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1. Introduction
Knowledge fragmentation across specialized sci‐

entific subfields creates “knowledge islands” that
hinder cross‐domain integration [1, 2]. While this
enables deep expertise, the lack of cross‐domain
commonality recognition in specific fields leads
to inaccurate relationship identification across do‐
mains. For instance, in the semiconductor field,
Beam Steering in FlatOptics and Directional Beam-
forming in mmWave share similar wavefront control
principles but remain disconnected in traditional
knowledge graphs. Similarly, Waveguide in SiPho‐
tonics is isolated despite its relevance to beamform‐
ing techniques.

Fig. 1: Comparisons of entity relationships before
and after applying ourmethod. Ourmethod intro‐
duces cross‐domain links (shown in red), enabled
by commonality integration.

To address this, we propose CogCommon, a
framework that leverages cognitive linguistics to
identify and integrate deep cross‐domain structures.
Our contributions include: 1) a two‐stage method
for discovering and incorporating cross‐domain pat‐
terns into knowledge graphs, 2) a schema represen‐
tation Ω capturing shared cognitive structures, and
3) experiments in semiconductor domains (FlatOp‐
tics, mmWave, SiPhotonics), demonstrating im‐
proved entity extraction and cross‐domain connec‐
tivity. Our results confirm the presence of cross‐
domain commonalities in semiconductor fields
and show that leveraging them enhances entity ex‐
traction and knowledge integration.

2. The Proposed CogCommonMethod
Our approach, CogCommon, draws on Lakoff and

Johnson’s Conceptual Metaphor Theory [3], which
establishes that human conceptual systems are
fundamentally organized through shared cognitive
structures. For example, our analysis identifies the
conceptual metaphor “Wave Manipulation as Nav‐

igation System” across electromagnetic domains,
where both optical metasurfaces and mmWave an‐
tennas conceptualize beam control through the
same cognitive structure despite operating at vastly
different wavelengths.

Given a set of domains D = {D1, D2, ..., Dn} with
corresponding document sets, we define the com‐
monality discovery problem as identifying a rich set
of shared cognitive elements: Ω = {M,S,A, C}
where M represents conceptual metaphors, S de‐
notes structural patterns,A identifies abstraction hi‐
erarchies, and C encompasses cognitive frames.
Stage 1: Deep Commonality Discovery

Our framework implements a commonality ex‐
traction pipeline:

Domain‐Specific Analysis: Given a domain‐
specific document corpus D, domain‐relevant
knowledge elements are extracted from each
documentDi ∈ D:

Di
FD7−→ {Ei, Ri, Ci},

where FD represents the domain knowledge extrac‐
tion process that identifies commonalities across the
corpus. Ei,Ri, andCi represent the sets of extracted
entities, relations, and concepts, respectively.

Cross‐Domain Pattern Recognition: LLMs are
guided to identify shared cognitive structures across
domains, uncovering common patterns that bridge
domain differences. For details on the prompting
strategy, refer to Appendix E.
Stage 2: Commonality‐Guided Knowledge Graph
Construction The extracted commonalities guide
knowledge graph construction through our dual‐
alignment mechanism:

Commonality‐Enhanced Extraction: For every
text chunk c, extraction is guided by the identified
commonalities:

c,Ω
FE7−→ {(e, t,m) | e ∈ c, t ∈ T ,m ∈ M},

c,Ω
FR7−→ {(e1, r, e2, s) | e1, e2 ∈ c, r ∈ R, s ∈ S},

where FE and FR are entity and relation extraction
functions that leverage commonalities to enhance
cross‐domain knowledge extraction, T is the set of
entity types, andR is the set of relation types.

Cognitive Alignment: Entities and relationships
are aligned to shared cognitive structures, creating a
knowledge representation that captures deep com‐
monalities across domains.
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Table 1: Entity extraction performance comparison of different models across three different domains.

FlatOptics mmWave SiPhotonics AverageModel Method Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%) Acc (%) F1 (%)
GraphRAG 5.41 8.42 13.46 19.44 9.84 13.19 9.57 13.68gpt‐4o‐mini CogCommon 14.55 21.05 10.64 14.93 17.19 23.4 14.13 19.79
GraphRAG 7.14 11.76 8.00 11.43 10.00 15.38 8.38 12.86qwen‐plus CogCommon 11.43 19.05 11.76 19.67 16.10 25.68 13.10 21.47
GraphRAG 9.09 13.16 9.76 13.11 7.69 10.53 8.85 12.27llama3.3‐70b‐instruct CogCommon 13.85 20.93 7.02 10.39 12.07 19.18 10.98 16.83
GraphRAG 9.09 13.16 6.98 9.52 5.49 8.26 7.19 10.31llama3.1‐8b‐instruct CogCommon 11.32 16.22 6.90 8.16 7.14 10.00 8.45 11.46
GraphRAG 8.33 13.68 12.07 17.95 8.70 14.29 9.70 15.31qwen2.5‐7b‐instruct CogCommon 8.33 13.33 13.04 20.22 11.58 17.60 10.98 17.05
GraphRAG 8.51 11.76 10.42 14.71 1.85 2.38 6.93 9.62llama3.2‐3b‐instruct CogCommon 18.52 20.83 10.34 12.24 8.00 10.00 12.29 14.36

3. Experiments
Our work aims to investigate the impact of cross‐

domain knowledge on entity and relationship ex‐
traction in knowledge graph construction, evaluat‐
ing improvements in graph quality. We compare
the performance of the proposed method with the
GraphRAG [4]. Details are provided in Appendix B.
Datasets To construct a domain‐specific knowledge
graph, we crawl 15 papers for 3 domains, i.e., flatop‐
tics, mmwave, and siphotonics from online pub‐
lication venues such as IEEE Xplore. The orig‐
inal texts are converted to a structured format
and pre‐processed to remove charts, references,
and formatting elements while preserving chapter
structure and key terms. Additionally, we con‐
duct supplementary experiments on Legalbench‐
RAG dataset [5] using RAG as the downstream task.
Full results are provided in Appendix D.
Evaluation IndicatorsWe evaluate the performance
through two aspects: 1) Content Quality: Quan‐
tified via entity extraction accuracy and macro‐F1
scores, providing robust metrics for information re‐
trieval precision; 2) Structural Quality: Assessed
through cross‐domain ratio and modularity analy‐
sis [6], capturing topological characteristics of the
resulting network. Detailed methodological specifi‐
cations andmetric calculations are elaborated inAp‐
pendix C.
Results and Analysis

Table 1 presents content quality metrics across
three specialized domains (FlatOptics, mmWave,
and SiPhotonics) from our semiconductor paper
dataset. Figure 2 illustrates the structural metrics
of the constructed knowledge graphs, specifically
cross‐domain connection ratio and modularity. Our
findings are as follows:

Commonality knowledge benefits graph con‐
tent quality. Our method demonstrates consis‐
tent improvements in entity extraction accuracy
and Macro_F1 score across both large and small‐
scale LLMs. The observed results align with Scal‐
ing Laws[7], where larger models inherently per‐
form better due to their greater capacity. How‐
ever, we find that smaller models like Llama3.2‐3b‐
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Fig. 2: Comparisons of structural quality of different
models.

instruct exhibit a higher relative improvement, sug‐
gesting that explicit cross‐domain information can
help bridge the capability gap between model sizes.

Cross‐domain connections bring structural
optimization. More accurate entity recognition
directly enhances cross‐domain connections.
Llama3.3‐70b‐instruct demonstrates this relation‐
ship clearly: its 17.52% accuracy improvement
corresponds with an 18.36% increase in cross‐
domain ratio. Simultaneously, our method slightly
improves graph modularity, showing that Cog‐
Common enhances domain connections while
preserving community structure integrity.

4. Conclusion
Our approach enhances cross‐domain connectiv‐

ity by identifying shared cognitive structures, with
smaller models benefiting significantly. By preserv‐
ing structural modularity while strengthening do‐
main links, CogCommon provides an efficient solu‐
tion to knowledge fragmentation, with broader ap‐
plications beyond semiconductors.
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Appendix A. RelatedWork

LLMs have revolutionized knowledge graph construction with improved scalability and adaptability [8, 9, 10],
yet typically focus on surface‐level extractionwithin single domains. Traditional cross‐domain integration ap‐
proaches such as ontology alignment [11] and embedding methods [12] require extensive manual mapping or
training data — particularly challenging in specialized domains with varied terminology. While cognitive lin‐
guistics has established that human understanding relies on systematic cross‐domain mappings [3, 13], these
insights remain largely unexploited in computational knowledge integration. Despite LLMs’ strong knowl‐
edge capabilities [14], they struggle with specialized technical concepts [15], and recent LLM‐KG integration
work [16] primarily enhances LLMs rather than improving KG construction.

Appendix B. Baseline andModels

Baseline Implementation. Webuild ourmodifications on nano‐GraphRAG1.This project provides a smaller,
faster implementation of GraphRAG. To ensure consistency, the chunk size is fixed at 1,000 across all datasets.
Additionally, the gleaning parameter for GraphRAG is set to 3. All LLM implementations are based on the
Transformers library [17], using a consistent set of hyperparameters for generation across all models.
Models. To comprehensively evaluate the effectiveness of our approach across different model scales and
types, we selected both open source and closed source models. For closed source models, we included GPT‐
4o‐mini2 and Qwen‐plus 3. For open source models, we chose models with parameter scales ranging from 3b
to 70b, including Qwen2.5 [18], and Llama3.1 [19],Llama3.2 4,Llama3.3 5.

Appendix C. Metrics

To evaluate the quality of entity and relation extraction in our knowledge graph framework, we employ two
primary metrics: Accuracy and Macro F1 score.

3.0.1 Accuracy and Macro_F1
In the context of entity extraction from knowledge graphs, accuracy measures the proportion of correctly

identified entities among all predicted entities, the F1 score provides a balanced measure of both the correct‐
ness and completeness of extracted entities.

Formally, in our result, accuracy is defined as:

Accuracy =
TPd

TPd + FPd

Macro_F1 is defined as:
Macro F1 =

2

|D|
∑
d∈D

Precisiond × Recalld
Precisiond + Recalld

whereD is the set of all domains, and Precisiond and Recalld are defined for each domain d as:

Precisiond =
TPd

TPd + FPd

Recalld =
TPd

TPd + FNd

TPd, FPd, and FNd represent true positives, false positives, and false negatives for domain d, respectively.

3.0.2 Structural Quality Metrics
To evaluate the topological properties of the constructed knowledge graph, particularly the quality of cross‐

domain connections and community structures, we utilize modularity and cross‐domain ratio metrics, which
are defined as follows:

1https://github.com/gusye1234/nano-graphrag
2https://openai.com/index/gpt-4o-system-card/
3https://www.alibabacloud.com/help/en/model-studio/developer-reference/what-is-qwen-llm
4https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
5https://ai.meta.com/blog/meta-llama-3/

https://github.com/gusye1234/nano-graphrag
https://openai.com/index/gpt-4o-system-card/
https://www.alibabacloud.com/help/en/model-studio/developer-reference/what-is-qwen-llm
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/meta-llama-3/
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Modularity quantifies the strength of division of a network into communities. Higher modularity values
indicatemore distinct community structures with dense connections within communities and sparse connec‐
tions between communities. For a graphG = (V,E), modularity is defined as:

Q =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj)

where Aij represents the edge weight between nodes i and j, ki and kj are the degrees of nodes i and j
respectively. m is the total number of edges in the network, ci is the community to which node i is assigned,
δ(ci, cj) is the Kronecker delta function, which equals 1 if ci = cj and 0 otherwise.

In our implementation, weutilize the Louvainmethod for community detection, which iteratively optimizes
the modularity value to identify community structures within the knowledge graph.

The cross‐domain ratio measures the proportion of communities that span multiple domains, indicating
the degree of integration between different knowledge domains. It is calculated as:

CDR =
|{C ∈ C : |{d(v) : v ∈ C}| > 1}|

|C|
where C is the set of all detected communities, d(v) represents the domain of node v, |{d(v) : v ∈ C}| counts

the number of distinct domains present in community C.
A higher cross‐domain ratio indicates stronger interconnections between domains, suggesting effective

knowledge integration across domain boundaries.

Appendix D. Full experiment results

Table A1: Comparisons of model performance on cross‐domain Ratio, modularity, and RAG Task Metrics on
LegalBench‐RAG.

Model Method CDR(%) Modularity retrieval
Accuracy(%) F1 (%)

gpt‐4o‐mini GraphRAG 13.64 0.7423 0.1845 0.4655
CogCommon 22.22 0.7329 0.2424 0.4688

The Table A1 presents performance of basic GraphRAG and our method across different models on
LegalBench‐RAG. Since the bench does not provide the ground truth extraction standard, the related met‐
rics of entity relation extraction are not available. We compare retrieval effectiveness (accuracy, macro_F1)
with knowledge graph structural properties (cross‐domain Ratio, modularity). This allows for direct observa‐
tion of how different approaches balance information retrieval performance with cross‐domain knowledge
integration capabilities.
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Appendix E. Prompt Templates

Entity Extraction

Goal: Given a text document and a list of entity types, identify all entities and extract the following
information for each identified entity:

• name: Name of the entity, capitalized.

• type: One of the following types: [entity_types].

• description: Comprehensive description of the entity’s attributes and activities.

Format each entity as follows:

(”entity”〈name〉〈type〉〈description〉)

Relation Extraction

Goal: Identify all pairs of (source_entity, target_entity) that are clearly related to each other. For each
related entity pair:

• source: Name of the source entity.

• target: Name of the target entity.

• description: Explanation as to why you think the source entity and the target entity are related to
each other.

• strength: Numeric score indicating the strength of the relationship.

Format each relationship as:

(”relationship”〈source〉〈target〉〈description〉〈strength〉)
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Domain Commonality Discovery

Goal: Identify deep semantic commonalities across multiple domains.

I have analysis results frommultiple different domains. Go beyond surface‐level similarities and iden‐
tify deep conceptual metaphors and high‐level semantic patterns that connect these domains.

Domain analysis results:

{all_data}

Please identify:

1. Conceptual Metaphors: Identify how concepts from one domain are metaphorically mapped to
another domain. For example, how ”argument”might be conceptualized as ”war” across domains.

2. Structural Patterns: Identify common structural relationships and patterns that appear across
domains, even when the specific entities are different.

3. Abstraction Hierarchies: Identify how specific concepts across domains can be abstracted to
more general patterns.

4. Cognitive Frames: Identify shared cognitive frames that organize experience across different do‐
mains.

Focus on DEEP patterns that would not be obvious from simple wordmatching. Look for how humans
conceptualize these different domains using similar cognitive structures.

Respond in JSON format as follows:

{
"conceptual_metaphors": [

{
"name": "metaphor name",
"description": "detailed description",
"source_domain": "domain providing the metaphorical structure",
"target_domains": ["domain1", "domain2"],
"examples": ["example1", "example2"]

}
],
"structural_patterns": [

{
"pattern": "pattern name",
"description": "detailed description",
"manifestations": ["manifestation in domain1", "manifestation in domain2"]

}
],
"abstraction_hierarchies": [

{
"abstract_concept": "high-level concept",
"specific_manifestations": ["manifestation in domain1", "manifestation in domain2

"]
}

],
"cognitive_frames": [

{
"frame": "frame name",
"description": "detailed description",
"elements": ["element1", "element2"],
"domains": ["domain1", "domain2"]

}
]

}
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