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ABSTRACT

Real-world data usually obeys a long-tailed distribution. Many previous works
merely focus on the superficial phenomenon that tail classes lack samples in long-
tailed datasets, yet they do not conduct in-depth analysis on the datasets and the
model prediction results. In this paper, we experimentally find that due to the
easily confusing visual features between head- and tail classes, the cross-entropy
model is prone to misclassify tailed samples as head classes with high appearance
similarity. We propose a Similarity Window Reweighting and Margins (SWRM)
algorithm to tackle this problem. Specifically, we pretrain a cross-entropy model
to model category similarity, then a sliding window is adopted upon the model-
ing result to constrain the impact of similarity. We design weights for different
classes with the help of similarity window, which is named Similarity Window
Reweighting (SWR). Besides, different margins computed inside the similarity
window will be assigned to different classes, this is called Similarity Window
Margin (SWM). In a nutshell, SWR considers the category frequency difference
and the category similarity impact simultaneously, so that the weight coefficients
computed by SWR are more reasonable. SWM prompts the model to learn fine-
grained features and is conducive to the model’s discriminative ability. Therefore,
our methods alleviate the issue of misclassification effectively. In order to enhance
the robustness and generalization of the model, we introduce a learnable similarity
vector and further propose a Dynamic Similarity Window Reweighting and Mar-
gins (DySWRM) algorithm, which spends less computation cost compared with
SWRM. Extensive experiments verify our proposed approaches effectiveness and
superiority over SOTA reweighting and logit adjustment methods.

1 INTRODUCTION

With the advent of large-scale high-quality i 1mage datasets, the study of image recognition has wit-
nessed incredible development ( s s ). However, these datasets are
usually artlﬁcrally balanced. Real-world data is 1nherently imbalanced and obeys a long-tailed dis-
tribution, i.e., a few classes (head/majority classes) dominate most of the training samples, while
considerable classes (tail/minority classes) only possess limited data points. The model trained
on balanced datasets suffers catastrophic performance decline When evaluating it on long-tailed
datasets. Class re-balancing (

; , ) is the mainstream method that addresses the long- tarled problem Though
these approaches can mitigate the model performance drop, most of them only focus on such a su-
perficial phenomenon that tail classes are short of samples, and they do not analyze the long-tailed
datasets and the model prediction results in depth.

In order to thoroughly explore the difficulty of long-tailed recognition, we train a cross-entropy
model on Cifar100-LT training set and evaluate the model on the test set. We find that due to the
easily confusable visual features residing in head- and tail classes, the model is apt to incorrectly
classify tailed samples as head classes with similar visual appearance, as shown in Table 1. For
instance, 18% of the samples of the minority class woman are mispredicted as class baby, and
24% of samples are mispredicted as class boy. Note that in Cifar100-LT training set, class baby
and class boy are of head classes. Thereat, one can conclude that the cross-entropy model barely
misclassifies the samples of head classes as the minority, and meanwhile, the situation of samples
misclassification among tail classes hardly happens. As evidenced in Table 1, tailed samples are
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easily misclassified as head classes with high appearance similarity. Figure 3 in the Appendix A
displays some images with confusable visual features on Cifar100-LT training set.

Table 1: The statistics of prediction error on Cifar-100-LT test set. For the first and second columns,
the values in brackets denote the number of samples on Cifar100-LT training set. Error is the
percentage of samples which are misclassified into a certain category. For the fourth column, the
numbers in brackets represent the decreased proportion of the misclassified samples.

Label Prediction Error for CE(%) | Error for SWRM(%)

woman (5) baby (455) 18 14
boy (299) 24 18

whale (6) dolphin (123) 56 38
train (7) bus (273) 40 19
tram (11) bus (273) 55 48
shrew (15) beaver (415) 26 10
shark (16) dolphin (123) 36 28
bear (434) 18 12
hedgehog (26) | o ver (415) 19 12
plate (29) bowl (314) 47 24
pickup (33) bus (273) 55 31

In order to alleviate the issue of misprediction, we propose a Similarity Window Reweighting and
Margins (SWRM) algorithm. We firstly pretrain a cross-entropy model on the long-tailed dataset
to model the category similarity. Afterward, a sliding window is adopted upon the modeling result
to constrain the impact scope of similarity. On the one hand, we devise weight coefficients for
different classes based on the similarity window, this is Similarity Window Reweighting (SWR)
algorithm. Unlike previous reweighting methods ( , ; , ) that only
reweight samples according to the discrepancy of sample numbers, SWR takes such discrepancy as
well as the impact of category similarity into consideration. Therefore, the weights computed by
SWR are more reasonable. On the other hand, we enforce margin in logit space, which is named
Similarity Window Margin (SWM), and the margin is measured by category similarity inside the
sliding window. SWM imposes more penalty to the classification error of confusing classes, aiming
to reduce the confusion between head- and tail classes. In this way, the meticulous distinguishing
ability of the model can be enhanced.

When coping with different long-tailed datasets, it is inevitable for SWRM to pretrain a cross-
entropy model. It is time-consuming and expensive. To address this problem, we introduce a learn-
able similarity vector to replace the similarity modeling result produced by the pretrained model.
Compared with the entire pretrained model, the similarity vector only contains C' (the number of
classes in the dataset) trainable parameters, which spends less computation cost. Similarly, the
weights and margins of different classes are computed based on the similarity vector and the sliding
window. We name this method Dynamic Similarity Window Reweighting and Margins (DySWRM)
algorithm.

Contributions. (1) We conduct in-depth analysis of the difficulty for long-tailed recognition and find
what causes poor performance of long-tailed model is that the model is prone to erroneously classify
tailed samples as head classes with easily confusable visual features. (2) e design two algorithms
named SWRM and DySWRM dedicated to improving such misclassification problem, in which
DySWRM is more robust and generalized than SWRM. (3) SWR takes the difference of category
frequency and the impact of category similarity into account simultaneously, so that it can produce
more reasonable weight coefficients. SWM penalizes errors on confusable categories and makes
them more recognizable, which is conducive to discriminative feature learning. (4) Experimental
results on three long-tailed benchmark datasets verify that our proposal is effective and superior to
the SOTA reweighting and logit adjustment methods.

2 RELATED WORK

In long-tailed image recognition, due to the severe class imbalance and scarce samples in tail classes,
the model learning is extremely skewed, which leads to difficulty for the model to distinguish similar
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visual features between head- and tail classes. One of the recent mainstream approaches to tackle this
problem is class re-balancing, which includes resampling, logit adjustment method and rewelghtlng
These methods balance the model learning by data englneerlng (

, ; , ; , ), logit margin and loss modlﬁcatlon respectwely

Logit adjustment method modifies the logit output of the model via class prior knowledge, so as to
achieve the goal of learning re-balancing. ( ) propose to calibrate the logits by using
an offset related to the estimates of class prior during sample prediction. ( ) regard
long-tailed recognition as the problem of label distribution shift and propose a post-compensation
strategy to adjust the logits by using the test data distribution in the inference phase.
( ) argue that tail classes are over-suppressed by the overwhelming discouraging gradients of
head classes, which is not conducive to the learning of the minority. Hence, they elaborately de-
sign Equalization Loss, which can reduce the suppression of discouraging gradients via ignoring the
logits of head classes when computing the prediction score. ( ) carry on more thor-
ough analysis, they believe that the discouraging gradients of easily confusable categories conduce
to the discriminative ability of the model, thereat, those discouraging gradients should be preserved.
( ) point out that since the embedding of tail classes is diffuse, logit margin
cannot guarantee the correctness of tailed samples prediction. Therefore, in addition to enforcing
logit margin, they also regularize the feature distribution in the embedding space, which is called
embedding margin. Different from these methods calibrating logits either by prior knowledge or by
sample gradients, our SWM modifies logits with the help of category similarity.

Reweighting is to reweight each sample during the training phase so that the model will pay more
attention to the learmng of tail classes In general reweighting allocates different loss contribution

( s ) or decision margin ( s

) to dlfferent classes accordlng to the sample frequency ( s ; , ),
sample difficulty ( , ; , ) and class difficulty ( ), respectively.
The works ( , ; , ) decide the weighting coefficients of different classes
based on the effective number of samples in the training set, rather than the exact number of samples.
Unlike using the sample number to design weights, ( ) reweight samples according to
their influence on the decision surface, so that a more generalized decision boundary can be trained.
Instead of fixing the weight coefficients, ( ) update them during model parameter opti-

mization by using a handful of unbiased meta-data. Although these methods can pose considerable
performance gains, they unexpectedly have some shortcomings in practice. For example, CB Loss
( , ) calculates the weights only according to the category frequency, and meta-weight-
net ( , ) needs additional unbiased data for optimizing the weights. Our SWR not only
considers the difference of category frequency, but also takes the category similarity into account,
to design the weights for each class, so that the calculated weights are more rational. By introduc-
ing a learnable similarity vector, DySWRM can also update the weights during the training process
without any additional data for learning.

3 MOTHODOLOGY

3.1 PRELIMMINARY

Giving a long-tailed training set D = {(z;, ;)¢ € {1,2,..., N},y; € {1,2,...,C}}, where N and
C are the total number of samples and classes, respectively, x; denotes a sample and y; is its corre-
sponding label. When feeding ; to the network, we can get its logits z; € R”.

In practice, the cross-entropy model is prone to misclassify tailed samples as head classes that have
easily confusing visual appearance, which results in extremely low classification accuracy on tail
classes and the overall dataset. Therefore, we propose Similarity Window Reweighting and Margins
(SWRM) algorithm to alleviate this problem, in which SWRM mainly includes two steps: category
similarity modeling, weights and margins computing.

3.2 CATEGORY SIMILARITY MODELING

The first step of SWRM is category similarity modeling. Firstly, we train an initial model on to
extract all image features. The loss function used to supervise model training is the conventional
cross-entropy, which can be expressed as:
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where z; ; is the j-th component of z;, j € {1,2,...,C}. Since there is more than one sample
in a class, we leverage the average features (i.e., prototypes ( , )) of each class to
evaluate the category similarity. Specifically, we use a similarity assessment strategy to measure the
similarity of the all the average features. This process aims to achieve the goal that the farther the
two average features are, the lower similarity they hold. To this end, we leverage t-SNE (

, ) to project the C average features that represent C' categories into one-
dimensional space, which will produce a projection vector. Due to the property of t-SNE that it
reduces the feature dimensions according to the feature similarity, in the one-dimensional space, the
distance of two classes with high similarity will be smaller than the ones that are rarely similar. The
projection vector will be taken as the result of similarity modeling. Upon projection vector, a sliding
window is adopted to constrain the scope of similarity impact.

3.3 SIMILARITY WINDOW REWEIGHTING

In order to diminish the error of tailed sample predictions, the model should pay more attention to
tail classes with high probability of being classified incorrectly. To be specific, in the training phase,
we should assign larger weights to those classes, while assigning smaller ones to the head classes
with confusable appearance. To this end, we design weight coefficients for different classes with the
help of similarity window.

Through similarity modeling in Section 3.2, high similarity exists in the categories inside the sim-
ilarity window. In other words, if a tail class and a head class are highly similar, they will appear
in the same window. Since the effect of the categories with low similarity is quite subtle and can
be ignored, we only leverage the impact of the categories locating in the same window to compute
the weight coefficients. Such impact is called local impact and is measured by the ratio of sample
number. For one category c, the larger the ratio is, the fewer samples it has compared with other
categories. During training, the model will under-learn this category. Thereat, category ¢ should
obtain a larger weight. In addition to the local impact, we also exert the global impact of the entire
datatset on category c. The global impact reflects the imbalance degree of the long-tailed dataset and
it is measured by the maximum number of samples n,,,4, and the number of samples n. in category
c. Formally, the weight of category c can be computed by:

Nmazx 1 n;
wc:log(lJrT*W Z —) 2)

¢ ’ W

where W is the window size and W € {2,3,...,C}. For the computation of weight coefficients,
previous works ( , , ), only leverage the difference of category fre-
quency. Our SWR, however, glves consideration to such difference and the impact of category
similarity concurrently, and is capable to allocate more rational weights to different classes, the ev-
idence and in-depth analysis about this will be presented in Section 4.4 and Figure 2. Through Eq.
2, for one tail class that is easily confusable to a head class, it will obtain a large weight to increase
its loss contribution, while that of the majority will be decreased. Hence, the model will give more
focus on tail classes and effectively learn their characteristics. In this way, minority classes can be
well-represented and the misclassification problem of them can be mitigated.

3.4 SIMILARITY WINDOW MARGIN

In the process of model parameter updating, since the scarcity of tail classes, the model will under-
represent them. In addition, some majority classes have visual appearance that are similar to the
mlnorlty, which hinders the fine-grained feature 1earn1ng of tail classes. Such negative effect com-

ing from the majority is called discouraging gradients in ( , ; , ). To
get rid of these undesirably discouraging gradients, EQL ( , ) introduces a weight term
to encourage the model to ignore them. However, ( ) believe that the discouraging
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gradients from the categories with similar visual features should be retained, aiming to enhance the
discriminative capability of the model. Differing from these approaches that modify the logits ac-
cording to the gradients of samples, we argue that calibrating the logits via taking category similarity
as “encouraging gradients” (actually it should be named positive effect) is conducive to eliminate
the confusion between head- and tail classes, so that promote accurate classification, we present
evidence in Section 4.4. Therefore, in order to prompt the model to learn discriminative feature
representation, we propose Similarity Window Margins (SWM) algorithm.

SWM computes margins for different classes inside the similarity window to adjust the prediction
logits. For category c, its allocated margin is computed as:

1 - 1
= log(W | ZW W) 3)

where sim(i, ¢) denotes the similarity between category ¢ and category ¢, § is a hyper-parameter
that controls the contribution of similarity to the margin. The larger the 3 is, the more sensitive
the margin is to the change of similarity. SWM enforces logit margin with category similarity and
penalises errors on similar classes more strongly. Therefore, it can prompt the model to learn fine-
grained characteristics for the categories with confusable visual appearance. The intention of SWM
is to increase the identifiability of confusing categories and improve the recognition of tail classes.
Surprisingly, we experimentally find that SWM is also conducive to the classification of head classes
(see Section 4.4 and Table 5).

3.5 SWRM AND DYSWRM

The conventional cross-entropy is defined as Eq. 1. Just as our analysis, due to the extreme class
imbalance and limited samples of tail classes, the cross-entropy model is incompetent to depict the
real feature distribution of the minority, which leads to the incorrect prediction problem. In this
paper, we alleviate this issue with SWRM algorithm.

Specifically, after computing the weights and margins for each class by Eq. 2 and Eq. 3, respectively,
we can define SWRM:

ezz',chmc

eZi,ctme + Z » eZij
JFC

) = welog(l + Z e*chrZi,j*Zi,c) (4)
j#c
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SWRM allocates larger weights to the easily misclassified tail classes and smaller ones to head
classes with confusable visual appearance, so that the model can pay more attention to those tail
classes and promote their classification. Besides, it enforces margin in logit space, which can dimin-
ish the confusion and conduces to metlculous representatlon learning. SWRM Loss has a strlkmgly
homogeneous form to ( s s ). However, it is
the category similarity that is used to enforce logit margln for SWRM, rather than label frequency.
In other words, SWRM encourages large relative margin among similar categories.

However, the weights and margins computed by SWRM are fixed in the training phase. When
dealing with different long-tailed datasets, SWRM needs to pretrain a cross-entropy model on the
datasets in advance for category similarity modeling. Undoubtedly, it brings additional computation
cost. In addition, the performance of SWRM algorithm severely relies on the similarity modeling
result, we present evidence in Section 4.4 and Figure 1. In order to train a more robust and general-
ized model, we further propose Dynamic Similarity Window Reweighting and Margins (DySWRM)
algorithm. To be specific, inspired by ( , ) that the authors devise a confidence bank
dedicated to distinguishing the under-represented classes, we introduce a learnable similarity vec-
tor to replace the similarity modeling result, i.e., the projection vector mentioned in Section 3.2.
The similarity vector only contains C optimizable parameters, which brings negligible computation
cost compared with pretraining the entire model. In the training phase, the similarity vector com-
bined with sliding window is used to help DySWRM calculate the weights and margins. Through
similarity vector, DySWRM is capable to seamlessly apply to different long-tailed datasets without
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pretraining model. The weights, margins and objective function of DySWRM are computed by Eq.
2, Eq. 3 and Eq. 4, respectively.

Table 2: Experimental results on Cifar100-LT with ResNet-32. { denotes results are reproduced by
us with released code. { means that the results are copied from ( , ).

Imbalance factor

Method 100 50 10
CE 38.32 4385 55.71
Focal Loss ( , ) 3841 44.32 55.78
CB Loss ( , ) 39.6 4532 57.99
LDAM-DRW ( , ) 42.04 47.30 58.71
Logit Adjustment ( , ) 43.89 - -
LADE ( , ) 454 505 61.7
TDE ( , ) 44.1 503  59.6
EQL ( , )i 42.74 - -
IB-Focal ( , ) 42.06 47.49 58.20
Seesaw ( , ) 40.87 - 57.83
GHM-CWAP ( , ) 41.59 - 57.81
CFL ( , )t 4271 48.66 60.87
CDB-W-CE ( ) 42.59 - 58.74
ELM ( , ) 45.77 - -
SWRM (ours) 46.86 51.70 62.19
DySWRM (ours) 46.82 51.92 62.28
4 EXPERIMENTS
4.1 DATASETS
Following ( ; , ), we construct three long-tailed datasets: Cifar100-LT,
ImageNet-LT and Places LT The construction of C1far100 LT is consistent with ( , ).

In the training set, each category has n. = npqz X 1~ ¢ samples, where C'is the number of classes,
Nmaz denotes the maximum number of samples owned by a category, 4 is the imbalance factor, and
it is set to 100, 50 and 10. ImageNet-LT and Places-LT are sampled from the balanced versions

s ) and ( s ) following the Pareto distribution with the power
value of a=6. In ImageNet-LT, there are 115.8k samples and the number of samples per category is
between 5-1280. Places-LT contains 62.5k samples from 365 categories with a maximum of 4980
samples and a minimum of 5 samples per category.

4.2 IMPLEMENTATION DETAILS

Evaluation metric. Top-1 accuracy (%) is used to evaluate the recognition performance of the
model on different datasets. Besides, as in ( s ), we split the long-tailed datasets into
three subsets. They are Many-shot (categories with more than 100 samples), Medium-shot (cate-
gories with more than 20 samples but less than 100 ones) and Few-shot (categories with less than 20
samples), respectively.

Parameter setup. For Cifar100-LT, we train the ResNet-32 ( s ) for 200 epochs and
use an initial learning rate of 0.1, which warms up to 0.1 in the first 5 epochs and is scaled down
after 140 and 180 epochs. The window size W and the hyper-parameter 3 of SWRM are set to 15
and 1, respectively. Similar to LDAM-DRW ( , ), we leverage a two-stage training
strategy and let SWRM work at the last 60 epochs. On ImageNet-LT, we train the ResNet-10 (

, ) for 90 epochs. The learning rate warms up to 0.1 and is decayed at epochs 60 and 80
by 0.1. Considering that there are a large number of categories on ImageNet-LT, we set W and B to
30 and 10. SWRM works at the last 10 epochs. The pretrained ResNet-152( ,

, ) is used for Places-LT. We train it for 30 epochs and use an initial learmng rate of 0.01
and decay it at epochs 10 and 20 by 0.1. Since the class imbalance is more serious on Places-LT,



Under review as a conference paper at ICLR 2023

we set the value of W and /3 to 40 and 10, respectively. At the last 10 epochs, SWRM is used to
supervise the model training.

Unless otherwise stated, we use a batch size of 128 and the model is optimized by SGD with momen-
tum 0.9, weight decay 0.0001. In all experiments, the experimental setup of DySWRM is the same
as SWRM. Besides, for the value of W and 3, we provide more experimental analysis in Appendix
B.

4.3 COMPARISON WITH PREVIOUS METHODS

Experiments on Cifar100-LT. Table 2 displays the comparative experimental results of different
approaches using three imbalance factors on Cifar100-LT. From the table we can observe that com-
pared with CE, all approaches have improved their recognition performance to varying degrees.
Although our methods perform slightly different, they deliver the best results in all situations, which
indicates that our methods are effective ways to deal with long-tailed image recognition.

Experiments on ImageNet-LT. Table 3 shows that our proposal outperforms existing SOTA
reweighting and logit adjustment methods by a large gap, which is attributed to SWR and SWM.
On the one hand, SWR assigns larger weight coefficients to tail classes that are easily misclassified
and meanwhile assigns smaller ones to head classes with high appearance similarity, so that the
model can pay more attention to tail classes. On the other hand, SWM adjusts logits with the help of
category similarity, which is conducive to making the confusing categories more recognizable and
improves the sample prediction.

Table 3: Experimental results on ImageNet-LT with ResNet-10.

Method Many Medium Few  Overall
CE 494 13.7 2.4 239
Focal Loss ( , ) 36.4 29.9 16.0 30.5
Lifted Loss ( , ) 358 304 17.9 30.8
Range Loss ( , ) 35.8 30.3 17.6 30.7
CB Loss ( , ) 43.1 32.9 24.0 35.8
LDAM-DRW ( , ) 45.3 34.1 19.3 36.3
EQL ( , ) 494 323 14.5 36.4
CDB-W-CE ( , ) - - - 38.50
SWRM (ours) 57.39 38.87 1558  42.71
DySWRM (ours) 57.60 38.49 1582  42.66

Table 4: Experimental results on Places-LT with ResNet-152.

Method Many Medium Few  Overall
CE 45.9 22.4 0.36 27.2
Focal Loss ( s ) 414 34.8 22.4 34.6
Lifted Loss ( , ) 41.1 354 24.0 35.2
Range Loss ( , ) 41.4 354 23.2 35.1
SWRM (ours) 44 47 37.50 20.19  36.36
DySWRM (ours) 44.62 37.62 18.63  36.15

Experiments on Places-LT. In Table 4, we present the comparisons of our proposal and previ-
ous methods on Places-LT. Compared with CE, the accuracy of our methods slightly drops on
Many-shot. We suspect that with a larger window size on Places-LT, the weight coefficients that
SWR assigns to head classes with confusable visual features are too small, which makes the model
over-ignore the learning of head classes. Nevertheless, our methods deliver significant performance
gains on Medium-shot and Few-shot, especially on Medium-shot, they surpass CE by 67.41% (for
SWRM) and 67.94% (for DySWRM), which is mainly attributed to SWR. Therefore, our proposed
methods consistently outperform previous approaches on the overall accuracy.
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4.4 ABLATION STUDY

Influence of SWR and SWM. As two independent approaches, SWR and SWM can be used sepa-
rately to promote the optimization of the model. In order to study how they influence the model, we
carry on experiments on ImageNet-LT and the results are showed in Table 5. Baseline is the model
trained by cross-entropy (CE). One can see that the Baseline performs poorly on tail classes and the
overall dataset. It is attributed to the fact that the CE model under-represents tail classes because
of the paucity of samples, which results in the issue that tailed samples are misclassified as head
classes with high appearance similarity. SWM, however, applies such category similarity to enforce
margin in logit space, prompting the model to learn discriminative feature representation aiming
to eliminate the confusion. Thus, SWM improves the classification of tail classes significantly. It
demonstrates that the category similarity is conducive to the accurate classification of samples. Sur-
prisingly, SWM performs the best on Many-shot. It is understandable because head classes have
abundant samples to underpin the model to well-represent them, and meanwhile, they enjoy the
benefit of category similarity to calibrate the logits. Since SWR will allocate bigger weights to tail
classes and smaller ones to head classes with confusable appearance, its performance of Many-shot
is worse than SWM. Nevertheless, by balancing the model learning, SWR improves the recognition
of tail classes significantly, so that its overall performance surpasses SWM by a large gap. When
combining SWR and SWM, the performance of both SWRM and DySWRM is greatly improved.
This is because both our methods share the goal of alleviating the misprediction problem of tailed
samples.

Table 5: Experimental results of investigating the influence of SWR and SWM on ImageNet-LT.

Method Many Medium Few  Overall
Baseline (CE) 494 13.7 24 239
SWM 59.07 3234  10.17  39.56
SWR 55.61 37.89  15.68 41.58
SWRM 57.39  38.87 1558 42,71
DySWRM 57.60  38.49 1582 42.66

454 456 458 46 46.2 464 466  46.8 a7
SWRM(90) I 45.95

SWRM(120) I 46.32

SWRM(160) I, 46.47

SWRM(200) I 4686

SWRM(400) I 46.65
DySWRM Iy ae.82

Figure 1: The influence of similarity modeling on model performance. Experiments are conducted
on Cifar100-LT with 4=100. The numbers in brackets mean the pretraining epochs for the CE
model. For example, SWRM (90) means that the CE model is pretrained with 90 epochs.

Influence of similarity modeling on model performance. Figure 1 illustrates the influence of the
similarity modeling results on the model performance. In this figure, the CE model is pretrained
for 90, 120, 160, 200 and 400 epochs, respectively, then it will be used to model the category sim-
ilarity. From the figure we see that as the pretraining epoch increases, the classification accuracy
of SWRM also rises. It is because the CE model with a longer pretraining period can better depict
the feature distribution, which results in high-quality similarity modeling result. However, a too
long pretraining time will lead to overfitting of the CE model, which damages the modeling of cate-
gory similarity and further affects the classification of SWRM. Therefore, we can draw a conclusion
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that the recognition performance of SWRM depends on the similarity modeling result. This limits
the practicability and applicability of SWRM, i.e., when applying SWRM to different long-tailed
datasets, it is inevitable to pretrain a model to evaluate the category similarity, which spends addi-
tional computation cost. To tackle this problem, we devise DySWRM that enforces on a learnable
similarity vector. DySWRM is capable to work seamlessly on different long-tailed datasets without
pretraining. Thereat, DySWRM poses better generality and practicability than SWRM. Besides, the
performance of DySWRM is comparable to that of SWRM.

Weight distribution. In order to intuitively understand the property of SWRM, we visualize the
weight distribution calculated by SWRM and CB Loss ( , ) on three datasets. The
visualization results are presented in Figure 2. One can see that CB Loss allocates equal weight
coefficients (where the curve is gentle) to the classes with the same number of samples, which is
not sound enough. Imagine that there are two classes having identical number of samples in the
dataset. The one is quite different from all other categories in visual features, so it is easy for the
model to represent this class. However, easily confusing visual appearance emerges between the
other class and some categories, which results in the difficulty for the model to distinguish this
class. In this case, we should assign a larger weight to the class that is difficult to learn, rather than
assigning equal weights to these two classes. Therefore, the way that allocating weights to different
classes only according to category frequency cannot reflect the discrepancy of category similarity in
visual features. Our SWRM takes the difference of category frequency and the impact of category
similarity into account simultaneously, so that the weight distribution is more reasonable. From the
figure we can see that even if two classes have the same number of samples, the weights allocated
to them may be different.
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Figure 2: The class weight distribution of different methods on (a) Cifar100-LT (u=100), (b)
ImageNet-LT, (c) Places-LT. Our SWRM assigns more reasonable weights to different classes.

Do SWRM achieve the goal? In order to investigate whether SWRM has achieved its goal, i.e.,
alleviating the problem that in long-tailed recognition, the CE model tends to wrongly predict tailed
samples as head classes with confusing visual appearance, we conduct experiments on Cifar100-LT
with an imbalance factor of 100. The experimental results are shown in Table 1. From the table we
see that SWRM is capable to efficaciously reduce the occurrence of such misclassification. In other
words, SWRM realizes its goal. We visualize the confusion matrix of SWRM in Appendix C.

5 CONCLUSION

In this paper, a SWRM algorithm is proposed to alleviate the problem that the samples of tail classes
are prone to be classified incorrectly as head classes with confusable visual features. Specifically,
we pretrain a cross-entropy model to model the category similarity and introduce a sliding window
upon the modeling result to constrain the impact scope of similarity. Based on the similarity window,
we compute weights and margins for different classes according to SWR and SWM algorithms,
respectively. In SWR, the difference of category frequency and the impact of category similarity
are considered concurrently. Therefore, the weights calculated by SWR are more reasonable. For
SWM, it enjoys the benefit of category similarity to eliminate the confusion of head- and tail classes,
which is conducive to the model’s dicriminative ability. Besides, in order to learn a more robust and
generalized model, and also to reduce the computation cost, we introduce a learnable similarity
vector to substitute the similarity modeling result. The method that SWR and SWM work on such
similarity vector and the sliding window is named DySWRM. Wide-ranging experiments prove the
effectiveness and competitiveness of our methods. Meanwhile, our proposal outperforms the SOTA
reweighting and logit adjustment methods.



Under review as a conference paper at ICLR 2023

REFERENCES

Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. Advances in neural information processing
systems, 32, 2019.

Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote: synthetic
minority over-sampling technique. Journal of artificial intelligence research, 16:321-357, 2002.

Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
on effective number of samples. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 9268-9277, 2019.

Chris Drummond, Robert C Holte, et al. C4. 5, class imbalance, and cost sensitivity: why under-
sampling beats over-sampling. In Workshop on learning from imbalanced datasets I, volume 11,
pp. 1-8. Citeseer, 2003.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770-778, 2016.

Youngkyu Hong, Seungju Han, Kwanghee Choi, Seokjun Seo, Beomsu Kim, and Buru Chang. Dis-
entangling label distribution for long-tailed visual recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 6626-6636, 2021.

Hanzhe Hu, Fangyun Wei, Han Hu, Qiwei Ye, Jinshi Cui, and Liwei Wang. Semi-supervised seman-
tic segmentation via adaptive equalization learning. Advances in Neural Information Processing
Systems, 34:22106-22118, 2021.

Wittawat Jitkrittum, Aditya Krishna Menon, Ankit Singh Rawat, and Sanjiv Kumar. Elm: Embed-
ding and logit margins for long-tail learning. arXiv preprint arXiv:2204.13208, 2022.

Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and Yannis
Kalantidis. Decoupling representation and classifier for long-tailed recognition. In 8th Interna-
tional Conference on Learning Representations, 2020.

Gaoyuan Liang, Haoran Mo, Ying Qiao, Chuxin Wang, and Jing-Yan Wang. Paying deep attention
to both neighbors and multiple tasks. In International Conference on Intelligent Computing, pp.
140-149. Springer, 2020.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense
object detection. In Proceedings of the IEEE international conference on computer vision, pp.
2980-2988, 2017.

Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu. Large-
scale long-tailed recognition in an open world. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2537-2546, 2019.

Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas Veit,
and Sanjiv Kumar. Long-tail learning via logit adjustment. In 9th International Conference on
Learning Representations. OpenReview.net, 2021.

Hyun Oh Song, Yu Xiang, Stefanie Jegelka, and Silvio Savarese. Deep metric learning via lifted
structured feature embedding. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4004—-4012, 2016.

Seulki Park, Jongin Lim, Younghan Jeon, and Jin Young Choi. Influence-balanced loss for im-
balanced visual classification. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 735744, 2021.

Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al. Balanced meta-softmax for long-
tailed visual recognition. Advances in neural information processing systems, 33:4175-4186,
2020.

10



Under review as a conference paper at ICLR 2023

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-
Fei. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis., 115(3):211-252,
2015.

Jun Shu, Qi Xie, Lixuan Yi, Qian Zhao, Sanping Zhou, Zongben Xu, and Deyu Meng. Meta-
weight-net: Learning an explicit mapping for sample weighting. Advances in neural information
processing systems, 32, 2019.

Saptarshi Sinha, Hiroki Ohashi, and Katsuyuki Nakamura. Class-difficulty based methods for long-
tailed visual recognition. International Journal of Computer Vision, 130(10):2517-2531, 2022.

Leslie N Smith. Cyclical focal loss. arXiv preprint arXiv:2202.08978, 2022.

Jake Snell, Kevin Swersky, and Richard Zemel. Prototypical networks for few-shot learning. Ad-
vances in neural information processing systems, 30, 2017.

Jingru Tan, Changbao Wang, Buyu Li, Quanquan Li, Wanli Ouyang, Changqing Yin, and Junjie Yan.
Equalization loss for long-tailed object recognition. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 11662-11671, 2020.

Kaihua Tang, Jianqiang Huang, and Hanwang Zhang. Long-tailed classification by keeping the
good and removing the bad momentum causal effect. Advances in Neural Information Processing
Systems, 33:1513-1524, 2020.

Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine
learning research, 9(11), 2008.

Jiaqi Wang, Wenwei Zhang, Yuhang Zang, Yuhang Cao, Jiangmiao Pang, Tao Gong, Kai Chen,
Ziwei Liu, Chen Change Loy, and Dahua Lin. Seesaw loss for long-tailed instance segmentation.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
9695-9704, 2021a.

Tong Wang, Yousong Zhu, Chaoyang Zhao, Wei Zeng, Jinqgiao Wang, and Ming Tang. Adaptive
class suppression loss for long-tail object detection. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 3103-3112, 2021b.

Yiru Wang, Weihao Gan, Jie Yang, Wei Wu, and Junjie Yan. Dynamic curriculum learning for
imbalanced data classification. In Proceedings of the IEEE/CVF international conference on
computer vision, pp. 5017-5026, 2019.

Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. Learning to model the tail. Advances in
neural information processing systems, 30, 2017.

Renhui Zhang, Tiancheng Lin, Rui Zhang, and Yi Xu. Solving the long-tailed problem via intra-
and inter-category balance. In IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 2355-2359, 2022.

Xiao Zhang, Zhiyuan Fang, Yandong Wen, Zhifeng Li, and Yu Qiao. Range loss for deep face
recognition with long-tailed training data. In Proceedings of the IEEE International Conference
on Computer Vision, pp. 5409-5418, 2017.

Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places: A 10
million image database for scene recognition. IEEE transactions on pattern analysis and machine
intelligence, 40(6):1452-1464, 2017.

11



Under review as a conference paper at ICLR 2023

-~ AWRTS | BHANER -
SEANE | wEPN? -
SxEEd | @vasm -
TILLBRL L

- BENEE | sRESPS
EETEE | sSfEN

- EETEE | EAvEE -

TR CLUITE
PEEED

Target categories Easily confused categories

Figure 3: Some images with confusing visual appearance on Cifar100-LT training set. The images
on the left are of target categories, which belong to tail classes, while those on the right are of easily
confusable categories that usually come from head classes. As shown in Table 1, these images on the
left are prone to be misclassified as the confused classes with high appearance similarity represented
on the right.

A SOME CONFUSABLE CATEGORIES

We present a part of images on Cifar100-LT training set. These images are from different categories
and have similar visual appearance. For example, the class woman is similar to baby, whale is
similar to dolphin. Due to the extreme class imbalance and the paucity of tailed samples, the model is
incompetent to represent the feature embedding of minority classes. In addition of the overwhelming
discouraging gradients (Tan et al., 2020; Wang et al., 2021a;b) coming from the majority, the model
learning is highly biased to head classes, and the minority is over-suppressed. It leads to the problem
that tailed samples are easily misclassified as head classes. In this paper, we propose SWRM and
DySWRM algorithms to alleviate this problem.

B FURTHER ANALYSIS OF HYPER-PARAMETER

B.1 WINDOW SIZE W

Analysis of window size W. In SWRM and DySWRM, the sliding window is used to constrain the
impact scope of category similarity. In order to explore the sensitivity of SWRM to the window
size W, we conduct experiments on Cifar100-LT with an imbalance factor of 100. The experimental
results are presented in Figure 4. In this experiment, the value of hyper-parameter [ is fixed to 1,
and we increase W from 2 to 100. As illustrated in this figure, before the window size increases
to 15, the larger W is, the more categories with confusable visual features affect the calculation of
weights and margins, and the higher overall accuracy can be obtained. Meanwhile, the performance
of the model on the three subsets has been improved to varying degrees. It fully demonstrates
that the difference of category frequency and the impact of category similarity have a substantive
influence on the model performance. When W gradually increases from 15 to 60, the model places
more emphasis on tail classes, yet head classes get less attention. Thus, the classification accuracy
on Many-shot drops slightly. Despite all this, the performance of the model on Medium-shot and
Few-shot improves to varying degrees, which leads to negligible changes on the overall accuracy.
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However, when W continues to increase, the obvious performance degradation has emerged on
Many-shot, Medium-shot and the overall dataset. In the similarity window, two categories with
large distance are quite different from each other, which weakens the impact of category similarity.
That is the reason why a too big W brings inferior performance gains. Through the above analysis,
we can conclude: the window size W has a great effect on the model performance, an appropriate
one can make the model perform better.
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Figure 4: The effect of window size W. The experiments are conducted on Cifar100-LT with u=100
and top-1 accuracy (%) is reported. Suitable window size can make the model perform well.

B.2 HYPER-PARAMETER (3

The hyper-parameter 5 affects the value of margins. Figure 5 studies the sensitivity of SWRM to
(. These experiments are conducted on Cifar100-LT with an imbalance factor of 100. We fix the
window size to 15 and vary § from 0 to 10. When the value of 3 is 0, SWRM neglects the impact of
category similarity on the margins calculation, so the model delivers the lowest overall accuracy. As
we increase the value of 3, the performance of SWRM initially improves, however after a certain
point (8=1) it starts to drop. When =1, the model keeps a balance between the learning of head-
and tail classes, so that SWRM delivers the highest overall performance. However, such a balance
is broken as we continue to increase /3, which results in performance degradation of the model.
Therefore, we conclude that SWRM is sensitive to the hyper-parameter 3, and an appropriate one is
conducive to balancing the model learning.

C THE CONFUSION MATRIX OF PREDICTION RESULTS

As a complementary work to Table 1, we visualize the confusion matrices of cross-entropy and our
SWRM. The comparative results are presented in Figure 6. It should be noted that in confusion
matrix, the more dark points on the diagonal, the better the model performs. From the comparison
of the fading color on the diagonal elements of both confusion matrices, SWRM delivers better
recognition on tail classes. It indicates that a part of the samples in tail classes have been correctly
predicted. And Table 1 further demonstrates that SWRM alleviates the problem that tailed samples
are prone to be mispredicted as head classes.

13



Under review as a conference paper at ICLR 2023

=+Many ~Medium --Few -<QOverall

Accuracy (%)

0 0.1 0.2 0.4 0.6 0.8 1 2 4 6 8 10

B

Figure 5: The effect of hyper-parameter 5. The experiments are conducted on Cifar100-LT with
1#=100 and on top-1 accuracy (%) is reported. Suitable value of /3 can keep a balance between the
learning of head- and tail classes.

(a) CE (b) SWRM

Figure 6: The confusion matrix of prediction results on Cifar100-LT. (a) The results of cross-entropy.
(b) The results of SWRM. In confusion matrix, the darker the color is, the higher confidence the
model has in the prediction results. In general, the more dark points on the diagonal line represents
the better the model performing.
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