeghi, 2024) - 75.2

GeoFM-8B 79.3 77.9

Table 4: Comparison of GeoFM model with existing
MLLMs on MathVista-GPS and GeoQA

against existing MLLMs, including both propri- 524

etary and open-source representative models. The 525

results, presented in Table 4, indicate that the 526

GeoFM-8B model significantly outperforms ex- 527

isting models on the MathVista-GPS and GeoQA 528

benchmarks. Specifically, it exceeds GPT-4o’s ac- 529

curacy by 18.7% on MathVista-GPS and 16.5% on 530

GeoQA, and surpasses the state-of-the-art model 531

by 5.7% on MathVista-GPS and 2.7% on GeoQA. 532

We further validated our model’s out-of- 533

distribution (OOD) capabilities using the We-Math 534
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Figure 4: Demonstration of geometric problem solving using GPT-4o and GeoFM-8B

benchmark (Qiao et al., 2024). The experimental535

results indicate that our approach effectively gener-536

alizes to OOD dataset. See Appendix B for detailed537

results.538

3.4 Qualitative Analysis539

We conduct a qualitative analysis by comparing our540

model, GeoFM, with the representative model GPT-541

4o, as illustrated in Figure 4. Our model effectively542

captures the geometric features of the problems and543

provides an accurate reasoning process. In contrast,544

GPT-4o demonstrates errors in understanding geo-545

metric figures and exhibits hallucinations that lead546

to incorrect answers. This comparison highlights547

the advantages of our synthetic data method.548

4 Related Work549

Geometry Problem Solving Solving geometry550

problems is a challenging multi-modal mathemat-551

ical task. Some studies have employed symbolic552

solvers to address geometric problems by first for-553

malizing them and then performing symbolic rea-554

soning (Lu et al., 2021; Li et al., 2024b; Zhang555

et al., 2024b). However, these symbolic solvers are556

limited to solving specific geometric problems and557

cannot transfer geometric capabilities across dif-558

ferent scenarios like MLLMs. Recently, research559

aimed at enhancing the geometric capabilities of560

MLLMs has emerged, primarily by improving561

model performance through high-quality geomet-562

ric data. Early geometric datasets such as GeoQA563

(Chen et al., 2021), GeoQA+ (Cao and Xiao, 2022),564

UniGeo (Chen et al., 2022), and PGPS9K (Zhang565

et al., 2023) were manually collected and curated,566

which often limited their scale. G-LLaVA (Gao567

et al., 2023) expanded existing geometric datasets 568

using a large language model for rewriting and aug- 569

mentation, but this method lacked diversity and was 570

prone to introducing noise due to the limitations 571

of the rewriting model. GeoGPT4V (Cai et al., 572

2024) enhances this approach by incorporating im- 573

age synthesis, generating Wolfram code via GPT-4 574

(Josh Achiam, 2024), and using this tool to cre- 575

ate geometric images. However, this method’s im- 576

age synthesis is insufficiently stable. GeomVerse 577

(Kazemi et al., 2023) and MAVIS (Zhang et al., 578

2024a) utilized rule-based data engines to generate 579

geometric problems, but the data produced often 580

differed significantly from real-world data, affect- 581

ing their effectiveness. To address these shortcom- 582

ings, we propose GeoFM, which employs formal 583

languages to explore combinations of conditions 584

within metric spaces, thereby generating high qual- 585

ity geometric data that can effectively enhance the 586

geometric reasoning capabilities of MLLMs. 587

5 Conclusion 588

In this paper, we present GeoFM, a novel method 589

for generating high-quality geometric problems 590

to enhance the geometric reasoning abilities of 591

MLLMs. GeoFM uses formal languages to sys- 592

tematically explore condition combinations within 593

metric spaces. Our approach involves formaliz- 594

ing seed problems, generating new geometric prob- 595

lems through the combination of metric conditions, 596

and creating geometric diagrams corresponding 597

to the problems. Experimental results show that 598

our method significantly outperforms existing ap- 599

proaches, achieving state-of-the-art results on the 600

MathVista and GeoQA benchmarks. 601
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6 Limitations602

In this study, we employ formal languages to ex-603

plore various condition combinations within met-604

ric spaces of seed problems and synthesize high-605

quality geometric data to enhance the performance606

of multimodal large language models. During the607

synthesis process, we use seed problems to gener-608

ate synthetic data, which need manual collection.609

Additionally, certain types of geometric problems,610

such as word problems or those lacking geomet-611

ric point identifiers, are challenging to formalize.612

Therefore, designing new methods for synthesiz-613

ing geometric problems from scratch is a direction614

worth further exploration.615
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A Hyper-parameters868

The detailed hyper-parameters used for training869

LLaVA-NeXT-8B and InternVL2-8B-MPO are870

listed in Table 5. We primarily adjusted the learning871

rate and batch size, while keeping the other param-872

eters consistent with the original model’s training873

configuration. All experiments are conducted using874

the Nvidia H20 graphics card, which has 96 GB of875

memory.876

Hyper-parameter Value

LLaVA-NeXT-8B
training method full parameter tuning
epochs 2
batch size 64
llm learing rate 3e-5
adapter learing rate 3e-5
vision tower learing rate 2e-6
vision select layer -2
warmup ratio 0.03
lr scheduler type cosine
weight decay 0

InternVL2-8B-MPO
training method full parameter tuning
epochs 2
batch size 128
llm learing rate 1e-5
adapter learing rate 0
vision tower learing rate 0
vision select layer -1
warmup ratio 0.03
lr scheduler type cosine
weight decay 0.01

Table 5: Hyper-parameters for model training

B Performance on OOD Benchmark 877

To assess the out-of-distribution (OOD) capabil- 878

ities of our model, we utilized the newly intro- 879

duced benchmark, We-Math (Qiao et al., 2024). 880

This benchmark consists of manually curated data, 881

independently collected and annotated according 882

to a predefined knowledge structure, specifically 883

designed to evaluate the reasoning abilities of 884

MLLMs. Our evaluation targeted plane geome- 885

try, including the "Calculation of Plane Figures" 886

and "Understanding of Plane Figures" subfields. 887

The experimental results, detailed in Table 6, in- 888

dicate that our model demonstrated superior per- 889

formance compared to recently proposed represen- 890

tative MLLMs. These findings suggest that our 891

approach also possesses strong generalization ca- 892

pabilities on OOD dataset.

Model CPF UPF

G-LLaVA-13B (Gao et al., 2023) 32.0 37.9
Qwen-VL-Max (Bai et al., 2023b) 39.8 41.4
MiniCPM-LLaMA3-V2.5 (Yao et al., 2024) 40.8 39.8
LLaVA-NeXT-72B (Liu et al., 2024) 43.3 42.4
InternVL2-8B-MPO (Wang et al., 2024c) 47.5 41.8
GLM-4V-9B (GLM et al., 2024) 51.3 46.5
GeoFM-8B 52.2 52.1

Table 6: Comparison of the GeoFM model with existing
MLLMs on the We-Math Benchmark. "CPF" indicates
the "Calculation of Plane Figures" subfield while "UPF"
indicates "Understanding of Plane Figures" subfield.
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C Template-based Solution Rewriting Prompt894

Prompt: Rewrite Template-based Solution

Given a geometry problem and its answer hint, write a answer to the problem. Ensure the answer
is correct, concise, easy to understand, and written with clarity and natural flow.

Guidelines
1. Refer to the answer hint, but do not use the information in it as given conditions.
2. Only output the solution, without any additional information.

Problem
<problem>

Hint
<template-based solution>

895

D Illustration of Geometric Problem and Solution Synthesis896

Figure 5: Convert a synthesized formal language geometric problem into natural language instruction data
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E Examples of Synthetic Data 897

Figure 6: Examples of GeoFM Synthetic Data

F Comparison of Geometric Images in Synthetic Datasets 898

Figure 7: Comparison of Synthetic Images between GeoFM and MAVIS-Geometry
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