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Abstract—Recently, methods for moving pedestrian detection 

have attracted considerable attention. But it has great challenges 

in feature extraction from low-quality visible-light images in 

nighttime. Infrared image, with its excellent sensitivity to the 

thermal information of objects, provides a more effective 

complementary. Thus, multimodal pedestrian detection methods 

often yield superior results. This paper proposes a novel 

pedestrian detection method utilizing adaptive feature 

enhancement. Our approach is adopted in the UNet backbone, 

incorporating a cross-modal attention-guided learning module 

with an adaptive structure extraction module at the shallow layers 

and a channel exchange module based on genetic algorithms at the 

deep layers. This feature enhancement module is fully embedded 

within the detection network. The effectiveness and robustness of 

our method are tested on the LLVIP dataset, which includes 

paired infrared and visible-light pedestrian images with 

annotations. The results show that our method significantly 

improves pedestrian detection accuracy and notably enhances the 

quality of pedestrian images in low-light road scenes. 

Keywords—pedestrian detection, cross-modality, genetic 

algorithm, feature enhance 

I. INTRODUCTION  

The automatic detection and localization of pedestrians are 
becoming increasingly crucial in research on computer vision 
and smart wearable devices. Pedestrian detection is widely 
applied in autonomous vehicles [1]and surveillance systems [2]. 
Pedestrians detection in real-world scenarios can be challenging 
due to various factors, including different lighting conditions, 
diversity in appearances and poses of pedestrian, occlusions, 
camouflage, and cluttered backgrounds. This paper mainly 
focuses on low-light conditions. 

Generally, low-light scene images suffers from degraded 
image quality and blur objects. Many researchers use image 
enhancement methods to improve the visibility of degraded 
images and satisfy human visual perception. The first approach 
is to train an image enhancement network, and then the 
enhanced images are used as input to train the detection network. 
The second way is to cascade the enhance and detection 
networks in an end-to-end approach. This paper proposed a 
cross-modal fusion enhancement method based on the cascade 
method. The contributions of this paper are summarized as 
follows: 

• We proposed a cross-modal attention guided enhance 
module that can efficiently fuse different modal attention 

weight and guide the enhance process of visible light 
image. 

• We used an adaptive structure extract fusion module to 
enhance the most focused structural features in visible 
light image and filter out redundant structural features. 

• We introduced a novel genetic algorithm based channel 
switch method to fuse channel features from different 
modals. It contains two stages: the gene encoding stage 
and the chromosome crossover mutation stage. 

II. RELATED WORKS 

Image enhancement and multi-modal fusion are two key 
factors that improve the performance of pedestrian detection in 
low-light scenes. In this section, we first present the work related 
to image enhancement, then dive into multi-modal fusion. 

A. Low Light Image Enhancement 

 Low-light image enhancement methods can be divided into 
handcrafted features-based and learning-based methods. Among 
methods based on handcrafted features, Ueda and Suetake et al. 
[3] used histogram normalization technology to transform colors. 
This method combines coefficients in vector space while 
preserving the color properties of the original image. Long Ma 
and Tengyu Ma et al. [4] proposed a self-calibrated supervised 
light learning enhancement method based on Retinex [5] theory. 
As for the learning-based method, Park et al. [6] designed a deep 
reinforcement learning scheme based on the Markov decision 
process. Their agent network only uses high-quality standard 
images for distortion and restoration during the training stage. 

B. Infra and Visble Light Image Fusion 

Infrared and visible fusion methods can be divided into three 
categories: CNN-based, GAN-based, and Transformer-based. 
Zhang et al. proposed IFCNN [7], a general CNN-based image 
fusion framework. This method relies on two convolution 
blocks for feature extraction and reconstruction, and it adopts a 
simple fusion strategy, including element-level average, max 
pooling, and min pooling. In GAN-based fusion, Li et al. 
proposed AttentionFGAN [8]. The multi-scale attention 
mechanism is introduced into the fusion model, which enhances 
the model's ability to extract distinctive and important 
information. Among transformer-based methods, Jun Huang et 
al. proposed the PTET [9], which transfers the features of the 
source image through a token exchange strategy, removes 
redundant information, and gradually enhances the features on 
the fusion branch through cascade layers. 



Compared with various enhancement methods and fusion 
methods, the model proposed in this paper applied both image 
enhancement and multi-modal fusion methods. 

III. METHODS 

The multi-modal feature enhanced pedestrian detection 
model proposed in this paper is adapted based on UNet [10] and 
Yolov5s [11]. The framework of our model consists of two parts: 
the feature enhancement module and the pedestrian detection 
module. The detailed structure of the proposed module is shown 
in Figure 1. 

 

Fig. 1. The overview of our proposed model. ⊗ represents element-wise 

multiplication and ⊕ means summation operation. 

A. Framework Overview 

UNet is adopted as our feature enhancement backbone, as it 
contains a unique U-shaped network that can maintain spatial 
and contextual information when processing images and obtain 
improved performance in gradient backpropagation and feature 
localization. The model takes RGB and IR images as input; it 
obtains shallow features of them through the first DownLayer, 
then we use the cross-modal attention guide enhance module 
(CMAGE), calculate channel attention and spatial attention of 
the infrared mode as the guidance to enhance the visible light 
features. Then, we use an adaptive structure extractor (ASE)to 
adaptively extract visible light structural features and fuse them 
with visible light features through a structure-guided enhance 
fusion module (SGEF). In the bottleneck part, we get deep 
featmaps of two modals through Downlayers; the genetic 
algorithm [12] based channel switch module (GACS) takes them 
and gets the crossover mutation fusion results. Finally, we get 
the enhanced visible light image through Uplayers. The total 
enhance process can be described as: 

𝐼𝑒 = 𝑈(𝐺𝐴𝐶𝑆(𝐹𝑑𝑖𝑟 , 𝐴𝑆𝐸𝐹(𝐼𝑟𝑔𝑏 , 𝐶𝑀𝐴𝐺𝐸(𝐹𝑠𝑖𝑟 , 𝐹𝑠𝑟𝑔𝑏)))) ()  

Where 𝐼𝑒  denotes the enhanced image, 𝑈  denotes UNet 
process, 𝐹𝑠𝑖𝑟  and 𝐹𝑠𝑟𝑔𝑏  denote the shallow feature map of 

infrared and visible light modal, 𝐼𝑟𝑔𝑏  and 𝐹𝑑𝑖𝑟  represent the 

visible light image and deep feature map of infrared. 

B. Units 

Cross-Modal Attention Guided Enhance Module 
 The CMAGE proposed in this paper is shown in Figure 2. 
Infrared sources and visible light sources have complementary 
characteristics. The infrared modal can provide temperature 

information, while the visible light modal can provide color and 
texture information. When pixels are aligned, feature maps in 
different modalities display different information about the same 
targets. Therefore, the GMAGE designed in this paper aims to 
achieve the cross-modal complementary adaptive attention 
guidance in channel and space dimensions. 

 

Fig. 2. The structure of CMAGE module 

 CMAGE module process can be described as below, where 
𝑊𝑐ℎ𝑟𝑔𝑏   and 𝑊𝑐ℎ𝑖𝑟  denote the channel attention of visible light 

and infrared. 𝑊𝑠𝑝𝑖𝑟 represents the spatial attention of infrared 
feature. ⊗ denotes element-wise multiplication. 

 𝐹𝑜𝑢𝑡 = (𝑊𝑠𝑝𝑖𝑟 ⊗𝐹𝑟𝑔𝑏) ⊗𝑊𝑐ℎ𝑟𝑔𝑏) ⊗𝑊𝑐ℎ𝑖𝑟  ()  

 This module includes three branches. In branch (a), we use 
the channel attention mechanism to perform a nonlinear 
transformation on the global semantic information in visible 
light modality. The attention of color and texture information is 
stacked on the visible light featmap. In branch (b), we apply the 
spatial attention mechanism to the infrared featmap and obtain 
the spatial attention which represents the thermal information 
attention in infrared space. Subsequently, we perform element-
by-element multiplication of this weight with the visible light 
feature map, using the spatial feature attention of infrared 
thermal information to guide the feature extraction process of 
visible light at the corresponding location. In branch (c), we use 
the channel attention mechanism with the same structure as 
branch (a) to extract the global feature weight of infrared in the 
channel dimension and guide the learning process of visible light 
features. 

Adaptive Structure Extract Fusion Module 

 ASEF module consists of two parts: the adaptive structure 
extraction module (ASE) and the structural information guided 
enhanced fusion (SGEF) module. The process of ASEF can be 
described as below, where 𝐼𝑟𝑔𝑏  denotes visible light image, 

𝐹𝑟𝑔𝑏 denotes the visible light feature map after CMAGE. 

 𝐹𝑜𝑢𝑡 = 𝑆𝐺𝐸𝐹(𝐴𝑆𝐸(𝐼𝑟𝑔𝑏), 𝐹𝑟𝑔𝑏) ()  

 The ASE module is shown in Figure 3. The objective of this 
module, on the one hand, is to balance the possible excessive 
attenuation of color and structural information under the cross-
modal attention guidance of infrared data. It ensures the integrity 
of critical structural information and optimizes the overall 
performance. On the other hand, the adaptive structure 
extraction module has dynamic attention capabilities that can 
independently focus on the structural features required for the 
detection task and enhance them through detection stage’s loss 
calculation, gradient backpropagation, and parameter update. At 
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the same time, this module can effectively erase the noise of 
redundant structures and color features from visible light source 
input. 

 

Fig. 3. The ASE module structure. 

 The SGEF proposed in this paper is shown in Figure 4. We 
take the structure map as input and employ channel embedding 
method, then concatenate it with the visible light featmap 
processed by CMAGE module. Finally, the channel dimension 
structural feature guided fusion is deployed. 

 

Fig. 4. The SGEF module structure. 

Genetic Algorithm based Channel Switch 

 In the bottleneck part of  UNet, this paper proposed a channel 
exchange module based on genetic algorithms, as shown in 
Figure 5. This module contains two stages: the gene encoding 
stage and the chromosome crossover mutation stage; Our GACS 
process can be described as:  

 𝐼𝑛𝑑𝑆𝑒𝑙𝑒𝑐𝑡 = 𝑆𝑒𝑙𝑒𝑐𝑡𝑜𝑟(𝐶𝑜𝑑𝑒𝑖𝑟 , 𝐶𝑜𝑑𝑒𝑟𝑔𝑏) ()  

 𝐹𝑜𝑢𝑡 = 𝐸𝑥(𝐼𝑛𝑑𝑆𝑒𝑙𝑒𝑐𝑡 , 𝐶𝑜𝑑𝑒𝑖𝑟 ⊗𝐹𝑖𝑟 , 𝐶𝑜𝑑𝑒𝑟𝑔𝑏 ⊗𝐹𝑟𝑔𝑏) ()  

 Where 𝐸𝑥 denotes the channel exchange method; 𝐼𝑛𝑑𝑆𝑒𝑙𝑒𝑐𝑡  
represents the selected  channel index to switch. ⊗  denotes 
element-wise multiplication. 𝐶𝑜𝑑𝑒𝑖𝑟  and 𝐶𝑜𝑑𝑒𝑟𝑔𝑏  represent the 

infrared and visible light  genetic code after the calculation of 
genetic encoder. 

 The feature maps of the two modalities encode different 
feature information in different channels. The inputs from 
different modals have feature isolation in the same channel. 
Therefore, in the genetic chromosome encoding stage, this paper 
simulates the chromosome encoding in the natural genetic 
process. This way, the feature information in different channels 
is effectively compressed and compiled. To update the encoder 
parameters during the training process, we use the element-wise 
method to multiply visible light code with visible light featmap 
and infra code with infrared featmap. This process not only 
increases the feature independence of two modalities, but the 
difference between them. It allows us to adjust the encoder 
parameters at a more fine-grained level. 

 

Fig. 5. The structure of the GACS module. 

 In the chromosome crossover mutation stage, this study 
employed addition (add) and difference (diff) operations to 
calculate the add-diff vector, which reflects the commonality 
and difference of each channel feature in different modes. Next, 
this vector is fed into the channel selector. The channel selector 
uses a random operator to determine the exchange channel index. 
Then it switches and fuses features from two modals in channel 
dimension, allowing the model to dynamically reconfigure the 
feature map's information flow. Finally, after channel exchange, 
the visible light feature map is passed through the Upsampling 
operation of UNet and the final feature-enhanced visible light 
image is produced.  

IV. EXPERIMENT 

Experiments are conducted on the LLVIP [13] dataset to 
compare the overall performance of the model proposed in this 
paper with the baseline model in terms of object detection 
precision and enhancement effect. 

A. Experiment setup 

We use the recently released multi-modal pedestrian 
detection dataset LLVIP for training and evaluation. LLVIP 
includes low-light IR-RGB pixel aligned image pairs captured 
at 26 different positions from a camera perspective, of which 
12025 pairs are used for training and 3463 pairs for testing. This 
dataset only contains pedestrians in one class. 

Our model is adapted based on UNet and Yolov5s. It is 
trained on a single NVIDIA Tesla V100 GPU. The Yolov5s and 
UNet used in the experiment have not been pretrained with any 
data other than LLVIP. We use a resolution of 640*512 as input. 
The optimizer employed is SGD with a learning rate of lr0= 0.01, 
lrf= 0.01. The model is trained for 100 epochs with batch_size=4. 

 We employ a variety of multi-modal target detection models 
as baselines, including DIVFusion [14], SDNet [15], GAFF [16],  
Halfway Fusion [17], and CSSA [18]. For a fair comparison, the 
experimental setting for all the baselines is identical to ours. 
Besides, we also compared the enhancement effect of our 
method with SCI method. 

B. Result 

The detection performance of the proposed model and the 
baselines mentioned above are evaluated on LLVIP datasets. 
The results are shown in Figure 6 and Table 1. Compared with 
the CSAA method, our proposed method outperforms by 1.8% 
on AP50 and 4.4% on mAP. Our method outperforms Halfway 
Fusion by 4.7% on AP50 and 8.5% on mAP. Both our method 
and CSAA have the idea of featmap exchange. Still, this method 
is different from the CENet method because it uses an adaptive 
selection method based on the gene encoding weight instead of 
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using the weight of the BN layer and setting a fixed threshold 
for exchange. 

 

Fig. 6. Example of a figure caption. (figure caption) 

TABLE I.  PEDESTRIAN DETECTION RESULT COMPARISON 

Method AP50 mAP 

CSAA 94.3 59.2 
SDNet 86.6 50.8 

DIVFusion 89.8 52.0 

GAFF 94.0 55.8 
Halfway Fusion 91.4 55.1 

Ours 96.1 63.6 

 We also compared the effect of image enhancement with 
other low-light enhance methods. In the inference stage, we take 
the enhanced image after UNet upsampling for visualization and 
compare it with the inference result of the current low-light 
enhancement SOTA method SCI; The enhanced images of our 
method are shown in Figure 6. The compare result is shown in 
Table 2. We can see that our method has achieved great  
enhancement results in the LLVIP evaluation set, and PNSR 
SSIM indicates that our method is efficient and improves low-
light image quality. 

TABLE II.  ENHANCE EFFECT COMPARISON 

Metrics SSIM↑ PSNR↑ EME↑ LOE↓ 

SCI 27.775 0.4086 0.3307 2.8952 

Ours 28.383 0.7416 0.5874 2.9612 

 

 

Fig. 7. The visualization of our enhance method. (The line above is the 

original image, The line below is the enhanced image) 

V. CONCLUSION 

We proposed a channel exchange feature enhancement 
method based on the genetic a-lgorithm, it integrates infrared 
thermal information and visible light structural texture 
information by deploying a cross-modal attention mechanism, 
an adaptive structural feature extraction, and a channel switch 
fusion method. By simulating the genetic encoding and cross-
mutation operations in genetic algorithms, we evaluate the 

importance of different channel features of the two modalities 
and perform feature cross-fusion. Training and testing were 
conducted on the LLVIP dataset. The method proposed in this 
paper not only showed excellent accuracy and performance in 
the detection task but also achieved good results in low-light 
image enhancement. 
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