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ABSTRACT

3D eye gaze estimation from monocular images remains to be a challenging task
due to the model sensitivity to illumination, occlusion and head pose changes. As
the growing interests and demand in in-the-wild 3D gaze estimation under un-
constrained environments, the generalization ability has been considered as a cru-
cial performance metric of 3D gaze estimation models. In this work, we present
UGaze-Geo, an uncertainty-aware weakly-supervised framework for 3D gaze es-
timation. We leverage the general knowledge of human eyeball anatomy and de-
velop multiple geometric constraints. The proposed geometrical constraints con-
tains two types, where the first type is formulated by constructing the mapping
function from anatomical 3D eyeball parameters to eye appearance features (eye-
lid & iris landmarks). The second type of constraints is based on the relationship
among head rotation, eyeball rotation and gaze, where we learn a variable that de-
scribes ”relative eyeball rotation” conditioned on current head pose. Both type of
constraints are free of gaze labels and are general to any subjects and environmen-
tal conditions. We formulate these constraints as loss functions in a probabilistic
framework. We evaluate the UGaze-Geo framework on within-domain and four
cross-domain gaze estimation tasks to validate the effectiveness of each constraint
and the advantage of performing probabilistic gaze estimation. Experimental re-
sults indicate that our model achieves SOTA performances on different dataset.

1 INTRODUCTION

Eye gaze is an important cue for human behaviour and attention analysis. With the growing popular-
ity in interactive applications such as AR/VR, 3D avatar animation, human-computer interaction and
driver behaviour monitoring, automatic gaze estimation methods are proposed to regress 3D gaze
directions from eye images. With the development deep learning algorithms, CNN models have
been fully utilized to directly regress gaze from images and can generate accurate results given well-
annotated gaze datasets (Kellnhofer et al., 2019; Zhang et al., 2020; Funes Mora et al., 2014; Fischer
et al., 2018). In spite of the good within-dataset performances achieved by recently-proposed learn-
ing based gaze estimation methods such as (Cheng et al., 2020; Chen & Shi, 2018; Fischer et al.,
2018; Zhang et al., 2017a), these models may suffer from sensitivity to different head poses, illu-
mination conditions and environmental changes when switch to different datasets. Improving the
robustness and generalization ability of gaze estimators becomes an emerging topic with great ap-
plication significance. Gaze360 (Kellnhofer et al., 2019) provides a solution for robust 3D gaze
tracking by training the gaze model with the large-scale unconstrained images collected under var-
ious environments for various subjects. To further improve the generalization ability of gaze esti-
mation models, researchers have been exploring target domain adaptation (Bao et al., 2022; Cheng
et al., 2022; Cai et al., 2020; Liu et al., 2021; Wang et al., 2022; Cui et al., 2020), for updating
the pre-trained model with label or unlabeled target samples. On the other hand, 3D model-based
methods (Wood et al., 2016; 2018; Wang & Ji, 2017; Ploumpis et al., 2020) have been studied as an
alternative to appearance-based methods. Eye-Model-based methods usually solve gaze direction by
calculating anatomical eye parameters from eye image features (such as eye landmarks, iris bound-
ary and limbus boundary) and then solving the orientation of eyeball relative to camera. Earlier
model-based methods (Hutchinson et al., 1989; Fuhl et al., 2016; Fuhl, 2021; Fuhl et al., 2017) pro-
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posed to analyze eye parameters from infrared eye image and can recover very accurate anatomical
eye structure. Later, this process is simplified with the advent of 3D deformable eye models (Wood
et al., 2016; Ploumpis et al., 2020) and the complex eye parameter calculation can be replaced by
fitting the 3D eye bases. The 3D eye model provides a general shape prior that can applied to any
web-camera images. However, the process of model-based fitting can be time-consuming and need
a pre-calibration procedure for each subject.

To build a robust 3D gaze estimator that can be applied in unconstrained environments, we propose
to incorporate general eye structural information into the learning process and formulate them as
geometrical constraints. Firstly, we introduce geometric structure of a 3D eyeball, with its shape
parameterized by two learnable anatomical variable: eyeball radius re and iris radius ri.(a). Along
with gaze prediction, our model constructs the correspondences between 3D eyeball vertices and
iris & eyelid landmarks by camera projection. Secondly, according to head-eye anatomy, the eyeball
centerCe is a fixed location inside the head for each subject and the eyeball can rotate independently
from the head around the eyeball center. Therefore, a gaze vector g is a combination of head poseRh
and eyeball movement Re. Directly estimating g from images can be inaccurate due to appearance
ambiguity, especially in blurry, occluded or less-illuminated images. The advantage of decomposing
gaze into head pose and eyeball movement is that the head pose is an easier term to solve while the
eyeball movement Re (under arbitrary head poses) tends to locate in a certain interval, which is a
general anatomical prior. Biomedical study from (Moon et al., 2020) reveals the statistics that the
horizontal and vertical movement of eyeball ranges in [−34.5◦, 33.3◦] and [−23.4◦, 20.1◦] respec-
tively. Our original contributions of this work can be concluded as follows:

• we propose an uncertainty-aware 3D gaze estimation method UGaze-Geo, where the head
pose and eyeball movement are disentangled by learning a probabilistic eyeball rotation
function conditioned on head pose.

• we incorporate the geometry knowledge of 3D eyeball in the model, and further propose
three anatomy-based geometric constraints, which can be used for weakly-supervised train-
ing or semi-supervised training (when gaze labels are available). Specifically. we propose
a novel rotation consistency constraint based on the relationship of head rotation and gaze
direction.

• experimental results show the effectiveness of the geometrical constraints, in terms of
SOTA within-dataset performance and better generalization ability in cross-dataset eval-
uation than SOTA learning-based models. Our model can also quantify the predicted gaze
uncertainty.

2 RELATED WORKS

2.1 HEAD POSE & EYE POSE DISENTANGLEMENT

The strategy of disentangling head pose and eye pose is often used in generative models, which
can be trained on head and gaze labels. (Park et al., 2019) propose to train an encoder-decoder to
disentangle gaze direction, head pose and other appearance factors. An embedding consistency loss
is applied on frontalized latent gaze features. (Xia et al., 2020) propose a continuous gaze interpo-
lation framework through decoupling related gaze attributes (head pose, vertical and horizontal gaze
directions). In addition, multi-view gaze representation learning conducted by (Gideon et al., 2022)
provides a solution for disentangling head pose and relative gaze feature given camera information.

2.2 REGRESSION OF 3D GAZE WITH CONSTRAINTS

Fully-supervised learning based models rely on the quantity and quality of gaze labels to produce
reliable performance. However, generating accurate gaze labels is time consuming and labor expen-
sive. Researchers have proposed different constraints as weak supervision or regularization. One
type of constraints is to utilize the geometric knowledge of eyeball models in the training process.
(Ploumpis et al., 2020) constructed an anatomical 3D deformable eye model consists of PCA bases
of eye socket, pupil size and pupil texture. They train a CNN to predict anatomical eyeball parame-
ters. (Park et al., 2018) pre-train an hourglass-based network to predict the landmarks of iris, pupil
center, eyeball center & radius on synthetic dataset, followed by a regressor to predict gaze from
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the landmarks. Another commonly used constraint is imposed by the relationship among head pose,
eyeball movement and gaze direction. (Zhu & Deng, 2017) trained separate head pose and eye pose
estimation models and utilized a gaze transform layer to convert head pose and eyeball movement
to gaze direction. In the work proposed by (Kothari et al., 2021), 3D head location and orientation
are used to impose strong gaze-related geometric constraints from two people ”Looking At Each
Other”, which serves as a weak supervision term on the spatial relationship of gaze vectors so their
model can be trained without gaze labels. Our model combines anatomical knowledge of 3D eyeball
structure with head-eye-gaze relationships, so they can be incorporated into the training as regular-
ization terms. Unlike (Zhu & Deng, 2017), whose geometric constraints can only be imposed on
constrained images (i.e., in-lab images with regular head poses) with given head pose and eyeball
movement labels, our model figures out the relationship among g,Rh, Re automatically without
requiring any additional eyeball movement labels and can be applied on unconstrained in-the-wild
images.

2.3 GAZE SYNTHESIZING & AUGMENTATION

Eye image synthesis or augmentation are common ways to enrich training data, especially when
real gaze labels are hard to obtain. Synthesizing eye images from generative models (Wang et al.,
2018; Kaur & Manduchi, 2021; Yu et al., 2019) helps improve gaze estimation accuracy with more
diverse and gaze-controllable data. Meanwhile, it is straight-forward to conduct data augmentation
by applying image transformations, such as the 2D rotation in the work of Bao et al. (Bao et al., 2022)
and 3D warping implemented by Qin et al. (Qin et al., 2022). Like (Qin et al., 2022), we generate 3D
head pose augmentations on a gaze dataset, but we step further, by applying the anatomic knowledge
of eyeball and head-eye-gaze relationships on the the augmented data.

3 METHODS

We describe the workflow of our method as below. Our model first estimates head pose Rh and
then predict a probabilistic eyeball movement distribution conditioned on current head pose feature,
i.e., p(Re|Rh, I). At last, gaze direction is represented by a combination of head pose Rh and
eyeball movement Re. This section consists of the following part. In Section 3.1 we introduce the
geometry-guided constraints, including the geometric eyeball model, transformation of coordinate
systems and the relationship among head pose, eyeball movement and gaze. In Section 3.2, we
describe process of training a deterministic model with the constraints , denoted as Gaze-Geo. In
Section 3.3, we describe the uncertainty-aware Gaze-Geo framework, abbreviated as UGaze-Geo,
including re-writing of the probabilistic loss terms and uncertainty analysis. Finally, in Section 3.4,
we describe the full training loss of UGaze-Geo.

3.1 PRELIMINARY: GEOMETRY-GUIDED CONSTRAINTS

In this section, we will describe the anatomy-based geometric constraints applied in training. The
first type of constraint is based on eye-anatomy. According to (Wang & Ji, 2017; Wang et al., 2018),
3D eyeball geometry can be estimated by a two-sphere model, with a larger sphere representing
the eyeball and a smaller one representing the cornea sphere. The intersection boundary of the
two spheres forms the boundary of iris. We use two parameters {eyeball radius: re, iris radius: ri}
to describe the shape of 3D eyeball. Then the eyeball center Ce and iris center Ci are used to
describe the location of eyeball and iris. We impose two constraints based on eye-anatomy: (1) the
3D eyelid vertices, which can be easily detected by existing 3D facial landmarks detectors (Bulat
& Tzimiropoulos, 2017), should be nearly located on the surface of 3D eyeball; (2) the 3D iris
boundary & iris center should be well aligned to the iris in image after proper camera projection.

The second type of constraints are based on head-eye anatomy. One general assumption according
to anatomical knowledge is that the eyeball center location Ce in head is fixed, and eyeball can
only rotate around Ce within certain range of degrees along pitch axis (horizontal) and yaw axis
(vertical). Based on this assumption, we decompose the gaze direction into the global head rotation
Rh and the secondary eyeball movement Re, where Re is relative eyeball rotation conditioned on
Rh. Rh and Re are 3 × 3 rotation matrices converted from rotation angles. Since Re is converted
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Figure 1: Overview of our model structure and training process. *Green part: the model structure
for performing gaze estimation, including a ResNet18 CNN, a MLP for regressing 3D head pose and
two fully connected layers for regressing eye pose and eye shape parameters respectively. *Yellow
part: the head-pose augmented images we generated for the training process and the corresponding
geometric rotation consistency lossLRot. Steps with dashed arrows can be skipped during inference.

from two rotation angles, pitch ψ and yaw θ, it can be written as below:

Re = Ry(θ)Rx(ψ) =

[
cos θ sinψ sin θ cosψ sin θ
0 cosψ − sinψ

− sin θ sinψ cos θ cosψ cos θ

]
(1)

Then the gaze direction relative to camera can be written by combining head pose and eyeball
movement, denoted as ĝ = ReRh[0, 0,−1]T . Changing one element inRh andRe and keep another
fixed will result in various appearances and gaze. In this paper we synthesize mini batches of images
with different head poses and the same eyeball movement for imposing the rotation consistency
constraint, which is no matter how the head rotates, the eyeball center location Ce in head is always
unchanged.

3.2 METHOD DESCRIPTION: GAZE-GEO

Method Description for Gaze-Geo We first introduce the deterministic framework Gaze-Geo
without considering the uncertainty. The overview of designed network structure and training pro-
cess are illustrated in Fig. 1. Our network takes face images as input, regressing for three sets of
parameters: {Rh, s}, {Ce, re, ri} and {ψ, θ}.
We first describe two basic loss terms for training, then we will discuss loss functions derived from
anatomy-based geometric constraints as regularization terms.
MSE error on head parameters The head pose parameter Rh and camera scaling factor s are the
first set of predicted parameters. We apply a fully-supervised RMSE loss defined as:

Lrmse = ∥f(Rh)− f(R̃h)∥2 + ∥s− s̃∥2 (2)

where f(·) function converts rotation matrix to Euler angles, R̃h and s̃ are the labels for head pose
and camera factor that we prepared in advance from data.

Gaze loss. As mentioned in Section. 3.1, given the predicted eye pose [θ, ϕ], we can calculate the
eyeball rotation matrix Re using Eq. 1 and compute gaze direction g = ReRh[0, 0,−1]T . If any
gaze labels are available during training, we can compute the gaze angular loss as

Lg = ∥g − ggt∥1 (3)

Then we describe three geometric constraints applied during training.

Constraint 1: Iris re-projection correspondence To fully utilize the geometrical model and lessen
the reliance on gaze labels, we construct a iris projection loss function for training our model. Defin-
ing the z-axis as vertical to the iris plane in eyeball coordinate system, the iris points z3d

iris in ECS
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can be expressed as: {
(z3d
iris[1])

2 + (z3d
iris[2])

2 = ri
2

z3d
iris[3] =

√
re2 − ri2

(4)

We can uniformly sample K points on the iris circle. With predicted head and eyeball parameters,
the projected iris points can be calculated by:

z2d
iris = sP (ReRhz

3d
iris +RhCe) + sTh (5)

We have a pre-trained iris detector for automatically generating K iris landmarks and pupil cen-
ter landmark from eye images, which are used as annotations. The overall K + 1 landmarks
are denoted by z2d

iris = {(xi, yi)}i=1,··· ,K+1. Considering that the resolution of eye images vary
among different datasets (for example, eye images from Gaze360 are quite blurred and hard to
detect iris), the iris detector outputs a 2D Gaussian distribution for each landmark location, i.e.,
p(x̃i, ỹi) = p(z̃i|I) = N (z̃i;uz̃i ,Σz̃i).We performed a study of how iris annotation accuracy affect
the accuracy of UGaze-Geo, which are discussed in Section B.3, Appendix.

To minimize the landmark projection error, we construct the negative log-likelihood loss of projected
z2d
iris as

Lproj = −
1

K + 1

K+1∑
i

log(N (z2d
iris[i];uz̃i ,Σz̃i)) (6)

Constraint 2: 3D eyelid and eyeball radius In order to avoid unreasonable eyeball size, we further
apply a geometric constraint that all the 3D eyelid landmarks should be located near the surface of
eyeball. The eyeball radius regularization loss is defined as

Leyeball = ∥d(z3d
eyelid, Ce)− (1 + σ)re∥2 (7)

where d(∗, ∗) is the Euclidean distance function and σ is a pre-defined hyper-parameter with small
positive value.

Constraint 3: Model Rotation Consistency We manually generated N head-pose-augmented im-
ages for each training image, by multiplying a random rotation matrix R(n)

∆ , n = 1, · · · , N on the
original head pose and synthesizing a new image I(n) by 3D warping. Examples of augmented batch
are shown in Fig. 5 in Appendix. Detailed steps of generating augmented images are discussed in
Section B.1, Appendix. Then we propose rotation consistency constraints between original image
and the batch of augmented data. Our model takes the batch of the original image I(0) with N aug-
mented images {I(n)}Nn=1 as input. The constraints are described below, formulated as loss terms.
(1) head pose R(n)

h should be consistent with R(0)
h after multiplying the inverse delta rotation matrix

(R
(n)
∆ )−1

LRot−h =
1

N

N∑
n=1

(∥f(R(0)
h )− f((R(n)

∆ )−1R
(n)
h )∥2)

(2) eyeball center position in HCS should be a constant value no matter how the head rotates:

LRot−c =
1

N

N∑
n=1

∥C(n)
e − C(0)

e ∥2

(3) relative eyeball rotation angle {ψ, θ} should be consistent across the batch since no additional
eyeball movement is involved.

LRot−e =
1

N

N∑
n=1

∥[ψ(0), θ(0)]− [ψ(n), θ(n)]∥2

The model rotation consistency loss is defined as follows:

LRot = LRot−h + LRot−c + LRot−e (8)

The total loss function for training the Gaze-Geo model is:

L = λ1Lrmse + λ2Lproj + λ3Leyeball + λ4Lg (9)
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3.3 UGAZE-GEO: UNCERTAINTY-AWARE VERSION OF GAZE-GEO

Due to image blur or self-occlusion caused by head pose movement, it can be hard to observe a
clear iris boundary or eye appearance change from an input eye image. We train a CNN to predict a
Gaussian distribution N (ue,Σe) rather than deterministic output {ψ, θ}. Then we have

p(ψ, θ|I,Rh) = N ([ψ, θ]T ;ue,Σe)

ue,Le = F3

([
G(I(n)), R(n)

h

])
,Σe = LeL

T
e

(10)

where F3,G represents network weights of CNN + FC3 as shown in Fig. 1, the output will be a
two-dimensional mean vector ue = [uψ, uθ] and the Cholesky decomposition matrix Le such that
the covariance matrix Σe = LeL

T
e . With the predicted distribution for eyeball rotation angles, we

can re-write two loss functions, Eq. 6 and Eq. 8, which are related with eyeball rotations.

Re-write1: iris re-projection loss on samples Since we do not have ground-truth eyeball rotation
angles, to make sure that the estimated rotation distribution matches with the visual evidence in the
eye images, we re-write the iris re-projection loss in Eq. 6 by sampling rotation angles from the
predicted distribution in Eq. 10. We can generate S samples {[ψ̂j , θ̂j ] ∼ N ([ψ, θ]T ;ue,Σe)}Sj=1
using re-parameterization trick introduced by (Kingma & Welling, 2013). Constructing sample-
based re-projection loss is formulated as below.

Lproj = −
1

S(K + 1)

S∑
j=1

K+1∑
i=1

log(N (ẑ2d
iris,j [i];uz̃i ,Σz̃i)

where ẑ2d
iris,j = sP (R̂e(j)Rhz

3d
iris +RhCe) + sTh

R̂e(j) = Ry(θ̂j)Rx(ψ̂j)

(11)

Re-write2: eyeball rotation consistency loss. On augmented images, we apply ”LRot−e” in Eq. 8
to constrain that the eyeball rotation be consistent with original image. With predicted distribution
P (n) ≜ p(ψ, θ|I(n), R(n)

h ) = N ([ψ, θ]T ;u
(n)
e ,Σ

(n)
e ), we can re-write RMSE loss LRot−e as a

KL-Divergence loss:

LRot−e =
1

N

N∑
n=1

(KL(P (n) | P (0)))

=
1

2
[log
|Σ(0)

e |
|Σ(n)

e |
+ tr((Σ(0)

e )−1Σ(n)
e )

+ (u(n)
e − u(0)

e )T (Σ(0)
e )−1(u(n)

e − u(0)
e )]− 1

(12)

Uncertainty of Gaze As described in Eq. 10 and re-write1, we can compute the final output as
the sample average of rotation angles: [ψ̄, θ̄] = 1

S

∑S
j=1[ψj , θj ]. Then the eyeball rotation can be

calculated as R̄e = Ry(θ̄)Rx(ψ̄), then 3D gaze direction is expressed as

ḡ = R̄eRh[0, 0,−1]T (13)
We can also compute the variance of gaze as:

Varg =
S∑
j=1

sph(R̂e(j)Rh[0, 0,−1]T ) (14)

where sph(·) is the function that converts a Cartesian coordinate to spherical coordinates (azimuth,
elevation). In Eq. 14, Varg contains two variances [σazi, σele] representing azimuthal and elevation
uncertainty respectively.

3.4 UGAZE-GEO: FINAL TRAINING LOSSES

After introducing the model rotation consistency loss and uncertainty-based loss into the baseline
model, we have the final loss function for the proposed UGaze-Geo method:

L = λ1Lrmse + λ2Lproj + λ3Leyeball + λ4LRot + λ5Lg (15)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: We train Gaze-Geo with different percentages of labels in Gaze360 and evaluate them on
the same testing data. Row1 and Row2 are reference methods training on full data of Gaze360.

Models Within-data Cross-data
Test (frontal) Test (full) DG −→ DM DG −→ DD

(Kellnhofer et al., 2019)
100% training data 11.1 13.5 11.36 11.86

(Bao et al., 2022)
100% training data - - 7.60 7.10

ours:100% gaze label 10.03 10.87 7.57 6.98
ours:50% gaze label 10.89 11.32 7.83 7.08
ours:25% gaze label 11.98 13.15 8.56 8.22
ours:0% gaze label 16.62 19.74 17.86 27.20

with Lrmse defined in Eq. 2 , Lnll defined in Eq. 11, Leyeball defined in Eq. 7, LRot defined in Eq. 8
and Eq. 12, and Lg = ∥ḡ − ggt∥1 when gaze label is available. We summarize the training process
in Algorithm 1 in Appendix.

4 EXPERIMENTS

Datasets. We investigate model performance on four benchmark datasets: Gaze360(Kellnhofer
et al., 2019) (DG), ETH-XGaze (Zhang et al., 2020)(DE ), MPIIFaceGaze (Zhang et al., 2017b)
(DM)and EyeDiap (Funes Mora et al., 2014)(DD). 1) Gaze360 contains in-the-wild human images
captured by a 360◦ camera with a wide range of horizontal gaze direction. Following the setting
in (Bao et al., 2022), we select 84900 images for data augmentation and model training. 2) ETH-
XGaze contains high-resolution face images of 80 participants collected from a multi-camera system
in a laboratory environment. 3) MPIIFaceGaze provides human face images captured by a laptop
camera when a participant is looking at a target on the screen, containing data for 15 participants
in total. 4) EyeDiap is a video-based dataset recording a participant head and eye movement when
tracking a static or a moving target.

Training data augmentation. We introduce the data augmentation process at the beginning of
Section 3.2. In our experiments we generate N = 5 augmented head rotation matrices. More details
about generating augmented images are described in the Appendix.

Training Details. For gaze prediction, we generate 10 samples (i.e., S = 10 in Eq. 11) from
predicted distribution. To study the effectiveness of the geometry-guided constraints, our model is
trained with 0%, 25%, 50% and 100% of gaze labels respectively.

4.1 WEAKLY- AND SEMI-SUPERVISED GAZE LEARNING

The proposed constraints can be directly used for weakly-supervised learning on any dataset or
combined with gaze labels to perform semi-supervised learning. We train the model with less data
from Gaze360. As the full training labels of Gaze360 is ∼85k, we use 50% (∼42k), 25% (∼21k)
and 0% of them and train the model respectively. We present the corresponding performances in
Table. 1. In the last three rows we show the within- and cross-data performance of our Gaze-Geo
model trained on full, 50% and 25% of images of Gaze360. When using 50% of images, Gaze-Geo
still outperforms (Kellnhofer et al., 2019) on Gaze360 testing set, for both frontal poses or full poses;
and our model achieves comparable cross-data performances with (Bao et al., 2022). When reducing
the training data size to 25%, the gaze estimation accuracy declined but still in an acceptable range
(better than (Kellnhofer et al., 2019)). Based on the within- and cross-data evaluations, we can prove
that training with the proposed anatomy-based constraints helps to encode the general anatomical
knowledge about eyeball movement (conditioned on head pose) into the model. Therefore, our
model is data efficient and can be trained with less labels but can still maintain reasonably good
generalization ability.

4.2 FULLY-SUPERVISED LEARNING: WITHIN-DATASET EVALUATION

To perform a fair comparison and prove that our proposed geometric constraints improve gaze esti-
mation performance, we first perform within-dataset evaluation on Gaze360 and MPIIFaceGaze, as

7
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Table 2: Within-dataset evaluation
Methods Gaze360 (frontal) Gaze360 (full) MPIIFaceGaze
RT-Gene

(Fischer et al., 2018)
12.26 - 4.3

Dilated-Net (Chen & Shi, 2018) 13.73 - 4.8
CA-Net (Cheng et al., 2020) 12.26 - 4.1

Gaze360 (Kellnhofer et al., 2019) 11.4 13.5 -
LAEO (Kothari et al., 2021) 10.1 13.2 -

L2CS (Abdelrahman et al., 2022) 10.41 - 3.92
Gaze-Geo(ours) + 100% labels 10.03 *10.87 3.71
Gaze-Geo(ours) + 50% labels 10.89 11.32 3.78

UGaze-Geo(ours) + 100% labels *9.88 11.06 *3.66

Table 3: Cross-dataset evaluation and comparision with SOTA learning-based methods
Methods DE −→ DM DE −→ DD DG −→ DM DG −→ DD

FullFace (Zhang et al., 2017a) 12.35 30.15 11.13 14.42
RT-Gene (Fischer et al., 2018) - - 21.81 38.60

Dilated-Net (Chen & Shi, 2018) - - 18.45 23.88
Gaze360 (Kellnhofer et al., 2019) 7.23 8.02 11.36 11.86

CA-Net (Cheng et al., 2020) - - 27.13 31.41
PureGaze (Cheng et al., 2022) 7.08 7.48 9.28 9.32

Res-Net18+RAT (Bao et al., 2022) 7.92 7.44 7.60 7.10
Gaze-Geo (ours) 7.13 9.80 7.57 6.98

UGaze-Geo (ours) ∗6.92 9.84 ∗7.23 ∗6.87

shown in Table 2. We compare our method, the Gaze-Geo and UGaze-Geo, with SOTA learning-
based methods, including RT-Gene (Fischer et al., 2018), Dilated-Net (Chen & Shi, 2018), CA-
Net (Cheng et al., 2020), Gaze360 (Kellnhofer et al., 2019), LAEO (Kothari et al., 2021) and
L2CS (Abdelrahman et al., 2022). On Gaze360 we use the official train-val-test set division and
present the evaluation results on different ranges of gaze directions, including frontal faces (column
2 in Table 2) and all faces (column 3 in Table 2). For MPIIFaceGaze, We performed leave-one-out
cross validation protocol as (Abdelrahman et al., 2022; Murthy & Biswas, 2021). Our method out-
performs other methods on Gaze360, especially on the full range of evaluation set Gaze360(full),
Gaze-Geo reduces the gaze angular error by 17.7% comparing with LAEO ((Kothari et al., 2021)).
Our model also achieves SOTA performances on MPIIFaceGaze, with 5.4% and 6.6% of reduced
gaze error by Gaze-Geo and UGaze-Geo. The row of Gaze-Geo + 50% labels shows the within-
dataset results of a semi-supervised model trained with 50% gaze labels, and we can still achieve
better performances than several SOTA models.

4.3 FULLY-SUPERVISED LEARNING: CROSS-DATASET EVALUATION

We also conduct four cross-dataset experiments to elaborate that, by imposing the geometric con-
straints during training, our gaze estimator is robust and have better generalization ability under large
data difference. Following the cross-data settings adopted in existing works PureGaze (Cheng et al.,
2022) and RAT (Bao et al., 2022), we train our model respectively on Gaze360 and ETH-XGaze and
then evaluate on MPIIFaceGaze and EyeDiap. In Table 3 we compare the performance of our model
with SOTA gaze estimation methods, including RT-Gene, Dilated-Net, CA-Net, FullFace, Gaze360,
PureGaze and RAT.

As shown in Table 3, our model can achieve three SOTA cross-dataset performance(bold number
with a * symbol), with 2.26%, 4.87% and 3.24% improvements on the task of DE −→ DM , DG −→
DM and DG −→ DD. The lower accuracy on task DE −→ DD occurs possibly because of the
image resolution shift, where the 3D eyeball model may be misaligned to lower resolution images
in DD. We have a more detailed analysis in Section B, Appendix. Compared to RAT (Bao et al.,
2022), which introduced a rotational loss on 2D augmented data, our model can achieve much better
performance on three cross-data tasks. It shows that our 3D augmented data + three geometric
constraints are effective to improve the model. We show visualizations of predicted gaze and the
corresponding geometry (optional in testing) in Fig. 2.

4.4 ABLATION STUDY.

We perform an ablation study to validate the effectiveness of our proposed constraints. Our baseline
model is the backbone model trained using the Lg and Lrmse (the solid line branch in Fig. 1),

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 4: Ablation study of gaze angular errors when applying different constraints and w/o uncer-
tainty modeling during training. The last two rows are corresponding to Gaze-Geo and UGaze-Geo.

Models Within-data Cross-data
DG −→ DG DM −→ DM DG −→ DM DG −→ DD

baseline 11.97 4.40 8.90 9.66
baseline+Geo-1 11.91 4.27 8.84 9.30

baseline+Geo-1,2 11.92 4.11 8.20 8.87
baseline+Geo-3 11.40 3.94 7.87 7.62

baseline+Geo-1,2,3 10.87 3.71 7.57 6.98
baseline+Geo-1,2,3+U 11.06 3.66 7.23 6.87

eye image projected eyeball
(optional in testing)

projected iris
(optional in testing)

3D gaze from 
eyeball center

predicted gaze

Figure 2: Visualization of the predicted 3D eyeball, 3D gaze direction and projected iris landmarks
on different dataset. The red dots are projected iris vertices and iris center from 3D eyeball while
the green dots are iris labels. The yellow line represents the gaze direction.

without applying any constraints or uncertainty modeling. The major difference of our baseline
model compared with the static baseline model of Gaze360 (Kellnhofer et al., 2019) is that ours
learns a disentangled representation of head pose and eyeball movement from face images. We
present the model trained with the i-th constraint as “baseline + Geo-i”.

We summarize the results of within & cross dataset evaluation in Table 4. Through comparing the
first three rows, we can conclude that the model is well improved with proposed eye-anatomy-based
constraints (Geo-1,2). As the two constraints help to optimize the eyeball shape and orientation, we
observe smaller gaze error on the last three tasks, as (4.40◦ −→ 4.11◦), (8.90◦ −→ 8.20◦) and (9.66◦ −→
8.87◦) respectively. Similarly, we verify the importance of the proposed head-eye-anatomy con-
straints (Geo-3) by applying it singly on baseline, with better gaze accuracy than applying Geo-1,2.
Combining all three constraints (baseline+Geo-1,2,3) together helps to achieve a significant im-
provement on within- and cross-data tasks, with reduced gaze prediction error by 9.2%, 15.7%,
14.9%, 27.8% respectively compared to baseline model. The uncertainty-aware model in the last
row shows that with probabilistic modeling, our model can generalize better under cross-data set-
tings, improving the baseline+Geo-1,2,3 model from (7.57 ◦ −→ 7.23◦), (6.98◦ −→ 6.87◦) on the
two cross-data tasks. In addition, we conducted a study of model data efficiency, where we train
the model with the geometric constraints but less number of images. We use (full, 50%, 25%) of
training images from Gaze360 and evaluate the within- and cross-data performances. We conclude
and analyze the results in Section C, Appendix. It shows that with the geometric constraints, our
model can maintain a relatively good performance with reduced training data.

4.5 UNCERTAINTY VALIDATION

We calculate predicted gaze uncertainty by sampling from the estimated rotation distribution, with
the gaze vector in 3D space expressed by spherical coordinates [uazi, uele] and sample standard
deviation being [σazi, σele]. We provide detailed discussions and visualizations of gaze uncertainty
in Section E, Appendix.
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5 CONCLUSION

In this paper we proposed UGaze-Geo, a novel learning-based framework for 3D gaze estimation,
with three geometry-guided geometric constraints applied as wweak-supervision in training. Our
model estimates a probabilistic eyeball movement conditioned on head poses and can predict both
gaze and gaze uncertainty through aligning 3D eyeball to the eye landmarks. We first introduce two
geometric constraints, by mapping a 3D eyeball to eye features including eyelid and iris landmarks.
We also propose a model rotation consistency constraint, which is based on augmented data gener-
ated by randomly revising the original 3D head pose of an image. With the constraints applied in
training, our model is robust to unconstrained images in both within- and cross-dataset evaluations
and can achieve SOTA performances.
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Erroll Wood, Tadas Baltrušaitis, Louis-Philippe Morency, Peter Robinson, and Andreas Bulling.
A 3d morphable eye region model for gaze estimation. In European Conference on Computer
Vision, pp. 297–313. Springer, 2016.
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APPENDIX
A TRAINING ALGORITHM

Algorithm 1 Ugaze-Geo Model Training Process
1: Pre-trained model:
2: Iris-lmk-Net output: {N (z̃i;uz̃i ,Σz̃i)}K+1

i=1
3: Training UGaze-Geo:
4: Input: Original + aug images:I(0), I(1), · · · , I(N)

5: Labels:


Ground-Truth Gaze: ggt

delta rotation matrix: R(1)
∆ , · · · , R(N)

∆

Iris landmarks : z̃(0)
i , · · · , z̃(N)

i

6: Model: backbone G(·); FC-layers F1(·),F2(·),F3(·)
7: for bs←− 1 to Max-Batch-Num do
8: for n←− 0 to N do
9: {R(n)

h , t
(n)
x , t

(n)
y , s(n)} ←− F1

([
G(I(n)),z

(n)
face

])
10: ⇒ compute Lrmse by Eq. 2
11: {C(n)

e , r
(n)
e , r

(n)
i } ←− F2

([
G(I(n)), R

(n)
h

])
12: ⇒ compute Leyeball by Eq. 7

13: N ([ψ, θ]T ;u
(n)
e ,Σ

(n)
e )←− F3

([
G(I(n)), R

(n)
h

])
14: ⇒ compute LRot by Eq. 8 and Eq. 12
15: Sampling:
16: {[ψ̂j , θ̂j ] ∼ N ([ψ, θ]T ;u

(n)
e ,Σ

(n)
e )}Sj=1

17: ⇒ compute Lnll by Eq. 11
18: Gaze:
19: [ψ̄, θ̄] = 1

S

∑S
j=1[ψ̂j , θ̂j ]⇒ R̄e = Ry(θ̄)Rx(ψ̄)

20: ḡ = R̄eRh[0, 0,−1]T ⇒ Lg = ∥ḡ − ggt∥1
21: Train F1,F2,F3,G with Eq. 15.

B TRAINING DATA PREPARATION

Our model contains a training data preparation process, including image augmentation, label gener-
ation for head pose and iris-landmark localization, as illustrated in Fig. 4. We describe each part in
detail in the following sections.

3DDFA

3D head

!$
(&)

!$
(()

dense correspondence

rendering… …

Figure 3: 3D head augmentation pipeline.

B.1 AUGMENTING EYE IMAGES WITH VARIOUS HEAD POSES

We refer to Guo et al. (Guo et al., 2020) to prepare the augmented gaze data. The process is described
in Fig. 3. The augmentation only entails head orientation changes without involving any additional
eyeball rotation. Therefore, it’s reasonable to introduce a consistency constraint on 3D relative
eyeball rotations between an original image and all of its augmented images. On Gaze360 and
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MPIIFaceGaze, we randomly generate five delta rotation angles of pitch, yaw and roll, given the
head pose of each original image. The data augmentation procedure works well under different
illumination, image resolution and head poses. We provide examples of synthesized images in
Fig. 5. On ETH-XGaze, since it is a multi-view dataset, we do not further augment additional
head poses. We take the images from one camera as the reference image, then extract the head
pose differences in pitch and yaw angles from other cameras. The group of images from multiple
camera can be considered as head variations with the same relative eye pose so that we can apply
the proposed model rotation consistency constraints.

training data preparation 

Face-Net

*labels for head & camera
3D head pose: 21,
Translation: 34, = *̃- , *̃* 	
Camera params: 35

head pose

augmentation

*labels for iris
# $̃)*) % 4+ , ' 4+) 
 

Iris-lmk-Net

original "*
(")

augmented face images

cropping

eye patch

"*
(-)

*labels for augmented rotation matrix 1. 

3D facial landmark data

training data training labelpre-trained model

landmark
detector

"*
(&) …

trainIris landmarks

Iris uncertainty

Figure 4: Training data and label preparation through pre-trained models (grey modules in figure). 1)
We use a re-trained 3DDFA Guo et al. (2018) as Face-Net for generating 3D head pose and camera
parameter labels as R̃h, t̃x, t̃y, s̃ for the original training image. 2) Then based on the head pose R̃h
we further synthesize different head pose views by augmenting the rotation angles in pitch, yaw and
roll angles, resulting in the augmented rotation matrix label R∆. 3) We generate 3D facial landmark
data on the augmented face images by using the package of Bulat & Tzimiropoulos (2017) and crop
them to eye region data. 4) We explicitly train a model Iris-lmk-Net that predicts a distribution
for iris landmarks N (z̃eye|µz̃,Σz̃) on eye patch data. The mean value µz̃ are used as iris landmark
labels and the variance Σz̃ will be used to weight the iris re-projection loss (higher variance, lower
weight to the loss), which can mitigate the impact of inaccurate landmarks due to illumination,
image resolution or occlusion.

original aug1 aug5aug2 aug3 aug4

Figure 5: Synthesized 3D head augmentation examples under different illumination, resolution and
head poses.

B.2 FACE-NET FOR HEAD POSE ALIGNMENT

We re-train the model 3DDFA (Bulat & Tzimiropoulos, 2017) following the code provided by (Guo
et al., 2018) and perform dense 3D face alignment on the training data. For those training images
without head pose labels, we use the output of this model as the labels for 3D head poses R̃h,
translation T̃h = [t̃x, t̃y] and camera parameter s̃.
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B.3 ACCURACY OF IRIS LABELS IN TRAINING

In this section, we will introduce the process of generating iris labels used in training. We train a
separate model Iris-lmk-Net to automatically detect the iris landmarks, which are used as iris labels
when training with constraints. Besides, we explored how iris label accuracy affect the training pro-
cess and model performance and we tried to reduce the effect of possible inaccurate iris landmarks
when the eye image is blurry or occluded.

Figure 6: Iris landmark detection on testing images using Iris-lmk-Net.

Figure 7: Iris landmark position and uncertainty map generated by Iris-lmk-Net. From left to right,
iris landmark variance Σz̃i is becoming larger due to illumination and iris visibility difference.

For training the gaze model, we propose to use iris re-projection loss for learning the eyeball shape
and position. In order to obtain iris labels, we pre-train an Iris-lmk-Net for regressing iris landmarks
from an eye image. We provide training details for Iris-lmk-Net below. The input eye image is
passed through a ResNet18 architecture followed by a 3-layer MLP (multi-layer perceptron). Over-
all the iris landmarks contains eight boundary points and one iris center point. The Iris-lmk-Net
estimates the mean {uz̃i = [uxi

, uyi ]}9i=1 and Cholesky coefficients {Li}9i=1 of the covariance
matrix for each iris landmark. Then the distribution for each landmark can be expressed by:

p(z̃i|uz̃i ,Σz̃i) = N (z̃i|uz̃i ,Σz̃i),whereΣz̃i = Lz̃iL
T
z̃i (16)

We define a negative log-likelihood loss for training Iris-lmk-Net.

Lnll = −
1

9

9∑
i

log(N (zi;uz̃i ,Σz̃i))

=
1

9× 2

9∑
i

(
log |Σz̃i |+ (zi − uz̃i)

TΣ−1
z̃i

(zi − uz̃i)
) (17)

where zi is the iris landmark detected by a public software Mediapipe. We train Iris-lmk-Net on
a hybrid of gaze datasets and web face images, including Gaze360 (Kellnhofer et al., 2019), ETH-
XGaze (Zhang et al., 2020) and CelebA (Liu et al., 2015). We train 50 epochs in total. In Fig. 6, we
provide visualization results on testing dataset MPIIFace and EyeDiap.
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Table 5: Training UGaze-Geo with iris landmark predicted by Mediapipe and our Iris-lmk-Net and
results of cross-dataset evaluations.

UGaze-Geo + iris DE −→ DM DE −→ DD DG −→ DM DG −→ DD

Iris from:
Mediapipe 7.04 9.80 7.38 6.95

Iris from:
Iris-lmk-Net 6.92 9.84 7.23 6.87

We compare gaze estimation performance from UGaze-Geo by directly utilizing iris landmarks from
Mediapipe and using our pre-trained Iris-lmk-Net respectively and summarize them in Table. 5. We
also show that using the iris landmark distribution as supervision for training the model achieves
better performance than directly applying iris landmarks from Mediapipe on tasks of DE −→ DM ,
DG −→ DM and DG −→ DD. Especially on Gaze360, wrong labels can be generated by Mediapipe
due to image blur, low resolution or self-occlusion, then resulting in incorrect eyeball rotation learn-
ing. When training with the iris landmark distribution of p(z̃i|uz̃i ,Σz̃i), the training samples with
larger iris variances Σz̃i will be assigned with less weight. In Fig. 7, we show the difference of
predicted iris variances from Iris-lmk-Net based on illumination condition and iris visibility. For
blurred images, or occluded eye region caused by large head pose, the predicted iris has larger un-
certainty (reflected by the variance) and the mean position can be inaccurate (column 5 in Fig. 7).

C CROSS-DATASET PERFORMANCE ANALYSIS

Figure 8: Image resolution shift between ETH-XGaze (row1) and EyeDiap (row2).

In Section 4.3 of our paper, we provide cross-dataset evaluation on four datasets. When testing On
EyeDiap dataset (DD), our model achieves better accuracy than SOTA appearanc-based methods on
the task of DG −→ DD while performs worse on the task of DE −→ DD. The Performance drop in
DE −→ DD can be caused by the data distribution shift between the training data and testing data:
1) image resolution shift: EyeDiap images has much lower resolution than ETH-XGaze and the eye
region are more blurry, making it harder to recognize the iris feature during testing, as shown in
Fig. 8; 2) head pose distribution shift: the training data ETH-XGaze have large head pose variations
in pitch and yaw angles (not in roll angles), while EyeDiap images also vary in roll angles. It can
be an essential factor since our model predicts relative eyeball rotation, which is a sequential result
of head pose prediction. In addition, in the training data preparation process (for 3D head poses,
camera factors and facial landmarks), the 3D reconstruction model or the facial landmark detector
may fail to generate reliable results on images with extreme head poses or incomplete faces in ETH-
XGaze, resulting in label noise in training. For this issue we will further refine the face alignment
results on ETH-XGaze.

D COMPARE WITH OTHER DATA AUGMENTATION

As we create an augmented batch for each original training image to impose the geometric con-
straints. We perform a comparison of performance improvement over baseline model after using the
augmented data. We compare with the 2D augmentation approaches in (Bao et al., 2022), as shown
in Table. 6. (Bao et al., 2022) generated pseudo gaze labels during the ”RAT” stage and consid-
ered another two image augmentations: Geometry and Noise. Numerically, data augmentation with
3D head rotations with our geometric constraints have better generalization ability on the tasks of
DE −→ DM , DG −→ DM and DG −→ DD. We also show relative improvement in the last two rows
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Table 6: comparing with 2D RAT (rotation augmented training) proposed in (Bao et al., 2022) and
(Wang et al., 2022)

.

Methods DE −→ DM DE −→ DD DG −→ DM DG −→ DD

Baseline(Bao et al., 2022) 8.20 7.16 7.74 7.64
Geometry+RAT(Bao et al., 2022) 9.75 8.50 7.88 7.41

Noise+RAT(Bao et al., 2022) 8.70 8.12 7.80 7.65
2D Rotation+RAT(Bao et al., 2022) 7.92 7.44 7.60 7.10

Baseline (ours) 8.27 10.77 8.90 9.66
UGaze-Geo(ours) 6.92 9.84 7.23 6.87

Relative
improvement

2D RAT : -3.41%
ours: -16.30%

+3.91%
-8.35%

-1.81%
-18.76%

-7.07%
-40.61%

Figure 9: Gaze direction distribution, where the blue * and red * represents the projected eyeball
center and iris center, the yellow line shows the average gaze direction. Column1: training on
Gaze360 with testing samples from MPIIFace dataset, column2: training on Gaze360 with testing
samples from EyeDiap dataset.

of Table 6, by computing the gaze error reduction percentage between rotation-augmented method
and baseline. Although the performance of the baseline models in Table. 6 differs, our proposed
data augmentation with applied constraints yields a larger measure of improvement over baseline
model.

E MORE ABOUT GAZE UNCERTAINTY

In this section we show more detailed gaze uncertainty analysis given the rotation distribution pre-
dicted by UGaze-Geo framework. Based on Section 3.3 in our paper, our model predicts a distri-
bution N ([ψ, θ]T ;u

(n)
e ,Σ

(n)
e ) for relative eyeball rotation angles. Then we can estimate the uncer-

tainty of gaze by sampling from the distribution. As shown in Fig. 9, if we sample sufficient times
and compute the corresponding gaze direction, we can generate an ”ellipse like” density map indi-
cating the distribution of possible gaze directions, where the major axis and minor axis representing
the scale of gaze uncertainty in azimuth and elevation angle. When our model is trained on the same
dataset, the gaze uncertainty may vary in direction, and vary with the visibility of iris and eye region.
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