
Under review as submission to TMLR

Instance-dependent Approximation Guarantees for Lipschitz
Approximators, Application to Scientific Machine Learning

Anonymous authors
Paper under double-blind review

Abstract

Despite widespread adoption, Machine Learning models remain data-driven and lack ex-
ploitable theoretical guarantees on their approximation error. This limitation hinders their
use for critical applications. In this paper, we show how to leverage the Lipschitz property
for Lipschitz approximations, i.e., ML models that are Lipschitz continuous, to establish
strict post-training — instance dependent – generalization error bounds given a set of val-
idation points. We focus on the test case domain of ML for scientific computing called
Scientific Machine Learning (SciML), where ML models are increasingly used but miss the
theoretical approximation guarantees of classical scientific computing simulation schemes.
We first show how to derive error bounds using Voronoï diagrams for a Lipschitz approxima-
tor trained to learn a K-Lipschitz function by taking advantage of the mesh-like structure
of learning points. Second, we cast upper bounding as an optimization problem and use
certified Deterministic Optimistic Optimization (introduced in Bachoc et al. (2021)) and
certified Voronoï Optimistic Optimization (that we design based on the non-certified ver-
sion in Kim et al. (2020)), to achieve tighter error bounds. The code is made available at
https://anonymous.4open.science/r/lipschitz_bounds_doo-7FDF.

1 Introduction

Machine Learning (ML) has become ubiquitous due to its remarkable ability to learn from data. However, ML
models are fundamentally statistical and trained to minimize empirical error. This characteristic results in a
lack of theoretical guarantees on their approximation error, which poses significant concerns for applications
requiring high reliability, such as safety-critical and AI-for-science applications.

Previous works have attempted to provide bounds on the approximation error. However, these bounds either
are probabilistic Haussler (1992) or applies to the hypothesis space of the model of interest, prior to the
training, and do not consider the learning phase and the actual error of the model on learning data points
post-training Bartlett & Mendelson (2002); Bartlett (1996); Bousquet & Elisseeff (2002); Bartlett et al.
(2017); Jacot et al. (2018). A large body of methods based on formal verification consider the trained model,
but only provide local guarantees around a given input Katz et al. (2017); Ehlers (2017); Vidot et al. (2022);
Zhang et al. (2018).

In this paper, we address these gaps in the case where ML models are Lipschitz continuous - a property shared
by some classes of ML models such as Lipschitz neural networks or Gaussian Processes. We propose post-
training generalization error bounds for Lipschitz approximators. These instance-dependent bounds leverage
all available information for the learning task, as they depend on the trained ML model, the learning data
points, and the validation data points.

Although the presented bounds are general and apply to any Lipschitz approximators trained to learn a
Lipschitz function, our primary application domain is Scientific Machine Learning (SciML), i.e., ML for sci-
entific computing, where ML models are increasingly employed but often lack the theoretical approximation
guarantees provided by classical scientific computing simulation schemes. Some works have derived gener-
alization bounds for such test cases based on the knowledge of the PDE underlying the function to learn.
However, the bounds either are theoretical Kovachki et al. (2021); Lee & Shin (2024), or only applicable for

1

https://anonymous.4open.science/r/lipschitz_bounds_doo-7FDF

Under review as submission to TMLR

one instance of PDE De Ryck & Mishra (2022); Mishra & Molinaro (2023) are not adapted to the setting
where the parameters of the PDE change in the dataset - which is quite common, for instance, the recent
NeurIPS 2024 competition ML4CFD Yagoubi et al..

We first demonstrate how to derive error bounds using Voronoï diagrams for a Kg-Lipschitz approximation
g trained to learn a Kf -Lipschitz function f . As we shall see, this approach is cost expensive because
the Voronoï diagram’s construction has an exponential complexity with respect to the dimension and the
number of points Aurenhammer (1991). To alleviate this complexity, we take advantage of the mesh-like
structure of learning points, which is common in scientific computing due to the presence of spatio-temporal
inputs. Subsequently, we reformulate the problem of upper bounding as an optimization problem. We
employ certified Deterministic Optimistic Optimization (introduced in Bachoc et al. (2021)). Moreover, we
introduce certified Voronoï Optimistic Optimization (designed based on the non-certified version in Kim
et al. (2020)).

Our contributions can be summarized as follows:

• We propose strict post-training generalization error bounds for Lipschitz approximators, leveraging
the Lipschitz property of the approximator and the learning data points using Voronoï diagrams.

• We demonstrate how to take advantage of the mesh-like structure of some input’s dimension to
alleviate the computational complexity of Voronoï diagrams.

• We cast the problem of upper bounding as an optimization problem to enable computing bounds
using certified optimization algorithms.

• We employ certified Deterministic Optimistic Optimization (introduced in Bachoc et al. (2021)) and
introduce certified Voronoï Optimistic Optimization to achieve tighter error bounds.

After a review of related works on generalization error bounds for machine learning models in Section 2,
Section 3 introduces the theoretical background and main idea of bounding the generalization error using
the Lipschitz property. Then, in Section 4, we present an approach to evaluate the bound using Voronoï
diagrams and discuss its computational aspects. Section 5 reformulates the problem of upper bounding as a
certified deterministic optimistic optimization problem and introduces c-DOO and c-VOO. Finally, Section 6
discusses the perspectives and limitations of our approach and suggests potential future research directions.

2 Related Works

The goal of providing generalization bounds for ML models has already been thoroughly explored and is
still a very active area of research. Over the years, researchers have proposed various theoretical frameworks
to explain generalization and come up with generalization bounds. For instance, the Vapnik-Chervonenkis
(VC) dimension Bartlett (1996), Rademacher Complexity Bartlett & Mendelson (2002), stability analysis
Bousquet & Elisseeff (2002), or neural tangent kernel theory Jacot et al. (2018) all aims to provide insights
into generalization capabilities of neural networks. Still, they mostly focus on the hypothesis space of a
given ML model and the distribution of the learning points and do not consider the information available
after the training, i.e. the learning points at hand and the trained model. PAC-Bayes theory (see Haussler
(1992) and stemming references) also provides generalization bounds, but these bounds are probabilistic.
Furthermore, all these bounds are computed to control the L2 error. In this work, we explore instance-
dependant exact worst-case generalization bounds, i.e., deterministic bounds that can be computed using
the trained ML model and the learning dataset. Our goal is to provide operative bounds for AI applications
such as certification and worst-case analysis.

Another family of methods seeks to leverage data points and the ML model once trained, namely formal
methods. These methods, used for ML robustness verification, aim to provide local guarantees on the
model’s behavior in the neighborhood of a given input. They are often based on optimization problems, such
as robust optimization, mixed-integer linear programming, Satisfiability Modulo Theories (SMT) solvers
Katz et al. (2017); Ehlers (2017); Vidot et al. (2022); Zhang et al. (2018); Wong et al. (2018), interval bound

2

Under review as submission to TMLR

propagation Singh et al. (2019); Zhang et al. (2022), or neural networks relaxation De Palma et al. (2023); Xu
et al. (2020) but suffer from their complexity, thereby limiting their applicability to large neural networks.
In this work, we propose a method to provide generalization bounds for any Lipschitz approximation of
arbitrary size that is not limited to piecewise linear models.

Finally, in the specific case of Scientific Machine Learning, generalization error has been studied, but results
are mainly theoretical Kovachki et al. (2021); Lee & Shin (2024) or leverages PDE-specific information Mishra
& Molinaro (2023); De Ryck & Mishra (2022). In this work, our goal is to provide bounds for any class
of learning problem, regardless of the underlying PDE, and to unlock generalization bounds for use cases
that encompass different instances of PDE solutions, e.g., when PDE’s parameters or boundary conditions
involved in the simulation change within the dataset (as illustrated in NeurIPS 2024 competition ML4CFD
Yagoubi et al.).

Our approach draws inspiration from Lipschitz optimization and interpolation. In particular, Beliakov
(2006) propose non-parametric optimal Lipschitz interpolators, and DOO Munos (2011) together with a line
of bandit algorithms such as more recent LIPO Malherbe & Vayatis (2017), HOO Bubeck et al. (2011), or
Zooming algorithm Kleinberg et al. (2019), optimize a function with the only knowledge of its smoothless
(i.e. its Lipschitz constant). In this work, we use the more recent Bachoc et al. (2021), inspired from
Piyavskii (1972); Shubert (1972) and build on Kim et al. (2020) to provide certified Lipschitz bounds for the
generalization error of Lipschitz approximators.

3 A Bound for the Error of Lipschitz Approximators

3.1 Setting

Let’s consider the following learning problem. Let f : X ⊂ Rd → R be a function we want to approximate
using a machine learning model g. We consider a set of n learning points

{
(xi, f(xi))

}n

i=1, where {xi}n
i=1 are

sampled from a probability distribution Px. The approximation is achieved by minimizing a cost function
evaluated on these points.

The quality of the approximation is assessed by the generalization error Jg, which we define as

Jg = ∥f − g∥,

where ∥.∥ is a norm that is usually chosen as the L1 norm,
∫

x∈X |f(x)−g(x)|dPx, or the L2 norm
∫

x∈X(f(x)−
g(x))2dPx. In this paper, we are interested in worst-case approximation guarantees, so we focus on the L∞
norm:

Jg = max
x∈X

|f(x) − g(x)|.

The goal of this paper is to derive bounds on Jg in the case where f and g enjoy the Lipschitz property
defined as following:
Definition 3.1 (Lipschitz Property). A function f : X → R satisfies the Lipschitz property for a norm ∥.∥
when there exists a constant Kf ∈ R+ such as ∀x, y ∈ X2,

|f(x) − f(y)| ≤ Kf ∥x − y∥.

In that case, f is said Kf -Lipschitz. In the following, we only consider the Euclidian norm.

To achieve this goal, we will suppose that there exists Kf such that f is Kf -Lipschitz, which is a mild
hypothesis. As for g, standard ML models such as neural networks, gaussian processes, or polynomials
(when X is bounded) naturally enjoy the Lipschitz property, whose constant is denoted Kg. However, it can
be challenging to evaluate Kf and Kg.

3.2 Evaluating Kf and Kg

Evaluating Kf Knowing the exact Lipschitz constant of a function is not trivial. For black-box functions
f , i.e., functions we don’t have access to, either because data comes from the real world or was generated
using a complex procedure (like experiments or simulations), we can often only approximate it.

3

Under review as submission to TMLR

Evaluating a function’s Lipschitz constant is a topic on its own (see e.g., Wood & Zhang (1996); Weng et al.
(2018); Calliess (2015); Fazlyab et al. (2019)) but for the sake of simplicity, here we approximate Kf as:

K̂f = max
i,j∈{1,...,n}2

|f(xi) − f(xj)|
∥xi − xj∥

(1)

In that case, K̂f is a lower bound for Kf . However, we can see it as the Lipschitz constant of a piecewise
linear function interpolating

{
(xi, f(xi))}n

i=1. Hence, even if it is not the actual Lipchitz constant of f , using
it to compute bounds for g ensures that it does not behave unsteadily between learning points.

Note that for some applications, Kf may be known thanks to the knowledge of f Bunin & François (2017).
In the following, for simplicity, we directly use the notation Kf , regardless of whether it is exact or approx-
imated.

Evaluating Kg As for Kg, depending on the ML model we use, it can be more or less complicated to
evaluate. In Lederer et al. (2019), the authors introduce a method to compute the Lipschitz constant of
Gaussian processes. For polynomials, it corresponds to the maximum of the norm of the model’s gradient on
X, which involves a non-convex optimization problem to find. It is even more challenging for neural networks
because evaluating their Lipschitz constant is known to be an NP-hard problem Virmaux & Scaman (2018).
Still, a body of works intends either to provide tractable upper bounds Pauli et al. (2021); Huang et al. (2021);
Bungert et al. (2021), or to build neural networks whose Lipschitz constant is enforced by construction Anil
et al. (2019); Serrurier et al. (2021); Wang & Manchester (2023). As we shall see in the following, our
bounds directly depends on the Lipschitz constant of the neural network. Hence, we choose the class of
models whose Lipschitz constant is known by construction and focus on Norm-Preserving Neural Networks
Anil et al. (2019); Serrurier et al. (2021).

Remark 3.2. Note that neural networks based on self-attention are not Lipschitz. However, some works
design orthogonal attention, which solves this issue Xiao et al. (2024).

3.3 Bounding Using Lipschitz Property

The objective of the paper is to upper bound Jg, i.e., the function e : X → R such as e(x) = |f(x) − g(x)|.
Throughout the paper, we will rely on the following proposition:
Proposition 3.3. Let e be defined as above. Then, ∀x, y ∈ X2,

e(y) ≤ e(x) + (Kf + Kg)∥x − y∥. (2)

This proposition straightforwardly stems from the Lipschitz property of f and g. Proposition 3.3 will be
used to upper bound e on X because ∀y ∈ X, it allows bounding e(y) with an evaluation of e on arbitrary
x, which is already known if x is chosen from the learning data points, and ∥x − y∥ which can be trivially
computed.

4 Evaluating the Bound Using Voronoï diagram

In this section, we investigate a first way of using 3.3 to achieve error bounds, based on partitioning X around
{xi}n

i=1. Formally, we rely on the following proposition:
Proposition 4.1. Let’s consider a partition {Si}n

i=1 of X, where each element of the partition is called a
cell, such that X =

⋃n
i=1 Si,

⋂n
i=1 Si = ∅ and ∀i ∈

{
1, . . . , n

}
, xi ∈ Si. Let r(xi) = max

x∈Si

∥x − xi∥. Then,

Jg ≤ max
i∈{1,...,n}

{
e(xi) + (Kf + Kg)r(xi)

}
. (3)

This proposition is illustrated in Figure 1, and the proof is left in Appendix A.1. The question now arises
as to how to choose a partition cleverly. To guide this choice, let’s consider the following proposition:

4

Under review as submission to TMLR

Figure 1: Illustration of Proposition 4.1. When f and g are Lipschitz, we can bound their variation inside
each element of the partition and therefore bound f − g. In that case, Si = [xi − |xi−xi−1|

2 , xi + |xi+1−xi|
2].

Proposition 4.2. Let N be the nearest neighbor map built on {xi}n
i=1, i.e. N(x) = arg min

{xi}n
i=1

∥x − xi∥. Note

that N(x) is a subset of {xi}n
i=1. Then, ∀x ∈ X and ∀x′ ∈ N(x)

e(x) ≤ e(x′) + (Kf + Kg)∥x − x′∥,

Proposition 4.2 allows naturally defining a partition {Si}n
i=1, which turns out to be the Voronoï diagram of

{xi}n
i=1. We recall its definition in Definition 4.3.

Definition 4.3 (Voronoï diagram). Let {xi}n
i=1 be a set of n points in X. The Voronoï diagram of {xi}n

i=1
is the partition of X into n cells {V(xi)}n

i=1 such that ∀x ∈ V(xi), xi is the nearest neighbor of x.

Proposition 4.2 justifies using Voronoï diagrams because ∀i, x ∈ V(xi) ⇔ xi ∈ N(x). Hence, to upper bound
Jg using Voronoï diagrams, we first have to compute the Voronoï diagram, and for each Voronoï cell V(xi),
compute r(xi) = max

x∈V(xi)
∥x − xi∥. The Voronoï cells are convex sets Aurenhammer (1991), so the farthest

point from xi belonging to V(xi) is among the set of nodes of this cell. Let Ni be the set of nodes of V(xi),
we can obtain r(xi) using:

r(xi) = max
x∈Ni

∥x − xi∥ (4)

And then upper bound Jg using equation 3.
Remark 4.4. All the bounds presented in this paper can be computed with the full training dataset and
do not require to split the dataset into training and validation sets, as usually done in ML for statistical
error estimation. This is a significant advantage because it allows us to use all the available information to
compute the bounds.

The remaining of this section studies three specific cases depending on the structure of {xi}n
i=1. First, as a

warm-up example, we study the case where it is structured as a homogeneous grid where Voronoï cells reduce
to hyperrectangles. Then, we study the more realistic case where data points are randomly sampled, and
we have to compute the complete Voronoï diagram. Finally, we present a result specific to cases where the
data points are structured as a mesh for some dimensions and randomly sampled for others. This case often
occurs in practice in SciML, for instance, when approximating some PDE solutions using neural implicit
representations Sitzmann et al. (2020a).

5

Under review as submission to TMLR

4.1 Warm up: Data structured as a Grid

Let’s first consider that {xi}n
i=1 is structured as a grid. First, we formally define such a structure.

Definition 4.5 (Grid structured data). Suppose that X = [0, 1]d. We say that data {xi}n
i=1 is structured

as a grid of parameters {pl}d
l=1, pl ∈ N when ∀i ∈

{
1, . . . , n

}
, there exist {il}d

l=1, il ∈ {0, . . . , pl − 1} such
that xi =

(
i1

p1−1 , . . . , id

pd−1
)
.

Figure 2: Left: Illustration of a grid structured data in 2D. Right: Illusttration of a Voronoï cell in 2D.

As an example, suppose that X = [0, 1]2. We note p =
√

n, which is an integer and ∀i ∈
{

1, . . . , n
}

, we can
express xi with some i1, i2 ∈

{
0, . . . , p − 1

}2 such as xi =
(

i1
p−1 , i2

p−1
)
. This case is illustrated in figure 2.

Vi =

[i1

p − 1 ,
i1

p − 1 + 1
2(p − 1)

]
×

[i2

p − 1 ,
i2

p − 1 + 1
2(p − 1)

]
for i1, i2 = 0[i1

p − 1 − 1
2(p − 1) ,

i1

p − 1
]

×
[i2

p − 1 − 1
2(p − 1) ,

i2

p − 1
]

for i1, i2 = p − 1[i1

p − 1 − 1
2(p − 1) ,

i1

p − 1 + 1
2(p − 1)

]
×

[i2

p − 1 − 1
2(p − 1) ,

i2

p − 1 + 1
2(p − 1)

]
otherwise.

Hence, it is a hypercube and r(xi) =
√

2
2(p−1) , the half diagonal of Vi. Then, we have that

Jg ≤ max
i∈{1,...,n}

e(xi) + (Kf + Kg)
√

2
2(p − 1) .

In the general case, Vi is an hyperrectangle and r(x0) = · · · = r(xn) = 1
2

√∑d
l=1

1
(pl−1)2 (the half diagonal

of a hyperrectangle of size 1
p1−1 , . . . , 1

pd−1). We can then state the same result for any grid in dimension d:

Jg ≤ max
i∈{1,...,n}

e(xi) + 1
2(Kf + Kg)

√√√√ d∑
l=1

1
(pl − 1)2 . (5)

The utility of this special case, where data is structured as a grid, is twofold. First, it helps to grasp the
underlying idea of partitioning X to upper bound Jg. Second, this case where the Voronoï diagram reduces
to a grid, so r(xi) is obtained analytically, will be used in more complex approaches in the following sections.

6

Under review as submission to TMLR

4.2 Random Data Points

When data points are structured as a grid, the upper bound can be easily computed using equation 5.
Moreover, computing the bound is cheap because it only involves evaluating the error function on learning
or validation points, which is always done in ML for validation purposes. However, this data structure is
very constraining for several reasons. First, in ML, data points are rarely structured as a grid. Second, even
when we have control over f (e.g., in SciML), grids suffer from the curse of dimensionality, and we may favor
Quasi-Monte Carlo sampling of learning data points for better space coverage.

In more realistic cases where data is structured randomly, i.e., {xi}n
i=1 are samples of any probability distri-

bution Px, we have to compute the full Voronoï diagram of {xi}n
i=1 to obtain the bound. It can be achieved

by using existing libraries such as scipy Virtanen et al. (2019), which compute Voronoï diagrams and return
the edges and the nodes of each cell. In turn, knowing that the farthest point from a Voronoï cell’s center is
one of its nodes, we can use equation 4 to compute {r(xi)}n

i=1 and then the upper bound with equation 3.
An illustration of r(xi) is given in Figure 2.

Using complete Voronoï diagrams alleviates constraints related to grids but brings another layer of complex-
ity. Indeed, computing a Voronoï diagram is of exponential algorithmic complexity on n and d Aurenhammer
(1991). Hence, as we shall see in Section 4.4, even for problems of moderate dimension (d = 6 in the pre-
sented test case), Voronoï diagrams are not affordable. There are some perspectives on unlocking Voronoï
diagrams for higher dimensions that we leave for future work; see Section 6. In the meantime, we introduce
one such technique for a specific case when data is structured as a grid for some dimensions and randomly
for others.

4.3 Mixed-random-Grid Data Points

In some cases, data may be structured as a grid for some dimensions and randomly for others. Such a
case occurs when using implicit neural representation in SciML, which is the main building block of many
approaches Serrano et al. (2023); Catalani et al. (2024); Raissi et al. (2019); Sitzmann et al. (2020b). First,
let us formally define "mixed-random-grid data points."
Definition 4.6 (Mixed-random-grid structured data). Let J ⊂ {1, . . . , d} and K := {1, . . . , d} \ J. Let XJ
and XK be the spaces built with the dimensions of X indexed by elements of J and K, respectively. Let’s note
xi,J and xi,K the vectors built from xi by selecting its dimensions indexed by elements of J and K. We say
that data {xi}n

i=1 is structured as mixed-random-grid when {xi,J}n
i=1 is structured as a grid and {xi,K}n

i=1
is randomly sampled from any distribution Px on XK.
Proposition 4.7. Let {xi}n

i=1 be structured as a Mixed-random-grid as defined in Definition 4.6, with a
grid of parameters {pj}j∈J. Let V = {Vi,K}n

i=1 be the Voronoï diagram of {xi,K}n
i=1. Then,

r(xi) =
√

r(xi,K)2 +
∑
j∈J

1
4(pj − 1)2 . (6)

The proof is left in Appendix A.2. Proposition 4.7 has strong implications. First, we no longer need to
compute a Voronoï diagram in dimension d but only in dimension d−|J|, which is a significant computational
gain since the complexity of Voronoï diagrams is exponential in d. Second, since we only use {xi,k∈K}n

i=1
to build V, the number of points used to construct the diagram is n/

∏
j∈J pj instead of n, because we only

need to compute r(xi,K). This is another significant gain since the construction of V is also exponential in n.
Hence, we can compute the bound on Jg using equation 3 with r(xi) computed using equation 6 dramatically
more efficiently. These computational gains are illustrated in practice on realistic test cases in Section 4.4.

Proposition 4.7 only applies when data is mixed-random-grid structured. Such a case is typical in SciML,
where data comes from simulations often conducted on regular and structured meshes, with J corresponding
to time and space coordinates. In such cases, we can then remove up to |J| = 4, dimensions (x, y, z and t)
for the Voronoï diagram computation, which can make the calculation tractable for dimensions’ values for
which it would not be affordable at all.

7

Under review as submission to TMLR

4.4 Experiments

We now present experiments that illustrate the different bounds obtained using Voronoï diagrams. We
consider four test cases: sinus function in two dimensions, Holder table function, heat diffusion, and flow in
a pipe. The first two are simple toy functions that we use to investigate computational aspects in practice,
and the last two are more complex problems that are (simple) SciML applications.

The test cases are detailed in Appendix B. Still, we give a brief overview of the test cases here, as well as
illustrations in Figure 3.

• Sinus function: f : x, y 7→ sin(x) sin(y), x, y ∈ [−5, 5]2.

• Holder table function: f : x, y 7→
∣∣∣sin(x)cos(y) exp

(∣∣∣1 −
√

x2+y2

π

∣∣∣)∣∣∣, x, y ∈ [−5, 5]2.

• Heat diffusion: f : X ⊂ R6 → R as the stationary solution of the heat equation in two dimensions
with 4 Dirichlet boundary conditions. The dimensions in X correspond to the two spatial dimensions
and the four boundary conditions. The function f returns the temperature over the domain. We
run 5000 simulations on a 32 × 32 grid for a total of n = 512 × 104 learning points.

• Flow in a pipe: f : X ⊂ R4 → R as the stationary solution of a vicious flow in a pipe. The
dimensions in X correspond to the two spatial dimensions, the fluid viscosity, and the upstream
speed. The function f returns the fluid horizontal speed in the pipe. We run 2000 simulations on a
50 × 32 grid for a total of n = 320 × 104 learning points.

4
2

0
2

4
4

2

0

2

4

0.75

0.50

0.25

0.00

0.25

0.50

0.75

4
2

0
2

4
4

2

0

2

4

0.5

1.0

1.5

2.0

0 5 10 15 20 25 30

0

5

10

15

20

25

30

0 10 20 30 40

0

5

10

15

20

25

30

Figure 3: Illustration of the four test cases. From left to right: sinus function, Holder table function, heat
diffusion, and flow-in-a-pipe. For the two latter, we only visualize the result of one simulation, corresponding
to fixed boundary conditions (for heat diffusion) and upstream speed and viscosity (for flow-in-a-pipe).

For the learning part, we use a Norm-Preserving NN backbone Serrurier et al. (2021) and add an uncon-
strained linear layer on top. Hence, its Lipschitz constant Kg can be directly obtained by computing the
spectral norm of the last layer’s weight matrix. We use the known Lipschitz constant of the neural network
Kg and estimate Kf using equation 1 to compute the bounds on Jg for the different test cases. Note that
the learning falls under the Implicit Neural Representation formulation.

Sinus and Holder table For the first two test cases, we compute the bound using the Voronoï diagrams
only. To investigate the computational complexity of V, we run the experiment for increasing the number
of points n. As a reference, we also compute a high sample estimate of Jg using n = 10 × 109 points. The
results are presented in Figure 4. The bound quickly tends towards the high sample estimate. However, we
can observe the exponential trend of the execution time with respect to n, especially for n ≥ 105, which
highlights the need to alleviate the computational complexity of Voronoï diagrams.

Heat diffusion and flow-in-a-pipe For the two last test cases, we first try to use the complete Voronoï
diagram. Due to the high computational complexity, we do not use all the data points available and use
n = 2 × 105 for heat diffusion and n = 8 × 104 for flow-in-a-pipe. In this case, it is enough to illustrate how
expensive it is to compute the bounds using Voronoï diagrams. We still evaluate the bound with this limited

8

Under review as submission to TMLR

number of data points. Then, we use the mixed-random-grid structure and Proposition 4.7 to compute the
bound. We report the upper bound and the execution time in Table 1. We can see that computing the
bound is simply not affordable using the complete Voronoï diagram, with extensive execution times even
without using all the data points. In contrast, using the mixed-random-grid structure and Proposition 4.7
allows us to compute the bound very quickly using all the data points.

102 103 104 105 106 107

n

10 2

10 1

100

er
ro

r

bound minus high sample error estimation

0

50

100

150

200

250

300

se
co

nd
s

Exec. time

102 103 104 105 106 107

n

10 1

100

101

er
ro

r

bound minus high sample error estimation

0

50

100

150

200

250

se
co

nd
s

Exec. time

Figure 4: Evolution of the difference between the upper bound and a high sample estimation of the Jg with
respect to the number of points n for the Sinus function (left) and the Holder table function (right).
The high sample estimation of Jg is computed with n = 109. The time required for computing the bound
(exec. time) is also plotted in black.

Full Voronoï Mixed-random-grid
Max. err. Upper bound Time (sec.) Upper bound Time (sec.)

Diffusion 0.18 84 (n = 2 × 104) 3120 1.67 (n = 512 × 104) 0.89
Flow-in-a-pipe 1.43 11.40 (n = 8 × 104) 7339 9.06 (n = 32 × 104) 0.007

Table 1: Upper bound estimation and Voronoï diagram’s construction time for the heat diffusion and flow-
in-a-pipe experiment.

In this section, we introduced a way to compute bounds on the generalization error of Lipschitz approximators
based on Voronoï diagrams. We illustrated the computational complexity of the approach on realistic test
cases and showed that leveraging a mixed-random-grid structure can dramatically reduce the computational
complexity of the approach for appropriate test cases. In the next section, we build on these ideas and
propose a new approach to computing the bounds by reformulating the problem into a black-box optimization
problem.

5 Bounding as a Certified Deterministic Optimistic Optimization Problem

In this section, we introduce a new approach that involves solving a zeroth order black-box optimization
problem while using principles from the previous section to ensure that the optimization result actually
upper-bounds Jg. Let Nk : X → X be the k nearest neighbors map built on {xi}n

i=1. Throughout this
section, we focus on the following function:

ē : x 7→ min
xi∈Nk(x)

{
|g(x) − f(xi)| + Kf ∥x − xi∥

}
, (7)

where k is a hyperparameter that controls the complexity of the evaluation of ē – ideally, with an infinite
evaluation budget, we would choose k = n − 1. This formulation heavily relies on the approach of Piyavskii
(1972) and Shubert (1972). We will then use the following Proposition 5.1, which emphasizes how solving a
black-box optimization problem will achieve the desired bound:

9

Under review as submission to TMLR

Proposition 5.1. Let e and ē be defined as in Proposition 3.3 and equation 7. Then,

∀x ∈ X, e(x) ≤ ē(x).

Therefore, we have that

Jg ≤ max
x∈X

ē(x) = max
x∈X

min
xi∈Nk(x)

{
|g(x) − f(xi)| + Kf ∥x − xi∥

}
. (8)

The proof is left in Appendix A.3. The corresponding zeroth order black-box optimization problem is non-
convex. Hence, many classical maximization techniques (e.g., bayesian optimization, CMA-ES, evolutionary
algorithms, etc..) are not appropriate in our case since we want to make sure that the result of the opti-
mization x∗ verifies Jg ≤ ē(x∗). Specifically, we must leverage the Lipschitz property of g and f to cope
with this constraint and use certified optimization techniques. To the best of our knowledge, only one such
algorithm has been explored in Bachoc et al. (2021), where the authors introduce Certified Deterministic
Optimistic Optimization (c-DOO). As we shall see, this algorithm uses principles from the previous section
to provide a certificate ϵ along with the maximum found at the end of the optimization, which ensures that
max
x∈X

ē(x) ≤ ē(x∗) + ϵ.

In this section, we explore the use of c-DOO to achieve the desired bound. We also derive the certified
version of the recently introduced Voronoï Optimistic Optimization using Proposition 4.1, with a partition
chosen as a Voronoï diagram.

5.1 Certified Deterministic Optimistic Optimization

DOO Munos (2011) is part of a line of bandit algorithms such as more recent LIPO Malherbe & Vayatis
(2017), HOO Bubeck et al. (2011), or Zooming algorithm Kleinberg et al. (2008). They all come with
guarantees in terms of sample complexity, e.g. the number of iterations needed to output an ϵ-optimal
solution that verifies max

x∈X
ē(x) ≤ ē(x∗) + ϵ but we have no guarantees that for a given n, this assumption

will be verified. The only algorithm providing certificates along with a given maximize x∗ is the certified
version of DOO, c-DOO Bachoc et al. (2021).

Before diving into the details of DOO and c-DOO, let’s first introduce some mathematical objects we will rely
on. Let’s consider an infinite set {Si,h}i∈{1,...,n0sh},h∈N, once again called cells, where s, n0 ∈ N∗. For each
h, X =

⋃sh

i=1 Si,h,
⋂sh

i=1 Si,h = ∅. The sequence is structured such that for any h ∈ N and l ∈ {1, . . . , n0sh},
there exists {i1, . . . , is} ⊂ {1, . . . , n0sh+1} such that {Si1,h+1, . . . ,Sis,h+1} form a partition of Si,h. We call
Si,h the parent subspace of {Si1,h+1, . . . ,Sis,h+1}, which we call the children subspaces of Si,h. This structure
can be seen as a tree-structured subdivision of X parametrized by n0 and s, where s controls the number
of children subspaces for each parent subspace, and n0 controls the number of initial parent subspaces (for
which h = 0). Each cell Si,h is assigned a center xi,h. For each cell Si,h, it is possible to bound max

x∈Si,h

ē(x)

as follows:
max

x∈Si,h

ē(x) ≤ ē(xi,h) + (Kf + Kg)r(xi,h) (9)

where we used equation 2 and Proposition 3.3, knowing ē is (Kf + Kg)-Lipschitz. The quantity r(xi,h)
corresponds to the radius of the cell as defined in 4.

In our case, we define {Si,0}i∈{1,...,n0} as a grid-like partition of the space already used in Section 4.1. We
split each Si,h, which are hyperrectangles, into s = 2d children.

DOO and c-DOO assume that we can have access to the evaluation of the function to optimize at any x ∈ X.
That was not possible in our case when we were considering e(x), but it is now that we focus on ē(x). As an
important practical consequence, we can now choose any partition of X as a basis for c-DOO. Hence, for each
h, we will consider {xi,h}n0sh

i=1 as grid-structured data points and split each Si,h, which are hyperrectangles,
into s = 2d. As a consequence, we do not have to compute r(xi,h) in equation 9. Indeed, we have that

∀h ∈ N, r(x1,h) = · · · = r(xn0sh,h) = δh, (10)

10

Under review as submission to TMLR

where δh is the half diagonal of {Si,h}n0sh

i=0 . If we consider {xi,0}n0s0

i=1 as grid-structured data points of
parameter {pj}j∈{1,...d}, then δh =

√∑d
l=1

1
2h(pl−1)2 .

We now have all the elements needed to state the c-DOO algorithm adapted to our setting (Algorithm 1).
Since ē is not costly to evaluate – the computational cost mainly comes from the k-nearest neighbors – we
initialize the algorithm with a large set of n0 grid-structured data points, which will be the initial centers.
Then, we build a set S of pairs of indices identifying current celles to consider. At each step, (line 2) we
select the cell (i∗, h∗) that maximizes the bound in equation 9, (line 3) compute the children cells of Si∗,h∗ ,
which will be the new centers (for which h = h∗ + 1). Then, (line 4) we compute these new centers, (line
5) remove the center corresponding to (i∗, h∗), and (line 6) merge the set of indices pairs. After T steps,
we output the maximum bound found. An important property of this algorithm is that regardless of T , the
bound is always valid; it will only be tighter with a larger T .

Algorithm 1 Certified DOO (c-DOO) for upper bounding Jg (adapted from Bachoc et al. (2021))
Initialization: Define ē by selecting k (see equation 7)
An initial set of n0 grid-structured centers {xi,0}n0

i=1
The values of ē at the centers, {ē(xi,0)}n0

i=1
A set of pairs of indices identifying partitions S = {(i, 0)}n0

i=1
Parameter: desired accuracy ϵ or maximum number of steps T

1: while (Kf + Kg)δh > ϵ or number of steps < T do
2: (i∗, h∗) = arg max

i,h∈S

{
ē(xi,h) + (Kf + Kg)δh

}
3: Define S∗ as the set indices pairs identifying children cells of Si∗,h∗

4: Compute their centers {xi,h}(i,h)∈S∗ .
5: Remove (i∗, h∗) from S
6: S = S ∪ S∗

7: end while
Output: Jg ≤ ē(xi∗,h∗) + (Kf + Kg)δh∗

In practice, to speed up the convergence, we introduce another parameter: batch size b. At each step, we
select the b cells that maximize the bound in equation 9 and compute their children. It allows us to explore
the space more efficiently and to converge faster. We present the results of the c-DOO algorithm on the four
test cases in Section 5.3.

5.2 Certified Voronoï Optimistic Optimization

Voronoi Optimistic Optimization (VOO) Kim et al. (2020) is another algorithm that belongs to the same
line as DOO. Instead of using grid-structured points and partitioning the space into a sequence of hyper-
rectangular cells that have a parent-children property like in DOO, it randomly samples points {xi}n

i=1 and
defines the cells as Voronoï cells. It then samples a new point xn+1 to evaluate with ē inside the cell Vi∗

where i∗ = arg max
i∈{1,...,n}

ē(xi). The Voronoï diagram is updated, and the process is repeated.

With all the material presented previously, we introduce a certified version of VOO, c-VOO, using principles
from the previous sections. Inspired by c-DOO, for each cell Vi, it is possible to bound max

x∈Vi

ē(x) as follows:

max
x∈Vi

ē(x) ≤ ē(xi) + (Kf + Kg)r(xi), (11)

which demonstrates the validity of the bound obtained at the end of the algorithm. The entire algorithm
can then be stated (Algorithm 2). First, we initialize the algorithm by randomly sampling n points and
computing the ē values at these points. Then, at each step, (line 2) we compute the Voronoï diagram of
the points, (line 3) select the center xi∗ that maximizes the bound in equation 11, (line 4) sample a new
point x∗ in the Voronoï cell Vi∗ – in practice, we sample a point from a uniform distribution of range 2r(x∗)
centered at x∗, with rejection if it falls outside of the corresponding Voronoï cell –, and (line 5) add it to

11

Under review as submission to TMLR

the set of points. After T steps, we output the maximum bound found. Like for c-DOO, we also add a
parameter b (not represented in Algorithm 2 for clarity), corresponding to the number of points to sample
in the Voronoï diagram at each step.

Algorithm 2 Certified VOO (c-VOO) for upper bounding Jg

Initialization: Define ē by selecting k (see equation 7)
An initial set of n randomly sampled centers X = {xi}n

i=1
The values of ē at the centers, {ē(xi)}n

i=1
Parameter: desired accuracy ϵ or maximum number of steps T

1: while (Kf + Kg)r(x) > ϵ or number of steps < T do
2: Compute V, the Voronoï diagram of X .
3: i∗ = arg max

i∈{1,...,|X |}

{
ē(xi) + (Kf + Kg)r(xi)

}
// r(xi) computed using equation 4

4: Sample xi+1 such that xi+1 ∈ Vi∗ .
5: X = X ∪ {xi+1}
6: end while

Output: Jg ≤ ē(xi∗) + (Kf + Kg)r(xi∗)

5.3 Experiments

We now test and compare c-DOO and c-VOO on the same test cases as in Section 4.4. We use the same
neural networks and the same Lipschitz constants. We test c-DOO on every test case but, unfortunately,
cannot afford c-VOO for the heat diffusion and flow-in-a-pipe test cases because, as in Section 4.4, the
Voronoï diagram is too expensive to compute. We run the experiments with ē defined using a k-nearest
neighbor with k = 2048, an accuracy of ϵ = 10−3, and a batch size b = 100. We first present results for the
sinus and Holder table functions to be able to discuss the comparison between c-DOO and c-VOO. Then,
we present the results for the heat diffusion and flow-in-a-pipe test cases.

For the sinus and Holder table functions, we experiment with an increasing number of learning points
n, similar to Section 4.4. For DOO, we build an initial set of n0 grid-structured centers {xi,0}n0

i=1 with
parameter {⌊

√
n⌋, ⌊

√
n⌋} (n0 = ⌊

√
n⌋2). For c-DOO, we choose n0 = n. Note that for each n, the algorithm

will ultimately perform n0 +bT evaluations of ē. The evolution of the upper bound with respect to n is shown
in Figure 5. On the leftmost plots, we also plot the evolution of the error obtained with Voronoï diagrams.
We can see that c-DOO and c-VOO consistently achieve tighter bounds than the Voronoi approach. We also
report the number of iterations with respect to n until convergence, and the time per iteration. These plots
emphasize the advantages of c-DOO over c-VOO, both in terms of the number of iterations and time per
iteration.

For the heat diffusion and flow-in-a-pipe test cases, we perform the DOO with an initial set of n0 grid-
structured centers {xi,0}n0

i=1 with parameter {5, 5, 5, 5, 155, 155} and {31, 23, 155, 245} respectively, to make
hyperrectangles as close to hypercubes as possible. The results are plotted in Figure 6, and the best bounds
found are reported in Table 2. We also report the bounds of Table 1 to ease comparison. The results are
consistently better than the Mixed-random-grid version, even from the first iteration. Note that we can stop
the algorithm at any time before convergence, and the obtained upper bound will be valid. Adding iteration
only improves the tightness of the bound.

c-DOO Mixed-random-grid
Max. abs. error Upper bound Time per iteration (sec.) Upper bound

Diffusion 0.18 0.92 (n = 512 × 104) 4.87 1.67
Flow-in-a-pipe 1.43 4.51 (n = 32 × 104) 1.73 9.06

Table 2: Upper bound estimation and time per iteration of c-DOO for the heat diffusion and flow-in-a-pipe
experiments. The Maximum absolute error over the dataset is reported, as well as the error obtained with
Mixed-random-grid presented in Table 1 for comparison.

12

Under review as submission to TMLR

102 103 104 105 106 107

n

10 1

100

101

er
ro

r

bound minus high sample error estimation (c-DOO & VOO)
bound minus high sample error estimation (voronoi)

102 103 104 105 106 107

n

101

of

 it
er

at
io

ns

of iterations until convergence (c-DOO)
of iterations until convergence (c-VOO)

102 103 104 105 106 107

n

10 2

10 1

100

101

102

tim
e

(s
)

time per iteration (c-DOO)
time per iteration (c-VOO)

102 103 104 105 106 107

n

10 2

10 1

100

er
ro

r

bound minus high sample error estimation (c-DOO & VOO)
bound minus high sample error estimation (voronoi)

(a) Upper bound minus the high
sample estimation of Jg

102 103 104 105 106 107

n

101

102

of

 it
er

at
io

ns

of iterations until convergence (c-DOO)
of iterations until convergence (c-VOO)

(b) Number of iterations until
convergence

102 103 104 105 106 107

n

10 1

100

101

102

tim
e

(s
)

time per iteration (c-DOO)
time per iteration (c-VOO)

(c) Time per iteration

Figure 5: Comparison of error, iterations, and time per iteration for Holder (top row) and Sinus (bottom
row). The left column shows the difference between the upper bound and a high sample estimation of Jg.
Only c-DOO is plotted because since the bound is computed with ϵ = 10−3, the two curves are almost
indistinguishable. We also report the evolution of the error obtained with Voronoi diagrams in red. The
middle column shows the number of iterations until convergence. The right column shows the time per
iteration. Because of the high execution time, we did not perform the computation for c-VOO with = 107

points.

0 2500 5000 7500 10000 12500 15000 17500
iteration

0.95

1.00

1.05

1.10

1.15

1.20

1.25

er
ro

r

Upper bound

0.92
0 2500 5000 7500 10000 12500 15000 17500 20000

iteration

4.5

5.0

5.5

6.0

6.5

7.0

er
ro

r

Upper bound

4.51

Figure 6: Evolution of the upper bound with respect to the number of iterations of c-DOO for the heat
diffusion (left) and the flow-in-a-pipe (right) test cases.

6 Limitations and Perspectives

Before concluding, we would like to point out some limitations to our work, some ways of alleviating them,
and some perspectives for future work.

13

Under review as submission to TMLR

On the estimation of Kf First, computing the previous bounds requires the Lipschitz constant of f to
be known. Even if, in some cases, the Lipschitz constant can be known, in most cases, we can only estimate
it. This calls for the question of what function f is the error bound actually computed against. With the
naive way of estimating Kf as seen in Section 3, the estimated Lipschitz constant is a lower bound for Kf .
However, by using this approximation, we assess the error of the Lipschitz approximator with respect to
a function that does not fluctuate too much between the learning points, which is beneficial for stability
guarantee purposes. Some promising works aim to estimate Kf given some evaluations of f in a more
principled way, using extreme value theory Weng et al. (2018) and could be a good way of coping with this
limitation.

When Kf is large or f is not Lipschitz The bounds we compute might not be exploitable for functions
with high Kf or with discontinuities. Indeed, our bounds are linear with respect to Kf , so if f has a high
Kf , the bounds will be loose. This problem might be alleviated by looking at more local bounds (see below)
or splitting the space into smaller regions with no discontinuities.

The curse of dimensionality The curse of dimensionality is a bottleneck for the methods we presented.
Indeed, the number of points needed to cover the input space X so that r(xi) is not too large increases with the
dimension. Furthermore, the complexity of Voronoï diagrams is exponential in the dimension Aurenhammer
(1991). However, moderate dimensionalities still allow Voronoï cells computations and correct space filling
while corresponding to practical and modern use cases. For instance, our approach is compatible with
Implicit Neural Representation Catalani et al. (2024); Serrano et al. (2023), as used with Physics Informed
Neural Networks Raissi et al. (2019). Moreover, in this case, the bounds are often computed using mixed-
random-grid learning points, which is common in SciML. Another way of further reducing the computational
burden of the bounds would be to apply c-VOO with mixed-random-grid data in the scope of the present
paper, which is a straightforward follow-up to our work. Finally, a last vein for alleviating this problem
would be to optimize the computation of Voronoï cells, like in Ray et al. (2018), where the authors present
a parallel algorithm for computing Voronoï cells.

7 Conclusion

This paper introduces novel methods to derive strict post-training generalization error bounds for Lipschitz
approximators. We first leveraged the Lipschitz property and Voronoï diagrams to compute the bounds.
Then, we alleviated the computational cost of computing such diagrams by taking advantage of the mesh-
like structure of some data’s dimensions, which is common in SciML applications where data comes from
spatiotemporal meshes. Finally, we also proposed reformulating the problem as a black-box Lipschitz opti-
mization problem, introducing c-VOO and using c-DOO algorithms to achieve tighter bounds. Our experi-
ments on various test cases, including SciML applications, demonstrated the effectiveness of our approaches.
Future work will focus on further reducing computational complexity, exploring local Lipschitz properties,
and leveraging the mesh-like structure for c-VOO.

References
Cem Anil, James Lucas, and Roger Grosse. Sorting Out Lipschitz Function Approximation. In Proceedings

of the 36th International Conference on Machine Learning, pp. 291–301. PMLR, May 2019.

Franz Aurenhammer. Voronoi diagrams—a survey of a fundamental geometric data structure. ACM Com-
puting Surveys (CSUR), 23(3):345–405, 1991.

Francois Bachoc, Tom Cesari, and Sébastien Gerchinovitz. Instance-Dependent Bounds for Zeroth-order
Lipschitz Optimization with Error Certificates. In Advances in Neural Information Processing Systems,
volume 34, pp. 24180–24192. Curran Associates, Inc., 2021.

Peter Bartlett. For valid generalization the size of the weights is more important than the size of the network.
In M.C. Mozer, M. Jordan, and T. Petsche (eds.), Advances in Neural Information Processing Systems,

14

Under review as submission to TMLR

volume 9. MIT Press, 1996. URL https://proceedings.neurips.cc/paper_files/paper/1996/file/
fb2fcd534b0ff3bbed73cc51df620323-Paper.pdf.

Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian complexities: Risk bounds and structural
results. Journal of Machine Learning Research, 3(Nov):463–482, 2002.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-
wanathan, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 30. Cur-
ran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/
b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf.

Gleb Beliakov. Interpolation of Lipschitz functions. Journal of Computational and Applied Mathematics,
196(1):20–44, November 2006. ISSN 0377-0427. doi: 10.1016/j.cam.2005.08.011.

Olivier Bousquet and André Elisseeff. Stability and generalization. The Journal of Machine Learning
Research, 2:499–526, 2002.

Sébastien Bubeck, Rémi Munos, Gilles Stoltz, and Csaba Szepesvári. X-armed bandits. Journal of Machine
Learning Research, 12(5), 2011.

Leon Bungert, René Raab, Tim Roith, Leo Schwinn, and Daniel Tenbrinck. Clip: Cheap lipschitz training
of neural networks. In International Conference on Scale Space and Variational Methods in Computer
Vision, pp. 307–319. Springer, 2021.

Gene A. Bunin and Grégory François. Lipschitz constants in experimental optimization, January 2017.

Jan-Peter Calliess. Bayesian lipschitz constant estimation and quadrature. Advances in Neural Information
Processing Systems, 2015.

Giovanni Catalani, Siddhant Agarwal, Xavier Bertrand, Frédéric Tost, Michael Bauerheim, and Joseph
Morlier. Neural fields for rapid aircraft aerodynamics simulations. Scientific Reports, 14(1):25496, 2024.

Alessandro De Palma, Rudy Bunel, Krishnamurthy Dvijotham, M Pawan Kumar, Robert Stanforth, and
Alessio Lomuscio. Expressive losses for verified robustness via convex combinations. arXiv preprint
arXiv:2305.13991, 2023.

Tim De Ryck and Siddhartha Mishra. Error analysis for physics-informed neural networks (pinns) approxi-
mating kolmogorov pdes. Advances in Computational Mathematics, 48(6):79, 2022.

Ruediger Ehlers. Formal verification of piece-wise linear feed-forward neural networks. In Automated Tech-
nology for Verification and Analysis: 15th International Symposium, ATVA 2017, Pune, India, October
3–6, 2017, Proceedings 15, pp. 269–286. Springer, 2017.

Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Manfred Morari, and George Pappas. Efficient and
accurate estimation of lipschitz constants for deep neural networks. Advances in neural information
processing systems, 32, 2019.

David Haussler. Decision theoretic generalizations of the pac model for neural net and other learn-
ing applications. Information and Computation, 100(1):78–150, 1992. ISSN 0890-5401. doi: https:
//doi.org/10.1016/0890-5401(92)90010-D. URL https://www.sciencedirect.com/science/article/
pii/089054019290010D.

Philipp Holl, Nils Thuerey, and Vladlen Koltun. Learning to control pdes with differentiable physics. In
International Conference on Learning Representations, 2020. URL https://openreview.net/forum?id=
HyeSin4FPB.

Yujia Huang, Huan Zhang, Yuanyuan Shi, J Zico Kolter, and Anima Anandkumar. Training certifiably
robust neural networks with efficient local lipschitz bounds. Advances in Neural Information Processing
Systems, 34:22745–22757, 2021.

15

https://proceedings.neurips.cc/paper_files/paper/1996/file/fb2fcd534b0ff3bbed73cc51df620323-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1996/file/fb2fcd534b0ff3bbed73cc51df620323-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/b22b257ad0519d4500539da3c8bcf4dd-Paper.pdf
https://www.sciencedirect.com/science/article/pii/089054019290010D
https://www.sciencedirect.com/science/article/pii/089054019290010D
https://openreview.net/forum?id=HyeSin4FPB
https://openreview.net/forum?id=HyeSin4FPB

Under review as submission to TMLR

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and generalization
in neural networks. Advances in neural information processing systems, 31, 2018.

Guy Katz, Clark Barrett, David L Dill, Kyle Julian, and Mykel J Kochenderfer. Reluplex: An efficient smt
solver for verifying deep neural networks. In Computer Aided Verification: 29th International Conference,
CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I 30, pp. 97–117. Springer, 2017.

Beomjoon Kim, Kyungjae Lee, Sungbin Lim, Leslie Kaelbling, and Tomas Lozano-Perez. Monte Carlo Tree
Search in Continuous Spaces Using Voronoi Optimistic Optimization with Regret Bounds. Proceedings
of the AAAI Conference on Artificial Intelligence, 34(06):9916–9924, April 2020. ISSN 2374-3468. doi:
10.1609/aaai.v34i06.6546.

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Multi-armed bandits in metric spaces. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, pp. 681–690, 2008.

Robert Kleinberg, Aleksandrs Slivkins, and Eli Upfal. Bandits and experts in metric spaces. Journal of the
ACM (JACM), 66(4):1–77, 2019.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation and error bounds
for fourier neural operators. Journal of Machine Learning Research, 22(290):1–76, 2021.

Armin Lederer, Jonas Umlauft, and Sandra Hirche. Uniform Error Bounds for Gaussian Process Regression
with Application to Safe Control, December 2019.

Sanghyun Lee and Yeonjong Shin. On the training and generalization of deep operator networks. SIAM
Journal on Scientific Computing, 46(4):C273–C296, 2024.

Cédric Malherbe and Nicolas Vayatis. Global optimization of Lipschitz functions. In Proceedings of the 34th
International Conference on Machine Learning, pp. 2314–2323. PMLR, July 2017.

Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of physics-informed neural
networks for approximating pdes. IMA Journal of Numerical Analysis, 43(1):1–43, 2023.

Rémi Munos. Optimistic Optimization of a Deterministic Function without the Knowledge of its Smoothness.
In Advances in Neural Information Processing Systems, volume 24. Curran Associates, Inc., 2011.

Patricia Pauli, Anne Koch, Julian Berberich, Paul Kohler, and Frank Allgöwer. Training robust neural
networks using lipschitz bounds. IEEE Control Systems Letters, 6:121–126, 2021.

SA Piyavskii. An algorithm for finding the absolute extremum of a function. USSR Computational Mathe-
matics and Mathematical Physics, 12(4):57–67, 1972.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational physics, 378:686–707, 2019.

Nicolas Ray, Dmitry Sokolov, Sylvain Lefebvre, and Bruno Lévy. Meshless voronoi on the gpu. ACM
Transactions on Graphics (TOG), 37(6):1–12, 2018.

Louis Serrano, Lise Le Boudec, Armand Kassaï Koupaï, Thomas X Wang, Yuan Yin, Jean-Noël Vittaut, and
Patrick Gallinari. Operator learning with neural fields: Tackling pdes on general geometries. Advances in
Neural Information Processing Systems, 36:70581–70611, 2023.

Mathieu Serrurier, Franck Mamalet, Alberto Gonzalez-Sanz, Thibaut Boissin, Jean-Michel Loubes, and
Eustasio del Barrio. Achieving robustness in classification using optimal transport with hinge regulariza-
tion. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 505–514,
Nashville, TN, USA, June 2021. IEEE. ISBN 978-1-6654-4509-2. doi: 10.1109/CVPR46437.2021.00057.

Bruno O Shubert. A sequential method seeking the global maximum of a function. SIAM Journal on
Numerical Analysis, 9(3):379–388, 1972.

16

Under review as submission to TMLR

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev. An abstract domain for certifying
neural networks. Proceedings of the ACM on Programming Languages, 3(POPL):1–30, 2019.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit
Neural Representations with Periodic Activation Functions. In Advances in Neural Information Processing
Systems, volume 33, pp. 7462–7473. Curran Associates, Inc., 2020a.

Vincent Sitzmann, Julien Martel, Alexander Bergman, David Lindell, and Gordon Wetzstein. Implicit neural
representations with periodic activation functions. Advances in neural information processing systems, 33:
7462–7473, 2020b.

Guillaume Vidot, Mélanie Ducoffe, Christophe Gabreau, Ileana Ober, and Iulian Ober. Formal Monotony
Analysis of Neural Networks with Mixed Inputs: An Asset for Certification. In Jan Friso Groote and
Marieke Huisman (eds.), Formal Methods for Industrial Critical Systems, pp. 15–31, Cham, 2022. Springer
International Publishing. ISBN 978-3-031-15008-1. doi: 10.1007/978-3-031-15008-1_3.

Aladin Virmaux and Kevin Scaman. Lipschitz regularity of deep neural networks: Analysis and efficient
estimation. In Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert
Kern, Eric Larson, C. J. Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde,
Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne M. Archibald,
Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1 0 Contributors. SciPy 1.0–
Fundamental Algorithms for Scientific Computing in Python, July 2019.

Ruigang Wang and Ian Manchester. Direct Parameterization of Lipschitz-Bounded Deep Networks. In
Proceedings of the 40th International Conference on Machine Learning, pp. 36093–36110. PMLR, July
2023.

Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, and Luca
Daniel. Evaluating the robustness of neural networks: An extreme value theory approach. In International
Conference on Learning Representations, 2018.

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable adversarial defenses.
Advances in Neural Information Processing Systems, 31, 2018.

G. R. Wood and B. P. Zhang. Estimation of the Lipschitz constant of a function. Journal of Global
Optimization, 8(1):91–103, January 1996. ISSN 1573-2916. doi: 10.1007/BF00229304.

Zipeng Xiao, Zhongkai Hao, Bokai Lin, Zhijie Deng, and Hang Su. Improved operator learning by orthogonal
attention. In Proceedings of the 41st International Conference on Machine Learning, pp. 54288–54299,
2024.

Kaidi Xu, Zhouxing Shi, Huan Zhang, Yihan Wang, Kai-Wei Chang, Minlie Huang, Bhavya Kailkhura, Xue
Lin, and Cho-Jui Hsieh. Automatic perturbation analysis for scalable certified robustness and beyond.
Advances in Neural Information Processing Systems, 33:1129–1141, 2020.

Mouadh Yagoubi, David Danan, Milad Leyli-abadi, Jean-Patrick Brunet, Jocelyn Ahmed Mazari, Florent
Bonnet, Asma Farjallah, Paola Cinnella, Patrick Gallinari, Marc Schoenauer, et al. Neurips 2024 ml4cfd
competition: Harnessing machine learning for computational fluid dynamics in airfoil design. In NeurIPS
2024 Competition Track.

Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh, and Luca Daniel. Efficient neural network
robustness certification with general activation functions. In Advances in Neural Information Processing
Systems (NIPS), arXiv preprint arXiv:1811.00866, dec 2018.

17

Under review as submission to TMLR

Huan Zhang, Shiqi Wang, Kaidi Xu, Linyi Li, Bo Li, Suman Jana, Cho-Jui Hsieh, and J Zico Kolter. General
cutting planes for bound-propagation-based neural network verification. Advances in neural information
processing systems, 35:1656–1670, 2022.

David Zwicker. py-pde: A python package for solving partial differential equations. Journal of Open Source
Software, 5(48):2158, 2020. doi: 10.21105/joss.02158. URL https://doi.org/10.21105/joss.02158.

18

https://doi.org/10.21105/joss.02158

Under review as submission to TMLR

A Appendix: Proofs

A.1 Proof of Proposition 4.1

Let’s first recall Proposition 4.1:
Proposition. Let’s consider a partition {Si}n

i=1 of X, where each element of the partition is called a cell,
such that X =

⋃n
i=1 Si,

⋂n
i=1 Si = ∅ and ∀i ∈

{
1, . . . , n

}
, xi ∈ Si. Let r(xi) = max

x∈Si

∥x − xi∥. Then,

Jg ≤ max
i∈{1,...,n}

{
e(xi) + (Kf + Kg)r(xi)

}
.

Proof. Let’s consider x ∈ X. By definition of the partition, ∃i ∈ {1, . . . , n} such that x ∈ Si. Then, by
Proposition 3.3, we have

e(x) ≤ e(xi) + (Kf + Kg)∥x − xi∥.

Since by definition of r(xi), ∀x ∈ Si, ∥x − xi∥ ≤ r(xi), we also have that ∀x ∈ Si,

e(x) ≤ e(xi) + (Kf + Kg)∥x − xi∥ ≤ e(xi) + (Kf + Kg)r(xi).

Finally, since X =
⋃n

i=1 Si, it holds that ∀x ∈ X, e(x) ≤ max
i∈{1,...,n}

{
e(xi) + (Kf + Kg)r(xi)

}
. Considering

that Jg = max
x∈X

e(x) concludes the proof.

A.2 Proof of Proposition 4.7

Let’s first recall Definition 4.6 and Proposition 4.7.
Definition (Mixed-random-grid structured data). Let J ⊂ {1, . . . , d} and K := {1, . . . , d} \ J. Let XJ and
XK be the spaces built with the dimensions of X indexed by elements of J and K, respectively. Let’s note
xi,J and xi,K the vectors built from xi by selecting its dimensions indexed by elements of J and K. We say
that data {xi}n

i=1 is structured as mixed-random-grid when {xi,J}n
i=1 is structured as a grid and {xi,K}n

i=1
is randomly sampled from any distribution Px on XK.
Proposition. Let {xi}n

i=1 be structured as a Mixed-random-grid as defined in Definition 4.6, with a grid of
parameters {pj}j∈J. Let {Vi,K}n

i=1 be the Voronoï diagram of {xi,K}n
i=1. Then,

r(xi) =
√

r(xi,K)2 +
∑
j∈J

1
4(pj − 1)2 .

Proof. Let’s consider x ∈ X. By definition of the mixed-random-grid structure, we can decompose x into xJ
and xK. For each xi, we have xi,J structured as a grid and xi,K randomly sampled.

By the definition of r(xi), we have:
r(xi)2 = max

x∈Si

∥x − xi∥2.

We can decompose this into:

r(xi)2 = max
x∈Si

(
∥xJ − xi,J∥2 + ∥xK − xi,K∥2)

.

Since {xi,J}n
i=1 is structured as a grid, the maximum distance between any xJ and xi,J can be expressed as:

max
x∈Si

∥xJ − xi,J∥2 =
∑
j∈J

1
4(pj − 1)2 .

19

Under review as submission to TMLR

For the randomly sampled part {xi,K}n
i=1, the maximum distance is obtained using the Voronoï diagram:

max
x∈Si

∥xK − xi,K∥2 = r(xi,K)2.

Combining these results, we get:

r(xi) =
√

r(xi,K)2 +
∑
j∈J

1
4(pj − 1)2 .

This concludes the proof.

A.3 Proof of Proposition 5.1

Let’s first recall Proposition 5.1.
Proposition (expanded). Let Nk : X → Xk be the k nearest neighbors map built on {xi}n

i=1. Let’s define

ē : x → min
xi∈Nk(x)

{
|g(x) − f(xi)| + Kf ∥x − xi∥

}
,

where k is a hyperparameter that controls the complexity of the evaluation of ē. Then,

∀x ∈ X, e(x) ≤ ē(x).

Therefore, we have that

Jg ≤ max
x∈X

ē(x) = max
x∈X

min
xi∈Nk(x)

{
|g(x) − f(xi)| + Kf ∥x − xi∥

}
.

Proof. Since f is Kf -Lipschitz, we have that ∀x ∈ X and ∀i ∈ {1, . . . , n}

f(xi) − Kf ∥x − xi∥ ≤ f(x) ≤ f(xi) + Kf ∥x − xi∥.

If g(x) ≤ f(xi),

e(x) = |g(x) − f(x)| = f(x) − g(x) ≤ f(xi) − g(x) + Kf ∥x − xi∥,

e(x) ≤ |g(x) − f(xi)| + Kf ∥x − xi∥.

If g(x) ≥ f(xi),

e(x) = |g(x) − f(x)| = g(x) − f(x) ≤ g(x) − f(xi) + Kf ∥x − xi∥,

e(x) ≤ |g(x) − f(xi)| + Kf ∥x − xi∥.

In summary, ∀x ∈ X and ∀i ∈ {1, . . . , n},

e(x) ≤ |g(x) − f(xi)| + Kf ∥x − xi∥.

This inequality holds ∀i ∈ {1, . . . , n} so since ē(x) = min
xi∈Nk(x)

{
|g(x) − f(xi)| + Kf ∥x − xi∥

}
,

∀x ∈ X, e(x) ≤ ē(x).

Finally, since Jg = max
x∈X

e(x),

Jg ≤ max
x∈X

ē(x) = max
x∈X

min
xi∈Nk(x)

{
|g(x) − f(xi)| + Kf ∥x − xi∥

}
,

which concludes the proof.

20

Under review as submission to TMLR

B Appendix: Test Cases and Model Definition

In this section, we provide technical details for our work.

B.1 Lipschitz neural network implementation and training

For all the test cases, the Lipschitz neural networks are built using the library REF, with 1-Lipschitz
orthogonal layers and then a classical linear layer. The Lipschitz constant of the neural network is obtained
by computing the highest eigenvalue of the last layer’s weight matrix. The network is trained using the Adam
optimizer with a learning rate schedule of {10−i}5

i=1 and a batch size of 128. The networks are trained for
1000 epochs with early stopping.

B.2 Sinus and Holder Table Functions

Sinus and Holder table functions are both defined on the domain [−5, 5]2. We sample n = 104 points {xi}n
i=1

uniformly in this domain, evaluate the function f , and then rescale the domain to [0, 1]. We then train a
Lipschitz neural network on the obtained dataset. As a result, the actual function f is a little bit different
from the initial function because of the rescaling.

Sinus function Before the rescaling, the Sinus function is defined as:

f : x, y → sin(x) sin(y), x, y ∈ [−5, 5]2,

and after the rescaling, it is defined as:

f : x, y → sin(10x − 5) sin(10y − 5), x, y ∈ [0, 1]2.

Its lipschitz constant is Kf = 10.

Holder function Before the rescaling, the Holder function is defined as:

f : x, y →
∣∣∣sin(x)cos(y) exp

(∣∣∣1 −
√

x2 + y2

π

∣∣∣)∣∣∣, x, y ∈ [−5, 5]2,

and after the rescaling, it is defined as:

f : x, y →
∣∣∣sin(10x − 5)cos(10y − 5) exp

(∣∣∣1 −
√

(10x − 5)2 + (10y − 5)2

π

∣∣∣)∣∣∣, x, y ∈ [0, 1]2

Its lipschitz constant is Kf = 10.

B.3 Heat Diffusion

f : X ⊂ R6 → R as the stationary solution of the heat equation in two dimensions with 4 Dirichlet boundary
conditions. The heat equation is defined as:

∂f

∂t
= D

(
∂2f

∂x2 + ∂2f

∂y2

)
f(x, 0, t) = b1, f(x, 32, t) = b2, f(0, y, t) = b3, f(32, y, t) = b4

The final solution depends on the boundary conditions but not on the initial state.

The 6 dimensions in X correspond to the two spatial dimensions and the 4 boundary conditions. The function
f returns the temperature over the domain. Specifically, for each set of boundary condition {b1, b2, b3, b4} ∈
[0, 1]4, we run the simulation on a 32 × 32 grid (x, y ∈ [0, 31]2) and collect the value of the temperature at
each cell of the grid, {Ti,j}32

i,j=1, resulting in 32×32 learning points per simulation. We run 5000 simulations
for a total of n = 512 × 104 learning points.

The simulations are run using py-pde Zwicker (2020).

21

Under review as submission to TMLR

B.4 Flow in a Pipe

f : X ⊂ R4 → R as the stationary solution of a vicious flow in a pipe. It is governed by the equation:

∂v
∂t

+ (v · ∇)v = −∇p + ν∆v,

∇ · v = 0,

v(x, 0, t) = (0, 0),
v(x, 32, t) = (0, 0),
v(0, y, t) = (v0, 0).

The 4 dimensions in X correspond to the two spatial dimensions and the two boundary conditions. The
function f returns the pressure and speed along x and y over the domain, but we only consider the speed
along x. Specifically, for each set of parameters {v0, ν} ∈ [0.01, 1] × [0.01, 5], we run the simulation on a
50×32 grid (x, y ∈ [0, 31]×[0, 50]) and collect the value of the temperature at each cell of the grid, {vi,j}50,32

i,j=1,
resulting in 50 × 32 learning points per simulation. We run 2000 simulations for a total of n = 320 × 104

learning points.

The simulations are run using phi-flow Holl et al. (2020).

22

	Introduction
	Related Works
	A Bound for the Error of Lipschitz Approximators
	Setting
	Evaluating Kf and Kg
	Bounding Using Lipschitz Property

	Evaluating the Bound Using Voronoï diagram
	Warm up: Data structured as a Grid
	Random Data Points
	Mixed-random-Grid Data Points
	Experiments

	Bounding as a Certified Deterministic Optimistic Optimization Problem
	Certified Deterministic Optimistic Optimization
	Certified Voronoï Optimistic Optimization
	Experiments

	Limitations and Perspectives
	Conclusion
	Appendix: Proofs
	Proof of Proposition 4.1
	Proof of Proposition 4.7
	Proof of Proposition 5.1

	Appendix: Test Cases and Model Definition
	Lipschitz neural network implementation and training
	Sinus and Holder Table Functions
	Heat Diffusion
	Flow in a Pipe

