
Pinyin-BART: An End-to-End Chinese Input Method

Anonymous ACL submission

Abstract

A Chinese Input Method Engine helps user con-001
vert a keystroke sequence into the desired Chi-002
nese character sequence. It is usually a cas-003
caded process in which the original input se-004
quence is firstly corrected to remove typos, then005
segmented into the pinyin token sequence, and006
finally converted into a Chinese character se-007
quence. Errors are prone to accumulate and008
propagate in that pipeline. This paper summa-009
rizes that process as a Key-to-Character (K2C)010
conversion task and solve it in a unified end-011
to-end way. Pinyin-bart is proposed which can012
effectively solve the error propagation prob-013
lem and improve the IME engine performance014
significantly in experiments. Moreover, we015
model the user real input behaviors and design016
a method to generate the training corpus with017
typos for the K2C task. It further improves018
the robustness of Pinyin-bart. Finally, we de-019
sign a non-autoregressive (NAR) decoder for020
Pinyin-bart and obtain 9x+ acceleration with021
limited performance degradation, which makes022
the deployment possible on the commercial in-023
put software.024

1 Introduction025

Some of languages, such as Chinese, Japanese and026

Thai language, can not be input directly through the027

standard keyboard. Users type in these languages028

via some commercial input software, such as Mi-029

crosoft Input Method (Gao et al., 2002), Google030

Chinese Input Method1, Sogou Input Method2,031

Baidu Input method3, Huawei Celia Keyboard4,032

and so on. Pinyin is the official romanization rep-033

resentation for Chinese language. It’s natural for a034

user to type in pinyin through the keyboard. And035

1https://www.google.com/inputtools/
2https://pinyin.sogou.com/
3https://shurufa.baidu.com/
4https://consumer.huawei.

com/uk/community/details/
App-Gallery-Celia-Keyboard-is-now-available/
topicId_48409/

Figure 1: A user Types in Chinese via Pinyin in IME. 5

the input software converts the pinyin into the char- 036

acter sequence. As the figure 1 shows, a user in- 037

puts a keystroke sequence of “woainizongguo”, and 038

the software segments it into the pinyin sequence 039

“wo′ai′ni′zong′guo” then converts it into the Chi- 040

nese character sequence that user desires “我爱你 041

中国 (I love you China)”. 042

Specifically, as the figure 2 shows, the IME en- 043

gine takes it as a cascaded process. Firstly, the 044

correction module corrects the typos in the orig- 045

inal keystroke sequence. In the example of the 046

figure 1, the blade-alveolar sound of ’zong’ is cor- 047

rected into the cacuminal sound of ’zhong’. It 048

is usually implemented by some rule system for 049

efficiency. Secondly, the modified keystroke se- 050

quence is segmented into the pinyin token sequence. 051

For example, “woainizhongguo” is segmented into 052

“wo′ai′ni′zhong′guo”. The tokenizer is usually im- 053

plemented by some Chinese word segmentation 054

algorithm, i.e. the Maximum Matching (MM) algo- 055

rithm. Lastly, the pinyin sequence is converted into 056

the character sequence, which is called the Pinyin 057

to Character (P2C) conversion task (Zhang et al., 058

2019a; Yao et al., 2018; Xiao et al., 2007). It is 059

usually resolved as a sequence labeling task by the 060

Ngram language model (Goodman, 2001) together 061

with the Viterbi search algorithm (Viterbi, 2006). 062

In the above process, the error in the previous 063

step is prone to accumulate and propagate to the 064

later step, which hurts the IME engine performance 065

badly as presented in the later experiments. In this 066

paper, we summarizes those steps into a unified 067

end-to-end process named the Key-to-Character 068

(K2C) task and proposes Pinyin-bart to solve it. As 069

5The screenshot is from Sogou Input Method software

1

https://www.google.com/inputtools/
https://pinyin.sogou.com/
https://shurufa.baidu.com/
https://consumer.huawei.com/uk/community/details/App-Gallery-Celia-Keyboard-is-now-available/topicId_48409/
https://consumer.huawei.com/uk/community/details/App-Gallery-Celia-Keyboard-is-now-available/topicId_48409/
https://consumer.huawei.com/uk/community/details/App-Gallery-Celia-Keyboard-is-now-available/topicId_48409/
https://consumer.huawei.com/uk/community/details/App-Gallery-Celia-Keyboard-is-now-available/topicId_48409/


Figure 2: The Key to Character Conversion Task

Figure 3: Pinyin-Bart Model Architecture. In the input layer, E0 and E1 are the position embeddings; Ew and Eo

are the input token embeddings. The decoder of Pinyin-Bart adopts the bidirectional attentions. An additional length
predictor is added on the top of encoder to guide the generation process.

far as we know, it’s the first work to build the IME070

engine in an end-to-end way. We summarize the071

main contributions of this paper as follows:072

• We propose Pinyin-bart to solve the K2C task073

and build the IME engine in an end-to-end074

way, which effectively resolves the error prop-075

agation problem in the cascaded IME engine.076

As far as we know, it’s the first end-to-end077

IME engine.078

• We model the user input behavior and design079

a method to generate the massive corpus with080

typos automatically for the K2C task, which081

further improve the robustness of Pinyin-bart.082

• We design the NAR decoder for Pinyin-bart083

and boost the inference speed significantly084

with only little performance degradation.085

2 Method086

In this section, we describe the details about Pinyin-087

bart. Firstly, we introduce the K2C task formally088

in the section 2.1. Then we present how the Pinyin-089

bart is implemented in the section 2.2. Lastly, we090

describe the method that models user input behav-091

ior and generates the massive corpus with typos in092

the section 2.3.093

2.1 The K2C Conversion Task 094

As illustrated in the figure 2, the K2C conver- 095

sion task is to convert the user keystroke sequence 096

from keyboard directly into the Chinese sentence. 097

Formally, k1, k2, ..., kn is the keystroke sequence. 098

They are converted into the character sequence of 099

c1, c2, ...cm in the K2C conversion task. Usually 100

the value of m is smaller than n since one Chi- 101

nese character corresponds one pinyin token which 102

is composed of multiple letters. The task can be 103

resolved in a cascaded way as most of the commer- 104

cial input software does, or in an end-to-end way 105

by Pinyin-bart in this paper. 106

2.2 Pinyin-bart 107

We build Pinyin-bart based on the standard bart 108

model (Lewis et al., 2020). To fit for the K2C 109

task, we do some modifications in several aspects, 110

including the training paradigm as described in the 111

section 2.2.1, the embedding layer as described in 112

the section 2.2.2 and the NAR decoder described 113

in the section 2.2.3. 114

2.2.1 The Training Paradigm 115

The standard bart adopts the pretrain-then-finetune 116

paradigm, like most of the transformer model does. 117

It firstly pretrains the model on the massive un- 118

labeled corpus by some self-supervised learning 119

tasks, such as Masked Language Model (MLM), 120

2



Text Infilling, Sentence Permutation and so on.121

Then the model is finetuned on the labelled cor-122

pus on the target task, such as SQuAD (Rajpurkar123

et al., 2016), MNLI (Williams et al., 2018), XSum124

(Narayan et al., 2018), and so on. The pretrain pro-125

cess leverages the general knowledge contained126

in the unlabeled corpus, which boosts the per-127

formance significantly on the target tasks. As128

described in the section 2.3 later, we design the129

method to create the massive labelled corpus for130

the K2C task automatically. Therefore, we train the131

Pinyin-bart directly on the target K2C task instead132

of the pretrain-then-finetune paradigm.133

2.2.2 The Embedding Layer134

Different from the standard bart, there is no seg-135

ment embedding in the embedding layer of Pinyin-136

bart as illustrated in the figure 3. It is because there137

is no pretrain process in Pinyin-bart and it no longer138

needs the self-supervised learning task, especially139

the sentence-level pretrain task. Besides, Pinyin-140

bart takes the keystroke sequence as input rather141

than the subword sequence as the standard bart142

dose. There are only 26 individual letters which is143

3x order of magnitude smaller than the number of144

subword (more than 50,000) in the standard bart.145

Thus the size of embedding layer of Pinyin-bart is146

much smaller than the standard bart.147

2.2.3 The NAR Decoder148

The standard bart adopts the autoregressive decoder149

like GPT which predicts the current token based on150

the previous one. The advantage is to leverage the151

dependency between tokens in sequence, whereas152

it’s pretty slow during the inference, which hinders153

its deployment in the commercial input software.154

The NAR decoder is proposed in the machine trans-155

lation domain (Gu et al., 2018). It makes the in-156

dependent assumption on the tokens in sequence,157

which makes the inference process parallel so that158

accelerates the inference significantly. In this paper,159

we design the NAR decoder for Pinyin-bart.160

As described in the figure 3, we firstly replace the161

GPT-like decoder of single direction attention in162

the standard bart with the Bert-like decoder of bidi-163

rectional attention in Pinyin-bart, which can lever-164

age the parallel computation in GPU. Secondly, we165

add a predictor to predict the length of target se-166

quence. Specifically, we add a mean pooling layer167

stacked with a regression layer on the top of the168

encoder. Thirdly, to train the Pinyin-bart model,169

the cross-entropy (ce) loss is adopted for the target170

sequence prediction task, and the mean square error 171

(mse) loss is adopted for the length prediction task. 172

They are weighted combined together, as shown in 173

the formula 1. 174

losstotal = λ1 ∗ lossce + λ2 ∗ lossmse (1) 175

During the inference, the tokens in the target se- 176

quence are generated parallel, and the target length 177

is predicted as well. The length is rounded off from 178

float to the integer value. Then the target sequence 179

is simply truncated by that length. 180

2.3 Generating Massive Labelled Corpus 181

We generate the massive labelled corpus for the 182

K2C task. The whole process is described in the 183

figure 4. 184

Firstly, the text in Chinese corpus, i.e. the 185

sentence of “我爱你中国 (I love you China)”, 186

is converted into the pinyin token sequence, i.e. 187

“wo′ai′ni′zong′guo”. This task is called Text-to- 188

Pinyin conversion which can achieve more than 189

99.9% accuracy (Zhang and Laprie, 2003). In this 190

way, we can get the massive pinyin corpus auto- 191

matically. Secondly, user does not type in any sep- 192

arator to split the pinyin token explicitly during its 193

input process in reality, so we combine the pinyin 194

tokens in a sequence together into the keystroke 195

sequence. The “wo′ai′ni′zong′guo” is then com- 196

bined into ’woainizhongguo’. Thirdly, some kind 197

of noise is added into the keystroke sequence so as 198

to simulate user’s typos. Finally we get the parallel 199

corpus with the Chinese character sequence as well 200

as the keystroke sequence with typos. 201

To add noise to the keystroke sequence, we se- 202

lect some positions randomly from the original 203

sequence. Then three operators are applied on the 204

letters of these positions with equal probability, 205

including ’Delete’, ’Insert’ and ’Replace’. Some 206

probability distribution is required to guide the ’In- 207

sert’ and ’Replace’ operator, i.e. to insert which 208

letter before the current position. The uniform dis- 209

tribution is the most straightforward choice. How- 210

ever, it’s sub-optimal because it does not take the 211

consideration of the keyboard layout and the user’s 212

behavior in reality. For example, when user types 213

in the letter of ’z’ in ’zong’, it is prone to mistype 214

it as ’x’ instead of ’p’ because the position of ’x’ is 215

much closer to ’z’ on the keyboard layout than ’p’ 216

dose. Besides, the typos of one user are also usually 217

different from another user due to their different in- 218

put habits. In this paper, we collect the user type-in 219

3



Figure 4: Prepare the Massive Labelled Corpus for the K2C Task.

behaviors in reality 6. Some of them are visualized220

as the points cloud shown at the top left of figure 4.221

Based on these data, we build the Gaussian model222

for each key on the keyboard layout, as the formula223

2 shows below:224

f(x;µ, σ) =
1

σ
√
2π
exp(−(x− µ)2

σ2
) (2)225

According to the Gaussian model, we can calcu-226

late the probability that the current key is mis-typed227

to any other key. And we finally generate the typo228

noise according to that mis-type probability matrix,229

as illustrated at the upper half part of figure 4.230

3 Experiment231

3.1 Data Set Preparation232

As far as we know, there is no public benchmark233

for the Chinese Pinyin input method. So we build234

our own data set and will make it public to the235

community later. More than 2.6 million articles236

are collected from the Chinese news websites. We237

firstly segment them into sentence by the punctua-238

tion list including comma, period, and so on. Then239

we filter the characters which there are no pinyin240

corresponded to. Thirdly, these sentences are fur-241

ther segmented by a max length (i.e. 16 in our242

experiment) because user only types in a few Chi-243

nese characters at one time. Lastly, we make them244

as the labelled corpus as described in the section245

2.3. Most of the corpus are taken as the training246

corpus, and another one thousand disjoint articles247

are taken as the test corpus, as described in the248

table 1.249

Besides, to evaluate the performance of the cas-250

cade IME engine, we build several test corpus with251

different degree of noise:252

6We get these data under the users’ authorization

Corpus #Articles #Chars #Disk
Train 2,603,869 2,432,585,138 9.7G
Test 1000 926,792 3.7M

Table 1: The Detailed Information of Corpus

• No Typos and No Segment Errors. In the 253

first one, we assume that there is no typo from 254

user’s input and the pinyin tokenizer in the 255

figure 2 works perfectly. It looks like “我爱你 256

中国 (wo′ai′ni′zong′guo)”. It is a total clean 257

environment and the only factor that matters 258

the IME performance is language model. It 259

can be taken as the upper bound of the IME 260

engine performance in reality. We get this 261

corpus by processing only the first step of 262

figure 4. 263

• No Typos BUT Segment Errors. In the 264

second corpus, we assume that there is no 265

typo but the pinyin tokenizer works proba- 266

bly with errors. It looks like “我爱你中国 267

(wo′a′in′i′zhong′guo)”. It is a possible situa- 268

tion if the user types carefully and precisely. 269

We can get it by re-segmenting the combined 270

keystroke sequence automatically after the 271

second step of figure 4 by some real tokenizer, 272

i.e. the MM algorithm. 273

• Typos and Segment Errors. In the last 274

one, we assume both the typo and the seg- 275

menting error, which is the situation in the 276

real world. It might look like “我爱你中国 277

(wo′ao′ni′zong′guo)”. We can get it by re- 278

segmenting the sequence containing noises 279

after the third (last) step of of the figure 4. 280

During evaluating, we apply language model 281

directly on these kinds of corpus to simulate the 282

4



performance of the cascaded IME engine in various283

noisy environment.284

3.2 Evaluation Metrics285

We use the character-based precision to evaluate the286

performance of the IME engine. It is defined as the287

ratio that the IME engine converts to the Chinese288

character correctly, as described in the formula 3.289

Precisionchar_based =
#correct_converted_char
#total_converted_char

(3)290

291

3.3 Baseline Models and Experiment Settings292

The cascaded IME engine is taken as the baseline293

model, and is evaluated on the corpus with differ-294

ent degree of noise as described in the section 3.1.295

Several kinds of language models are integrated296

respectively into the cascaded IME engine:297

• Bigram. Bigram is the De facto model298

adopted widely in the commercial IME en-299

gine. We build the bigram model on the lexi-300

con of the Table of General Standard Chinese301

Characters 7 which contains more than 6 thou-302

sand Chinese frequent characters. No pruning303

strategy is adopted since the scale of training304

corpus is large enough.305

• LSTM. LSTM is reported that obtains better306

performance than the bigram model (Zhang307

et al., 2019b; Yao et al., 2018; Malhotra et al.,308

2015). In out implement of the LSTM model,309

both the embedding size and the hidden size310

are 256, and the learning rate is 5e−4. The311

batch size is 2k and the epoch number is 10.312

• Bart. We use the standard bart in the313

sequence-to-sequence way. The pinyin token314

sequence is taken as input, and the Chinese315

character sequence is taken as output. It is316

trained from scratch directly on the P2C task.317

We follow most of the specifications in the318

paper (Lewis et al., 2020), except that the max319

sequence length is set to 16 instead of 512.320

The epoch number is 10.321

For the Pinyin-bart model, the keystroke se-322

quence is taken as input. It is trained directly on323

the K2C task as described in the section 2.2.1. The324

experimental settings are exactly the same as the325

7https://en.wikipedia.org/wiki/Table_
of_General_Standard_Chinese_Characters

standard bart model. In the formula 1, the value of 326

λ1 is 1 and the value of λ2 is 0.01. 327

3.4 Experimental Results on the K2C Task 328

The experimental results are presented in the table 329

2. Two ratios of typo noises (1% and 5%) are added 330

into the corpus. 331

Firstly, let’s take a quick look at the results un- 332

der the clean environment (no typo and no segment 333

error). The bigram model obtains 84.56% preci- 334

sion and the LSTM model gets a better result of 335

89.71% (5.15% ↑) as reported in the previous arti- 336

cles (Zhang et al., 2019b). The standard bart model 337

achieves 96.97% which outperforms the above two 338

models (12.41% ↑ and 7.26% ↑) significantly. It 339

proves that language model plays a crucial role 340

in the cascaded IME engine and its capacity can 341

improve the performance greatly. 342

Secondly, the performance of the cascaded IME 343

engine decreases badly in the noisy environment. 344

Taking the bigram model as an example, the preci- 345

sion decreases from 84.56% to 79.30% (5.26% ↓) 346

under the segment errors, and further to 66.87% 347

(17.69% ↓) under the typo errors as well, and lastly 348

to 37.75% (46.81% ↓) as the typo ratio increases. 349

The similar results can be observed in the LSTM 350

model and even in the powerful bart model. 351

Thirdly, Pinyin-bart achieves much higher pre- 352

cision than the standard bart in the cascade IME 353

engine under the same noisy environment. For ex- 354

ample, with the 1% typos and the segment error, 355

Pinyin-bart gets 94.86% precision which is much 356

higher (11.13% ↑) than 83.73% of the standard bart 357

model. The improvement is further expanded to 358

35.10% ↑ as the typo ratio increase to 5%. These 359

results are also significantly higher than the bigram 360

model and the LSTM model. It proves that Pinyin- 361

bart can effectively avoid the error propagation 362

problem and performs much more robust than the 363

cascaded IME engine. 364

3.5 Effectiveness of Modeling User Behaviors 365

In the section 2.3, we model user’s input behavior 366

and generate the typos for the training corpus of the 367

K2C task. In this section, we compare it with the 368

method that adds typos by the uniform distribution. 369

The results are presented in the table 3. 370

As we can see, Pinyin-bart achieves better per- 371

formances. As the typo ratio increases from 1% to 372

5%, the improvement rises from 2.29% to 5.49% 373

accordingly. It proves that our method can generate 374

5

https://en.wikipedia.org/wiki/Table_of_General_Standard_Chinese_Characters
https://en.wikipedia.org/wiki/Table_of_General_Standard_Chinese_Characters


Model Typo Error Segment Error Precision Improvement
Bigram no no 84.56% NV
Bigram no yes 79.30% 5.26%↓
Bigram 1% yes 66.87% 17.69%↓
Bigram 5% yes 37.75% 46.81%↓
LSTM no no 89.71% 5.15%↑
LSTM no yes 84.96% 4.75%↓
LSTM 1% yes 66.87% 22.84%↓
LSTM 5% yes 51.75% 37.96%↓
Bart no no 96.97% 12.41%↑
Bart no yes 93.05% 3.92%↓
Bart 1% yes 83.73% 13.24%↓
Bart 5% yes 57.39% 39.58%↓
Pinyin-bart 1% yes 94.86% 11.13%↑
Pinyin-bart 5% yes 92.49% 35.10%↑

Table 2: The Experimental Results on the K2C Task

Model Typo Error Segment Error Precision Improvement
Pinyin-bart-uni 1% yes 92.57% NV
Pinyin-bart-uni 5% yes 87.00% NV
Pinyin-bart 1% yes 94.86% 2.29%↑
Pinyin-bart 5% yes 92.49% 5.49%↑

Table 3: Effectiveness of Modeling User Behaviors. Pinyin-bart-uni is trained with the typos generated by the
uniform distribution. Pinyin-bart is trained with the typos generated by the Gaussian model.

the typos closer to the reality, and boost the IME375

engine’s performance.376

3.6 Effectiveness of the NAR Decoder377

In this section, we compare the NAR decoder with378

the AR decoder in Pinyin-bart on both the perfor-379

mance and the inference speed. The experimental380

results are presented in the table 4.381

Compared to the AR-model, there is 0.03% per-382

formance drop from the NAR-model under the 1%383

typo ratio, and further 0.91% drop under the 5%384

typo ratio. Considering the fact that the precision of385

Pinyin-bart has already exceeded 90%, that degra-386

dation is very slightly. However, the inference pro-387

cess is accelerated greatly. The time to infer one388

token drops from 15.66ms to 1.60ms under the 1%389

typo ratio, and drops from 16.09ms to 1.73ms under390

the 5% typo ratio, which is reduced by more than391

9 times. It makes the deployment of Pinyin-bart392

possible to the commercial input method software.393

4 Related Works 394

4.1 Language model 395

Language model predicts the current word proba- 396

bility by its previous words. It plays an essential 397

role in the P2C task in the IME engine. The domi- 398

nant model is the Ngram model (Bahl et al., 1983). 399

However, its simplicity and low capacity limits its 400

performance. In recent years, RNN is proposed 401

to improve the performance by modeling longer 402

history information (Kalchbrenner and Blunsom, 403

2013). Variant network architectures are proposed 404

to solve the vanishing gradient problem and the 405

exploding gradient problem, such as LSTM (Mal- 406

hotra et al., 2015; Graves et al., 2013), GRU (Cho 407

et al., 2014), and so on. Yao et al. (2018) replaces 408

the Ngram model with the LSTM model in the IME 409

engine and get performance improvement both in 410

the candidate prompt task and in the P2C task. It 411

further proposes an incremental selective softmax 412

method to solve the LSTM efficiency problem in 413

the Viterbi algorithm. Zhang et al. (2019b) applies 414

LSTM in a sequence-to-sequence way in the P2C 415

task, and verify it in a smart sliding input method. 416

Zhang et al. (2019a) designs a novel online learn- 417

6



Model Typo Error Segment Error Precision Improvement ms/token Speedup Times
AR-model 1% yes 94.86% NV 15.66 NV
AR-model 5% yes 92.49% NV 15.66 NV
NAR-model 1% yes 94.83% 0.03%↓ 1.60 9.78↑
NAR-model 5% yes 91.58% 0.91%↓ 1.73 9.30↑

Table 4: Comparison between autoregressive Pinyin-bart and non-autoregressive Pinyin-bart. AR-model is the
Pinyin-bart with the autoregressive decoder as the standard bart does. NAR-model is the Pinyin-bart with the
non-autoregressive decoder as described in the section 2.2.3

ing method that adapts the vocabulary to the P2C418

task. Huang et al. (2018) takes the P2C task as a419

language translation problem. The neural machine420

translation model is adopted in which the RNN421

model is used as encoder and a global attention422

model is used as decoder.423

4.2 Non-autoregressive Machine Translation424

Usually the decoder in the neural machine transla-425

tion system is the autoregressive one. Recently, the426

non-autoregressive decoder is proposed to acceler-427

ate the inference speed. Especially, there are two428

kinds of non-autoregressive models. The first one429

is fully non-autoregressive model which gener-430

ates the target sequence simultaneously with single431

forward of network, such as the vanilla NAT model432

(Gu et al., 2018). The NAT-CRF model (Sun et al.,433

2019) adds a CRF layer on the top of the NAT de-434

coder so as to build the token dependency in the435

target sequence. Gu and Kong (2021) makes a de-436

tailed investigation on the aspects that take effective437

on the NAT model. The second one is the iterative438

refinement non-autoregressive models (Lee et al.,439

2018) in which an additional decoder is adopted to440

refine the generated target sequence in an iterative441

way. CMLM (Ghazvininejad et al., 2019) makes442

use of the Masked Language Model (MLM) task443

to refine the generated result. A bert-like decoder444

with bidirectional attentions is adopted, and at each445

iteration it selects some tokens to mask and predict446

them again. In this way, the un-masked tokens can447

be taken as the contexts to improve the prediction448

of the masked token.449

5 Conclusions450

In this paper, we propose the Key to Character con-451

version task and design Pinyin-bart to build the452

IME engine in an end-to-end way. Compared with453

the cascaded IME engine, Pinyin-bart can solve the454

error propagation problem effectively and shows455

much more robustness in the noisy input environ-456

ment. Moreover, our method of modeling user 457

input behavior can improve its robustness further. 458

Lastly, the non-autoregressive decoder adopted 459

in Pinyin-bart can accelerate the inference speed 460

greatly with little performance degradation. 461

References 462

Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer. 463
1983. A maximum likelihood approach to continuous 464
speech recognition. IEEE Trans. Pattern Anal. Mach. 465
Intell., 5(2):179–190. 466

Kyunghyun Cho, Bart van Merrienboer, Çaglar 467
Gülçehre, Dzmitry Bahdanau, Fethi Bougares, Hol- 468
ger Schwenk, and Yoshua Bengio. 2014. Learning 469
phrase representations using RNN encoder-decoder 470
for statistical machine translation. In Proceedings of 471
the 2014 Conference on Empirical Methods in Nat- 472
ural Language Processing, EMNLP 2014, October 473
25-29, 2014, Doha, Qatar, A meeting of SIGDAT, a 474
Special Interest Group of the ACL, pages 1724–1734. 475
ACL. 476

Jianfeng Gao, Joshua Goodman, Mingjing Li, and Kai- 477
Fu Lee. 2002. Toward a unified approach to statistical 478
language modeling for chinese. ACM Trans. Asian 479
Lang. Inf. Process., 1(1):3–33. 480

Marjan Ghazvininejad, Omer Levy, Yinhan Liu, and 481
Luke Zettlemoyer. 2019. Mask-predict: Parallel 482
decoding of conditional masked language models. 483
In Proceedings of the 2019 Conference on Empiri- 484
cal Methods in Natural Language Processing and 485
the 9th International Joint Conference on Natural 486
Language Processing, EMNLP-IJCNLP 2019, Hong 487
Kong, China, November 3-7, 2019, pages 6111–6120. 488
Association for Computational Linguistics. 489

Joshua T. Goodman. 2001. A bit of progress in language 490
modeling. Comput. Speech Lang., 15(4):403–434. 491

Alex Graves, Abdel-rahman Mohamed, and Geoffrey E. 492
Hinton. 2013. Speech recognition with deep recur- 493
rent neural networks. In IEEE International Con- 494
ference on Acoustics, Speech and Signal Processing, 495
ICASSP 2013, Vancouver, BC, Canada, May 26-31, 496
2013, pages 6645–6649. IEEE. 497

Jiatao Gu, James Bradbury, Caiming Xiong, Victor O. K. 498
Li, and Richard Socher. 2018. Non-autoregressive 499

7

https://doi.org/10.1109/TPAMI.1983.4767370
https://doi.org/10.1109/TPAMI.1983.4767370
https://doi.org/10.1109/TPAMI.1983.4767370
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.1145/595576.595578
https://doi.org/10.1145/595576.595578
https://doi.org/10.1145/595576.595578
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.18653/v1/D19-1633
https://doi.org/10.1006/csla.2001.0174
https://doi.org/10.1006/csla.2001.0174
https://doi.org/10.1006/csla.2001.0174
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
https://doi.org/10.1109/ICASSP.2013.6638947
https://openreview.net/forum?id=B1l8BtlCb
https://openreview.net/forum?id=B1l8BtlCb


neural machine translation. In 6th International Con-500
ference on Learning Representations, ICLR 2018,501
Vancouver, BC, Canada, April 30 - May 3, 2018,502
Conference Track Proceedings. OpenReview.net.503

Jiatao Gu and Xiang Kong. 2021. Fully non-504
autoregressive neural machine translation: Tricks of505
the trade. In Findings of the Association for Com-506
putational Linguistics: ACL/IJCNLP 2021, Online507
Event, August 1-6, 2021, volume ACL/IJCNLP 2021508
of Findings of ACL, pages 120–133. Association for509
Computational Linguistics.510

Yafang Huang, Zuchao Li, Zhuosheng Zhang, and Hai511
Zhao. 2018. Moon IME: neural-based chinese pinyin512
aided input method with customizable association. In513
Proceedings of ACL 2018, Melbourne, Australia, July514
15-20, 2018, System Demonstrations, pages 140–145.515
Association for Computational Linguistics.516

Nal Kalchbrenner and Phil Blunsom. 2013. Recurrent517
continuous translation models. In Proceedings of the518
2013 Conference on Empirical Methods in Natural519
Language Processing, EMNLP 2013, 18-21 October520
2013, Grand Hyatt Seattle, Seattle, Washington, USA,521
A meeting of SIGDAT, a Special Interest Group of the522
ACL, pages 1700–1709. ACL.523

Jason Lee, Elman Mansimov, and Kyunghyun Cho.524
2018. Deterministic non-autoregressive neural se-525
quence modeling by iterative refinement. In Proceed-526
ings of the 2018 Conference on Empirical Methods527
in Natural Language Processing, Brussels, Belgium,528
October 31 - November 4, 2018, pages 1173–1182.529
Association for Computational Linguistics.530

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan531
Ghazvininejad, Abdelrahman Mohamed, Omer Levy,532
Veselin Stoyanov, and Luke Zettlemoyer. 2020.533
BART: denoising sequence-to-sequence pre-training534
for natural language generation, translation, and com-535
prehension. In Proceedings of the 58th Annual Meet-536
ing of the Association for Computational Linguistics,537
ACL 2020, Online, July 5-10, 2020, pages 7871–7880.538
Association for Computational Linguistics.539

Pankaj Malhotra, Lovekesh Vig, Gautam Shroff, and540
Puneet Agarwal. 2015. Long short term memory net-541
works for anomaly detection in time series. In 23rd542
European Symposium on Artificial Neural Networks,543
ESANN 2015, Bruges, Belgium, April 22-24, 2015.544

Shashi Narayan, Shay B. Cohen, and Mirella Lapata.545
2018. Don’t give me the details, just the summary!546
topic-aware convolutional neural networks for ex-547
treme summarization. In Proceedings of the 2018548
Conference on Empirical Methods in Natural Lan-549
guage Processing, Brussels, Belgium, October 31 -550
November 4, 2018, pages 1797–1807. Association551
for Computational Linguistics.552

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and553
Percy Liang. 2016. Squad: 100, 000+ questions554
for machine comprehension of text. In Proceedings555
of the 2016 Conference on Empirical Methods in556

Natural Language Processing, EMNLP 2016, Austin, 557
Texas, USA, November 1-4, 2016, pages 2383–2392. 558
The Association for Computational Linguistics. 559

Zhiqing Sun, Zhuohan Li, Haoqing Wang, Di He, Zi Lin, 560
and Zhi-Hong Deng. 2019. Fast structured decod- 561
ing for sequence models. In Advances in Neural 562
Information Processing Systems 32: Annual Confer- 563
ence on Neural Information Processing Systems 2019, 564
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, 565
Canada, pages 3011–3020. 566

Andrew J. Viterbi. 2006. A personal history of the 567
viterbi algorithm. IEEE Signal Process. Mag., 568
23(4):120–142. 569

Adina Williams, Nikita Nangia, and Samuel R. Bow- 570
man. 2018. A broad-coverage challenge corpus for 571
sentence understanding through inference. In Pro- 572
ceedings of the 2018 Conference of the North Amer- 573
ican Chapter of the Association for Computational 574
Linguistics: Human Language Technologies, NAACL- 575
HLT 2018, New Orleans, Louisiana, USA, June 1-6, 576
2018, Volume 1 (Long Papers), pages 1112–1122. 577
Association for Computational Linguistics. 578

Jinghui Xiao, Bingquan Liu, and Xiaolong Wang. 2007. 579
An empirical study of non-stationary ngram model 580
and its smoothing techniques. Int. J. Comput. Lin- 581
guistics Chin. Lang. Process., 12(2). 582

Jiali Yao, Raphael Shu, Xinjian Li, Katsutoshi Ohtsuki, 583
and Hideki Nakayama. 2018. Real-time neural-based 584
input method. CoRR, abs/1810.09309. 585

Sen Zhang and Yves Laprie. 2003. Text-to-pinyin con- 586
version based on contextual knowledge and d-tree 587
for mandarin. In IEEE International Conference on 588
Natural Language Processing and Knowledge Engi- 589
neering, NLP-KE 2003, Beijing, China, 2003. 590

Zhuosheng Zhang, Yafang Huang, and Hai Zhao. 2019a. 591
Open vocabulary learning for neural chinese pinyin 592
IME. In Proceedings of the 57th Conference of 593
the Association for Computational Linguistics, ACL 594
2019, Florence, Italy, July 28- August 2, 2019, Vol- 595
ume 1: Long Papers, pages 1584–1594. Association 596
for Computational Linguistics. 597

Zhuosheng Zhang, Zhen Meng, and Hai Zhao. 2019b. 598
A smart sliding chinese pinyin input method editor 599
on touchscreen. 600

8

https://openreview.net/forum?id=B1l8BtlCb
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/2021.findings-acl.11
https://doi.org/10.18653/v1/P18-4024
https://doi.org/10.18653/v1/P18-4024
https://doi.org/10.18653/v1/P18-4024
https://aclanthology.org/D13-1176/
https://aclanthology.org/D13-1176/
https://aclanthology.org/D13-1176/
https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/d18-1149
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
http://www.elen.ucl.ac.be/Proceedings/esann/esannpdf/es2015-56.pdf
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d18-1206
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://doi.org/10.18653/v1/d16-1264
https://proceedings.neurips.cc/paper/2019/hash/74563ba21a90da13dacf2a73e3ddefa7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/74563ba21a90da13dacf2a73e3ddefa7-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/74563ba21a90da13dacf2a73e3ddefa7-Abstract.html
https://doi.org/10.1109/MSP.2006.1657823
https://doi.org/10.1109/MSP.2006.1657823
https://doi.org/10.1109/MSP.2006.1657823
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101
https://doi.org/10.18653/v1/n18-1101
http://www.aclclp.org.tw/clclp/v12n2/v12n2a2.pdf
http://www.aclclp.org.tw/clclp/v12n2/v12n2a2.pdf
http://www.aclclp.org.tw/clclp/v12n2/v12n2a2.pdf
http://arxiv.org/abs/1810.09309
http://arxiv.org/abs/1810.09309
http://arxiv.org/abs/1810.09309
https://hal.inria.fr/inria-00107717/document
https://hal.inria.fr/inria-00107717/document
https://hal.inria.fr/inria-00107717/document
https://hal.inria.fr/inria-00107717/document
https://hal.inria.fr/inria-00107717/document
https://doi.org/10.18653/v1/p19-1154
https://doi.org/10.18653/v1/p19-1154
https://doi.org/10.18653/v1/p19-1154
http://arxiv.org/abs/arXiv:1909.01063
http://arxiv.org/abs/arXiv:1909.01063
http://arxiv.org/abs/arXiv:1909.01063

