
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TRUNCATED CONSISTENCY MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Consistency models have recently been introduced to accelerate sampling from
diffusion models by directly predicting the solution (i.e., data) of the probability
flow ODE (PF ODE) from initial noise. However, the training of consistency
models requires learning to map all intermediate points along PF ODE trajectories
to their corresponding endpoints. This task is much more challenging than the
ultimate objective of one-step generation, which only concerns the PF ODE’s
noise-to-data mapping. We empirically find that this training paradigm limits the
one-step generation performance of consistency models. To address this issue, we
generalize consistency training to the truncated time range, which allows the model
to ignore denoising tasks at earlier time steps and focus its capacity on generation.
We propose a new parameterization of the consistency function and a two-stage
training procedure that prevents the truncated-time training from collapsing to a
trivial solution. Experiments on CIFAR-10 and ImageNet 64× 64 datasets show
that our method achieves better one-step and two-step FIDs than the state-of-the-art
consistency models such as iCT-deep, using more than 2× smaller networks.

1 INTRODUCTION

Diffusion models (Ho et al., 2020; Song et al., 2020) have demonstrated remarkable capabilities in
generating high-quality continuous data such as images, videos, or audio (Ramesh et al., 2022; Ho
et al., 2022; Huang et al., 2023). Their generation process gradually transforms a simple Gaussian
prior into data distribution through a probability flow ordinary differential equation (PF ODE).
Although diffusion models can capture complex data distributions, they require longer generation
time due to the iterative nature of solving the PF ODE.

Consistency models (Song et al., 2023) were recently proposed to expedite the generation speed
of diffusion models by learning to directly predict the solution of the PF ODE from the initial noise
in a single step. To circumvent the need for simulating a large number of noise-data pairs to learn
this mapping, as employed in prior works (Liu et al., 2022b; Luhman & Luhman, 2021), consistency
models learn to minimize the discrepancy between the model’s outputs at two neighboring points
along the ODE trajectory. The boundary condition at t = 0 serves as an anchor, grounding these
outputs to the real data. Through simulation-free training, the model gradually refines its mapping
at different times, propagating the boundary condition from t = 0 to the initial t = T .

However, the advantage of simulation-free training comes with trade-offs. Consistency models must
learn to map any point along the PF ODE trajectory to its corresponding data endpoint, as shown
in Fig. 1a. This requires the learning of both denoising at smaller times on the PF ODE, where the
data are only partially corrupted, and generation towards t = T , where most of the original data
information has been erased. This dual task necessitates larger network capacity, and it is challenging
for a single model to excel at both tasks. Our empirical observations in Fig. 2 demonstrate the model
would gradually sacrifice its denoising capability at smaller times to trade for generation quality as
training proceeds. While this behavior is desirable as the end goal is generation rather than denoising,
we argue for explicit control over this trade-off, rather than allowing the model to allocate capacity
uncontrollably across times. This raises a key question: Can we explicitly reduce the network capacity
dedicated to the denoising task in order to improve generation?

In this paper, we propose a new training algorithm, termed Truncated Consistency Models (TCM), to
de-emphasize denoising at smaller times while still preserving the consistency mapping for larger
times. TCM relaxes the original consistency objective, which requires learning across the entire
time range [0, T] of PF ODE trajectories, to a new objective that focuses on a truncated time range
[t′, T], where t′ serves as the dividing time between denoising and generation tasks. This allows the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

ImageNet 64x64

CIFAR-10

Stage 2: Truncated consistency training

Stage 1: Standard consistency training

Data NoiseProbability flow ODE

(a) (b)

blows up!

Figure 1: (a) Two-stage training of TCM. In Stage 1, a standard consistency model is trained to
provide both the boundary condition and initialization for TCM training in Stage 2. TCM focuses
on learning in the [t′, T] range, discarding denoising tasks at earlier times and allocating network
capacity toward generation-like tasks at later times. (b) Sample quality (FID, lower is better) of the
two training stages. TCM (Stage 2) improves over standard consistency training (Stage 1) across
datasets. Additionally, standard consistency training shows instability on challenging datasets like
ImageNet 64x64, where the model could diverge during training.

model to dedicate its capacity primarily to generation, freeing it from the denoising task at earlier
times [0, t′). Crucially, we show that a proper boundary condition at t′ is necessary to ensure the new
model adheres to the original consistent mapping. To achieve this, we propose a two-stage training
procedure (see Fig. 1a): The first stage involves pretraining a standard consistency model over the
whole time range. This pretrained model then acts as the boundary condition at t′ for the subsequent
truncated consistency training stage of the TCM.

Experimentally, TCM improves both the sample quality and the training stability of consistency
models across different datasets and sampling steps. On CIFAR-10 and ImageNet 64× 64 datasets,
TCM outperforms the iCT (Song & Dhariwal, 2023), the previous best consistency model, in both
one-step and two-step generation using similar network size. TCM even outperforms iCT-deep
that uses a 2× larger network across datasets and sampling steps. By using our largest network,
we achieve a one-step FID of 2.20 on ImageNet 64 × 64, which is competitive with the current
state-of-the-art. In addition, the divergence observed during standard consistency training is not
present in TCM. We show through extensive ablation experiments why the various design choices of
truncated consistency models (including the strength of mandating boundary conditions, two-stage
training, etc.) are necessary to obtain these results.

Contributions. (i) We identify an underlying trade-off between denoising and generation within
consistency models, which negatively impacts both stability and generation performance. (ii)
Building on these insights, we introduce Truncated Consistency Models, a novel two-stage training
framework that explicitly allocates network capacity towards generation while preserving consistency
mapping. (iii) Extensive validation of TCM demonstrates significant improvements in both one-step
and two-step generation, achieving state-of-the-art results within the consistency models family on
multiple image datasets. Additionally, TCM exhibit improved training stability. (iv) We provide
in-depth analyses, along with ablation and design choices that demonstrate the unique advantages
of the two-stage training in TCM.

2 PRELIMINARIES

2.1 DIFFUSION MODELS

Diffusion models are a class of generative models that synthesize data by reversing a forward process
in which the data distribution pdata is gradually transformed into a tractable Gaussian distribution. In

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

100000 200000 300000
Iteration

0.9

1.0

1.1

1.2

dF
ID

t

t = 0.2

100000 200000 300000
Iteration

1.2

1.4

1.6

dF
ID

t

t = 0.4

100000 200000 300000
Iteration

1.50

1.75

2.00

2.25

2.50

dF
ID

t

t = 0.8

100000 200000 300000
Iteration

1.5

2.0

2.5

3.0

3.5

dF
ID

t

t = 1.0

100000 200000 300000
Iteration

2

3

4

5

6

dF
ID

t

t = 1.5

100000 200000 300000
Iteration

5

10

15

dF
ID

t

t = 4.0

100000 200000 300000
Iteration

10

20

30

dF
ID

t

t = 16.0

100000 200000 300000
Iteration

5
10
15
20
25
30

FI
D

t = 80.0

Figure 2: Evolution of the denoising FID (dFIDt) during standard consistency training for different
t, where 0 < t ≤ 80 follows the EDM noise schedule (Karras et al., 2022). The model gradually
sacrifices its denoising capability at smaller times (t < 1.0) to trade for the improved generation
quality at t = 80 as training proceeds.

this paper, we use the formulation proposed in Karras et al. (2022), where the forward process is
defined by the following stochastic differential equation (SDE):

dxt =
√
2tdwt, (1)

where t ∈ [0, T] and wt is the standard Brownian motion from t = 0 to t = T . Here, we define pt
as the marginal distribution of xt along the forward process, where p0 = pdata. In this case, pt is a
perturbed data distribution with the noise from N (0, t2I). In diffusion models, T is set to be large
enough so that pT is approximately equal to a tractable Gaussian distribution N (0, T 2I).

Diffusion models come with the reverse probability flow ODE (PF ODE) that starts from t = T to
t = 0 and yields the same marginal distribution pt as the forward process in Eq. (1) (Song et al., 2020):

dxt = −tst(xt)dt, (2)

where st(xt) := ∇x log pt(x) is the score function at time t ∈ [0, T]. To draw samples from
the data distribution pdata, we first train a neural network to learn st(x) using the denoising score
matching (Vincent, 2011), initialize xT with a sample from N (0, T 2I), and solve the PF ODE
backward in time: x0 = xT +

∫ 0

T
(−tst(xt))dt. However, numerically solving the PF ODE requires

multiple forward passes of the neural score function estimator, which is computationally expensive.

2.2 CONSISTENCY MODELS

Consistency models instead aim to directly map from noise to data, by learning a consistency
function that outputs the solution of PF ODE starting from any t ∈ [0, T]. The desired consistency
function f should satisfy the following two properties (Song et al., 2023): (i) f(x0, 0) = x0, and (ii)
f(xt, t) = f(xs, s), ∀(s, t) ∈ [0, T]2. The first condition can be satisfied by the reparameterization

fθ(x, t) := cout(t)Fθ(x, t) + cskip(t)x, (3)

where θ is the parameter of the free-form neural network Fθ : Rd × R → Rd, and cout(0) = 0,
cskip(0) = 1 following the similar design of Karras et al. (2022). Here, instead of training fθ directly,
we train a surrogate neural network Fθ under the above reparameterization. The second condition
can be learned by optimizing the following consistency training objective:

LCT(fθ, f
−
θ) := Et∼ψt,x∼pdata,ϵ∼N (0,I)[

ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−(x+ (t−∆t)ϵ, t−∆t)], (4)

where θ− = stopgrad(θ), ψt denotes the probability of sampling time t that also represents the
noise scale, ϵ denotes the standard Gaussian noise, ω(t) is a weighting function, d(·, ·) is a distance
function defined in Sec. C.1.2, and ∆t represents the nonnegative difference between two consecutive
time steps that is usually set to a monotonically increasing function of t.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The gradient of LCT with respect to θ is an approximation of the underlying consistency distillation
loss with a O(maxt∆t) error (See Appendix C). Song et al. (2023) empirically suggests that ∆t

should be large at the beginning of training, which incurs biased gradients but allows for stable training,
and should be annealed in the later stages, which reduces the error term but increases variance.

Denoising FID By definition, consistency models can both generate data from pure Gaussian noise
as well as noisy data sampled from pt where 0 < t < T . To understand how consistency models
propagate end solutions through diffusion time, we need to empirically measure their denoising
capability across different time steps. To this end, we define denoising FID at time step t, termed
dFIDt, as the Fréchet inception distance (FID) (Heusel et al., 2017) between the original data pdata
and the denoised data by consistency models with inputs sampled from pt. When computing dFIDt,
we first add Gaussian noise from N (0, t2I) to 50K clean samples and then denoise them using
consistency models. Hence, dFID0 is close to zero, and dFIDT is the standard FID.

3 TRUNCATED CONSISTENCY MODEL

Standard consistency models pose a higher challenge in training than many other generative models:
instead of simply mapping noise to data, consistency models must learn the mapping from any point
along the PF ODE trajectory to its data endpoint. Hence, a consistency model must divide its capacity
between denoising tasks (i.e., mapping samples from intermediate times to data) and generation
(i.e., mapping from pure noise to data). This challenge mainly contributes to consistency models’
underperformance relative to other generative models with similar network capacities (see Table 1).

Interestingly, standard consistency models navigate the trade-off between denoising and generation
tasks implicitly. We observe that during standard consistency training, the model gradually loses
its denoising capabilities at the low t. Specifically, Fig. 2 shows a trade-off in which, after some
training iterations, denoising FIDs at lower t (t < 1) increase while the denoising FIDs at larger t
(t > 1) (including the generation FID at the largest t = 80) continue to decrease. This suggests that
the model struggles to learn to denoise and generate simultaneously, and sacrifices one for the other.

Truncated consistency models (TCM) aim to explicitly control this tradeoff by forcing the consistency
training to ignore the denoising task for small values of t, thus improving its capacity usage for
generation. We thus generalize the consistency model objective in Eq. (4) and apply it only in the
truncated time range [t′, T] where the dividing time t′ lies within (0, T). The time probability ψt in
TCM only has support in [t′, T] as a result.

Naive solution A straightforward approach is to directly train a consistency model on the truncated
time range. However, the model outputs can collapse to an arbitrary constant because a constant
function (i.e., fθ(x, t) = const) is a minimizer of the consistency training objective (Eq. (4)). In
standard consistency models, the boundary condition f(x0, 0) = x0 prevents collapse, but in this
naive example, there is no such meaningful boundary condition. For example, if the free-form neural
network Fθ(x, t) = −cskip(t)x/cout(t) for all t ∈ [t′, T], fθ(x, t) is 0, and thus Eq. (4) becomes zero.
To handle this, we propose a two-stage training procedure and design a new parameterization with a
proper boundary condition, as outlined below.

Proposed Solution Truncated consistency models conduct training in two stages:

1. Stage 1 (Standard consistency training): We pretrain a consistency model to convergence in
the usual fashion, with the training objective in Eq. (4); we denote the pre-trained model as fθ0

.
2. Stage 2 (Truncated consistency training): We initialize a new consistency model fθ with the

first-stage pretrained weights fθ0
, and train over a truncated time range [t′, T]. The boundary

condition at time t′ is provided by the pretrained fθ0
. This stage is explained further below.

To explain the details of TCM, we first introduce the following parameterization:

f trunc
θ,θ−

0

(x, t) = fθ(x, t) · 1{t ≥ t′}+ fθ−
0
(x, t) · 1{t < t′}, (5)

where 1{·} is the indicator function, and similarly, θ−
0 = stopgrad(θ0). Intuitively, we only use our

final model fθ when t ≥ t′, and we inquire the pre-trained fθ−
0

otherwise. This approach ensures
that (1) fθ does not waste its capacity learning in the [0, t′) range, and (2) if fθ is trained well, it will

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

learn to generate data by mimicking the pre-trained model fθ−
0

at the boundary. When t′ = 0, we
recover the standard consistency model parameterization Eq. (3). During sampling, as f trunc

θ,θ−
0

= fθ for

all t ∈ [t′, T], we can discard this parameterization and just use fθ for generating samples.

To describe the boundary condition, we then partition the support of the time sampling distribution
ψt, i.e., [t′, T] into two time ranges: (i) the boundary time region St′ := {t ∈ R : t′ ≤ t ≤ t′ +∆t},
and (ii) the consistency training time region S−

t′ ≜ [t′, T] \ St′ = {t ∈ R : t′ +∆t < t ≤ T}. To
effectively enforce the boundary condition using the first-stage pre-trained model fθ0 , a nonnegligible
amount of t’s, sampled from ψt, must fall within the interval St′ . Otherwise the consecutive time
steps t and t−∆t in consistency training will mostly be larger or equal to t′, limiting the influence
of the pre-trained model.

With this time partitioning and our new parameterization, Eq. (4) can be decomposed as follows:

LCT(f
trunc
θ,θ−

0

, f trunc
θ−,θ−

0

) =

∫
t∈St′

ψt(t)
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−

0
(x+ (t−∆t)ϵ, t−∆t)dt︸ ︷︷ ︸

Boundary loss

+

∫
s∈S−

t′

ψt(t)
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−(x+ (t−∆t)ϵ, t−∆t)dt︸ ︷︷ ︸

Consistency loss

,

(6)

where we apply our parameterization in Eq. (5) in the above two time partitions separately, and we
drop the expectation over x ∼ pdata, ϵ ∼ N (0, I) for notation simplicity. Unlike standard consistency
training, TCM have two terms: the boundary loss and consistency loss. The boundary loss allows the
model to learn from the pre-trained model, preventing collapse to a constant.

Training on the objective (6) can still collapse to a constant if we do not utilize the boundary condition
sufficiently by not sampling enough time t’s in St′ . In particular, this can happen for ∆t close to
zero when consistency training is near convergence (Song & Dhariwal, 2023; Geng et al., 2024). To
prevent this, we design ψt to satisfy

∫
t∈St′

ψt(t)dt > 0. In other words, we have a strictly positive
probability of sampling a point in St′ , even when ∆t is close to zero. Specifically, we define ψt as a
mixture of the Dirac delta function δ(·) at point t′ and another distribution ψ̄t:

ψt(t) = λbδ(t− t′) + (1− λb)ψ̄t(t), (7)

where the weighting coefficient λb ∈ (0, 1). ψ̄t has the support (t′, T] and can be instantiated in
different ways (e.g., log-normal or log-Student-t distributions); the effect of different ψ̄t choices is
explored in Section 4.4.

By definition, we can see that
∫
t∈St′

ψt(t)dt ≥ λb, and λb controls how significantly we emphasize
the boundary condition. Assume that the first-stage consistency model is perfectly trained in [0, t′],
i.e., fθ0(xt, t) = x0 for all t ∈ [0, t′]. If fθ(xt′ , t

′) ̸= fθ0(xt′ , t
′), fθ will be penalized by the

boundary loss. Minimizing the boundary loss enforces the boundary condition in second-stage
model fθ (i.e., fθ(xt′ , t′) = fθ0(xt′ , t

′) = x0), while minimizing the consistency loss propagates the
boundary condition to the end time (i.e., fθ(xT , T) = fθ(xt′ , t

′)). Consequently, the loss in Eq. (6)
effectively guides the model towards the desired solution fθ(xT , T) = x0. With the time distribution
ψt defined in Eq. (7), our training objective becomes

LCT(f
trunc
θ,θ−

0

, f trunc
θ−,θ−

0

) ≈ λb
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′))︸ ︷︷ ︸
Boundary loss:=LB(fθ,fθ−

0
)

(8)

+(1− λb)Eψ̄t
[
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−(x+ (t−∆t)ϵ, t−∆t)]︸ ︷︷ ︸

Consistency loss:=LC(fθ,fθ−)

. (9)

where the approximation in Eq. (8) holds when ∆t is sufficiently small (which is true for the truncated
training stage). Please see Appendix D for the detailed derivation. For simplicity of notation, we relax
the above objective by absorbing the (1− λb) factor into λb and express our final training loss as:

LTCM := wbLB(fθ, fθ−
0
) + LC(fθ, fθ−), (10)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Truncated Consistency Training
1: Standard consistency training
2: θ0 ← argminθ̂ LCT(fθ̂, fθ̂−) ▷ Optimize consistency training loss for the regular model
3: Truncated training
4: NB ← ⌊Bρ⌋ ▷ Number of boundary samples
5: for each training iteration do
6: x1, ...,xB ∼ pdata, ϵ1, ..., ϵB ∼ N (0, I)
7: Set t1, ..., tNB to t′, and tNB+1, ..., tB ∼ ψ̄t

8: Compute
∑NB

i=1(LB)i(fθ, fθ−
0
) using Eq. (8) with (xi, ϵi, ti) for i = 1, ..., NB

9: Compute
∑B

j=NB+1(LC)j(fθ, fθ−) using Eq. (9) with (xj , ϵj , tj) for j = NB + 1, ..., B

10: Compute∇θLTCM using Eq. (11)
11: Update θ using the computed gradient
12: end for

where wb = λb/(1−λb) is a tunable hyperparameter that controls the weighting of the boundary loss.
To estimate the two losses, we partition each mini-batch of size B into two subsets. The boundary
loss LB is estimated using NB = ⌊Bρ⌋ samples, where ρ ∈ (0, 1) is a hyperparameter controlling
the allocation of samples. The consistency loss LC is estimated with the remaining B −NB samples.
Increasing ρ reduces the variance of the boundary loss gradient estimator but increases the variance
of the consistency loss gradient estimator, and vice versa. The final mini-batch loss is as follows:

LTCM ≈ wb
NB

NB∑
i=1

∇θ(LB)i(fθ, fθ−
0
) +

1

B −NB

B∑
j=NB+1

∇θ(LC)j(fθ, fθ−), (11)

where (LB)i and (LC)j are the boundary loss and the consistency loss at the i-th sample from
δ(t− t′) and the j-th sample from ψ̄t, respectively. We provide the training algorithm in Algorithm 1.

4 EXPERIMENTS

Table 1: FID, NFE and # param. on CIFAR-10. Bold
indicates the best result for each category and NFE.

Method NFE FID # param. (M)

Diffusion models
EDM (Karras et al., 2022) 35 1.97 55.7
PFGM++ (Xu et al., 2023b) 35 1.91 55.7
DDPM (Ho et al., 2020) 1000 3.17 35.7
LSGM (Vahdat et al., 2021) 147 2.10 475

Consistency models
1-step
iCT (Song & Dhariwal, 2023) 1 2.83 56.4
iCT-deep (Song & Dhariwal, 2023) 1 2.51 112
CTM (Kim et al., 2023) (w/o GAN) 1 5.19 55.7
ECM (Geng et al., 2024) 1 3.60 55.7
TCM (ours) 1 2.46 55.7
2-step
iCT (Song & Dhariwal, 2023) 2 2.46 56.4
iCT-deep (Song & Dhariwal, 2023) 2 2.24 112
ECM (Geng et al., 2024) 2 2.11 55.7
TCM (ours) 2 2.05 55.7

Variational score distillation
DMD (Yin et al., 2024b) 1 3.77 55.7
Diff-Instruct (Luo et al., 2024) 1 4.53 55.7
SiD (Zhou et al., 2024) 1 1.92 55.7

Knowledge distillation
KD (Luhman & Luhman, 2021) 1 9.36 35.7
DSNO (Zheng et al., 2022a) 1 3.78 65.8
TRACT (Berthelot et al., 2023) 1 3.78 55.7

2 3.32 55.7
PD (Salimans & Ho, 2022) 1 9.12 60.0

2 4.51 60.0

In this section, we evaluate TCM on standard
image generation benchmarks and compare
it against state-of-the-art generative models.
We begin by detailing the experimental setup
in Sec. 4.1. We then study the behavior of
denoising FID and its impact on generation
FID in Sec. 4.2. We benchmark TCM against
a variety of existing methods in Sec. 4.3, and
provide detailed analysis on various design
choices in Sec. 4.4.

4.1 SETUP

We evaluate TCM on the CIFAR-10 (Krizhevsky
et al., 2009) and ImageNet 64×64 (Deng et al.,
2009) datasets. We consider the uncondi-
tional generation task on CIFAR-10 and class-
conditional generation on ImageNet 64×64. We
measure sample quality with Fréchet Inception
Distance (FID) (Heusel et al., 2017) (lower is
better), as is standard in the literature.

For consistency training in TCM, we mostly
follow the hyperparameters in ECT (Geng et al.,
2024), including the discretization curriculum
and continuous-time training schedule. For all
experiments, we choose a dividing time t′ = 1
and set ψ̄t to the log-Student-t distribution. We
use wb = 0.1 and ρ = 0.25 for the boundary

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

300000 400000
Iteration

1.0
1.5
2.0
2.5
3.0
3.5

dF
ID

t

t = 0.2

Stage 1
Stage 2

300000 400000
Iteration

1.2
1.5
1.8
2.1
2.4
2.7

dF
ID

t

t = 0.4
Stage 1
Stage 2

300000 400000
Iteration

1.4

1.5

1.6

dF
ID

t

t = 0.8

Stage 1
Stage 2

300000 400000
Iteration

1.5

1.6

1.7

dF
ID

t

t = 1.0
Stage 1
Stage 2

300000 400000
Iteration

1.7

1.8

1.9
dF

ID
t

t = 1.5
Stage 1
Stage 2

300000 400000
Iteration

2.3

2.4

2.5

dF
ID

t

t = 4.0

Stage 1
Stage 2

300000 400000
Iteration

2.5
2.6
2.7
2.8

dF
ID

t

t = 16.0

Stage 1
Stage 2

300000 400000
Iteration

2.6

2.8

3.0

FI
D

t = 80.0

Stage 1
Stage 2

t
 t

'
t

>
 t

'

Figure 3: Denoising FID (dFID) for standard consistency training for longer iterations (Stage 1) and
TCM (Stage 2) at various t’s on CIFAR-10 during training. For TCM, we set the dividing time t′=1.
We can see, in the second stage, the dFID exhibits a dramatic increase at times below the dividing
time t′, while the dFID at times above t′ and FID at t=T continue to improve. Notably, the rate of
dFID in the truncated stage increases at earlier times is significantly faster compared to standard
consistency training, suggesting a more efficient “forgetting” of the denoising tasks.

loss. We discuss these choices in Sec. 4.4. In line with Geng et al. (2024), we initialize the model with
the pre-trained EDM (Karras et al., 2022) / EDM2 (Karras et al., 2024) for CIFAR-10 / ImageNet
64× 64, respectively. On CIFAR-10, we use a batch size of 512 and 1024 for the first and the second
stage, respectively. On ImageNet with EDM2-S architecture, we use a batch size of 2048 and 1024
for the first and the second stage, respectively. For EDM2-XL, to save compute, we initialize the
truncated training stage with the pre-trained checkpoint from the ECM work (Geng et al., 2024) that
performs the standard consistency training, and conduct the second-stage training with a batch size of
1024. Please see Appendix E for more training details.

4.2 TRUNCATED TRAINING ALLOCATES CAPACITY TOWARD GENERATION

Our proposed TCM aims to explictly reallocate network capacity towards generation by de-
emphasizing denoising tasks at smaller t’s. Empirical analysis in Fig. 3 further characterizes this
behavior, showing a rapid increase in dFIDs at smaller t’s below the threshold t′ during the truncated
training stage. Conversely, dFIDs continue to decrease at larger t’s. In addition, TCM exhibit a
more pronounced “forgetting” of the denoising task compared to consistency training (Fig. 2) at
earlier times. For instance, dFID at t = 0.2 increases up to 3.5 in the truncated training, whereas
it remains below 1 in the standard consistency training. TCM also significantly accelerate the process
of forgetting the denoising tasks at these earlier times, achieving a substantially improved generation
FID. This suggests that by explicitly controlling the training time range, the neural network can
effectively shift its capacity towards generation.

Fig. 1(b) demonstrates how this reallocation of network capacity directly translates to improved
sample quality and training stability. For CIFAR-10 / ImageNet 64 × 64, the truncated training
stage (Stage 2) is initialized from the Stage 1 model at 250K / 150K iterations, respectively. We
can see that the truncated training improves FID over the consistency training on the two datasets.
Moreover, we find that the truncated training is more stable than the original consistency training, as
their ImageNet FID blows up after 150K iterations, while TCM continues to improve FID from 2.83
to 2.46, showcasing its robustness (See Figure 7 for more analysis).

4.3 TCM IMPROVES THE SAMPLE QUALITY OF CONSISTENCY MODELS

To demonstrate the effectiveness of TCM, we compare our method with three lines of works that distill
diffusion models to one or two steps: (i) consistency models (Song & Dhariwal, 2023; Kim et al., 2023;
Geng et al., 2024) that distills the PF ODE mapping in a simulation-free manner; (ii) variational score
distillation (Yin et al., 2024b; Luo et al., 2024; Zhou et al., 2024) that performs distributional matching
by utilizing the score of pre-trained diffusion models; (iii) knowledge distillation (Luhman & Luhman,
2021; Zheng et al., 2022a; Berthelot et al., 2023; Salimans & Ho, 2022) that distill the PF ODE

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 3: CIFAR-10 FID when varying the dividing
time t′.

t′ value 0.17 0.8 1.0 1.5

FID 2.70 2.69 2.56 2.79

Table 4: CIFAR-10 FID for different training
stages.

Stage 1 Stage 2 Stage 3

FID 2.77 2.46 2.46

through off-line or on-line simulation using the pre-trained diffusion models. We exclude the methods
that additionally use the GAN loss, which causes more training difficulties, for fair comparison.

Results. In Table 1 and Table 2, we report the sample quality measured by FID and the sampling
speed measured by the number of function evaluations (NFE), on CIFAR-10 and ImageNet-64×64,
respectively. We mostly borrow the baseline results from the original papers. We also include the
number of model parameters. Our main findings are: (1) TCM significantly outperforms improved
Consistency Training (iCT) (Song & Dhariwal, 2023), the state-of-the-art consistency model,
across datasets, number of steps and network sizes. For example, TCM improves the one-step
FID from 2.83 / 4.02 in iCT to 2.46 / 2.88, on CIFAR-10 / ImageNet. Further, TCM’s one-step
FID even rivals iCT’s two-step FID on both datasets. When using EDM2-S model, TCM also
surpasses iCT-deep, which uses 2× deeper networks, in both one-step (2.88 vs 3.25) and two-step
FIDs (2.31 vs 2.77) on ImageNet. (2) TCM beats all the knowledge distillation methods and
performs competitively to variational score distillation methods. Note that TCM do not need to
train additional neural networks as in VSD methods, or to run simulation as in knowledge distillation
methods. (3) Two-step TCM performs comparably to the multi-step EDM (Karras et al., 2022),
the state-of-the-art diffusion model. For example, when both using the same EDM network,
two-step TCM obtains a FID of 2.05 on CIFAR-10, which is close to 1.97 in EDM with 35 sampling
steps. We further provide the uncurated one-step and two-step generated samples in Fig. 5. Please
see Appendix F for more samples.

4.4 ANALYSES OF DESIGN CHOICES

Table 2: FID, NFE and # param. on ImageNet 64×64. Dotted
lines separate results by # param. Bold indicates the best result
for each category and NFE.

Method NFE FID # param. (M)

Diffusion models
EDM2-S (Karras et al., 2024) 63 1.58 280
EDM2-XL (Karras et al., 2024) 63 1.33 1119

Consistency models
1-step
iCT (Song & Dhariwal, 2023) 1 4.02 296
iCT-deep (Song & Dhariwal, 2023) 1 3.25 592
ECM (Geng et al., 2024) (EDM2-S) 1 4.05 280
TCM (ours; EDM2-S) 1 2.88 280

MultiStep-CD (Heek et al., 2024) 1 3.20 1200
ECM (Geng et al., 2024) (EDM2-XL) 1 2.49 1119
TCM (ours; EDM2-XL) 1 2.20 1119
2-step
iCT (Song & Dhariwal, 2023) 2 3.20 296
iCT-deep (Song & Dhariwal, 2023) 2 2.77 592
ECM (Geng et al., 2024) (EDM2-S) 2 2.79 280
TCM (ours; EDM2-S) 2 2.31 280

MultiStep-CD (Heek et al., 2024) 2 1.90 1200
ECM (Geng et al., 2024) (EDM2-XL) 2 1.67 1119
TCM (ours ; EDM2-XL) 2 1.62 1119

Variational score distillation
DMD2 w/o GAN (Yin et al., 2024a) 1 2.60 296
Diff-Instruct (Luo et al., 2024) 1 5.57 296
EMD-16 (Xie et al., 2024) 1 2.20 296
Moment Matching (Salimans et al., 2024) 1 3.00 400

2 3.86 400
SiD (Zhou et al., 2024) 1 1.52 296

Knowledge distillation
DSNO (Zheng et al., 2022a) 1 7.83 329
TRACT (Berthelot et al., 2023) 1 7.43 296

2 4.97 296
PD (Salimans & Ho, 2022) 1 15.4 296

2 8.95 296

Time sampling distribution ψ̄t. We ex-
plore various time sampling distributions
ψ̄t supported on [t′, T], and find that the
truncated log-Student-t distribution works
best (i.e., ln(t) follows Student-t distri-
bution). The Student-t distribution, be-
ing heavier-tailed than the Gaussian dis-
tribution employed in previous consistency
training (Song & Dhariwal, 2023; Geng
et al., 2024), inherently allocates more
probability mass towards larger t’s. This
aligns with the motivation of TCM, which
emphasizes enhancing generation capabil-
ities at later times. The degree of freedom
ν effectively controls the thickness of the
tail, with the Student-t distribution converg-
ing to a Gaussian distribution as ν → ∞.
Figure 4a shows the shape of ψ̄t with vary-
ing standard deviation σ and the degree
of freedom ν in three cases: (1) heavy-
tailed and a low probability mass around
small t’s (σ = 2, ν = 10000), (2) heavy-
tailed and a high probability mass around
small t’s (σ = 0.2, ν = 0.01), (2) light-
tailed (σ = 0.2, ν = 2). From Fig. 4b, we
observe that the log-Student-t distribution
with σ = 0.2, ν = 0.01 is the best among
the three. Hence we use σ = 0.2, ν = 0.01
in all the experiments.

Strength for boundary loss. Figure 4c
shows the effect of two key hyper-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 1 2 3 4
ln(t)

0
500

1000
1500
2000
2500
3000
3500

Fr
eq

ue
nc

y

=0.2, =0.01
=0.2, =2
=2, =10000

(a)

3 4 5 6
Iterations (×105)

2.6

2.8

3.0

3.2

3.4

3.6

FI
D

=0.2, =2
=0.2, =0.01
=2, =10000

(b)

3 4
Iterations (×105)

2.4

2.6

2.8

3.0

3.2

3.4

3.6

FI
D

= 0.5, wb = 0.1.
= 0.25, wb = 0.01.
= 0.25, wb = 0.1.
= 0.1, wb = 0.1.
= 0.25, wb = 1.

(c)
Figure 4: (a) Comparison of Student-t distributions with different standard deviations σ and degree
of freedom ν. (b) FID evolution on CIFAR-10 for different σ and ν. wb = 0.1, ρ = 0.25, t′ = 1, and
a batch size of 128 are used for all plots. (c) Effect of ρ and wb on the FID on CIFAR-10. We use a
batch size of 128. t′ is set to 1.

parameters that control the strength of imposing boundary condition in the TCM objective (Eq. 10).
We observe that the FID is relatively stable with a wide range of ρ and wb (from 0.1 to 0.5 for ρ and
from 0.1 to 1 for wb). However, when using a very small weight for the boundary loss (wb = 0.01),
FID explodes as the model fails to maintain the boundary condition. Thus, we use ρ = 0.25, wb = 0.1
in all the experiments.

Dividing time t′. The boundary t′ ideally represents the point where the task in the PF ODE transitions
from denoising to generation. However, this transition is gradual, and there is no single definitive
point. Fig. 2b suggests this transition occurs roughly between t′ = 0.8 and t′ = 1.5, where we
observe a change in dFID behavior: it primarily deteriorates during training before this range, but then
stabilizes afterwards (more indicative of a generation task). Based on this analysis, we experimented
with multiple t′ values around this range. Table 3 shows that t′ = 1 provides the best results among
the choices. Note that here we use a batch size of 128, while it is 1024 in our default setting.

Are two stages enough? A natural question is whether we can extend our two-stage training pro-
cedures to three or more stages by gradually increasing t′. However, recall that our methodology was
motivated by the fact that in the first-stage training (standard consistency training), we observe increas-
ing dFIDs at smaller t values of the training range, as seen in Fig. 2. This trade-off is notably absent
in the second stage over the time range [t′, T], as seen in Fig. 3. This suggests that during the second
stage, the model tackles tasks that are more or less similar to generation, and introducing another trun-
cated training stage may not yield further gains. In support of this hypothesis, we implement the third
stage where the dividing time is t′ = 4, but do not observe improvement, as shown in Table 4. We
also consider adding an intermediate training stage between stage 1 and stage 2 that finetunes fθ0 in
the time range (0, t′) but it produces a slightly worse performance, which we discuss in Appendix B.

5 RELATED WORK

Consistency models. Song et al. (2023) first proposed consistency models as a new class of generative
models that synthesize samples with a single network evaluation. Later, Song & Dhariwal (2023);
Geng et al. (2024) presented a set of improved techniques to train consistency models for better
sample quality. Luo et al. (2023) introduced latent consistency models (LCM) to accelerate the
sampling of latent diffusion models. Kim et al. (2023) proposed consistency trajectory models (CTM)
that generalize consistency models by enabling the prediction between any two intermediate points on
the same PF ODE trajectory. The training objective in CTM becomes more challenging than standard
consistency models that only care about the mapping from intermediate points to the data endpoints.
Heek et al. (2024) proposed multistep consistency models that divide the PF ODE trajectory into
multiple segments to simplify the consistency training objective. They train the consistency models
in each segment separately, and need multiple steps to generate a sample. Ren et al. (2024) combined
CTM with progressive distillation (Salimans & Ho, 2022), by performing segment-wise consistency
distillation where the number of ODE trajectory segments progressively reduces to one. Similar to
CTM, it relies on the adversarial loss (Goodfellow et al., 2014) to achieve good performance.

Fast sampling of diffusion models. While a line of work aims to accelerate diffusion models via fast
numerical solvers for the PF-ODE (Lu et al., 2022; Karras et al., 2022; Liu et al., 2022a; Xu et al.,

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

1-
st

ep
2-

st
ep

CIFAR-10 ImageNet 64x64

Figure 5: Uncurated one-step (top) and two-step (bottom) generated samples from TCM (EDM) on
CIFAR-10 and TCM (EDM2-XL) on ImageNet 64×64, respectively.

2023a), they usually still require more than 10 steps. To achieve low-step or even one-step generation,
besides consistency models, other training-based methods have been proposed from three main
perspectives: (i) Knowledge distillation, which first used the pre-trained diffusion model to generate
a dataset of noise and image pairs, and then applied it to train a single-step generator (Luhman &
Luhman, 2021; Zheng et al., 2022a). Progressive distillation (Salimans & Ho, 2022; Meng et al.,
2023) iteratively halves the number of sampling steps required, without needing an offline dataset.
(ii) Variational score distillation, which aims to match the distribution of the student and teacher
output via an approximate (reverse) KL divergence (Yin et al., 2024b;a; Xie et al., 2024), implicit
score matching (Zhou et al., 2024) or moment matching (Salimans et al., 2024). (iii) Adversarial
distillation, which leverages the adversarial training to fine-tune pre-trained diffusion models into a
few-step generator (Sauer et al., 2023; 2024; Lin et al., 2024; Xu et al., 2024). Compared with these
training-based diffusion acceleration methods, our method is most memory and computation efficient.

Truncated training of diffusion models. Balaji et al. (2022) propose to train different diffusion
models for each time step range. Since consistency models solve a more difficult task (learning to
integrate PF-ODE) than diffusion models (learning the drift of PF-ODE), they can benefit more from
such a strategy but also require a specific parameterization (Eq. (5)) to satisfy the boundary condition.
Zheng et al. (2022b) use GANs to generate the noised data and use diffusion models to map them to
clean data. Different from ours, they train diffusion models on the first half of the interval while we
train consistency models on the second half of the interval.

6 CONCLUSION

We have introduced a truncated consistency training method that significantly enhances the sample
quality of consistency models. To generalize consistency models to the truncated time range, we have
proposed a new parameterization of the consistency function and a two-stage training process that
explicitly allocates network capacity towards generation. We also discussed about our design choices
arising from the new training paradigm. Our approach achieves superior performance compared to
state-of-the-art consistency models, as evidenced by improved one-step and two-step FID scores
across different datasets and network sizes. Notably, these improvements are achieved while utilizing
similar or even smaller network architectures than baselines.

Limitation. TCM introduces an additional training stage on top of the standard consistency model
training. Compared to the standard consistency training, the truncated training requires a slight
increase in per-iteration training time due to the additional boundary loss in Eq. (10). Standard
consistency training necessitates two forward passes per training iteration, while our parameteriza-
tion (Eq. 5) requires three. Also, the truncated training incurs a minor additional memory cost as we
need to maintain a pre-trained consistency model (in evaluation mode) for the boundary loss. We
observe that on ImageNet 64×64 with EDM2-S, TCMs have an 18% increase in training time per
iteration and an 15% increase in memory cost. Moreover, the one-step sample quality of TCM still
has a considerable performance gap from the diffusion models with a large NFE, but we believe this
is an important step toward closing the gap.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

We provide sufficient details for reproducing our method in the main paper and also in the Appendix. E,
including a pseudo code of the training algorithm, model initialization and architecture, model
parameterization, learning rate schedules, time step sampling procedures, and other training details.
We also specify hyperparameter choices like the dividing time t′, boundary loss weight wb, and
boundary ratio ρ. Additionally, we discuss the computational costs of our method compared to
standard consistency training. For evaluation, we describe our sampling procedure for both one-step
and two-step generation.

8 ETHICS STATEMENT

This paper raises similar ethical concerns to other papers on deep generative models. Namely, such
models can be (and have been) used to generate harmful content, such as disinformation and violent
imagery. We advocate for the responsible deployment of such models in practice, including guardrails
to reduce the risk of producing harmful content. The design of these protections is orthogonal to
our work. Other ethical concerns may arise regarding the significant resource costs required to train
and use deep generative models, including energy and water usage. This work increases the training
cost of consistency models, but it also enables the models to be run with only 1 NFE and requires
smaller neural network architectures, both of may which reduce inference-time costs relative to
other diffusion-based models. Nonetheless, the environmental impact of training and deploying deep
generative models remains an important limitation.

REFERENCES

Yogesh Balaji, Seungjun Nah, Xun Huang, Arash Vahdat, Jiaming Song, Qinsheng Zhang, Karsten
Kreis, Miika Aittala, Timo Aila, Samuli Laine, et al. ediff-i: Text-to-image diffusion models with
an ensemble of expert denoisers. arXiv preprint arXiv:2211.01324, 2022.

David Berthelot, Arnaud Autef, Jierui Lin, Dian Ang Yap, Shuangfei Zhai, Siyuan Hu, Daniel
Zheng, Walter Talbott, and Eric Gu. Tract: Denoising diffusion models with transitive closure
time-distillation. arXiv preprint arXiv:2303.04248, 2023.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Zhengyang Geng, Ashwini Pokle, William Luo, Justin Lin, and J Zico Kolter. Consistency models
made easy. arXiv preprint arXiv:2406.14548, 2024.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Jonathan Heek, Emiel Hoogeboom, and Tim Salimans. Multistep consistency models. arXiv preprint
arXiv:2403.06807, 2024.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
Neural Information Processing Systems, 33:6840–6851, 2020.

Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
Fleet. Video diffusion models. arXiv preprint arXiv:2204.03458, 2022.

Rongjie Huang, Jiawei Huang, Dongchao Yang, Yi Ren, Luping Liu, Mingze Li, Zhenhui Ye, Jinglin
Liu, Xiang Yin, and Zhou Zhao. Make-an-audio: Text-to-audio generation with prompt-enhanced
diffusion models. arXiv preprint arXiv:2301.12661, 2023.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. arXiv preprint arXiv:2206.00364, 2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174–24184, 2024.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Naoki Murata, Yuhta Takida, Toshimitsu Ue-
saka, Yutong He, Yuki Mitsufuji, and Stefano Ermon. Consistency trajectory models: Learning
probability flow ode trajectory of diffusion. arXiv preprint arXiv:2310.02279, 2023.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
Toronto, ON, Canada, 2009.

Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer Vision–
ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings,
Part V 13, pp. 740–755. Springer, 2014.

Luping Liu, Yi Ren, Zhijie Lin, and Zhou Zhao. Pseudo numerical methods for diffusion models on
manifolds. International Conference on Learning Representations, 2022a.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022b.

Xingchao Liu, Xiwen Zhang, Jianzhu Ma, Jian Peng, and Qiang Liu. Instaflow: One step is enough
for high-quality diffusion-based text-to-image generation. arXiv preprint arXiv:2309.06380, 2023.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A
fast ode solver for diffusion probabilistic model sampling in around 10 steps. arXiv preprint
arXiv:2206.00927, 2022.

Eric Luhman and Troy Luhman. Knowledge distillation in iterative generative models for improved
sampling speed. arXiv preprint arXiv:2101.02388, 2021.

Simian Luo, Yiqin Tan, Longbo Huang, Jian Li, and Hang Zhao. Latent consistency models:
Synthesizing high-resolution images with few-step inference. arXiv preprint arXiv:2310.04378,
2023.

Weijian Luo, Tianyang Hu, Shifeng Zhang, Jiacheng Sun, Zhenguo Li, and Zhihua Zhang. Diff-
instruct: A universal approach for transferring knowledge from pre-trained diffusion models.
Advances in Neural Information Processing Systems, 36, 2024.

Chenlin Meng, Robin Rombach, Ruiqi Gao, Diederik Kingma, Stefano Ermon, Jonathan Ho, and Tim
Salimans. On distillation of guided diffusion models. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 14297–14306, 2023.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

Yuxi Ren, Xin Xia, Yanzuo Lu, Jiacheng Zhang, Jie Wu, Pan Xie, Xing Wang, and Xuefeng Xiao.
Hyper-sd: Trajectory segmented consistency model for efficient image synthesis. arXiv preprint
arXiv:2404.13686, 2024.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp. 10684–10695, 2022.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Tim Salimans, Thomas Mensink, Jonathan Heek, and Emiel Hoogeboom. Multistep distillation of
diffusion models via moment matching. arXiv preprint arXiv:2406.04103, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Axel Sauer, Dominik Lorenz, Andreas Blattmann, and Robin Rombach. Adversarial diffusion
distillation. arXiv preprint arXiv:2311.17042, 2023.

Axel Sauer, Frederic Boesel, Tim Dockhorn, Andreas Blattmann, Patrick Esser, and Robin Rombach.
Fast high-resolution image synthesis with latent adversarial diffusion distillation. arXiv preprint
arXiv:2403.12015, 2024.

Yang Song and Prafulla Dhariwal. Improved techniques for training consistency models. arXiv
preprint arXiv:2310.14189, 2023.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. arXiv preprint
arXiv:2303.01469, 2023.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in Neural Information Processing Systems, 34:11287–11302, 2021.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

Sirui Xie, Zhisheng Xiao, Diederik P Kingma, Tingbo Hou, Ying Nian Wu, Kevin Patrick Murphy,
Tim Salimans, Ben Poole, and Ruiqi Gao. Em distillation for one-step diffusion models. arXiv
preprint arXiv:2405.16852, 2024.

Yanwu Xu, Yang Zhao, Zhisheng Xiao, and Tingbo Hou. Ufogen: You forward once large scale
text-to-image generation via diffusion gans. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 8196–8206, 2024.

Yilun Xu, Mingyang Deng, Xiang Cheng, Yonglong Tian, Ziming Liu, and Tommi Jaakkola. Restart
sampling for improving generative processes. Advances in Neural Information Processing Systems,
36:76806–76838, 2023a.

Yilun Xu, Ziming Liu, Yonglong Tian, Shangyuan Tong, Max Tegmark, and T. Jaakkola. Pfgm++:
Unlocking the potential of physics-inspired generative models. In International Conference on
Machine Learning, 2023b.

Tianwei Yin, Michaël Gharbi, Taesung Park, Richard Zhang, Eli Shechtman, Fredo Durand, and
William T Freeman. Improved distribution matching distillation for fast image synthesis. arXiv
preprint arXiv:2405.14867, 2024a.

Tianwei Yin, Michaël Gharbi, Richard Zhang, Eli Shechtman, Fredo Durand, William T Freeman,
and Taesung Park. One-step diffusion with distribution matching distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6613–6623, 2024b.

Hongkai Zheng, Weili Nie, Arash Vahdat, Kamyar Azizzadenesheli, and Anima Anandkumar. Fast
sampling of diffusion models via operator learning. arXiv preprint arXiv:2211.13449, 2022a.

Huangjie Zheng, Pengcheng He, Weizhu Chen, and Mingyuan Zhou. Truncated diffusion probabilistic
models and diffusion-based adversarial auto-encoders. arXiv preprint arXiv:2202.09671, 2022b.

Mingyuan Zhou, Huangjie Zheng, Zhendong Wang, Mingzhang Yin, and Hai Huang. Score identity
distillation: Exponentially fast distillation of pretrained diffusion models for one-step generation.
In Forty-first International Conference on Machine Learning, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Stage 1 Stage 2

Figure 6: One-step text-to-image generation results of the standard consistency model (stage 1) and
TCM (stage 2).

A TEXT-TO-IMAGE RESULTS

Table 5: Zero-shot FID scores on MSCOCO dataset measured with 30k generated samples.

Stage 1 Stage 2

FID ↓ 18.32 16.07

To show the scalability of our method, we train TCM on COYO dataset 1, using consistency distillation
with a fixed classifier-free guidance (Ho & Salimans, 2022) scale of 6. We initialize our models with
stable diffusion (Rombach et al., 2022) 1.5. We use a batch size of 512 for a quick validation, though
using a larger batch size (≥ 1, 024) is standard (Liu et al., 2023; Yin et al., 2024a) and would lead to
better generative performance. For the first stage, we train for 80,000 iterations, and in the second

1https://github.com/kakaobrain/coyo-dataset

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

stage, we additionally train for another 130,000 iterations. At each stage, we terminate the training
when FID converges. We provide visual comparison between the standard consistency model and
TCM in Fig. 6. Captions used are: "A photo of an astronaut riding a horse on Mars", "Robot serving
dinner, metallic textures, futuristic atmosphere, high-tech kitchen, elegant plating, intricate details,
high quality, misc-architectural style, warm and inviting lighting", and "A photo of a dog" for each
row. We also measure the FID on MSCOCO dataset (Lin et al., 2014) in Table. 5. We see that TCM
achieves a better FID than the standard consistency model (the first stage).

B ADDITIONAL EXPERIMENTS

Fig. 7 shows that the gradient spikes during the first stage training while the second stage training is
relatively smooth. We hypothesize that the truncated training is more stable because it is less affected
by the biased gradient norms across different t.

0 50000 100000 150000 200000 250000 300000
Iterations

0
25
50
75

100
125
150
175
200

Gr
ad

ie
nt

 N
or

m

Stage 2
Stage 1

Figure 7: Gradient norm evolution during the first and second stage training on ImageNet 64× 64
(corresponding to Fig. 1(b)). The red circles indicate where the gradient norms are larger than 100.
Stage 1 training blows up after the last few gradient spikes. It shows that the truncated consistency
training is more stable than the standard consistency training.

Fig. 8 shows the dFIDt evolution during the standard consistency training. We see that dFIDs at
larger t’s start from larger values and converges more slowly.

100 101 102

t
0

5

10

15

20

25

30

dF
ID

t

Iter 80000
Iter 120000
Iter 160000
Iter 200000
Iter 240000
Iter 280000
Iter 320000
Iter 360000

Figure 8: Evolution of the denoising FIDs (dFIDt) at different times t’s during standard consistency
training for different iterations. For t ∈ (1, 10), dFIDt has different convergence speeds while in both
small times (t < 1) and large ’s (t > 10), dFIDt converges with a more similar speed.

Adding an intermedate training stage In our parameterization Eq. (5), we only use the pre-trained
model fθ0 in [0, t′). One may wonder if we can fine-tune fθ0 on the truncated time range [0, t′)
to provide a better boundary condition for the truncated training. We find that although doing so
improved the dFIDt′ of fθ0

from 1.51 to 1.43, it led to a worse final FID of >2.7 for the truncated
consistency model, regardless of whether we initialized fθ with the pre-trained model or the fine-tuned
model. In contrast, our proposed method achieved an FID of 2.61 with the same hyperparameters.
We hypothesize that fine-tuning the pre-trained model on the truncated time range [0, t′) makes the
model fθ0 forget about how the early mappings properly propagate to the later mappings in the range

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

of [t′, T]. This may hinder the learnability of its mapping at the boundary time, making it harder for
fθ to transfer the knowledge learned in fθ0

to its generation capability.

C BACKGROUND ON CONSISTENCY MODELS

Most of this part has been introduced by previous works (Song et al., 2023; Song & Dhariwal, 2023).
Here, we introduce the background of consistency models, in particular the relationship between
consistency training and consistency distillation, for completeness.

C.1 DEFINITION OF CONSISTENCY FUNCTION

C.1.1 PROBABILITY FLOW ODE

The probability flow ODE (PF ODE) of Karras et al. (2022) is as follows:

dxt = −tst(xt)dt, (12)

where st(xt) is the score function at time t ∈ [0, T]. To draw samples from the data distribution
pdata, we initialize xT with a sample from N (0, T 2I) and solve the PF ODE backward in time. The
solution x0 = xT +

∫ 0

T
(−tst(xt))dt is distributed according to pdata.

C.1.2 CONSISTENCY FUNCTION

Integrating the PF ODE using numerical solvers is computationally expensive. Consistency function
instead directly outputs the solution of the PF ODE starting from any t ∈ [0, T]. The consistency
function f satisfies the following two properties:

1. f(x0, 0) = x0.
2. f(xt, t) = f(xs, s) ∀(s, t) ∈ [0, T]2.

The first condition can be trivially satisfied by setting f(x, t) = cout(t)F(x, t) + cskip(t)x where
cout(0) = 0 and cskip(0) = 1 following EDM (Karras et al., 2022). The second condition can be
satisfied by optimizing the following objective:

min
f

Es,t,xt
[d(f(xt, t), f(xs, s))], (13)

where d is a function satisfying:

1. d(x,y) = 0 ⇐⇒ x = y.
2. d(x,y) ≥ 0.

3. ∂d(x,y)
∂y |y=x = 0

4. ∂fθ
∂θ and ∂d

∂y2 are well-defined and bounded.

C.2 CONSISTENCY DISTILLATION

C.2.1 OBJECTIVE

In practice, Song et al. (2023) consider the following objective instead:

min
θ

Et,xt
[d(fθ(xt, t), fθ−(xt−∆t

, t−∆t))], (14)

where we parameterize the consistency function f with a neural network fθ, and 0 < ∆t < t. Here,
fθ− is the identical network with stop gradients applied and is called teacher. Since ∆t > 0, the
teacher always receives the less noisy input, and the student fθ is trained to mimic the teacher.
Optimizing Eq. (14) requires computing xt−∆t , which we can be approximated using one step of
Euler’s solver:

xt−∆t = xt +

∫ t−∆t

t

(−usu(xu))du ≈ xt + tst(xt)∆t. (15)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

When st(xt) is approximated by a pre-trained score network, Eq. (14) becomes the consistency
distillation objective in Song et al. (2023). If ∆t is sufficieintly small, the approximation in Eq. (15)
is quite accurate, making LCD a good approximation of Eq. (14). The precision of the approximation
depends on ∆t and also the trajectory curvature of the PF ODE.

C.2.2 GRADIENT WHEN ∆t → 0

Let us rewrite Eq. (14) as follows:
Et,xt [d(fθ(xt, t), fθ−(xt−∆t , t−∆t))] (16)

= Et,xt
[d(fθ(xt, t), fθ (xt, t)︸ ︷︷ ︸

y

+ fθ−(xt−∆t
, t−∆t)− fθ (xt, t)︸ ︷︷ ︸

∆y

)] (17)

= Et,xt [d(fθ(xt, t), fθ (xt, t)) +
∂d

∂y
∆y +

1

2
(∆y)T

∂2d

∂y2
∆y +O(||∆y||3)] (18)

=
1

2
Et,xt

[(∆y)T
∂2d

∂y2
∆y +O(||∆y||3)] (19)

, where we define ∆y = fθ−(xt−∆t , t−∆t)− fθ (xt, t).

Let’s take the derivative with respect to θ:
1

2

∂

∂θ
Et,xt

[(fθ−(xt−∆t
, t−∆t)− fθ (xt, t))

T ∂
2d

∂y2
(fθ−(xt−∆t

, t−∆t)− fθ (xt, t)) +O(||∆y||3)]

(20)

= Et,xt [
∂2d

∂y2
(fθ−(xt−∆t , t−∆t)− fθ (xt, t))

∂fθ
∂θ

+O(||∆y||3)].

(21)

As

fθ−(xt−∆t , t−∆t) = fθ−(xt, t)−
∂fθ−

∂xt

∂xt
∂t

∆t −
∂fθ−

∂t
∆t +O(∆2

t), (22)

we have

fθ−(xt−∆t , t−∆t)− fθ−(xt, t) = −(
∂fθ−

∂xt

∂xt
∂t

+
∂fθ−

∂t
)∆t +O(∆2

t). (23)

Since fθ (xt, t) has the same value as fθ−(xt, t), we can plug this into Eq. (21):

Et,xt
[
∂2d

∂y2
(fθ−(xt−∆t

, t−∆t)− fθ (xt, t))
∂fθ
∂θ

+O(||∆y||3)] (24)

= −Et,xt
[
∂2d

∂y2
(
∂fθ−

∂xt

∂xt
∂t

+
∂fθ−

∂t
)
∂fθ
∂θ

∆t +O(∆2
t) +O(||∆y||3)] (25)

= −Et,xt
[
∂2d

∂y2
(
∂fθ−

∂xt

∂xt
∂t

+
∂fθ−

∂t
)
∂fθ
∂θ

∆t +O(∆2
t)]. (26)

As the gradient is O(∆t), it becomes zero when ∆t → 0, so it cannot be used for training. To make
the gradient non-zero, Song et al. (2023) divide the by ∆t. Then, we have

∂

∂θ
LCD(θ,θ

−) =
∂

∂θ
Et,xt

[
1

∆t
d(fθ(xt, t), fθ−(xt−∆t

, t−∆t))] (27)

= −Et,xt [
∂2d

∂y2
(
∂fθ−

∂xt

∂xt
∂t

+
∂fθ−

∂t
)
∂fθ
∂θ

+O(∆t)] (28)

= −Et,xt
[
∂2d

∂y2
(
∂fθ−

∂xt

∂xt
∂t

+
∂fθ−

∂t
)
∂fθ
∂θ

] (29)

= −Et,xt
[
∂2d

∂y2
(
∂fθ−

∂xt
(−t · st(xt)) +

∂fθ−

∂t
)
∂fθ
∂θ

] (30)

= Et,xt
[
∂2d

∂y2
(
∂fθ−

∂xt
(t · st(xt))−

∂fθ−

∂t
)
∂fθ
∂θ

] (31)

in the limit of ∆t → 0.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Hessian of d. Here, we provide the Hessians of the L2 squared loss and the Pseudo-Huber loss.

1. If d(x,y) = ||x− y||22, ∂
2d
∂y2 |y=x = 2I.

2. If d(x,y) =
√
||x− y||22 + c2 − c, ∂

2d
∂y2 |y=x = 1

c I.

C.3 CONSISTENCY TRAINING

Song et al. (2023) show that Eq. (31) can be estimated without a pre-trained score network. From
Tweedie’s formula, we express the score function as

st(xt) =
Ep(x|xt)[x]− xt

t2
. (32)

Plugging this into Eq. (31), we have

Et,xt [
∂2d

∂y2
(
∂fθ−

∂xt
(t · st(xt))−

∂fθ−

∂t
)
∂fθ
∂θ

] = Et,xt [
∂2d

∂y2
(
∂fθ−

∂xt

Ep(x|xt)−xt
[x]

t
− ∂fθ−

∂t
)
∂fθ
∂θ

]

(33)

= Et,xt
[Ep(x|xt)[

∂2d

∂y2
(
∂fθ−

∂xt

x− xt
t

− ∂fθ−

∂t
)
∂fθ
∂θ

]]

(34)

= Et,x,xt
[
∂2d

∂y2
(
∂fθ−

∂xt

x− xt
t

− ∂fθ−

∂t
)
∂fθ
∂θ

],

(35)

where we now have the expectation over three random variables t,x,xt and do not require a score
function. In the next section, we will reverse-engineer an objective such that its gradient matches
Eq. (35).

C.3.1 OBJECTIVE

It turns out that the following objective is the one we are looking for:

LCT(θ,θ
−) = Et,x,ϵ[

1

∆t
d(fθ(x+ tϵ, t), fθ−(x+ (t−∆t)ϵ, t−∆t))], (36)

where ϵ ∼ N (0, I) is a random noise vector. The objective in Eq. (36) is called the consistency
training objective. We can show that the gradient of LCT indeed matches Eq. (35) in the limit of
∆t → 0. First, we apply the Taylor expansion to the unweighted loss in Eq. (36):

Et,x,ϵ[d(fθ(x+ tϵ, t), fθ(x+ tϵ, t)︸ ︷︷ ︸
y

+ fθ−(x+ (t−∆t)ϵ, t−∆t)− fθ(x+ tϵ, t)︸ ︷︷ ︸
∆y

)] (37)

= Et,x,ϵ[d(fθ(x+ tϵ, t), fθ(x+ tϵ, t)) +
∂d

∂y
∆y + (∆y)T

∂2d

∂y2
∆y +O(||∆y||3)] (38)

= Et,x,ϵ[(∆y)T
∂2d

∂y2
∆y +O(||∆y||3)] (39)

where we define ∆y as ∆y = fθ−(x+ (t−∆t)ϵ, t−∆t)− fθ(x+ tϵ, t).

Let’s take the derivative with respect to θ:

∂

∂θ
Et[LCT(θ,θ

−)] = Et,x,ϵ[
∂2d

∂y2
(fθ−(x+ (t−∆t)ϵ, t−∆t)− fθ(x+ tϵ, t))

∂fθ
∂θ

+O(||∆y||3)].

(40)

Using the Taylor expansion, we have

fθ−(x+ (t−∆t)ϵ, t−∆t) = fθ−(x+ tϵ, t)− ∂fθ−

∂x
ϵ∆t −

∂fθ−

∂t
∆t +O(∆2

t), (41)

fθ−(x+ (t−∆t)ϵ, t−∆t)− fθ−(x+ tϵ, t) = −∂fθ
−

∂x
ϵ∆t −

∂fθ−

∂t
∆t +O(∆2

t). (42)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Since fθ(x+ tϵ, t) has the same value as fθ−(x+ tϵ, t), we can plug this into Eq. (40):

Et,x,ϵ[
∂2d

∂y2
(fθ−(x+ (t−∆t)ϵ, t−∆t)− fθ(x+ tϵ, t))

∂fθ
∂θ

+O(||∆y||3)] (43)

= Et,x,ϵ[
∂2d

∂y2
(−∂fθ

−

∂x
ϵ− ∂fθ−

∂t
)
∂fθ
∂θ

∆t +O(∆2
t) (44)

= Et,x,xt [
∂2d

∂y2
(−∂fθ

−

∂x

xt − x

t
− ∂fθ−

∂t
)
∂fθ
∂θ

∆t +O(∆2
t), (45)

where in Eq. (45), we use the reparametrization trick x + tϵ = xt and ϵ = xt−x
t . Finally, we can

show that Eq. (45) matches Eq. (35) in the limit of ∆t → 0 and after dividing by ∆t:

lim
∆t→0

∂

∂θ
LCD(θ,θ

−) = lim
∆t→0

∂

∂θ
LCT(θ,θ

−) (46)

We can add a weighting function ω(t) without affecting this equality, leading to the objective in
Eq. (4).

D TRAINING OBJECTIVE OF TCMS

By substituting Eq. (7) into Eq. (6), we have:

LCT(f
trunc
θ,θ−

0

, f trunc
θ−,θ−

0

) = λb
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′) (47)

+(1− λb)

∫
t∈St′

ψ̄t(t)
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−

0
(x+ (t−∆t)ϵ, t−∆t)dt (48)

+(1− λb)

∫
t∈S−

t′

ψ̄t(t)
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−(x+ (t−∆t)ϵ, t−∆t)dt (49)

The first two terms in RHS represent the boundary loss, and the last term is the consistency loss.
Let us define ∆t = (1 + 8 · sigmoid(−t))(1− r)t. We define tm to be the smallest point such that
tm −∆tm = t′. Then the volume of the set St′ := {t ∈ R : t′ ≤ t ≤ t′ +∆t} is ∆tm . We assume
ψ̄t is properly designed to be upper bounded by a finite value (see Sec. 4.4). In the limit of r → 1,
we simplify the the second term in the above:

(1− λb)

∫
t∈St′

ψ̄t(t)
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−

0
(x+ (t−∆t)ϵ, t−∆t)dt

(50)

= (1− λb)

∫
t∈St′

ψ̄t(t
′)
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′) +O(1)dt

(51)

= (1− λb)ψ̄t(t
′)
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′)V ol(St′) +

∫
t∈St′

O(1)dt

(52)

≈ (1− λb)ψ̄t(t
′)
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′)∆t′ +

∫
t∈St′

O(1)dt

(53)

≈ (1− λb)ψ̄t(t
′)ω(t′)d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′),

(54)

where in Eq. (51) we apply the Taylor expansion to the integrand, and in Eq. (53), we can see
that ∆tm = (1 + 8 · sigmoid(−tm))(1 − r)tm goes to zero as r → 1. Thus, tm → t′ and then

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

V ol(St′)/∆t′ = ∆tm/∆t′ =
(1+8·sigmoid(−tm))tm(1−r)
(1+8·sigmoid(−t′))t′(1−r) = 1 in the limit. Hence, the boundary loss is

(λb
ω(t′)

∆t′
+ (1− λb)ψ̄t(t

′)ω(t′))d(fθ(x+ t′ϵ, t′), fθ−
0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′) (55)

≈ λb
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′), (56)

where the first term (O(1/∆t)) dominates the second term (O(1)). We hence arrive at Eq. (9):

LCT(f
trunc
θ,θ−

0

, f trunc
θ−,θ−

0

) ≈ λb
ω(t′)

∆t′
d(fθ(x+ t′ϵ, t′), fθ−

0
(x+ (t′ −∆t′)ϵ, t

′ −∆t′))︸ ︷︷ ︸
Boundary loss:=LB(fθ,fθ−

0
)

(57)

+(1− λb)Eψ̄t
[
ω(t)

∆t
d(fθ(x+ tϵ, t), fθ−(x+ (t−∆t)ϵ, t−∆t)]︸ ︷︷ ︸

Consistency loss:=LC(fθ,fθ−)

, (58)

where because ∆t → 0, we can approximate S−
t′ ≈ (t′, T], leading to Eq. (58).

In practice, we set r close to one during the truncated training stage (see Section E). Note that here,
the boundary loss can dominate the consistency loss when fθ and f−θ0

are sufficiently different around
t = t′. However, in practice, as we set ∆t to be small enough but not all the way to zero, and as
we use Pseudo-Huber loss (see Section E) with small c value that normalizes the effect of the loss
magnitude on the gradient norm, we can balance the training.

E IMPLEMENTATION DETAILS

We provide detailed information about our implementation in the following.

Model initialization and architecture: All stage 1 models are initialized from pre-trained EDM or
EDM2 checkpoints as suggested by Geng et al. (2024). For CIFAR-10, we use EDM’s DDPM++
architecture, which is slightly smaller than iCT’s NCSN++. For ImageNet 64×64, we employ EDM2-
S (280M parameters) and EDM2-XL (approximately 1.1B parameters) architectures. EDM2-S is
slightly smaller than iCT’s ADM architecture (296M parameters).

Model parameterization: Following EDM, we parameterize consistency models fθ as fθ =

cout(t)Fθ(x, t) + cskip(t)x, where cout(t) =
tσdata√
σ2

data+t
2

, cskip(t) =
σ2

data
σ2

data+t
2 , and σdata = 0.5.

Training details: We set ∆t = (1 + 8 · sigmoid(−t))(1 − r)t, where r = max{1 −
1/2⌈i/25000⌉, 0.999} for CIFAR-10 and max{1− 1/4⌈i/25000⌉, 0.9961} for ImageNet 64× 64, with
i being the training iteration. For CIFAR-10, we train for 250K iterations in Stage 1 and 200K
iterations in Stage 2. For ImageNet 64× 64, we train EDM2-S for 150K iterations in Stage 1 and
120K iterations in Stage 2. For EDM2-XL, we initialize the second stage model with a pre-trained
ECM-XL checkpoint (Geng et al., 2024) and train it for 40K iterations in Stage 2. See Fig. 1(b) for
the FID evolution during training. For the second stage, we start with the maximum r values (i.e.,
0.999 or 0.9961) and do not change them. The weighting function ω(t) is set to 1 for CIFAR-10 and
∆t/cout(t)

2 for ImageNet 64× 64. As suggested by Song & Dhariwal (2023); Geng et al. (2024), we
use the Pseudo-Huber loss function d(x,y) =

√
||x− y||22 + c2 − c, with c = 1e− 8 for CIFAR-10

and c = 0.06 for ImageNet 64 × 64. This is especially crucial for our method as the boundary
loss can dominate the consistency loss. The boundary loss compares the outputs from the different
model fθ and fθ0

, it tends to be larger than the consistency loss, but Pseudo-Huber loss effectively
normalize the effect of the loss magnitude on the gradient norm. For ImageNet 64× 64, we employ
mixed-precision training with dynamic loss scaling and use power function EMA (Karras et al., 2024)
with γ = 6.94 (without post-hoc EMA search).

Learning rate schedules: EDM2 (Karras et al., 2024) architectures require a manual decay of the
learning rate. Karras et al. (2024) suggest using the inverse square root schedule αref√

max(t/tref ,1)
. For

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

the first stage training of EDM2-S on ImageNet, we use tref = 2000 and αref = 1e − 3 following
Geng et al. (2024). For the second stage training of EDM2-S, we use tref = 8000 and αref = 5e− 4.

Second stage training of EDM2-XL is initialized with the ECM2-XL checkpoint from Geng et al.
(2024). During the second stage, we use tref = 8000 and αref = 1e− 4 for EDM2-XL.

Time step sampling: For the first stage training, we use a log-normal distribution for ψ̄t. For
CIFAR-10, we use a mean of -1.1 and a standard deviation of 2.0 following Song & Dhariwal (2023).
For ImageNet, we use a mean of -0.8 and a standard deviation of 1.6 following Geng et al. (2024).

For EDM2-XL, we also explore t′ = 1.5 for truncated training, adjusting ν to 2 to ensure p̄t has high
probability mass around t′ = 1.5 and also has a long tail as discussed in Sec. 4.4. This way, we get
the FID of 2.15, which is slightly better than the result in Table 2.

During two-step generation, we evaluate the model at t = 80, 1 on CIFAR-10 and t = 80, 1.526 for
ImageNet.

F UNCURATED GENERATED SAMPLES

We provide the uncurated generated samples in Fig. 9-11.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

(a) One-step samples.

(b) Two-step samples.

Figure 9: Uncurated one-step and two-step samples on CIFAR-10.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

(a) One-step samples.

(b) Two-step samples.

Figure 10: Uncurated one-step and two-step samples on ImageNet (EDM2-S).

(a) One-step samples.

(b) Two-step samples.

Figure 11: Uncurated one-step and two-step samples on ImageNet (EDM2-XL).

23

	Introduction
	Preliminaries
	Diffusion models
	Consistency models

	Truncated consistency model
	Experiments
	Setup
	Truncated training allocates capacity toward generation
	TCM improves the sample quality of consistency models
	Analyses of design choices

	Related work
	Conclusion
	Reproducibility statement
	Ethics statement
	Text-to-image results
	Additional experiments
	Background on consistency models
	Definition of Consistency Function
	Probability flow ODE
	Consistency function

	Consistency distillation
	Objective
	Gradient when t 0

	Consistency training
	Objective

	Training objective of TCMs
	Implementation details
	Uncurated generated samples

