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ABSTRACT

Despite significant advancements in Text-to-Audio (TTA) generation models
achieving high-fidelity audio with fine-grained context understanding, they struggle
to model the relations between audio events described in the input text. However,
previous TTA methods have not systematically explored audio event relation mod-
eling, nor have they proposed frameworks to enhance this capability. In this work,
we systematically study audio event relation modeling in TTA generation models.
We first establish a benchmark for this task by: (1) proposing a comprehensive
relation corpus covering all potential relations in real-world scenarios; (2) intro-
ducing a new audio event corpus encompassing commonly heard audios; and (3)
proposing new evaluation metrics to assess audio event relation modeling from
various perspectives. Furthermore, we propose a finetuning framework to enhance
existing TTA models’ ability to model audio events relation.

1 INTRODUCTION

Text-based crossmodal content generation has gained significant attention in recent years as it opens
up new possibilities for even amateur users to create professional content. Typical such methods
include text-to-image (TTI) (Ho et al., 2020), text-to-music (TTM) (Copet et al., 2023), text-to-
point (TTP) (Nichol et al., 2022), text-to-speech (TTS) (Ren et al., 2019) text-to-audio (TTA) (Liu
et al., 2024; Huang et al., 2023b). Among all of them, text-to-audio (TTA) generation stands out as a
particularly promising area, enabling the synthesis of complex acoustic environments or soundscapes
directly from textual descriptions. Recent advances in TTA have demonstrated impressive progress in
generating high-quality, detail-rich audio described in the input text prompt (Liu et al., 2024; 2023a;
Huang et al., 2023b;a; Ghosal et al., 2023; Majumder et al., 2024; Kreuk et al., 2023).

When perceiving the physical world acoustically, whether through text or audio, the fundamental
unit is the audio event, a distinct acoustic signal representing an independent source. The essence
of perception lies in understanding the relationships emerging from events. Audio events are
spatiotemporally distributed in the physical world. Together with relation, they contribute for
holistic acoustic scene understanding (Qu et al., 2022). Studies in psychology (Zacks et al., 2007)
and neuroscience (Lake et al., 2015; Hirsh et al., 1967) show that the human brain perceives the
environment through discrete events and the relations between them. Humans are adept at using rich
language to describe both audio events and their intricate relationships. While current TTA models
can generate audios with high fidelity, their ability to generate audios that not only includes audio
events but also preserves the text-informed relationships between them remains unexplored.

Text Prompt: generate dog barking audio,
followed by cat meowing audio

Method Relation? Remark
AudioLDM (2023a) ✗ just cat meow, low-fidelity
AudioLDM 2 (2024) ✗ output dog barking
MakeAnAudio (2023b) ✗ just cat meow, low-fidelity
AudioGen (2023) ✗ output wrong audios
Tango (2024) ✗ two audios, low fidelity
Tango 2 (2024) ✗ can output two audios

Table 1: A case study on relation of TTA methods. Lis-
tenable audios are provided in suppplementary material.

As a primary study, we prompt the latest six
TTA models with an exemplar text with explicit
audio events and their relation generate dog
barking audio, followed by cat meowing audio.
Next we check if the specified audio events are
present and if so, their relations are correct in
the generated audios. As is shown in Table 1,
all existing TTA models fail to properly model
temporal relationships in the generated audio,
even when they succeed in generating the cor-
rect audio events. The generated audio wave-
form, spectrum and another case study with a
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MakeAn-
Audio �� ��7

7 7
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Reference
Audio
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AudioGen �� ��7
7
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Method Waveform Spectrum RelationMethod Waveform Spectrum Relation

A. Audio events exhibit different relations in physical 
world and we often use text to describe the relations.

�� event A event B��
B. Existing TTA models generated audios often fail to predict all target audio events and 
model the text-specified audio events relations. 

Figure 1: RiTTA Motivation: The acoustic world is rich with diverse audio events that exhibit various
relationships. While text can precisely describe these relationships (Fig. A), current TTA models struggle to
capture both the audio events and the relations conveyed by the text (Fig. B). This challenge motivates us to
systematically study RiTTA.

much complex text are shown in Fig. 1. The poor performance of current TTA models in modeling
audio events relation, along with the lack of systematic discussion on this topic, motivates us to
explore Relation in TTA (dubbed RiTTA) in depth in this work. We visualize the motivation in Fig. 1.

To systematically study RiTTA, we first benchmark it from four key perspectives: 1. we construct a
comprehensive audio event relation corpus that captures common relationships found in the physical
world. Unlike visual relations in cross-modal image tasks, which mainly focus on spatial aspects (e.g.,
left, bottom) (Gokhale et al., 2022), audio events exhibit far more complex relationships spanning
spatial, temporal, and compositional dimensions. Consequently, we define four primary relation
categories: Temporal Order, Spatial Distance, Count, and Compositionality. 2. Accompanying the
relation corpus, we build an audio event category corpus derived from five main sources, each of
which is further linked to multiple seed audios. 3. devise a <textprompt,audio> pair generation
strategy emphasising both text prompt and audio diversity. 4. propose a new relation aware evaluation
framework that assesses the relation in a multi-stage manner. The proposed benchmark will benefit
the community to explore RiTTA in greater depth. Additionally, we introduce a fine-tuning strategy
based on the latest state-of-the-art (SoTA) TTA model and demonstrate its effectivenss in relation
modelling. In summary, we make the following four main contributions:

1. We conduct an extensive evaluation of existing TTA models in modeling the audio events relations
and demonstrate their inability to capture these relations in the generated audios.

2. We benchmark RiTTA by constructing complete relation corpus, audio event category corpus, seed
audio corpus. Combined with the <textprompt,audio> pair generation strategy, researchers
can create large, diverse dataset to further investigate the RiTTA task.

3. We propose a new multi-stage relation aware evaluation framework, called MSR-RiTTA, which
offers a more nuanced evaluation compared to existing TTA metrics, allowing researchers to
quantitatively assess their methods from multiple angles.

4. We introduce a fine-tuning strategy leveraging the new dataset, demonstrating improvement over
current SoTA methods.

2 RELATED WORK

Audio Generation has received lots of attention and made significant progress in recent years,
advanced by fast-progressing generative AI technologies (Ho et al., 2020; Rombach et al., 2022).
Audio generation encompasses sub-tasks such as text-to-speech (TTS) that focuses on generating
speech from text transcription (e.g., FastSpeech (Ren et al., 2019) and GradTTS (Popov et al., 2021)),
text-to-music (TTM) that generates music from text input (e.g., MusicLM (Agostinelli et al., 2023),
MusicGen (Copet et al., 2023)) and Image-to-Audio (ITA) generation that generates audio from image
input (e.g., Img2Wav (Sheffer & Adi, 2023), SpecVQGAN (Iashin & Rahtu, 2021), RegNet (Chen
et al., 2020)) and Text-to-Audio (TTA) generation aiming to generate corresponding audio described
by text (e.g., AudioLDM (Liu et al., 2024; 2023a; Yang et al., 2022), DiffSound (Yang et al., 2022)).

Text-to-Audio (TTA) Generation involves producing audio that faithfully reflects the acoustic
content or behavior described by the input text. Recent advancements have significantly improved the
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Main
Relation

Sub-
Relation

Sample Text Prompt

Temporal
Order

before;
after;

simultaneity

generate dog barking audio,
followed by cat meowing;

Spatial
Distance

close first;
far first;

equal dist.

generate dog barking audio
that is 1 meter away, follow-
ed by another 5 meters away.

Count count produce 3 audios: dog bark-
ing, cat meowing and talking.

Composit
ionality

and; or;
not;

if-then-else
create dog barking audio
or cat meowing audio.

Table 2: Audio Events Relation Corpus.

Main
Category

Sub-Category

Human
Audio

baby crying; talking; laughing;
coughing; whistling

Animal
Audio

cat meowing; bird chirping; dog
barking; rooster crowing; sheep
bleating

Machinery boat horn; car horn; door bell;
paper shredder; telephone ring

Human-Object
Interaction

vegetable chopping; door slam;
footstep; keyboard typing; toilet
flush

Object-Object
Interaction

emergent brake; glass drop;
hammer nailing; key jingling;
wood sawing

Table 3: Audio Events Category Corpus.

quality and intelligibility of generated audio (Liu et al., 2024; 2023a; Kreuk et al., 2023; Yang et al.,
2022; Ghosal et al., 2023; Liao et al., 2024). Despite improvements in audio quality and intelligibility,
existing TTA methods still lag significantly in their ability to model relationships between audio
events in the generated audio. AudioLDM (Liu et al., 2023a) builds on latent space (Rombach et al.,
2022) to learn continuous representation.

Audio Events Relation Modelling. In the context of environmental audio, a set of audio events
exhibit relationships that are crucial for holistic acoustic scene understanding. Based on how audio
interact with the physical world in space, time and perceptual aspects, the resulting audio events
exhibit complex relationships in spatial, temporal and compositional aspects. Prior work has partially
addressed modeling certain temporal relations (e.g., order) in TTA (Xie et al., 2024) and compositional
reasoning (Ghosh et al., 2024) for discriminative tasks, such as audio classification and audio-text
retrieval. WavJourney (Liu et al., 2023b) leverages a large language model alongside multiple audio
generation models to achieve compositional audio generation. However, its limitations include an
artificial post-mixing process, which may result in generated audio lacking smooth transitions across
event boundaries and inefficiencies in inference. While prior research has touched on modeling audio
event relations, their potential in TTA remains largely underexplored. If we analogize an audio event
to an object in image, the corresponding relationships exhibited in an image are mainly limited to 2D
spatial relationship (e.g., before, bottom, left). Despite object of interest spatial relationship learning
and evaluation have received lots of attention in recent years (Krishna et al., 2016; Gokhale et al.,
2022; Okawa et al., 2023), the research on audio event relation modelling has been almost ignored.

3 BENCHMARK TTA AUDIO EVENTS RELATION

In this section, we sequentially present audio events relation corpus in Sec. 3.1, audio event category
corpus in Sec. 3.2, seed audio corpus and <textprompt,audio> pair generation strategy in
Sec. 3.3. Finally, the relation aware evaluation framework MSR-RiTTA is presented in Sec. 3.4.

3.1 AUDIO EVENT RELATION CORPUS

An audio event refers to a distinct acoustic signal occurrence with specific frequency, duration
and context characteristics that can be attributed to distinguish an independent sound source (He
et al., 2021) in an environment. Audio event is ubiquitous in the physical world and serves as the
fundamental entity to analyze and interpret the acoustic scene. We embrace the audio event as the
fundamental element to construct the relation corpus.

We construct the audio events relation corpus based on two key aspects. First, we consider relations
commonly found in the physical world, such as those arising from spatial and temporal variations,
which test TTA models’ ability to replicate audio events’ interactions in real-world scenarios. Second,
we focus on relations that challenge TTA models’ logical reasoning, evaluating their ability to
determine both which audio events to generate and how to generate them. These two aspects
partially overlap. Specifically, we define five main audio event categories, each associated with five
subcategories of audio events. The detailed relation corpus is provided in Table 2, including,
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1. Number Count: The number of audio events included in the generated audio, testing TTA models’
ability to address acoustic polyphony challenge.

2. Temporal Order: Temporal order refers to the sequence of audio events in the generated au-
dio. We include three basic temporal relations for two audio events: before, after, and
simultaneity, testing the TTA models’ ability to distinguish and generate the correct event
order as specified in the input text prompt.

3. Spatial Distance: Spatial distance refers to the variation in relative spatial distances inferred
from the generated audio. It evaluates the TTA models’ ability to capture the spatial distance
differences specified in the text prompt. Since we focus on mono-channel audio, obtaining the
absolute distance for each audio event is nearly impossible (He et al., 2021). Therefore, we rely
on loudness differences within intra-class audio events to verify their spatial distance variations.

4. Compositionality: Compositionality relation describes how multiple individual audio events are
integrated together to form a complex auditory structure that specified in the input text prompt.
It tests TTA models’ logical reasoning capability in determining which audio events to generate
and how to structure them, by following the compositional guidance illustrated in the input text
prompt. Specifically, we incorporate four main compositionality relations: Conjunction (And,
e.g., generate audio A and audio B together); Disjunction (Or, e.g., generate audio A or Audio B,
not both); Negation (Not, exclude one particular audio event, e.g., do not generate dog barking
audio); Condition (if-then-else, either generate two audio events if the condition is met,
otherwise generate the third audio if the condition is not met).

Most of the relations relate to two audio events (see Table 3 for more detail). Expanding the corpus
to include more complex relations with a greater number of audio events is left for future work.

3.2 AUDIO EVENT CATEGORY CORPUS

Alongside the relation corpus presented in Sec. 3.1, we further construct a comprehensive audio event
category corpus. The two corpora serve as fundamental dataset for constructing text prompts for TTA
models. Since different audio event signals are generated from various sources or through different
interactions, we first establish four main audio source categories, further detailing each category with
five sub-categories. These constructed audio categories encompass the majority of ubiquitous audio
events encountered in our daily lives. Specifically, the audio event category corpus contain,

1. Human Audio: the audio generated by human beings in our daily life, including baby crying,
coughing, laughing, whistling, female speech and male speech.

2. Animal Audio: the audio generated by animals, including cat meowing, dog barking, bird chirping,
horse neighing, rooster crowing, sheep bleating and pig oinking.

3. Machinery Audio: the audio generated by various machinery devices while they are working,
including car horn, doorbell, telephone ring, paper shredder and boat horn.

4. Human-Object Interaction Audio: human-object interaction audios include vegetable chopping,
keyboard typing, toilet flushing, door slamming and foot step.

5. Object-Object Interaction Audio: we further incorporate object-object interaction audios,
including glass dropping, car emergency brake, hammering nail, wood sawing and keys jingling.

The detailed audio event corpus is given in Table 3. With the constructed relation and audio event
corpus, we can create relation aware text prompts for TTA models.

3.3 SEED AUDIO CORPUS AND TEXT-AUDIO PAIR CREATION STRATEGY

In order to create the corresponding audio for any constructed text prompt, we instantiate each audio
event presented in Sec. 3.2 with five exemplar seed audios collected from freesound.org 1. Since
most audio files on freesound.org are uploaded by volunteers who recorded them in their daily
lives, incorporating five exemplar audios for each individual audio event category enhances both
the diversity and realism of the seed audio. For instance, in the case of the dog barking audio
event, the five selected audios vary in terms of dog breeds and barking styles. To further enhance an

1since freesound.org does not contain meaningful people talking audio, we collect people talking audio
from VCTK (Yamagishi et al., 2019)
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A. Relation Corpus B. Audio Event Category Corpus C. Seed Audio Corpus

e.g. before e.g. chopping, talking

initial prompt: generate chopping audio,
followed by people talking audio

GPT-4 Prompt
Augmentation

1. create chopping audio preceded by people talking audio
2. chopping in the beginning, people talking coming next
3. start with chopping audio, followed by people talking

……

chopping 2s talking 4s

Reference Audio
Generation 10s

……
D. Created Text Prompts D. Created Corresponding Audio

Figure 3: Relation aware <textprompt,audio> pair creation
pipeline. It introduces large diversity in both text prompt and audio.

Entry Highlight

seed audio one event has 5 audios
each has 1 s-5 s audio clips

audio categ-
ory corpus

5 main categories
25 sub-categories

relation
corpus 4 main 11 sub relations

relation -
event number

count: 2-5 events;
Not: 1 event;

if-then-else: 3 events
others: 2 events.

train and
test data info

each audio is 10 s long
sampling rate 16 kHz

train: 44 hrs, 1.6 k pairs
test: 22 hrs, 0.8 k pairs

data creation
constraint

count inter-category audio
SpatialDist intra-category

and require temporder

audio
diversity

one event Ñ multi-audios;
seed audio Ñ multi time len;
seed audios various start time

text prompts
diversity

GPT-4 augmented prompts;
one template Ñ multi-events.

Table 4: RiTTA benchmark highlights.

audio event’s temporal length diversity, we randomly slice each seed audio into non-overlapping clips
ranging from 1 sec to 5 secs. In summary, we have constructed 11 relations (see Table 2 Sub-Relation
column), and 25 audio events across five main audio events categories. Each audio event has been
associated with 5 diverse audio clips ranging from 1 sec to 5 secs collected from freesound.org.

1. generate audio A succeeded by B;
2. start with A, followed by B;
3. play A initially, B afterwards;
4. generate A preceded by B;
5. A in the beginning, B coming next;

Figure 2: GPT-4 augmented prompts (before relation).

Text Prompt Generation: a proper audio
events relation aware text prompt comprises
of two parts: a relation (e.g., <before>) and
audio events categories. The audio event cat-
egories can be either intra-class or inter-class,
and the audio event number depends on the
relation. We first instantiate an initial text
prompt describing this relation. For example,
for the temporal order before relation, the
initial text prompt can be like: generate audio A, followed by audio B. To enrich the text prompts, we
further use the initial text prompt to query LLM (in our case GPT-4) to provide more text prompts
with diverse descriptive language for the same relation. One such GPT-4 augmented text prompts is
shown in Fig. 2, which illustrates that the same relation can be exactly expressed by multiple different
text prompts. By incorporating GPT-4, we create 5 text prompts for each individual relation.

Audio Generation: Given the aforementioned audio events categories and relation, we randomly
select an exemplar seed audio for each audio event and further linearly blend them together by
satisfying the specified relation. For example, the relation <before> requires two audio events, the
two selected audios can be blended together to form the final audio as long as the two seed audios
satisfy the <before> relation (Fig. 3, D). Notably, unlike blending two objects in an image that
requires careful consideration of factors like occlusion and viewing angle, combining two audio
signals simply involves linearly adding them together (Pierce, 2019). This offers an advantage for
audio generation, as it eliminates the need for additional operations beyond the specified relation.

The generation of the <textprompt,audio> pair is further illustrated in Fig. 3. With the
proposed <textprompt,audio> pair generation strategy, we can create massive diverse pairs
even for the same audio events and the same relation, significantly enhancing the diversity and
generalization capability of our generated dataset.

3.4 RELATION AWARE EVALUATION METRIC MSR-RITTA

Existing TTA methods adopt general evaluation metrics to asses the similarity between generated
audio and reference audio, including Fréchet Audio Distance (FAD), Fréchet Distance (FD) (Heusel
et al., 2017), Kullback–Leibler (KL) divergence, Fréchet Inception Distance (FID) etc., among others.
While those general evaluation metrics give an overall estimation of the similarity between the two
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comparing audios, they do not offer direct relation-aware evaluations. In addition to incorporating
general evaluation metrics, we further propose multi-stage relation-aware evaluation metrics, with
which we can gain insight on how the method performs w.r.t. difference relations.

General Evaluation Metric: We incorporate three widely used general evaluation metrics: the
objective evaluation metric FAD, FD and KL divergence scores. FAD and FD measure the distribution
similarity with feature embedding extracted from pre-trained on VGGish model (Hershey et al., 2017).

general eval with 
reference audio

time

<sim
ulta
neit
y>

<before>

relation aware eval on top of audio events

event detection

audio event

t1 t2, s, c, 

Figure 4: relation aware evaluation.
Audio event detection model is applied
to get audio events. The meta data of
each event contains start time t1, end
time t2, confidence score s and class
label c. Various relations can be discov-
ered from these audio events.

Relation aware Evaluation Metric MSR-RiTTA: To directly
measure how accurately the text-indicated relation is reflected
in the generated audio, we incorporate relation aware metrics
for each specified relation. In relation aware evaluation, we base
on the individual audio event to compute the metrics, which
allows us to measure the relation between audio events. Let’s
denote pAg, T ,R,Apq by ground truth audios, text prompts,
relations and generated audios, respectively. We first extract
audio events E from generated audios Ap. For example, for
the i-th generated audio api , we apply pre-trained audio event
detection model (we use finetuned PANNS (Kong et al., 2020b),
see Sec. .1 in Appendix) to extract all potential audio events
involved in the audio Eap

i
“ tpej ,mjq|suki“1 by a given event

confidence threshold s P S, where ej is the j-th audio event
and mj is the corresponding meta data (e.g., audio event class
label, confidence score, temporal start time and end time, see
Fig. 4). To obtain audio events data for ground truth audios, we
can either apply the same pre-trained model or directly extract
from text prompts. Finally, we can get pAg, T ,R,Ap, Ep, Egq,
the relation aware evaluation function fp¨q depends on the audio events Ep, Eg and relations R,
fpEp, Eg|R, sq. We adopt a multi-stage relation (MSR-RiTTA) aware evaluation strategy.

Stage 1: Target Audio Events Presence (Pre). The paramount requirement for a successful audio
generation is the presence of text-specified audio events in the generated audio. In this evaluation, the
ground truth audio events and generated audio events are treated as set. For a given ground truth and
generated audio events pair pEg, Epq, we iterate over each audio event eg in the ground truth Eg to
check if it exists in the generated audio events Ep, regardless of its number and temporal position.

fppEp, Egq “
1

k

ÿ

egPEg

1peg, Epq; 1peg, Epq “

"

1, if eg P Ep

0, otherwise,
(1)

where k is audio event number in the ground truth. slpegq is a potential event meeting the confidence
threshold in the generated audio. We select the event with the highest confidence score as the target.

Stage 2: Relation Correctness (Rel). Once confirming the aforementioned target audio presence,
we further investigate if these audio events obey text-specified relation. The relation is correctly
modelled if at least a subset of generated audio events meet the relation. We give score 1 if relation is
correctly modelled, otherwise score 0.

frpEp|Rq “
ź

EtPEpXEg

1pEt, Rq; 1pEt, Rq “

"

1, if Et satisfies relation R,

0, otherwise,
(2)

Stage 3: Audio Parsimony (Par). Apart from requiring to generate all target audios, we should
discourage the model from generating excessive intra-class audio events or irrelevant inter-class audio
events. We call this property Audio Parsimony. Once it is violated, we introduce extra penalty.

fspEp, Egq “ exp p´ws ¨ |npEpq ´ npEgq|q (3)

where np¨q indicates audio event number. ws is the weight adjusting the penalty (in our case,
ws “ 0.1). The higher audio event number difference incurs lower parsimony score, the resulting
parsimony score lies within p0, 1q. The final relation aware score based on the audio event confidence
threshold s equals to the multiplication of the three stage scores,

fpEp, Eg|R, sq “
1

N

ÿ

pEp,Eg,RqPpEp,Eg,Rq

fppEp, Egq ¨ frpEp|Rq ¨ fspEp, Egq (4)
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where N is data size number. The final average MSR (AMSR) score fpEp, Eg|R, sq lies within
r0, 1q (the higher of the score, the better of the model’s performance). Following prior COCO object
detection evaluation strategy (Lin et al., 2014), we further average across multiple discrete audio
event confidence thresholds to get the mean average MSR score (mAMSR), fpEp, Eg|Rq,

fpEp, Eg|Rq “
1

K

ÿ

sPS
fpEp, Eg|Rq (5)

where K is the discrete audio event confidence thresholds number. In our case we use uniformly
sample four confidence thresholds in range r0.5, 0.8s with step size 0.1.

4 RELATION AWARE TTA FINETUNING

Encoder

Decoder

Forward

Backward

Text Prompt

VAE LDM

Flan-T5

HiFiGAN

frozen tunable train test

input audio

generated
audio

Figure 5: RiTTA finetune pipeline.

Existing TTA models adopt audio-language pre-trained model
to extract text and audio embeddings, including CLAP (Wu
et al., 2023b) and FLAN-T5 (Chung et al., 2024). Prior
work (Ma et al., 2023; Yuksekgonul et al., 2023; Wu et al.,
2023a; Ghosh et al., 2024) show that existing audio-language
pre-trained models (e.g., CLAP (Wu et al., 2023b)) performs
like bag-of-words (BoW), which means they are far better at
audio event retrieval task than audio events temporal relation
task. Moreover, the dataset used to pre-train audio-language
such as AudioSet (Gemmeke et al., 2017) and AudioCaps (Kim
et al., 2019) are dominated by unary audio event (64% (Ghosh
et al., 2024)), limiting models from learning meaningful representations for audio event relations.

Based on aforementioned discussion, we propose to finetune the existing latest Tango model (Ghosal
et al., 2023) with our created relation aware dataset (we finetuned Tango 2 as well, but found it gave
inferior performance than Tango). Tango depends on prior TTA frameworks AudioLDM (Liu et al.,
2023a) to use a Variational Autoencoder (VAE) for audio encoding and decoding, a latent diffusion
model (LDM) (Rombach et al., 2022) for audio generation and HiFiGAN (Kong et al., 2020a) to
generate final audio waveform from VAE decoder decoded mel-spectrogram. Unlike AudioLDM (Liu
et al., 2023a) which depend on CLAP (Wu et al., 2023b) for text prompt encoding, Tango adopts
pre-trained Flan-T5 (Chung et al., 2024) model for text prompt encoding. Latest TTA models such as
Tango (Ghosal et al., 2023), Tango 2 (Majumder et al., 2024) and AudioLDM 2 (Liu et al., 2024) show
that Flan-T5 can achieve better performance than CLAP (Wu et al., 2023b) in TTA task. Benefiting
from the latest advancement, we fine-tune Tango by just tuning latent diffusion model (LDM) and
fixing VAE, HiFiGAN and Flan-T5 components. In our case, we finetune Tango with the curated
44 hrs training dataset. The finetuning workflow is shown in Fig. 5 and finetuing detail in Sec. 4.

5 EXPERIMENT

We run two experiments: benchmarking existing TTA methods on our curated 22 hrs benchmark
dataset (aka testing dataset). Fine-tuning the advanced TTA model on our curated 44 hrs training
dataset and further test its relation modelling capability.

5.1 MORE DISCUSSION ON DATA CREATION

We follow the strategy presented in Sec. 3.3 to create the dataset. Specifically, for each of the 11
sub-relations in Table 2, we create 720 (2 hrs audio) <textpromt,audio> pairs for testing (aka
benchmark dataset) and 1440 pairs (4 hrs audio) for training (aka finetuning dataset). The highlight
of the training/testing dataset is given in Table 4.

To ensure that all relations can be effectively evaluated using our method, we applied two key
constraints during the data creation process. First, to make the audio events countable without
ambiguity, we selected inter-category audio events to form the <textprompt,audio> pairs. This
avoids the ambiguity that arises when using intra-category events, especially for those with repetitive,
similar local occurrences (e.g., multiple instances of dog barking). Second, for the Spatial Distance
relation, we introduced a temporal order constraint to ensure that the two audio events do not overlap
in time. Temporal overlap would require complex source separation models (Petermann et al., 2023)
to distinguish individual events. By enforcing this non-overlapping constraint, the evaluation of
Spatial Distance becomes manageable using an audio event detection model (see Sec. A in Appendix).
The basic information of data creation is given in Table 4.
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Table 5: Benchmark quantitative result across all relations. mAPre, mARel and mAPar are in 10´2.
mAPre and mARel can be treated as presence, relation correctness percentage ratio, they lie in range
r0, 100s. mAPar score also lies within r0, 100s. mAMSR (10´4) lies in range r0, 1s. The top- ,

second- and third- performing methods are labelled in different colors, respectively.

Model #param General Evaluation Relation Aware Evaluation (Ò)
FAD Ó KL Ó FD Ó mAPre mARel mAPar mAMSR

AudioLDM (S-Full) (2023a) 185 M 5.65 38.95 37.30 2.76 0.50 2.52 0.04
AudioLDM (L-Full) (2023a) 739 M 5.47 38.42 37.96 3.09 0.77 2.56 0.08
AudioLDM 2 (L-Full) (2024) 844 M 6.68 29.07 35.85 12.26 2.41 10.01 3.39
MakeAnAudio (2023b) 452 M 9.46 82.72 45.98 8.14 1.68 6.47 1.02
AudioGen (2023) 1.5 B 6.43 28.01 32.04 9.61 2.12 8.60 2.27
Tango (2023) 866 M 10.79 90.26 39.46 11.13 2.27 9.88 3.10
Tango 2 (2024) 866 M 13.84 89.66 44.03 16.63 4.40 12.53 11.55

Table 6: Benchmark quantitative result w.r.t. the four main relations. We report FAD sore and
mAMSR score for general evaluation and relation aware evaluation, respectively.

Model General Evaluation (FAD Ó) Relation Aware Eval. (mAMSR Ò)
Count TempOrder SpatDist Compos Count TempOrder SpatDist Compos

AudioLDM (S-Full) (2023a) 3.85 6.86 4.56 9.36 0.00 0.05 0.00 0.18
AudioLDM (L-Full) (2023a) 3.68 6.45 4.10 8.98 0.00 0.05 0.06 0.17
AudioLDM 2 (L-Full) (2023b) 5.03 8.94 4.72 9.41 0.14 1.87 1.46 9.89
MakeAnAudio (2023b) 6.02 10.21 8.18 12.78 0.12 0.66 0.44 2.40
AudioGen (2023) 6.14 8.39 3.38 9.98 0.32 3.83 0.48 4.18
Tango (2023) 8.54 10.25 10.11 13.97 0.16 3.44 0.82 8.10
Tango 2 (2024) 10.01 13.91 13.23 17.04 0.96 20.92 1.92 23.25

5.2 MORE DISCUSSION ON RITAA EVALUATION

Section 3.4 has introduced the metrics in general. In practice, we further adjust the audio generation
process for relations under Compositionality and Spatial Distance to so as to ensure these relations
can be accurately evaluated under our proposed framework.

First, we skip general evaluation for <Not> as it lacks a corresponding ground truth reference audio.
During fintuning, we generate silent audio for <Not> for create finetuing pairs. Second, for the
<if-then-else> and <Or> sub-relations, which correspond to two possible ground truth audios,
we handle evaluation by computing the L2 distance (in the time domain) between the generated audio
and the two reference audios. For example, for the prompt if event A then event B, else event C, the
first reference is the combination of events A and B, while the second contains only event C. We use
the reference audio with smaller L2 distance to the generated audio for general evaluation.

Third, precise evaluation of the three sub-relations (<closefirst>, <farfirst>, and
<equaldist>) under Spatial Distance from unconstrained audio requires sound event detec-
tion and localization (SELD (He & Markham, 2023; Grondin et al., 2019)) techniques to spatially
localize each audio event, which is impossible with mono-channel audio. To address this, we approx-
imate spatial distance by calculating the loudness, which can be estimated using the L2 norm of the
audio waveform. The rationale behind this approach is that greater distances result in a dampening of
waveform amplitude (and consequently reduced loudness) due to energy decay along the audio prop-
agation path. When the loudness difference exceeds a predefined threshold (for <closefirst>,
<farfirst>) or is within that threshold (for <equaldist>), we consider the evaluation accurate.
Specifically, we use a loudness reduction ratio σ1 (with σ1 “ 0.2 in our case). For <closefirst>,
if the closer event’s loudness is at least σ times greater than the further event’s loudness, the relation
is considered correct. Similarly, for <equaldist>, the loudness difference between the two events
should be within σ2 (with σ2 “ 0.4 in our case) of the louder event’s loudness. This estimation is
also reflected in the data generation process (see Sec 5.1).

5.3 RELATION AWARE BENCHMARKING RESULT

We benchmark our curated test dataset on 7 most recent TTA models: AudioLDM (Liu et al.,
2023a) (two versions), AudioLDM 2 (Liu et al., 2024), MakeAnAudio (Huang et al., 2023b),
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Figure 6: Top 3 performing in audio events relation modelling TTA methods’ performance w.r.t. the 11
sub-relations. We report mAPre, mARel, mAPar and mAMSR scores separately.

AudioGen (Kreuk et al., 2023), Tango (Ghosal et al., 2023) and Tango 2 (Majumder et al., 2024). We
directly depend on their released models to generate a 10 second audio from each text prompt. We
then adopt general evaluation and relation-aware evaluation metrics (see Sec. 3.4) for assessing the
generated audios quality. The detailed configuration of each method is given in Table I in Appendix.

The quantitative evaluation results across all relations are shown in Table 5. From this table we
can observe that the general evaluation results are inconsistent with our proposed relation aware
evaluation metrics. The best performing methods under generational evaluations (the two AudioLDM
versions) perform the worst under relation aware evaluations, and vice versa. These discrepancies
highlight the necessity of proposing evaluation metrics specifically tailored for audio events relations.
Additionally, while the performance differences among the seven benchmarking methods under
general evaluation are relatively minor, the corresponding differences under relation aware evaluation
are significantly more pronounced (e.g., Tango 2 outperforms AudioLDM (S-Full) by about 200
times). However, even the top-performing method, Tango 2 (Majumder et al., 2024), still struggles
to model audio events relations, as both its presence accuracy and relation accuracy rate are below
1% (mAPre is just 0.02% and mARel 0.04%), and it generates an average of two redundant audio
events (mAPar=0.1253). All of these observations demonstrate the limitations of existing TTA
methods in modelling audio events relation and the necessity to systematically study audio events
relation in TTA, highlighting the importance of our proposed work.

The quantitative evaluation results (mAMSR score) w.r.t the four main relation categories are pre-
sented in Table 6. We observe that both general and relation-aware evaluations show better perfor-
mance on Temporal Order and Compositionality compared to Count and Spatial Distance. This
suggests that the Count and Spatial Distance relations pose significant challenges for TTA tasks.
Additionally, we visualize the detailed relation aware evaluation results for the 11 sub-relations,
highlighting the top three performing methods AudioLDM 2 (Liu et al., 2024), Tango (Ghosal
et al., 2023), and Tango 2 (Majumder et al., 2024), in Fig. 6. We can observe that all the three
methods 1. achieve exceedingly high presence score on Not relation, which is expected since a
high Presence score (Subfig. A) can be easily obtained by simply not generating the specified audio
event. 2. perform well in modelling And relation (Subfig. B) (then <equaldist> and the three
relations in Temporal Order); 3. exhibit strength in generating concise audios particularly for Not
relation (Subfig. C). Overall, all the three methods excel in modelling And relation and then the three
sub-relations in Temporal Order, which is also reflected by the result in Table 6.

1. generation eval. contradicts with RiTTA eval.
2. TemOrder/Compos better than Count/SpatDist
3. event presence in Not is the highest;
4. relation correctness in And is the highest;
5. parsimony score in Not is the highest;
6. event presence accuracy rate is below 1%;
7. relation correctness accuracy rate is below 1%;
8. An average of 2 redundant audio events;

Table 7: Key findings from experiments of
TTA models on our RiTTA benchmark.

The key findings from the relation-aware benchmarking are
summarized in the Table 7. In summary, we conclude that, 1.
existing TTA models lack the ability to model audio events
relation described by the text prompt in the generated audio,
emphasizing the importance of our work in systematically
study audio events relation in TTA. 2. Existing TTA evalua-
tion metrics fall short in accurately measuring audio events
relations from the generated audio. Our proposed multi-
stage relation evaluation framework suffices to measure the
relation accuracy from various aspects.

5.4 FINETUNING EXPERIMENTAL RESULT

We finetune Tango with the AdamW optimizer and follow the finetuning strategy outlined in
Tango 2 (Majumder et al., 2024). The results, shown in Table 8, clearly demonstrate that fine-
tuning Tango with relation aware datasets significantly improves its improves its ability to model
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Table 8: Quantitative result across general and relation aware evaluation for Tango w/o finetuing.

Model General Evaluation Relation Aware Evaluation (Ò) mAMSR Across Four Main Relations
FAD Ó KL Ó FD Ó mAPre mARel mAPar mAMSR Count TempOrder SpatDist Compos

Tango (2023) 10.79 90.26 39.46 11.13 2.27 9.88 3.10 0.16 3.44 0.82 8.10
Tango (finetuing) 4.60 23.92 27.03 21.23 10.78 20.35 48.67 8.04 324.10 1.88 44.42
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A. Qualitative audio events relation comparison on generated audio by Tango w/o finetuing

Figure 7: Qualitative visualization comparison of Tango w/o finetuning (A) and mAPre w.r.t. 11 sub-relations.
Listenable audios are provided in supplementary material.

audio event relations across both general and relation aware evaluations. This underscores the im-
portance of benchmarking RiTTA with both comprehensive datasets and tailored evaluation metrics.
Given that we finetuned only the latent diffusion model with a relatively small dataset (1.6 k pairs),
further improvements can be expected by jointly finetuning other modules (e.g., FLAN-T5) with a
larger dataset. Moreover, the boosted performance indicates that audio events relation can indeed
be modelled by TTA methods. We hope this benchmark and initial exploration will inspire more
researchers to explore this area further.

Two qualitative examples are in Fig. 7 A. It is evident that the finetuned Tango successfully models
the <before> relation (Table 1 and Fig. 1 show all existing TTA models fail on this case), and
<count> relation. The mAPre score w.r.t. the 11 sub-relations is shown in Fig. 7 B (the mARel,
mAPar, mAMSR are in Fig. I in Appendix). The results clearly indicates that finetuned Tango achieves
significant improvements in target audio events presence across most relations, particularly in <Or>,
<And>, <simultaneity>, <after> and <before>. The performance drop in <Not> relation
may be attributed to the dataset preparation: as we pair <Not> relation with silent audio (all-zero
waveforms), yet the text prompts might contain arbitrary audio events. Finetuning on such created
data may confuse the model, leading to ambiguity in audio events generation. Further investigation is
needed to address this challenge.

6 CONCLUSION AND FUTURE WORKS

Complex relationships within audio bring the world to life. While text-to-audio (TTA) generation
models have made remarkable progress in generating high-fidelity audio with fine-grained context
understanding, they often fall short in capturing the relational aspect of audio events in real-world.
The world around us is composed of interconnected audio events, where audio event rarely occurs in
isolation. Simply generating single sound sources is insufficient for producing realistic audio that
reflects the richness of the world.

To analyze the capabilities of current state-of-the-art TTA generative models, we first conduct a
systematic study of these models in audio event relation modeling. We introduce a benchmark for this
task by creating a comprehensive relational corpus covering all potential relations in the real-world
scenarios. Further, we propose new evaluation metric framework to assess audio event relation
modeling from various perspectives. Additionally, we propose a finetuning strategy to boost existing
models’ ability in modelling audio events relation, and we show improvement across all relation
metrics. Finally, we will release both the dataset and the code for the evaluation metrics, which will
be useful for future research in this domain.

Going forward, our work provides a unique research opportunity to bring the world to life by exploring
ways to generate long-term audio events to acoustically understand the physical world. Further,
understanding the successes and failures of these models in generating such complex audio events
is another promising research direction. This analysis could lead to further improvements in TTA
models and their applications in areas such as virtual reality, cinema and immersive media.
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Devi Parikh, Yaniv Taigman, and Yossi Adi. Audiogen: Textually Guided Audio Generation.
International Conference on Learning Representations (ICLR), 2023. 1, 3, 8, 9, 14, 15

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson, Kenji Hata, Joshua Kravitz, Stephanie
Chen, Yannis Kalantidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein, and Fei-Fei Li.
Visual Genome: Connecting Language and Vision Using Crowdsourced Dense Image Annotations.
International Journal of Computer Vision (IJCV), 2016. 3

Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B. Tenenbaum. Human-level Concept Learning
hrough Probabilistic Program Induction. Science, 350(6266):1332–1338, 2015. 1

Huan Liao, Haonan Han, Kai Yang, Tianjiao Du, Rui Yang, Zunnan Xu, Qinmei Xu, Jingquan
Liu, Jiasheng Lu, and Xiu Li. BATON: Aligning Text-to-Audio Model with Human Preference
Feedback. International Joint Conference on Artificial Intelligence (IJCAI), 2024. 3

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft COCO: Common Objects in Context. In David Fleet,
Tomas Pajdla, Bernt Schiele, and Tinne Tuytelaars (eds.), European Conference on Computer
Vision (ECCV), pp. 41–45, 2014. 7

Haohe Liu, Zehua Chen, Yi Yuan, Xinhao Mei, Xubo Liu, Danilo Mandic, Wenwu Wang, and Mark D
Plumbley. AudioLDM: Text-to-Audio Generation with Latent Diffusion Models. International
Conference on Machine Learning (ICML), 2023a. 1, 2, 3, 7, 8, 14, 15

Haohe Liu, Yi Yuan, Xubo Liu, Xinhao Mei, Qiuqiang Kong, Qiao Tian, Yuping Wang, Wenwu
Wang, Yuxuan Wang, and Mark D. Plumbley. AudioLDM 2: Learning Holistic Audio Generation
With Self-Supervised Pretraining. IEEE/ACM Transactions on Audio, Speech, and Language
Processing (TASLP), 32:2871–2883, 2024. doi: 10.1109/TASLP.2024.3399607. 1, 2, 3, 7, 8, 9, 15

Xubo Liu, Zhongkai Zhu, Haohe Liu, Yi Yuan, Qiushi Huang, Jinhua Liang, Yin Cao, Qiuqiang
Kong, Mark D Plumbley, and Wenwu Wang. WavJourney: Compositional Audio Creation with
Large Language Models. arXiv preprint arXiv:2307.14335, 2023b. 3

Zixian Ma, Jerry Hong, Mustafa Omer Gul, Mona Gandhi, Irena Gao, and Ranjay Krishna. Crepe:
Can vision-language foundation models reason compositionally? In IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2023. 7

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Navonil Majumder, Chia-Yu Hung, Deepanway Ghosal, Wei-Ning Hsu, Rada Mihalcea, and Soujanya
Poria. Tango 2: Aligning Diffusion-based Text-to-Audio Generations Through Direct Preference
Optimization. In ACM International Conference on Multimedia (ACMMM), 2024. 1, 7, 8, 9, 14, 15

Alex Nichol, Heewoo Jun, Prafulla Dhariwal, Pamela Mishkin, and Mark Chen. Point-E: A System
for Generating 3D Point Clouds from Complex Prompts. In arXiv preprint arXiv:2212.08751,
2022. 1

Maya Okawa, Ekdeep S Lubana, Robert Dick, and Hidenori Tanaka. Compositional Abilities
Emerge Multiplicatively: Exploring Diffusion Models on a Synthetic Task. In Advances in Neural
Information Processing Systems (NeurIPS), 2023. 3

Darius Petermann, Gordon Wichern, Aswin Subramanian, and Jonathan Le Roux. Hyperbolic Audio
Source Separation. In IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), 2023. 7

Allan D. Pierce. Acoustics: An Introduction to Its Physical Principles and Applications. In Springer
International Publishing, 2019. 5

Vadim Popov, Ivan Vovk, Vladimir Gogoryan, Tasnima Sadekova, and Mikhail Kudinov. Grad-TTS:
A Diffusion Probabilistic Model for Text-to-Speech. In International Conference on Machine
Learning (ICML), 2021. 2

Yuanyuan Qu, Xuesheng Li, Zhiliang Qin, and Qidong Lu. Acoustic Scene Classification based
on Three-dimensional Multi-channel Feature-correlated Deep Learning Networks. In Scientific
Reports, 2022. 1

Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao, and Tie-Yan Liu. FastSpeech:
Fast, Robust and Controllable Text to Speech. In Advances in Neural Information Processing
Systems (NeruIPS), 2019. 1, 2

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
Resolution Image Synthesis With Latent Diffusion Models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2022. 2, 3, 7

Roy Sheffer and Yossi Adi. I Hear Your True Colors: Image Guided Audio Generation. In IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023. 2

Ho-Hsiang Wu, Oriol Nieto, Juan Pablo Bello, and Justin Salamon. Audio-Text Models Do Not Yet
Leverage Natural Language. In IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2023a. 7

Yusong Wu, Ke Chen, Tianyu Zhang, Yuchen Hui, Taylor Berg-Kirkpatrick, and Shlomo Dubnov.
Large-scale Contrastive Language-Audio Pretraining with Feature Fusion and Keyword-to-Caption
Augmentation. In International Conference on Acoustics, Speech and Signal Processing (ICASSP),
2023b. 7

Zeyu Xie, Xuenan Xu, Zhizheng Wu, and Mengyu Wu. AudioTime: A Temporally-aligned Audio-
Text Benchmark Dataset. arXiv preprint arXiv:2407.02857, 2024. 3

Junichi Yamagishi, Christophe Veaux, and Kirsten MacDonald. CSTR VCTK Corpus: English
Multi-speaker Corpus for CSTR Voice Cloning Toolkit (version 0.92), 2019. 4

Dongchao Yang, Jianwei Yu, Helin Wang, Wen Wang, Chao Weng, Yuexian Zou, and Dong Yu.
Diffsound: Discrete Diffusion Model for Text-to-sound Generation. IEEE Transactions on Audio,
Speech and Language Processing, 2022. 2, 3

Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James Zou. When and
Why Vision-Language Models Behave Like Bags-of-Words, and What To Do About It? In
International Conference on Learning Representations (ICLR), 2023. 7

Jeffrey M Zacks, Nicole K Speer, Khena M Swallow, Todd S Braver, and Jeremy R Reynolds. Event
Perception: A Mind-Brain Perspective, 2007. 1

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

not

if-th
en-e

lse

count

bef
ore

simultaneity

closefi
rst

farf
irst

eq
ua
ld
ist

an
d

or

A. mARel
aft
er

not

if-th
en-e

lse

count

bef
ore

simultaneity

closefi
rst

farf
irst

eq
ua
ld
ist

an
d

or

B. mAPar

Tango Tango finetune

aft
er

not
if-th

en-e
lse

count

bef
oreclosefi

rst

farf
irst

eq
ua
ld
ist

an
d

or

C. mAMSR

aft
ersimultaneity

Figure I: The comparison of mARel, mAPar, mAMSR on Tango w/o finetuning.

Methods Setting
AudioLDM (S-Full) (2023a) guidance scale=5, random seed=42, n candidates=3
AudioLDM (L-Full) (2023a) guidance scale=5, random seed=42, n candidates=3
AudioLDM 2 (L-Full) (2023b) guidance scale=3.5, random seed=45, n candidates=3
MakeAnAudio (2023b) ddim steps = 100, scale = 3.0
AudioGen (2023) model name: audiogen-medium
Tango (2023) num steps = 200, guidance=3, num samples=1
Tango 2 (2024) num steps = 200, guidance=3, num samples=1

Table I: Detail setting for each TTA method

A APPENDIX

.1 FINETUNING PANNS AUDIO EVENT DETECTION MODEL ON OUR CURATED DATASET

A AUDIO EVENT DETECTION MODEL FINE-TUNE

To detect the audio events from generated audio, we employ a pre-trained audio event detection
model (in our case, we adopt PANNS (Kong et al., 2020b)) to detect all audio events, each detected
event has class label with a confidence score, start time and end time. Analyzing these detected audio
events can uncover various audio events relations (see Fig. 4 in the main paper).

The PANNS model (Kong et al., 2020b) is pre-trained on the large-scale 527 class AudioSet
dataset (Gemmeke et al., 2017). It contains an audio tagging model and an audio event detec-
tion model. Directly applying the pre-trained detection model to detect audio events from our
generated audios inevitably results in false positive and ambiguous detections. For instance, a door
slam sound may be incorrectly detected as speech or music with high confidence scores. To miti-
gate the ambiguity and inaccuracies, we finetune the detection model (“Cnn14 DecisionLevelMax”
variant) on our specially curated 100 k dataset by just tuning the last classification layer. Finally
the finetuned model achieves mAP 0.57 on our curated 10k test sets, far outperforming the original
model with mAP 0.43.

We based on the pretrained PANNS (Kong et al., 2020b) audio event detection model to finetune
it on our curated 100 k audio training dataset. Each audio is 10 s long with sampling rate 16 kHz.
Moreover, each audio randomly contains one to five audio events, each event has a random start time
position in the 10 s long audio. The input is 10 s long audio waveform. The output is a confidence
map of shape r20, 25s, where 20 is the time steps with the temporal resolution 0.5 s and 25 is the audio
event class number. Potential audio events are extracted from the confidence map by thresholding the
confidence map, audio events with too short time duration (in our case, less than 0.5 s) are discarded.
The training and testing datasets size are 100 k and 10 k respectively. We adopt Adam (Kingma & Ba,
2015) to train the model with initial learning rate 0.0001 but decays every 200 epochs with decaying
rate 0.5. Finally, we train 350 epochs. The loss function is binary cross-entropy loss (BCE). On the
testing dataset, the finetuned model achieves mAP 0.57. We use the finetuned audio event detection
model to detection audio events from the generated audios.
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A.1 EXISTING TTA MODEL SETTING

We test 7 most recent TTA models: AudioLDM (Liu et al., 2023a) (two versions), AudioLDM 2 (Liu
et al., 2024), MakeAnAudio (Huang et al., 2023b), AudioGen (Kreuk et al., 2023), Tango (Ghosal
et al., 2023) and Tango 2 (Majumder et al., 2024). We depend on their released pre-trained model
and use their recommended hyperparameter setting for benchmarking (from their Github page). The
detailed setting for each TTA method is given in Table

A.2 MORE RESULT ON TANGO FINETUNING

The mARel, mAPar and mAMSR score w.r.t. 11 sub-relations is given in Fig. I.
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