Pinyin-BART: An End-to-End Chinese Input Method

Anonymous ACL submission

Abstract

A Chinese Input Method Engine helps user con-
vert a keystroke sequence into the desired Chi-
nese character sequence. It is usually a cas-
caded process in which the original input se-
quence is firstly corrected to remove typos, then
segmented into the pinyin token sequence, and
finally converted into a Chinese character se-
quence. Errors are prone to accumulate and
propagate in that pipeline. This paper summa-
rizes that process as a Key-to-Character (K2C)
conversion task and solve it in a unified end-
to-end way. Pinyin-bart is proposed which can
effectively solve the error propagation prob-
lem and improve the IME engine performance
significantly in experiments. Moreover, we
model the user real input behaviors and design
a method to generate the training corpus with
typos for the K2C task. It further improves
the robustness of Pinyin-bart. Finally, we de-
sign a non-autoregressive (NAR) decoder for
Pinyin-bart and obtain 9x+ acceleration with
limited performance degradation, which makes
the deployment possible on the commercial in-
put software.

1 Introduction

Some of languages, such as Chinese, Japanese and
Thai language, can not be input directly through the
standard keyboard. Users type in these languages
via some commercial input software, such as Mi-
crosoft Input Method (Gao et al., 2002), Google
Chinese Input Method!, Sogou Input Method?,
Baidu Input method?, Huawei Celia Keyboard*,
and so on. Pinyin is the official romanization rep-
resentation for Chinese language. It’s natural for a
user to type in pinyin through the keyboard. And

lhttps ://www.google.com/inputtools/
https://pinyin.sogou.com/
*https://shurufa.baidu.com/
*nttps://consumer.huawei.
com/uk/community/details/

wo'ai‘ni‘zong‘guo\ CHA (5

L KEAR T (zhong) H® 2. K Mmid 3. M0

Figure 1: A user Types in Chinese via Pinyin in IME. °

the input software converts the pinyin into the char-
acter sequence. As the figure 1 shows, a user in-
puts a keystroke sequence of “woainizongguo”, and
the software segments it into the pinyin sequence
“wo’ai’ni’zong’guo” then converts it into the Chi-
nese character sequence that user desires “F 2 /R
HE (I love you China)”.

Specifically, as the figure 2 shows, the IME en-
gine takes it as a cascaded process. Firstly, the
correction module corrects the typos in the orig-
inal keystroke sequence. In the example of the
figure 1, the blade-alveolar sound of ’zong’ is cor-
rected into the cacuminal sound of ’zhong’. It
is usually implemented by some rule system for
efficiency. Secondly, the modified keystroke se-
quence is segmented into the pinyin token sequence.
For example, “woainizhongguo” is segmented into
“wo’ai’ni’zhong’guo”. The tokenizer is usually im-
plemented by some Chinese word segmentation
algorithm, i.e. the Maximum Matching (MM) algo-
rithm. Lastly, the pinyin sequence is converted into
the character sequence, which is called the Pinyin
to Character (P2C) conversion task (Zhang et al.,
2019a; Yao et al., 2018; Xiao et al., 2007). It is
usually resolved as a sequence labeling task by the
Ngram language model (Goodman, 2001) together
with the Viterbi search algorithm (Viterbi, 2006).

In the above process, the error in the previous
step is prone to accumulate and propagate to the
later step, which hurts the IME engine performance
badly as presented in the later experiments. In this
paper, we summarizes those steps into a unified
end-to-end process named the Key-to-Character
(K2C) task and proposes Pinyin-bart to solve it. As

App-Gallery-Celia-Keyboard-is—-now—-available/

topicId_48409/

5The screenshot is from Sogou Input Method software

https://www.google.com/inputtools/
https://pinyin.sogou.com/
https://shurufa.baidu.com/
https://consumer.huawei.com/uk/community/details/App-Gallery-Celia-Keyboard-is-now-available/topicId_48409/
https://consumer.huawei.com/uk/community/details/App-Gallery-Celia-Keyboard-is-now-available/topicId_48409/
https://consumer.huawei.com/uk/community/details/App-Gallery-Celia-Keyboard-is-now-available/topicId_48409/
https://consumer.huawei.com/uk/community/details/App-Gallery-Celia-Keyboard-is-now-available/topicId_48409/

Key seq with Noise: Clean key seq:

Pinyin token seq:

woaonizongguo woainizhongguo wo ai ni zhong guo P2C task RERTF

:} K2C task | I

Figure 2: The Key to Character Conversion Task

Generated Length Prediction

=] <]

[]z]][][][(eee |

Bidirectional encoder

Bidirectional decoder

v

Ew Efo) E a = f

en)

Eo | Es || Ez | Es | E« | Es | ------ | E. | E- [=]

Figure 3: Pinyin-Bart Model Architecture. In the input layer, Ey and E are the position embeddings; F,, and E,
are the input token embeddings. The decoder of Pinyin-Bart adopts the bidirectional attentions. An additional length
predictor is added on the top of encoder to guide the generation process.

far as we know, it’s the first work to build the IME
engine in an end-to-end way. We summarize the
main contributions of this paper as follows:

e We propose Pinyin-bart to solve the K2C task
and build the IME engine in an end-to-end
way, which effectively resolves the error prop-
agation problem in the cascaded IME engine.
As far as we know, it’s the first end-to-end
IME engine.

e We model the user input behavior and design
a method to generate the massive corpus with
typos automatically for the K2C task, which
further improve the robustness of Pinyin-bart.

e We design the NAR decoder for Pinyin-bart
and boost the inference speed significantly
with only little performance degradation.

2 Method

In this section, we describe the details about Pinyin-
bart. Firstly, we introduce the K2C task formally
in the section 2.1. Then we present how the Pinyin-
bart is implemented in the section 2.2. Lastly, we
describe the method that models user input behav-
ior and generates the massive corpus with typos in
the section 2.3.

2.1 The K2C Conversion Task

As illustrated in the figure 2, the K2C conver-
sion task is to convert the user keystroke sequence
from keyboard directly into the Chinese sentence.
Formally, k1, ks, ..., ky, is the keystroke sequence.
They are converted into the character sequence of
c1,C2, ...Cpy, in the K2C conversion task. Usually
the value of m is smaller than n since one Chi-
nese character corresponds one pinyin token which
is composed of multiple letters. The task can be
resolved in a cascaded way as most of the commer-
cial input software does, or in an end-to-end way
by Pinyin-bart in this paper.

2.2 Pinyin-bart

We build Pinyin-bart based on the standard bart
model (Lewis et al., 2020). To fit for the K2C
task, we do some modifications in several aspects,
including the training paradigm as described in the
section 2.2.1, the embedding layer as described in
the section 2.2.2 and the NAR decoder described
in the section 2.2.3.

2.2.1 The Training Paradigm

The standard bart adopts the pretrain-then-finetune
paradigm, like most of the transformer model does.
It firstly pretrains the model on the massive un-
labeled corpus by some self-supervised learning
tasks, such as Masked Language Model (MLM),

Chinese char seq:
(I love you China)

Text Infilling, Sentence Permutation and so on.
Then the model is finetuned on the labelled cor-
pus on the target task, such as SQuAD (Rajpurkar
et al., 2016), MNLI (Williams et al., 2018), XSum
(Narayan et al., 2018), and so on. The pretrain pro-
cess leverages the general knowledge contained
in the unlabeled corpus, which boosts the per-
formance significantly on the target tasks. As
described in the section 2.3 later, we design the
method to create the massive labelled corpus for
the K2C task automatically. Therefore, we train the
Pinyin-bart directly on the target K2C task instead
of the pretrain-then-finetune paradigm.

2.2.2 The Embedding Layer

Different from the standard bart, there is no seg-
ment embedding in the embedding layer of Pinyin-
bart as illustrated in the figure 3. It is because there
is no pretrain process in Pinyin-bart and it no longer
needs the self-supervised learning task, especially
the sentence-level pretrain task. Besides, Pinyin-
bart takes the keystroke sequence as input rather
than the subword sequence as the standard bart
dose. There are only 26 individual letters which is
3x order of magnitude smaller than the number of
subword (more than 50,000) in the standard bart.
Thus the size of embedding layer of Pinyin-bart is
much smaller than the standard bart.

2.2.3 The NAR Decoder

The standard bart adopts the autoregressive decoder
like GPT which predicts the current token based on
the previous one. The advantage is to leverage the
dependency between tokens in sequence, whereas
it’s pretty slow during the inference, which hinders
its deployment in the commercial input software.
The NAR decoder is proposed in the machine trans-
lation domain (Gu et al., 2018). It makes the in-
dependent assumption on the tokens in sequence,
which makes the inference process parallel so that
accelerates the inference significantly. In this paper,
we design the NAR decoder for Pinyin-bart.

As described in the figure 3, we firstly replace the
GPT-like decoder of single direction attention in
the standard bart with the Bert-like decoder of bidi-
rectional attention in Pinyin-bart, which can lever-
age the parallel computation in GPU. Secondly, we
add a predictor to predict the length of target se-
quence. Specifically, we add a mean pooling layer
stacked with a regression layer on the top of the
encoder. Thirdly, to train the Pinyin-bart model,
the cross-entropy (ce) loss is adopted for the target

sequence prediction task, and the mean square error
(mse) loss is adopted for the length prediction task.
They are weighted combined together, as shown in
the formula 1.

10SStotal = A1 * 10SSce + Ao * 10SSmse)]

During the inference, the tokens in the target se-
quence are generated parallel, and the target length
is predicted as well. The length is rounded off from
float to the integer value. Then the target sequence
is simply truncated by that length.

2.3 Generating Massive Labelled Corpus

We generate the massive labelled corpus for the
K2C task. The whole process is described in the
figure 4.

Firstly, the text in Chinese corpus, i.e. the
sentence of “F Z /X H [E (I love you China)”,
is converted into the pinyin token sequence, i.e.
“wo’ai’'ni’zong’guo”. This task is called Text-to-
Pinyin conversion which can achieve more than
99.9% accuracy (Zhang and Laprie, 2003). In this
way, we can get the massive pinyin corpus auto-
matically. Secondly, user does not type in any sep-
arator to split the pinyin token explicitly during its
input process in reality, so we combine the pinyin
tokens in a sequence together into the keystroke
sequence. The “wo’ai'ni’zong’guo” is then com-
bined into *woainizhongguo’. Thirdly, some kind
of noise is added into the keystroke sequence so as
to simulate user’s typos. Finally we get the parallel
corpus with the Chinese character sequence as well
as the keystroke sequence with typos.

To add noise to the keystroke sequence, we se-
lect some positions randomly from the original
sequence. Then three operators are applied on the
letters of these positions with equal probability,
including ’Delete’, 'Insert’ and "Replace’. Some
probability distribution is required to guide the ’In-
sert’ and 'Replace’ operator, i.e. to insert which
letter before the current position. The uniform dis-
tribution is the most straightforward choice. How-
ever, it’s sub-optimal because it does not take the
consideration of the keyboard layout and the user’s
behavior in reality. For example, when user types
in the letter of ’z’ in *zong’, it is prone to mistype
it as ’x’ instead of ’p’ because the position of X’ is
much closer to ’z’ on the keyboard layout than ’p’
dose. Besides, the typos of one user are also usually
different from another user due to their different in-
put habits. In this paper, we collect the user type-in

eVvES Tl R ¥
e e SR PP

z e Vv & 9

Gaussian
Modeling

.

Collections of

User type-ins
Chinese Text to Chinesle Char-
Pinyin Conversion Pinyin corpus

Combine Pinyin Chinese Char-
Seq to Letter Seq Letters corpus

Add noise

Corpus with
User Typos

Text: FE4Z (i[5 m Char Seq: # & 15 /#" [7
(1 love you China) Pinyin Seq: wo’ai'ni’zhong’guo

CharSeq: # # firp g B Char Seq: 76 % 1 #: /i

Figure 4: Prepare the Massive Labelled Corpus for the K2C Task.

behaviors in reality ©. Some of them are visualized
as the points cloud shown at the top left of figure 4.
Based on these data, we build the Gaussian model
for each key on the keyboard layout, as the formula
2 shows below:

2

o2

flx;p,0) = U;ﬂew(—

According to the Gaussian model, we can calcu-
late the probability that the current key is mis-typed
to any other key. And we finally generate the typo
noise according to that mis-type probability matrix,
as illustrated at the upper half part of figure 4.

3 Experiment

3.1 Data Set Preparation

As far as we know, there is no public benchmark
for the Chinese Pinyin input method. So we build
our own data set and will make it public to the
community later. More than 2.6 million articles
are collected from the Chinese news websites. We
firstly segment them into sentence by the punctua-
tion list including comma, period, and so on. Then
we filter the characters which there are no pinyin
corresponded to. Thirdly, these sentences are fur-
ther segmented by a max length (i.e. 16 in our
experiment) because user only types in a few Chi-
nese characters at one time. Lastly, we make them
as the labelled corpus as described in the section
2.3. Most of the corpus are taken as the training
corpus, and another one thousand disjoint articles
are taken as the test corpus, as described in the
table 1.

Besides, to evaluate the performance of the cas-
cade IME engine, we build several test corpus with
different degree of noise:

SWe get these data under the users’ authorization

Corpus #Articles #Chars #Disk
Train 2,603,869 2,432,585,138 9.7G
Test 1000 926,792 3.7M

Table 1: The Detailed Information of Corpus

e No Typos and No Segment Errors. In the
first one, we assume that there is no typo from
user’s input and the pinyin tokenizer in the
figure 2 works perfectly. It looks like “F&.Z /%
H[E (wo'ai'ni’zong’guo)”. It is a total clean
environment and the only factor that matters
the IME performance is language model. It
can be taken as the upper bound of the IME
engine performance in reality. We get this
corpus by processing only the first step of
figure 4.

e No Typos BUT Segment Errors. In the
second corpus, we assume that there is no
typo but the pinyin tokenizer works proba-
bly with errors. It looks like “3& Z /K #
(wo'a’in’i’zhong’guo)”. It is a possible situa-
tion if the user types carefully and precisely.
We can get it by re-segmenting the combined
keystroke sequence automatically after the
second step of figure 4 by some real tokenizer,
i.e. the MM algorithm.

o Typos and Segment Errors. In the last
one, we assume both the typo and the seg-
menting error, which is the situation in the
real world. It might look like “F.Z /R H
(wo'ao’ni’zong’guo)”. We can get it by re-
segmenting the sequence containing noises
after the third (last) step of of the figure 4.

During evaluating, we apply language model
directly on these kinds of corpus to simulate the

performance of the cascaded IME engine in various
noisy environment.

3.2 Evaluation Metrics

We use the character-based precision to evaluate the
performance of the IME engine. It is defined as the
ratio that the IME engine converts to the Chinese
character correctly, as described in the formula 3.

F#correct_converted_char

3

Precisionchar based =
- F#total_converted_char

3.3 Baseline Models and Experiment Settings

The cascaded IME engine is taken as the baseline
model, and is evaluated on the corpus with differ-
ent degree of noise as described in the section 3.1.
Several kinds of language models are integrated
respectively into the cascaded IME engine:

e Bigram. Bigram is the De facto model
adopted widely in the commercial IME en-
gine. We build the bigram model on the lexi-
con of the Table of General Standard Chinese
Characters ’ which contains more than 6 thou-
sand Chinese frequent characters. No pruning
strategy is adopted since the scale of training
corpus is large enough.

e LSTM. LSTM is reported that obtains better
performance than the bigram model (Zhang
et al., 2019b; Yao et al., 2018; Malhotra et al.,
2015). In out implement of the LSTM model,
both the embedding size and the hidden size
are 256, and the learning rate is 5e~%. The
batch size is 2k and the epoch number is 10.

e Bart. We use the standard bart in the
sequence-to-sequence way. The pinyin token
sequence is taken as input, and the Chinese
character sequence is taken as output. It is
trained from scratch directly on the P2C task.
We follow most of the specifications in the
paper (Lewis et al., 2020), except that the max
sequence length is set to 16 instead of 512.
The epoch number is 10.

For the Pinyin-bart model, the keystroke se-
quence is taken as input. It is trained directly on
the K2C task as described in the section 2.2.1. The
experimental settings are exactly the same as the

"nttps://en.wikipedia.org/wiki/Table_
of General_Standard_Chinese_Characters

standard bart model. In the formula 1, the value of
A1 1s 1 and the value of A\ is 0.01.

3.4 Experimental Results on the K2C Task

The experimental results are presented in the table
2. Two ratios of typo noises (1% and 5%) are added
into the corpus.

Firstly, let’s take a quick look at the results un-
der the clean environment (no typo and no segment
error). The bigram model obtains 84.56% preci-
sion and the LSTM model gets a better result of
89.71% (5.15% 1) as reported in the previous arti-
cles (Zhang et al., 2019b). The standard bart model
achieves 96.97% which outperforms the above two
models (12.41% 1 and 7.26% 1) significantly. It
proves that language model plays a crucial role
in the cascaded IME engine and its capacity can
improve the performance greatly.

Secondly, the performance of the cascaded IME
engine decreases badly in the noisy environment.
Taking the bigram model as an example, the preci-
sion decreases from 84.56% to 79.30% (5.26%)
under the segment errors, and further to 66.87%
(17.69% J) under the typo errors as well, and lastly
to 37.75% (46.81% |) as the typo ratio increases.
The similar results can be observed in the LSTM
model and even in the powerful bart model.

Thirdly, Pinyin-bart achieves much higher pre-
cision than the standard bart in the cascade IME
engine under the same noisy environment. For ex-
ample, with the 1% typos and the segment error,
Pinyin-bart gets 94.86% precision which is much
higher (11.13% 1) than 83.73% of the standard bart
model. The improvement is further expanded to
35.10% 7 as the typo ratio increase to 5%. These
results are also significantly higher than the bigram
model and the LSTM model. It proves that Pinyin-
bart can effectively avoid the error propagation
problem and performs much more robust than the
cascaded IME engine.

3.5 Effectiveness of Modeling User Behaviors

In the section 2.3, we model user’s input behavior
and generate the typos for the training corpus of the
K2C task. In this section, we compare it with the
method that adds typos by the uniform distribution.
The results are presented in the table 3.

As we can see, Pinyin-bart achieves better per-
formances. As the typo ratio increases from 1% to
5%, the improvement rises from 2.29% to 5.49%
accordingly. It proves that our method can generate

https://en.wikipedia.org/wiki/Table_of_General_Standard_Chinese_Characters
https://en.wikipedia.org/wiki/Table_of_General_Standard_Chinese_Characters

Model Typo Error Segment Error Precision Improvement

Bigram no no 84.56% NV

Bigram no yes 79.30% 5.26%.
Bigram 1% yes 66.87% 17.69%.
Bigram 5% yes 37.75% 46.81%.
LSTM no no 89.71% 5.15%71
LSTM no yes 84.96% 4.75%.
LSTM 1% yes 66.87% 22.84%
LSTM 5% yes 51.75% 37.96%.
Bart no no 96.97% 12.41%1t
Bart no yes 93.05% 3.92%
Bart 1% yes 83.73% 13.24%),
Bart 5% yes 57.39% 39.58%
Pinyin-bart 1% yes 94.86% 11.13%%
Pinyin-bart 5% yes 92.49% 35.10%7t

Table 2: The Experimental Results on the K2C Task

Model Typo Error Segment Error Precision Improvement
Pinyin-bart-uni 1% yes 92.57% NV
Pinyin-bart-uni 5% yes 87.00% NV
Pinyin-bart 1% yes 94.86% 2.29%1
Pinyin-bart 5% yes 92.49% 5.49%1

Table 3: Effectiveness of Modeling User Behaviors. Pinyin-bart-uni is trained with the typos generated by the
uniform distribution. Pinyin-bart is trained with the typos generated by the Gaussian model.

the typos closer to the reality, and boost the IME
engine’s performance.

3.6 Effectiveness of the NAR Decoder

In this section, we compare the NAR decoder with
the AR decoder in Pinyin-bart on both the perfor-
mance and the inference speed. The experimental
results are presented in the table 4.

Compared to the AR-model, there is 0.03% per-
formance drop from the NAR-model under the 1%
typo ratio, and further 0.91% drop under the 5%
typo ratio. Considering the fact that the precision of
Pinyin-bart has already exceeded 90%, that degra-
dation is very slightly. However, the inference pro-
cess is accelerated greatly. The time to infer one
token drops from 15.66ms to 1.60ms under the 1%
typo ratio, and drops from 16.09ms to 1.73ms under
the 5% typo ratio, which is reduced by more than
9 times. It makes the deployment of Pinyin-bart
possible to the commercial input method software.

4 Related Works

4.1 Language model

Language model predicts the current word proba-
bility by its previous words. It plays an essential
role in the P2C task in the IME engine. The domi-
nant model is the Ngram model (Bahl et al., 1983).
However, its simplicity and low capacity limits its
performance. In recent years, RNN is proposed
to improve the performance by modeling longer
history information (Kalchbrenner and Blunsom,
2013). Variant network architectures are proposed
to solve the vanishing gradient problem and the
exploding gradient problem, such as LSTM (Mal-
hotra et al., 2015; Graves et al., 2013), GRU (Cho
et al., 2014), and so on. Yao et al. (2018) replaces
the Ngram model with the LSTM model in the IME
engine and get performance improvement both in
the candidate prompt task and in the P2C task. It
further proposes an incremental selective softmax
method to solve the LSTM efficiency problem in
the Viterbi algorithm. Zhang et al. (2019b) applies
LSTM in a sequence-to-sequence way in the P2C
task, and verify it in a smart sliding input method.
Zhang et al. (2019a) designs a novel online learn-

Model Typo Error Segment Error Precision Improvement ms/token Speedup Times

AR-model 1% yes 94.86% NV 15.66 NV
AR-model 5% yes 92.49% NV 15.66 NV
NAR-model 1% yes 94.83% 0.03%.. 1.60 9.781
NAR-model 5% yes 91.58% 0.91% 1.73 9.301

Table 4: Comparison between autoregressive Pinyin-bart and non-autoregressive Pinyin-bart. AR-model is the
Pinyin-bart with the autoregressive decoder as the standard bart does. NAR-model is the Pinyin-bart with the
non-autoregressive decoder as described in the section 2.2.3

ing method that adapts the vocabulary to the P2C
task. Huang et al. (2018) takes the P2C task as a
language translation problem. The neural machine
translation model is adopted in which the RNN
model is used as encoder and a global attention
model is used as decoder.

4.2 Non-autoregressive Machine Translation

Usually the decoder in the neural machine transla-
tion system is the autoregressive one. Recently, the
non-autoregressive decoder is proposed to acceler-
ate the inference speed. Especially, there are two
kinds of non-autoregressive models. The first one
is fully non-autoregressive model which gener-
ates the target sequence simultaneously with single
forward of network, such as the vanilla NAT model
(Gu et al., 2018). The NAT-CRF model (Sun et al.,
2019) adds a CRF layer on the top of the NAT de-
coder so as to build the token dependency in the
target sequence. Gu and Kong (2021) makes a de-
tailed investigation on the aspects that take effective
on the NAT model. The second one is the iterative
refinement non-autoregressive models (Lee et al.,
2018) in which an additional decoder is adopted to
refine the generated target sequence in an iterative
way. CMLM (Ghazvininejad et al., 2019) makes
use of the Masked Language Model (MLM) task
to refine the generated result. A bert-like decoder
with bidirectional attentions is adopted, and at each
iteration it selects some tokens to mask and predict
them again. In this way, the un-masked tokens can
be taken as the contexts to improve the prediction
of the masked token.

5 Conclusions

In this paper, we propose the Key to Character con-
version task and design Pinyin-bart to build the
IME engine in an end-to-end way. Compared with
the cascaded IME engine, Pinyin-bart can solve the
error propagation problem effectively and shows
much more robustness in the noisy input environ-

ment. Moreover, our method of modeling user
input behavior can improve its robustness further.
Lastly, the non-autoregressive decoder adopted
in Pinyin-bart can accelerate the inference speed
greatly with little performance degradation.

References

Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer.
1983. A maximum likelihood approach to continuous
speech recognition. IEEE Trans. Pattern Anal. Mach.
Intell., 5(2):179-190.

Kyunghyun Cho, Bart van Merrienboer, Caglar
Giilgehre, Dzmitry Bahdanau, Fethi Bougares, Hol-
ger Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder-decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing, EMNLP 2014, October
25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a
Special Interest Group of the ACL, pages 1724-1734.
ACL.

Jianfeng Gao, Joshua Goodman, Mingjing Li, and Kai-
Fu Lee. 2002. Toward a unified approach to statistical
language modeling for chinese. ACM Trans. Asian
Lang. Inf. Process., 1(1):3-33.

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and
Luke Zettlemoyer. 2019. Mask-predict: Parallel
decoding of conditional masked language models.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, November 3-7, 2019, pages 6111-6120.
Association for Computational Linguistics.

Joshua T. Goodman. 2001. A bit of progress in language
modeling. Comput. Speech Lang., 15(4):403-434.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E.
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In IEEE International Con-
ference on Acoustics, Speech and Signal Processing,
ICASSP 2013, Vancouver, BC, Canada, May 26-31,
2013, pages 6645-6649. IEEE.

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K.
Li, and Richard Socher. 2018. Non-autoregressive

https://doi.org/10.1109/TPAMI.1983.4767370
https://doi.org/10.1109/TPAMI.1983.4767370
https://doi.org/10.1109/TPAMI.1983.4767370
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.1145/595576.595578
https://doi.org/10.1145/595576.595578
https://doi.org/10.1145/595576.595578
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.1006/csla.2001.0174
https://doi.org/10.1006/csla.2001.0174
https://doi.org/10.1006/csla.2001.0174
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb

neural machine translation. In 6th International Con-
ference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Jiatao Gu and Xiang Kong. 2021. Fully non-
autoregressive neural machine translation: Tricks of
the trade. In Findings of the Association for Com-
putational Linguistics: ACL/IJCNLP 2021, Online
Event, August 1-6, 2021, volume ACL/IJCNLP 2021
of Findings of ACL, pages 120—133. Association for
Computational Linguistics.

Yafang Huang, Zuchao Li, Zhuosheng Zhang, and Hai
Zhao. 2018. Moon IME: neural-based chinese pinyin
aided input method with customizable association. In
Proceedings of ACL 2018, Melbourne, Australia, July
15-20, 2018, System Demonstrations, pages 140-145.
Association for Computational Linguistics.

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent
continuous translation models. In Proceedings of the
2013 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2013, 18-21 October
2013, Grand Hyatt Seattle, Seattle, Washington, USA,
A meeting of SIGDAT, a Special Interest Group of the
ACL, pages 1700-1709. ACL.

Jason Lee, Elman Mansimov, and Kyunghyun Cho.
2018. Deterministic non-autoregressive neural se-
quence modeling by iterative refinement. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, Brussels, Belgium,
October 31 - November 4, 2018, pages 1173—-1182.
Association for Computational Linguistics.

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,
Veselin Stoyanov, and Luke Zettlemoyer. 2020.
BART: denoising sequence-to-sequence pre-training
for natural language generation, translation, and com-
prehension. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, Online, July 5-10, 2020, pages 7871-7880.
Association for Computational Linguistics.

Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and
Puneet Agarwal. 2015. Long short term memory net-
works for anomaly detection in time series. In 23rd
European Symposium on Artificial Neural Networks,
ESANN 2015, Bruges, Belgium, April 22-24, 2015.

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.
2018. Don’t give me the details, just the summary!
topic-aware convolutional neural networks for ex-
treme summarization. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, Brussels, Belgium, October 31 -
November 4, 2018, pages 1797-1807. Association
for Computational Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100, 000+ questions
for machine comprehension of text. In Proceedings
of the 2016 Conference on Empirical Methods in

Natural Language Processing, EMNLP 2016, Austin,
Texas, USA, November 1-4, 2016, pages 2383-2392.
The Association for Computational Linguistics.

Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin,
and Zhi-Hong Deng. 2019. Fast structured decod-
ing for sequence models. In Advances in Neural
Information Processing Systems 32: Annual Confer-
ence on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 3011-3020.

Andrew J. Viterbi. 2006. A personal history of the
viterbi algorithm. [EEE Signal Process. Mag.,
23(4):120-142.

Adina Williams, Nikita Nangia, and Samuel R. Bow-
man. 2018. A broad-coverage challenge corpus for
sentence understanding through inference. In Pro-
ceedings of the 2018 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, NAACL-
HLT 2018, New Orleans, Louisiana, USA, June 1-6,
2018, Volume 1 (Long Papers), pages 1112—-1122.
Association for Computational Linguistics.

Jinghui Xiao, Bingquan Liu, and Xiaolong Wang. 2007.
An empirical study of non-stationary ngram model
and its smoothing techniques. Int. J. Comput. Lin-
guistics Chin. Lang. Process., 12(2).

Jiali Yao, Raphael Shu, Xinjian Li, Katsutoshi Ohtsuki,
and Hideki Nakayama. 2018. Real-time neural-based
input method. CoRR, abs/1810.09309.

Sen Zhang and Yves Laprie. 2003. Text-to-pinyin con-
version based on contextual knowledge and d-tree
for mandarin. In IEEE International Conference on
Natural Language Processing and Knowledge Engi-
neering, NLP-KE 2003, Beijing, China, 2003.

Zhuosheng Zhang, Yafang Huang, and Hai Zhao. 2019a.
Open vocabulary learning for neural chinese pinyin
IME. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, Florence, Italy, July 28- August 2, 2019, Vol-
ume 1: Long Papers, pages 1584—1594. Association
for Computational Linguistics.

Zhuosheng Zhang, Zhen Meng, and Hai Zhao. 2019b.
A smart sliding chinese pinyin input method editor
on touchscreen.

https://openreview.net/forum?id=B1l8BtlCb
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/P18-4024
https://doi.org/10.18653/v1/P18-4024
https://doi.org/10.18653/v1/P18-4024
https://aclanthology.org/D13-1176/
https://aclanthology.org/D13-1176/
https://aclanthology.org/D13-1176/
https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://proceedings.neurips.cc/paper/2019/hash/74563ba21a90da13dacf2a73e3ddefa7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/74563ba21a90da13dacf2a73e3ddefa7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/74563ba21a90da13dacf2a73e3ddefa7-Abstract.html
https://doi.org/10.1109/MSP.2006.1657823
https://doi.org/10.1109/MSP.2006.1657823
https://doi.org/10.1109/MSP.2006.1657823
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101
http://www.aclclp.org.tw/clclp/v12n2/v12n2a2.pdf
http://www.aclclp.org.tw/clclp/v12n2/v12n2a2.pdf
http://www.aclclp.org.tw/clclp/v12n2/v12n2a2.pdf
http://arxiv.org/abs/1810.09309
http://arxiv.org/abs/1810.09309
http://arxiv.org/abs/1810.09309
https://hal.inria.fr/inria-00107717/document
https://hal.inria.fr/inria-00107717/document
https://hal.inria.fr/inria-00107717/document
https://hal.inria.fr/inria-00107717/document
https://hal.inria.fr/inria-00107717/document
https://doi.org/10.18653/v1/p19-1154
https://doi.org/10.18653/v1/p19-1154
https://doi.org/10.18653/v1/p19-1154
http://arxiv.org/abs/arXiv:1909.01063
http://arxiv.org/abs/arXiv:1909.01063
http://arxiv.org/abs/arXiv:1909.01063

