
MEADOW: MEMORY-EFFICIENT DATAFLOW AND DATA PACKING FOR LOW
POWER EDGE LLMS

Abhishek Moitra 1 Arkapravo Ghosh 1 Shrey Agarwal 2 Aporva Amarnath 3 Karthik Swaminathan 3

Priyadarshini Panda 1

ABSTRACT
The computational and memory challenges of large language models (LLMs) have sparked several optimization
approaches towards their efficient implementation. While prior LLM-targeted quantization, and prior works on
sparse acceleration have significantly mitigated the memory and computation bottleneck, they do so assuming
high power platforms such as GPUs and server-class FPGAs with large off-chip memory bandwidths and employ
a generalized matrix multiplication (GEMM) execution of all the layers in the decoder. In such a GEMM-based
execution, data is fetched from an off-chip memory, computed and stored back. However, at reduced off-chip
memory capacities, as is the case with low-power edge devices, this implementation strategy significantly increases
the attention computation latency owing to the repeated storage and fetch of large intermediate tokens to and
from the off-chip memory. Moreover, fetching the weight matrices from a bandwidth constrained memory further
aggravates the memory bottleneck problem. To this end, we introduce MEADOW, a framework that significantly
reduces the off-chip memory access for LLMs with a novel token-parallel head-sequential (TPHS) dataflow.
Additionally, MEADOW applies weight packing, that performs loss-less decomposition of large weight matrices
to their unique elements thereby, reducing the enormous weight fetch latency. MEADOW demonstrates 1.5× and
2.5 × lower decode and prefill latency, respectively, compared to a GEMM-based LLM implementation on the
low power Xilinx ZCU102 FPGA platform that consumes less than 10W. Additionally, MEADOW achieves an
end-to-end latency improvement of over 40%, compared to prior LLM optimization works.

1 INTRODUCTION

The explosive growth of large language models (LLMs) ne-
cessitates efficient, low-power hardware solutions to make
them accessible across diverse AI applications (Zhang et al.,
2024; Minaee et al., 2024; Chang et al., 2024). In particular,
there have been several efforts to deploy LLMs across a
swath of applications at the edge, ranging from autonomous
driving systems (Marcu et al., 2023) to mobile device assis-
tants (Murthy et al., 2024). Even though there have been a
few custom ASIC solutions targeting fixed transformer mod-
els (Tambe et al., 2023; Park et al., 2024), their significant
design/verification complexity and the consequent impact
on the time-to-market makes it difficult for them to cater to
the rapidly changing nature of the models and their underly-
ing applications. On the other hand, more general-purpose
CPU/GPU/TPU solutions deployed on the cloud cannot be
replicated on edge devices due to their inherent Size, Weight
and Power (SWaP) limitations.

1Department of Electrical and Computer Engineering, Yale
University, CT, USA 2IIT Roorkee, Roorkee, India; Work done
during internship at Yale 3IBM Research - Yorktown Heights,
Yorktown Heights, NY USA. Correspondence to: Abhishek Moitra
<abhishek.moitra@yale.edu.>.

Data-center scale hardware solutions, like the AMD Alveo
series (alv), leverage high bandwidth memory (HBM) to
handle the intense demands of LLMs, but they also consume
over 200 Watts of power. In contrast, platforms like the Xil-
inx ZCU102 (zcu, a) and Xilinx ZCU104 (zcu, b) offer a
reconfigurable, low-power alternative with a sub-10 Watt
power budget, making them well-suited for exploring the
extensive design space of LLMs, while, balancing power
and performance. However, without HBM, these platforms
face limitations in available memory bandwidth. This con-
straint presents a challenge, as the attention computations
that drive modern LLMs are highly memory-bound. To
mitigate the memory bottleneck in LLMs, techniques like
weight quantization (Xiao et al., 2023; Lin et al., 2024; Xu
et al., 2024) and sparse computation (Huang et al., 2024;
Zhang et al., 2024) have been proposed to reduce data trans-
fer and computational complexity (Wang et al., 2023; Ma
et al., 2023). However, these solutions are largely tailored
for larger GPUs and/or TPUs. Achieving efficient LLM
acceleration on low power-budget devices with restricted
memory, calls for a cohesive approach that combines archi-
tecture optimization, dataflow restructuring, and parameter
compression.

A typical LLM, especially for generative language process-

MEADOW: Memory-efficient Dataflow and Data Packing for Low Power Edge LLMs

Multiple Self-attention Heads Data Fetch Compute Data Store

M
LP

Q

K

V

Q
KT

So
ftm

ax
 (S

M
)

SM
 x

 V

Pr
oj

ec
tio

n
(P

ro
j)

Attention Module(a) (b) (c)
Prefill
Stage

Decode
Stage

(c)

Figure 1. Figure showing the (a) Decoder architecture used in LLMs (b) the prefill latency distribution across data fetch, store and
computation across different layers in the decoder (c) the decode latency distributions. During decode, compute and storage latency is
negligible compared to the weight and input fetch latency. All latency results are based on OPT-125M LLM implementation on the Xilinx
ZCU102 FPGA with off-chip DRAM bandwidth = 12Gbps.

ing, comprises of multiple layers of decoder hierarchy. A
decoder architecture (as shown in Fig. 1a) has self-attention
and matrix multiplication operations. During inference, the
LLM operates in two stages: Prefill and Decode. In the
prefill stage, a user-provided prompt is decomposed into
multiple tokens. These tokens simultaneously undergo ma-
trix multiplications with multi-dimensional weights to yield
Q, K and V outputs. Subsequently, the Q, K and V values
undergo fine-grained spatial correlations by means of SM
(QKT)xV operations in multiple self-attention heads, where
SM denotes a Softmax operation. The attention outputs are
finally projected to higher dimension space by the projection
(Proj) and MLP layers. Post prefill, the LLM enters the
decode stage, where it predicts subsequent output tokens
one-by-one.

In most prior works, the SM (QKT) xV layers are executed
in the form of a generalized matrix multiplication (GEMM)
operation (Zeng et al., 2024; Wang et al., 2023; Huang
et al., 2024). Here, the input matrices for each self-attention
head are fetched from the off-chip memory, processed in
the GEMM array, and the output is stored back to the off-
chip memory. As shown in Fig. 1b, under limited off-chip
memory bandwidth (12 Gbps), this repeated data transfer
significantly increases the latency in the prefill stage, where
larger input sizes exacerbate memory access demands. Dur-
ing the decode stage, however, the input size is much smaller,
reducing compute and data storage overheads to a negligible
fraction, while the weight fetches dominate latency (Fig.
1c). Thus, optimizing on memory accesses through efficient
compute dataflow in both the prefill and decode stages is
essential to reduce the overall latency.

To address the above challenges, we introduce the
MEADOW framework. During the prefill and decode stage,
MEADOW executes the KV, Proj and MLP layers in the
GEMM mode while, the Q, QKT, SM, and SMxV layers
are executed with a novel Token-Parallel Head-Sequential
(TPHS) dataflow which performs effective layer pipelin-

ing and significantly reduces the off-chip data fetches and
storage latency. To further mitigate the latency and band-
width overhead of weight fetches, MEADOW implements
Weight Packing, which compacts the weight matrix by trans-
ferring only its unique elements, significantly minimizing
weight transfer volume. Additionally, MEADOW applies
bit-packing techniques on the weights to maximize memory
bandwidth utilization, enhancing memory efficiency.

The key contributions of our work are as follows:

1. We propose MEADOW that uses a novel Token Parallel
Head Sequential (TPHS) dataflow to compute the SM
(QKT)xV layers in pipeline, significantly reducing the
volume of data transfers to and from off-chip memory.

2. We introduce Weight Packing, a technique that de-
composes LLM weight matrices into unique elements
to minimize weight fetch latency at prefill and de-
code stages. Additionally, to further accelerate weight
fetches and maximize DRAM bandwidth efficiency, we
implement bit-packing to compactly store and transfer
weight data. Weight packing is an approximation-less
technique that yields loss-less accuracy performance.

3. We evaluate MEADOW on the ZCU102 FPGA with
a peak power budget of 10W across varying off-chip
DRAM bandwidths and input token lengths on state-
of-the-art OPT-125M and OPT-1.1B LLM models.
MEADOW achieves 2.5× and 1.5× lower prefill and
decode latency compared to GEMM-based implemen-
tations for 1-6 Gb/s data bandwidth ranges. MEADOW
also achieves over 40% end-to-end latency improve-
ment compared to prior LLM optimization works.

4. We demonstrate the generalizability of MEADOW
across vision transformer (ViT) benchmarks, achieving
1.6× lower inference latency compared to GEMM-
based ViT implementations. We also demonstrate how

MEADOW: Memory-efficient Dataflow and Data Packing for Low Power Edge LLMs

MEADOW can be applied to multiple FPGA configu-
rations with varying PE sizes and memory bandwidth.

2 RELATED WORK

Data compression techniques: Weight and input quanti-
zation is a widely adopted approach for data compression
in LLMs. Works such as SmoothQuant (Xiao et al., 2023),
AWQ (Lin et al., 2024), and LlamaF (Xu et al., 2024) apply
fake quantization methods to lower off-chip data transfers,
and dequantize the compressed inputs and weights during
computation to maintain good accuracy. A recent work
MECLA (Qin et al., 2024) applies a sub-matrix partitioning
technique wherein, different sub-matrices within a larger
matrix is approximated as a function of a base sub-matrix.

Sparse Computations: Sparse computation techniques
leverage the inherent dynamic sparsity of LLMs to reduce
computation. Unstructured sparsity, as implemented in
methods like ELSA (Huang et al., 2024; Fang et al., 2022;
Chen et al., 2023) with N:M sparsity, selectively prunes non-
essential connections, effectively reducing computational
load. FlightLLM (Zeng et al., 2024) implements N:M sparse
computation using FPGA-based accelerators with HBM to
address memory bottlenecks.

Structured pruning addresses the limitations of unstructured
pruning by removing entire blocks or groups of computa-
tions. For example, token compression in CTA (Wang et al.,
2023) reduces memory and compute demands by compress-
ing less critical tokens. Gradient-based pruning, as used in
LLM Pruner (Ma et al., 2023), selectively prunes attention
heads based on gradient information, focusing computa-
tional resources on essential parts of the model. ALISA
(Zhao et al., 2024) focuses on retaining tokens that are cru-
cial towards generating new tokens via a sparse window
attention technique. FACT (Qin et al., 2023) focuses on per-
forming eager computation of attention tokens at minimal
computation overhead and performing sparse computations
for subsequent layers.

Parallel research directions towards designing more hard-
ware efficient transformer architectures are also being de-
veloped. EdgeBERT (Tambe et al., 2021), PIVOT (Moitra
et al., 2024b) and TReX (Moitra et al., 2024a) use entropy
of inputs to perform dynamic voltage scaling, attention skip-
ping and reuse, respectively to achieve hardware efficiency.
FlexLLM (Miao et al., 2024) introduce a unique inference
and parameter-efficient finetuning to achieve efficient yet,
highly accurate LLMs.

MEADOW is an orthogonal solution to prior techniques,
introducing architectural and dataflow innovations along
with weight packing to optimize weight fetch latency. By
restructuring the dataflow and enhancing memory access pat-
terns, MEADOW minimizes latency in retrieving weights,

addressing memory bottlenecks in low memory bandwidth
hardware without sacrificing model accuracy.

3 MEADOW ARCHITECTURE

MEADOW follows a tiled architecture as shown in Fig. 2a
containing multiple processing elements (PEs), modules for
layer normalization (LN), softmax operations (SM) and non-
linear (NL) activation functions, such as, ReLU/GeLU. Each
PE contains several multipliers and accumulators to carry
out the multiply-accumulate operations. For computation,
the input data is fetched from the off-chip DRAM to the In-
put block RAM (BRAM). The raw input values are directly
transferred to the respective input register files (RF) of the
PEs. Since, MEADOW applies an additional weight pack-
ing to reduce off-chip weight fetches, the Weight BRAM
stores the packed and encoded weight values which first
needs to be processed by the Weight Unpacking and Index
Look-up (WILU) Module. The WILU module reads data
from the Weight BRAM and sends the data to the respective
weight RFs of the PEs. The outputs from each PE are stored
back to the output BRAM. All communications between
BRAM and PE, SM, LN and NL modules are enabled by the
network on chip (NoC) interconnect. The NoC additionally
handles data communication between PEs and SM modules
to facilitate the TPHS dataflow, defined in Section 4.

Hybrid PE for GEMM and Pipelined Execution:
MEADOW employs a dual execution strategy: GEMM
mode for the KV, Proj, and MLP layers, and the TPHS
dataflow for the Q, QKT, SM, and SMxV layers, enabling
pipelined execution that minimizes data fetch and store
latency. To support both GEMM and pipelined modes seam-
lessly, MEADOW utilizes a hybrid PE architecture, de-
signed for flexible execution across modes. The PE shown
in Fig. 2b, integrates a multiply-accumulate (MAC) unit,
input, weight, and output register files (RF), along with a
pipeline register (PREG). All RFs and the pipeline registers
are double-buffered to minimize data fetch and store latency
(Moitra et al., 2024b).

For the GEMM mode, data from the input and weight
BRAMs are loaded into the input and weight RF, respec-
tively. These data values are fetched and processed in the
MAC array and the outputs are stored in the output RF. Once
the output RF reaches capacity, the data is transferred to the
output BRAM via the NoC. In contrast, for the pipelined
mode, weights are loaded from the BRAM into the weight
RF while the inputs are fetched directly from the pipeline
register. The Input BRAM remains inactive during the
pipelined mode of operation. After the MAC operation,
the outputs are transferred directly through the NoC to the
pipeline register of a target module (such as the softmax
unit or another PE) in the subsequent pipeline stage.

MEADOW: Memory-efficient Dataflow and Data Packing for Low Power Edge LLMs

PE1 PE2 PE3 PE4

PE5 PE6 PE7 PE8

PE9 PE10 SM1 SM2

LN1 LN1 NL1 NL2

Input
BRAM

Weight
BRAM

Max

EXP Stage

< 𝑚𝑎𝑥

-

EXP LUT

∑ 𝑒!"#$!

÷

Bu
ffe
r

Bu
ffe
r

DIV StageMAX Stage

after F
cycles after F

cycles

Pipeline
register

Pipeline
register

𝑥 𝑒!"#$!
𝑥

𝑚𝑎𝑥

PREG

MAC

GEMM/Pipeline

GEMM/Pipeline

Input RF

Weight RF Output RF

RF: Register File
PREG: Pipeline Reg.

NOC

NOC

Weight
BRAM

Input
BRAM

NOC

NOC PREG

Output
BRAM

(a)

(d)
(b)

WILU

Output
BRAM

+
NOC

PE1-8 – Parallel PE; PE9-10 – Broadcasting PE

Softmax (SM) Module

O
ff-

ch
ip

 D
R

AM

𝑊! 𝑊"𝑊#𝑊$

Input

Parallel MAC PE

x

x
+

x

x
+

+

Broadcasting MAC PE

x

x

x

x

…

…
4 cycles

+

+

+

𝑑%&'(

𝑑%&'(

…

14 13

9

5

1

16

15

14

13

4

3

2

1

8

7

6

5
abda

b

c

d
10

6

2

16

12

8

4

W
ei

gh
t

+
a

a

a
…

…

…

4 cycles
(c)

Figure 2. (a) Tiled architecture of MEADOW containing parallel and broadcasting processing elements (PEs), pipelined softmax (SM)
module, modules for layer normalization (LN) and non-linear activation functions like ReLU/GeLU (NL). (b) The hybrid PE architecture
capable of operating in GEMM and pipelined modes. (c) Architecture and execution flow of a parallel and broadcasting MAC PE. (d) The
pipelined softmax (SM) module.

Parallel and Broadcasting PE: MEADOW’s tiled archi-
tecture contains a mix of Parallel MAC and Broadcasting
MAC PEs (for example PE1-8 = Parallel and PE9-10 are
Broadcasting MAC PEs as shown in Fig. 2a). As shown
in Fig. 2c, both parallel and broadcasting MAC PEs use an
array of multipliers but use different accumulation strate-
gies. The Parallel MAC PE incorporates an adder tree,
allowing it to multiply all elements along the multiplication
dimension (dmult) in a single cycle. In contrast, the Broad-
casting MAC PE features accumulators (registers coupled
with adders), enabling it to broadcast each input element
along dmult across all corresponding output channels and
perform multiplication and accumulation sequentially over
dmult cycles. The Parallel MAC and Broadcasting MAC
PEs are essential for facilitating the TPHS dataflow, de-
scribed in Section 4.

Pipelined Softmax Module (SM Module): The numeri-
cally stable softmax computation of a given token is shown
in Equation 1.

SM =
exi−max

Σiexi−max
(1)

The computation requires three sequential stages: 1) finding
the maximum across all the features in the token, 2) com-
puting the exponent and the summation of all exponents
and, 3) f inally, dividing each exponent value with the ex-
ponent summation. Due to the sequential nature of the soft-
max stages, it is latency intensive. To this end, MEADOW
pipelines the three stages across tokens to improve the soft-
max computation throughput. As shown in Fig. 2d, the SM
Module consists of three pipelined stages MAX, EXP and

DIV. Each stage processes a token feature-by-feature over
F cycles, where F is the number of features in the token.
The MAX stage compares the feature values and returns the
maximum value at the end of F cycles. Subsequently, the
values are written to the EXP stage buffer. In the EXP
stage, the maximum value output from the MAX stage is
subtracted from each feature and the exponent values are
computed. For hardware efficiency, the exponent is com-
puted using the EXP LUT lookup table. Simultaneously,
the exponent values are summed up and are stored in the
DIV stage buffer. Finally, in the DIV stage the exponent
values are fetched from the DIV stage buffer and divided
by the exponent summation value.

4 TPHS DATAFLOW

To overcome the memory bound implementation of Q, QKT,
SM(QKT) and SMxV operation, MEADOW uses the
token parallel head sequential (TPHS) dataflow. The TPHS
dataflow shown in Fig. 3a, pipelines all the computations
for each attention head in parallel across multiple tokens.
In the example in Fig. 3a, we show how attention head
1 (H1) is computed for input tokens IP1 and IP2. The
TPHS dataflow requires the following data from the off-
chip DRAM to be stored before computation- the input
tokens IP1 and IP2 of size 1xD each, the KH1, VH1 pre-
computed values for head H1 of size TxHD, where T and
HD are the total number of input tokens and head dimension,
respectively. Additionally, for the QH1 computation, the
WQ,H1 matrix of dimensions DxHD are required.

MEADOW: Memory-efficient Dataflow and Data Packing for Low Power Edge LLMs

D

HD

HD
1T

… HD

T Cycles T Cycles T Cycles

PE4

PE5

PE6

D

HD

Q1, H1

1T
…
…

T Cycles

PE1

PE2

PE3

D

PE7

HD

…

T

PE8

QKT1, H1

SM
Module

SM1, H1

PE9

SMV1, H1

1T
… HD

KH1

1T
…

QKT
2, H1 SM2, H1

PE10

HD

…

T VH1

SMV2, H1
SM

Module

𝐼𝑃!,#!𝐼𝑃$,#!

𝐼𝑃!,#!𝐼𝑃$,#!

𝐼𝑃!,#!𝐼𝑃$,#!

𝐼𝑃!,#!𝐼𝑃$,#!

𝐼𝑃!,#!𝐼𝑃$,#!

𝐼𝑃!,#!𝐼𝑃$,#!

𝐼𝑃%,#!𝐼𝑃&,#!

𝐼𝑃%,#!𝐼𝑃&,#!

𝐼𝑃%,#!𝐼𝑃&,#!

𝐼𝑃%,#!𝐼𝑃&,#!

𝐼𝑃%,#!𝐼𝑃&,#!

𝐼𝑃!,#$𝐼𝑃$,#$

𝐼𝑃!,#$𝐼𝑃$,#$

𝐼𝑃!,#$𝐼𝑃$,#$

𝐼𝑃!,#$𝐼𝑃$,#$

𝐼𝑃%,#$𝐼𝑃&,#$

𝐼𝑃%,#$𝐼𝑃&,#$

𝐼𝑃%,#$𝐼𝑃&,#$

𝐼𝑃!,#%𝐼𝑃$,#%

𝐼𝑃!,#%𝐼𝑃$,#%𝐼𝑃%,#%𝐼𝑃%,#%

T cycles T cycles T cycles T cycles T cycles T cycles

Q Stage

MAX Stage EXP Stage DIV Stage
SMV StageIP1

IP2

Q2, H1

WQ,H1

(b)(a) Q Stage QKT Stage SM Stage SMV Stage
QKT Stage Expanded SM Stage

Figure 3. Figure showing an example of (a) token parallel head sequential (TPHS) dataflow with two input tokens being processed
parallely (b) The pipelined execution of a transformer with 3 heads (H1-H3) and 4 input tokens (IP1-4).

N
x

3 4
1 4
4 3
0 4
3 0
1 3
4 3
2 3

Unique Matrix

C x Q-bits
0
1
2
3
4

Encoded W
M/C

𝐶!! 𝐶!"
𝐶""𝐶"!

𝐶#! 𝐶#"
𝐶$"𝐶$!

𝐶%! 𝐶%"
𝐶&"𝐶&!

𝐶'! 𝐶'"
𝐶("𝐶(!

C x Q bits Chunk

Weights (W)

Unique Chunks

U
ni

qu
e

C
hu

nk
 ID

s

(a)

Optimization 1: Indexing and Encoding Weight Matrix

x

(c)

Optimization 3: Frequency-aware Reindexing

x

(b)

Optimization 2: Packet-specific Encoding Precision

Encoded W

2 4 1 3 0 4 1 3
3 3 3 0 4 3 4 4

Encoding Precision = log2(5) = 3

1
1
0
0
0
0

1
0
0
1
1
0

1
1
0
0
0
1

1
0
0
0
0
1

0
0
1
1
1
0

0
0
0
0
0
1

0
0
1
1
1
0

0
1
0
1
1
0

8 clock Cycles

1
1
0
0
1
0

1
1
0
0
0
1

1
0
0
0
0
1

0
0
1
1
1
0

0
0
0
0
0
1

1
1
0
1
1
1

7 clock Cycles
Naïve Packing Packet-specific Encoded Precision

1
1
0
0
0
1

1 0 1 0 0 0 0Mode Bità

More data packed

ABCDEFGH

A’B’C’D’E’F’G’

4 1 3 0 2 1 3 0
0 0 0 2 1 0 1 1

1
0
0
0
0
0

1
0
0
1
1
0

0
0
1
0
1
1

1
0
1
0
0
0

0
1
1
0
0
0

0
1
1
1
0
0

6 Clock Cycles

2 4 1 3 0 4 1 3
3 3 3 0 4 3 4 4

0 1 1 1 1 1
Mode Bits

Original Encoded W

Original
Unique Matrix

0
1
2
3
4

Reindexed
Unique Matrix

0
1
2
3
4

Re-arrange chunk IDs
based on frequency

Modified Encoded W

After Frequency-aware
Reindexing

OPT-1.3B

OPT-125M

More Data Packed

Figure 4. Figure showing (a) process of generating the unique matrix and the trends in the reduction ratios for OPT-125M and OPT-1.3B
LLM models across different layers in the decoder. Reduction ratios are averaged across all the decoder layers. (b) packet-specific
encoding precision and (c) frequency-aware reindexing to further optimize the DRAM bandwidth.

IP1 andIP2 are multiplied byWQ,H1 parallelly inPE1-3
and PE4-6, respectively. This results in Q1,H1 and Q2,H1
for the two input tokens. Q1,H1 and Q2,H1 data is sent
to the pipeline registers of PE7 and PE8, respectively
where they are multiplied with T tokens of KH1 resulting
in QKT1,H1 and QKT2,H1 values over T cycles. At each
cycle, the QKT outputs are sent to the MAX stage of soft-
max module which returns the maximum across all the QKT

values at the end of T cycles. Subsequently, these values
are forwarded to the EXP stage and the DIV stage which

finally yield the SM values over T cycles. In Fig. 3a, the
MAX, EXP and DIV stages are combined into SM stage
for simple visualization. The respective softmax outputs
are sent to the pipeline registers of the broadcasting PEs
PE9 and PE10 to compute the SMxV output. Here, the
SM outputs are multiplied with VH1 tokens over T cycles to
yieldSMV1,H1 andSMV2,H1 outputs for both tokens. The
SMV1,H1 and SMV2,H1 outputs are stored to the off-chip
DRAM. As shown in Fig. 3a, each stage requires T clock
cycles.

MEADOW: Memory-efficient Dataflow and Data Packing for Low Power Edge LLMs

Fig. 3b shows an example of the pipelined execution of
TPHS dataflow. Here, we consider a transformer having
3 self-attention heads with 4 tokens and two tokens being
simulatenously processed. Additionally, we show the ex-
panded stages inside the SM module for better visualization.
In the TPHS dataflow, first all H1 self-attention heads are
computed for every input token before proceeding to the
computation of H2. This minimizes the amount of back-
and-forth data transfers of the WQ, K and Vmatrices thereby
minimizing additional latency overhead.

5 WEIGHT PACKING

5.1 Creating the Unique Matrix

Let W be a matrix of trained weight values with dimensions
NxM, where M represents the inner product dimension. As
shown in Fig. 4a, the inner dimension M is divided into
chunks of size C, where each element in C is a Q-bit value
based on the quantization of the weight matrix. Next, as
illustrated in Fig. 4a, a Unique Matrix is generated,
containing the unique chunks, each assigned a unique ID.
These chunk IDs are used to encode the weight matrix,
resulting in the creation of the Encoded W matrix. To
intuitively understand the amount of redundancy in the LLM
weight matrices, we define the reduction ratio as the ratio
between the total number of chunks in the encoded W matrix
(N × M/C) and the number of unique chunks. Higher
reduction ratio signifies more redundancy and vice-versa.
As seen in Fig. 4a, for the decoder weights of OPT-125M
and OPT-1.3B the reduction ratio varies in the order of 102

to 103 suggesting high redundancy in the weight matrices.

5.2 Packet-specific Encoding Precision

To improve the DRAM bandwidth efficiency, multiple el-
ements of the encoded W matrix are grouped together to
form a packet and transferred from the DRAM for process-
ing. As shown in Fig. 4b with naive data packing, all the
packets use the same data precision to represent the encoded
weights. The precision here is determined by the maximum
number of unique chunks in the unique matrix (5 as in the
Fig. 4a). However, using homogeneous bit-precision across
packets lead to inefficiencies, as cycles are wasted transmit-
ting low-precision encoded values that could otherwise be
represented with fewer bits. For example, packets E and F
use 3-bit precision to represent 2-bit numbers.

To this end, we employ packet-specific bit-precision to rep-
resent the encoded values, where each packet is assigned
an optimal precision to maximize packing efficiency. As
depicted in Fig. 4b, employing packet-specific bit-precision
allows low-bit encoded values to be packed together more
effectively, thereby reducing the number of cycles required
for transmission. The encoding precision for each packet is

determined by the maximum encoded value in the respective
packet. Additional mode bits are now used to determine the
bit-precision of each packet (for example 3-bits for packet
A’ and 2-bits for packets E’, G’). Packets with mode
= 0 and mode = 1 use 3-bits and 2-bits to represent the
encoded values, respectively. The mode bits will be used
by the WILU module to unpack the grouped encoded val-
ues. Packet-specific encoding allows packing more data per
packet thereby improving the DRAM bandwidth efficiency.

5.3 Frequency-aware Re-indexing

As illustrated in Fig. 4c, frequently occurring chunk IDs
in the encoded W matrix (e.g., chunk ID = 3) may necessi-
tate higher precision, which can limit the efficiency of bit
packing. In frequency-aware re-indexing, the chunk IDs are
re-assigned to each unique chunk based on their frequency
of occurrence i.e., chunk IDs appearing more frequently are
assigned lower chunk ID. For instance, in the example pre-
sented in Fig. 4c, chunk IDs [0, 1, 2, 3, 4] with frequencies
[2, 2, 1, 6, 5] are re-assigned new chunk IDs [2, 3, 4, 0,
1]. This approach increases the proportion of low-precision
chunk IDs in the encoded W matrix, resulting in efficient bit
packing and thereby reducing transfer cycles. The modified
encoded W and the reindexed unique matrix are transferred
from the DRAM for processing.

5.4 Weight unpacking and Index Look-up Module

d7 d6 d5 d4 d3 d2 d1 d0

d7 d6 d5 d4 d3 d2 d1 d0

d6 d4 d2 d0
d7 d5 d3 d1

d4 d0
d5 d1
d6 d2
d7 d3

Mode = 1

3’b mode

m2 m1 m0

Packed Encodings

Mode = 0

Mode = 2

Unpacked Encodings
Packed Weight

Encodings

MAU Module

Unpacked Encodings

Reindexed Unique
Matrix

Look-up

(a) (b)

Figure 5. (a) The WILU Module (b) The mode-aware unpacking
(MAU) module.

Fig. 5a shows the execution of the WILU module. The
WILU module reads the encoded and packed weight values
from the weight BRAM as discussed in Section 3. A packet
read from the weight BRAM contains mode bits and packed
encoded weight values. The mode aware unpacking (MAU)
module unpacks the packed encodings based on the mode
as shown in Fig. 5b. For example, for an 8-bit packed
encoding, d0 to d7 is unpacked in 1, 2 and 4-bit values for
modes 0, 1 and 2, respectively. The unpacked encodings
are used to look up the reindexed unique matrix to get the
actual weight values that are sent to the weight RF of the
respective PE through the NoC.

MEADOW: Memory-efficient Dataflow and Data Packing for Low Power Edge LLMs

(a) (b)

1.5x ↓

2.5x↓

1.7x ↓
1.57x ↓

1.5x ↓

2x↓

1.6x ↓

1.55x ↓

GEMM 64 Tokens MEADOW 64 Tokens MEADOW 512 TokensGEMM 512 Tokens

Figure 6. Time to first token (TTFT) Comparison of MEADOW with GEMM-based decoder implementation of the (a) OPT-125M and (b)
OPT-1.3B LLM models on the ZCU102 FPGA with varying off-chip DRAM bandwidths. The evaluations are performed with 64 and 512
tokens during the prefill stage.

(a) (b)

1.52x ↓

1.49x↓

1.4x ↓

1.53x ↓

1.46x ↓

1.41x↓

1.41x ↓

1.47x ↓

GEMM 64th Token MEADOW 64th Token MEADOW 512th TokenGEMM 512th Token

Figure 7. Time between tokens (TBT) comparison of MEADOW with GEMM-based decoder implementations of the (a) OPT-125M and
(b) OPT-1.3B LLM models on the ZCU102 FPGA with varying off-chip DRAM bandwidths. For all cases the number of prefill tokens set
to 512. The TBT is then measured for the 64th and 512th predicted token in the decode stage.

6 RESULTS AND ANALYSES

6.1 Experiment Setup

LLM Models and Datasets: For benchmarking
MEADOW, we use the OPT-125M and OPT-1.3B LLM
models (Zhang et al., 2022) finetuned on the LAMBADA
dataset using zero-shot adaptation with Smoothquant (Xiao
et al., 2023) post-training quantization. The weights and
inputs are quantized to 8-bit precision. The 8-bit weight and
input quantized OPT-125M and OPT-1.1B models achieve
60.7% and 69.7% accuracy on the LAMBADA dataset.

Xilinx ZCU102 FPGA Implementation: For hardware
evaluation, we implement the hybrid GEMM-Pipelined ar-
chitecture of MEADOW on the Xilinx ZCU102 FPGA using
the hardware parameters shown in Table 1. The implemen-
tation uses 150K LUT, 845 BRAM and 2034 DSP resources.
To maximize the number of PEs, we utilize both LUTs and
the DSP blocks. Additionally, register files and pipeline
registers are implemented using the LUT-based registers.

GEMM Baseline: To benchmark prefill and decode latency,

Parameter Value
#Parallel & #Broadcasting PEs 84, 12

#Multipliers per PE 64
#SM, #LN & #ReLU Modules 84, 8, 8

Weight, Input & Output BRAM Size 1MB, 1MB & 1MB
Weight, Input & Output RF Size 4KB, 4KB & 4KB

Clock Frequency 100 MHz

Table 1. Hardware Parameter Table for ZCU102 FPGA Evaluation

we use the GEMM baseline. The GEMM baseline is realized
by operating the MEADOW architecture in fully GEMM
mode. Here, all the layers in the decoder Q, K, V, QKT,
SMxV, Proj and MLP are executed in the GEMM mode.
This captures the standard execution pattern that is followed
in all prior LLM optimization works.

Prefill and Decode Latency Measurement: We use time
to first token (TTFT) and time between tokens (TBT) to
measure the prefill and decode latency, respectively. TTFT
measures the time from when a prompt is submitted to
the LLM until the first generated token is produced. It
reflects the initial processing delay to infer the context of
a given prompt by the LLM. TBT measures the latency of

MEADOW: Memory-efficient Dataflow and Data Packing for Low Power Edge LLMs

generating the N th token after the LLM has produced N−1
tokens post the prefill stage (Zhang et al., 2024).

MEADOW Operation Modes: During the prefill and
decode stage, we execute the TPHS dataflow for the
Q+SM(QKT)xV layers and GEMM is used for the re-
maining K, V, Proj and MLP layers. Weight Packing
is applied in both stages. Note, during Decode, there is a
marginal latency speedup with TPHS compared to GEMM
operation for Q+SM(QKT)xV since the input token size
is 1. As we will see later, the decode stage latency gains are
primarily stemming from weight packing.

6.2 Prefill and Decode Latency Improvements

Prefill: Fig. 6a and Fig. 6b compares the TTFT achieved by
MEADOW and GEMM-based OPT-125M and OPT-1.3B
LLM models for varying DRAM bandwidths. At DRAM
bandwidth of 12 Gbps, MEADOW achieves 1.5×-1.7× and
1.5-1.6× for OPT-125M and OPT-1.3B LLMs, respectively
across different number of prefill tokens. At a low DRAM
bandwidth of 1 Gbps, MEADOW achieves 1.57-2.5× and
1.55-2× lower TTFT compared to GEMM implementations
for OPT-125M and OPT-1.3B LLM models, respectively.

Decode: Fig. 7a and Fig. 7b compare the TBT achieved
by MEADOW and GEMM-based approaches on the OPT-
125M and OPT-1.3B LLM models, across varying DRAM
bandwidths. For predicting the 64th and 512th token at 12
Gbps DRAM bandwidth, MEADOW reduces TBT by 1.4-
1.46× and 1.4-1.52× for the OPT-125M and OPT-1.3B mod-
els, respectively. When operating at a constrained DRAM
bandwidth of 1 Gbps, MEADOW achieves a 1.4×-1.47× re-
duction in TBT for the OPT-125M model and a 1.5×-1.53×
reduction for the OPT-1.3B model.

The latency reduction observed in MEADOW for both
prefill and decode stages stems from the targeted opti-
mizations in data fetch and storage cycles. In GEMM-
based implementations, executing the Q+SM(QKT)xV
layers during the prefill stage requires fetching weights
and intermediate values from off-chip DRAM, perform-
ing matrix multiplications, and storing outputs back to
DRAM. These data transfers impose substantial latency,
especially as the size of the intermediate outputs scales di-
rectly with the number of attention heads and prefill stage
tokens. This latency is exacerbated when the DRAM band-
width is constrained (as illustrated in Fig. 8a and Fig.
8b).MEADOW’s TPHS dataflow with pipelined operations
within the Q+SM(QKT)xV layers minimizes the number
of off-chip memory accesses yielding a significant reduc-
tion in latency. For the KV+Proj and MLP layers, where
data fetches are dominated by weight matrix transfers, the
introduction of weight packing further reduces the latency
by decreasing the volume of weight data fetched from the
off-chip DRAM.

(a)

(b)

Data Fetch Compute Data Store

GEMM MEADOW

Figure 8. Prefill latency distribution for data fetch, compute and
storage with 512 tokens at (a) 12 Gbps and (b) 1 Gbps off-chip
DRAM bandwidth. The latency distribution is shown for one
decoder layer of the OPT-125M LLM.

During the decode stage, only a single token is processed at
a time, significantly reducing input fetch and output storage
demands compared to the prefill stage with its large pool
of tokens. This limited data transfer, shown in Fig. 9a and
Fig. 9b, makes weight data fetching the primary bottleneck.
MEADOW is able to reach lower decode latency due to the
weight packing strategy that reduces weight fetch latency.

6.3 Efficacy of the Weight Packing Strategy

Indexing reduces a large weight matrix to unique chunk val-
ues and represents the weight matrix in terms of the unique
chunk IDs. Fig. 10a, analyses the latency improvements
over different packing optimizations for the first MLP layer
weights of decoder 1 of the OPT-125M LLM. The MLP1
weight is decomposed into 1272 unique chunks leading to
a 11-bit encoded W precision. These 11-bit encoded W
values are now grouped together into packets to improve the
DRAM bandwidth efficiency.

As seen in Fig. 10a, with naive packing, a latency improve-
ment of merely 1.4× is achieved as several low-bit precision
encoded W values are represented with 11-bit values. Upon
using packet specific encoding precision, a 1.54× lower
latency is observed as multiple low bit encoded W values
are grouped per packet which reduces the number of data
fetch cycles.

The limited improvements in memory fetch latency with
naive and packet-specific grouping arises due to the frequent

MEADOW: Memory-efficient Dataflow and Data Packing for Low Power Edge LLMs

(a)

(b)

Data Fetch Compute

GEMM MEADOW

Data Store

Figure 9. Decode latency distribution for data fetch, compute and
storage at (a) 12 Gbps and (b) 1 Gbps off-chip DRAM bandwidth
for one decoder layer of the OPT-125M LLM. The latency is shown
for predicting the 64th token with 512 tokens at the prefill stage.
The compute and store latencies are negligibly small compared to
data fetch latency.

1.4x ↓ 1.54x ↓

2.63x ↓

(a)

(b) (c)

Figure 10. (a) Latency comparison of weight matrix transfer for 3
different weight packing optimizations. 1) indexing + naive data
packing (Naive), 2) Indexing + packet specific encoding precision
(Packet specific) and 3) frequency aware re-indexing + packet-
specific encoding precision. (b) Histogram of the unique chunk
IDs (shown for Chunk IDs between 200 and 1000) (c) histogram
of the chunk IDs after performing frequency-aware re-indexing.

occurrence of high-value chunk IDs, which hinders effective
grouping of the encoded W values, as illustrated in Fig.
10b. To this end, frequency-aware reindexing increases
the number of low bit chunk IDs (Fig. 10c) and thereby
improves the packing efficiency leading to 2.63× lower

weight fetch latency.

6.4 Comparison with Prior Works

CTA FlightLLM MEADOW
(Wang et al., 2023) (Zeng et al., 2024) (Ours)

KV, Proj, MLP GEMM GEMM GEMM
Q, SM(QKT)V GEMM GEMM TPHS
Quantization W8A8 W8A8 W8A8

Weight Packing ✗ ✗ ✔

Table 2. Evaluation settings for prior work comparison.

We implement prior state-of-the-art LLM optimization
approaches- CTA (Wang et al., 2023) and FlightLLM (Zeng
et al., 2024) on the MEADOW architecture with implemen-
tation parameters shown in Table 1. As seen in Table 2, CTA
(Wang et al., 2023) and FlightLLM (Zeng et al., 2024) exe-
cute all layers in the decoder in the GEMM mode. For fair-
ness, the activations and weights in all works are maintained
at 8-bit precision. MEADOW is implemented with weight
packing and the TPHS dataflow for the Q+SM(QKT)xV
layers for both prefill and decode stages. The K, V, Proj
and MLP layers are executed in the GEMM mode. Fig.

Data Fetch & Store Compute 12 Gbps 1 Gbps

(a)

(b)

Figure 11. Figure comparing the (a) TTFT and (b) TBT latency of
prior state-of-the-art LLM optimization works with MEADOW at
different off-chip DRAM bandwidths.

11a and Fig. 11b compares the TTFT and TBT latency
of prior works with MEADOW. CTA (Wang et al., 2023)
employs token compression to mitigate data redundancy,
aiming to reduce memory and computational load by pro-
cessing essential tokens only. While this approach decreases
compute cycles, output storage, and input fetch latency
in the Q+SM(QKT)xV layers, the intermediate values
for the remaining significant tokens still require fetching
and storage in off-chip DRAM. Under constrained mem-
ory bandwidth, the latency involved in weight and token
fetch/storage creates a substantial bottleneck, which limits
CTA’s overall benefits during both prefill and decode stages.

FlightLLM (Zeng et al., 2024), on the other hand, lever-
ages unstructured N:M sparse acceleration architecture to

MEADOW: Memory-efficient Dataflow and Data Packing for Low Power Edge LLMs

cut down computations. While unstructured sparsity can
lower compute requirements, it leaves input fetch latency
largely unoptimized, and like CTA, FlightLLM does not ap-
ply any weight packing technique. To mitigate intermediate
storage requirements during Q+SM(QKT)xV operations,
FlightLLM utilizes on-chip storage at decode time. How-
ever, since output storage latency during decode is negligi-
ble, as illustrated in Fig. 11b, weights remain the dominant
bottleneck, restricting overall performance gains.

Evidently, prior methods perform prefill and decode with
unoptimized weight matrix sizes and only partially elimi-
nate intermediate data fetch and storage cycles during the
Q+SM(QKT)xV operations. This partial approach limits
their effectiveness, particularly under low-memory band-
width constraints, where repeated fetches of intermediate
values and weights cause latency bottlenecks. MEADOW
offers architectural support and the TPHS dataflow inno-
vation to completely eliminate the data fetch and storage
latency of the Q+SM(QKT)xV layers. Additionally,
weight packing further reduces the latency of fetching the
weight matrix. This translates to a 40% reduction in the end-
to-end latency with MEADOW compared to FlightLLM and
CTA on ZCU102 FPGA-based OPT-125M implementation.

6.5 Choosing between GEMM & TPHS Dataflow

From Fig. 12a, it is observed that the choice of GEMM
and TPHS dataflow for the Q+SM(QKT)xV layers is de-
pendent on the number of PEs and the off-chip DRAM
bandwidth. For high memory bandwidth scenarios, (BW:51,
PE:14) and (BW:51, PE:96) GEMM is the dataflow choice.
In contrast, TPHS is suitable for low memory bandwidth
configurations (Fig. 12b). This study justifies our frame-
work as a suitable choice for deployment on a range of low
memory capability edge devices.

6.6 ViT Latency Improvements with MEADOW

We also show the generality of MEADOW for ViT mod-
els. Vision transformers (ViTs) process multiple tokens
together like the prefill stage of an LLM. With combined
TPHS/GEMM dataflow and weight packing, MEADOW
achieves 1.5-1.6× lower inference latency on the DeiT-S
and DeiT-B (Touvron et al., 2021) models trained on the Im-
ageNet dataset (Deng et al., 2009) across different off-chip
DRAM bandwidths.

7 CONCLUSION

This work proposes MEADOW- targeting the latency in-
tensive data fetch/store cycles of intermediate outputs and
weights through the TPHS dataflow and Weight Packing
to achieve 1.5× and 2.5× lower decode and prefill latency
compared to GEMM-based implementations. MEADOW is
crafted to achieve low latency LLM execution at highly con-

14 36 48 96

1 38.3 14.7 46.5 45.4
6 18.9 9.5 13.3 12.2

25 10.6 5.8 5.1 3.9
51 9.2 4.4 3.7 2.5

PEs

BW
 (G

bp
s)

GEMM TPHS

(a)

(b)

(BW: 1, PE: 14) (BW: 1, PE: 96)

(BW: 51, PE: 14) (BW: 51, PE: 96)

Figure 12. (a) Table showing optimal dataflow chosen for execut-
ing the Q+SM(QKT)xV layers and the corresponding op-
timal prefill latency obtained for the OPT-125M LLM model.
(b) The roofline plots for different (Bandwidth (BW), PE)
configurations (1,14), (1,96), (51,14) and (51,96).

Figure 13. DeiT-S and DeiT-B ViT inference latency improve-
ments with MEADOW compared to GEMM-based implemen-
tations on the ZCU102 FPGA.

strained off-chip DRAM bandwidths achieving over 40%
end-to-end latency improvement compared to prior LLM
optimization works. Additionally, we demonstrate the ver-
satility of MEADOW by applying it towards ViT implemen-
tations. This typically makes MEADOW suitable for low
power edge applications such as autonomous driving and
mobile chatbots for both vision and NLP tasks.

8 ACKNOWLEDGMENT

This work was supported in part by CoCoSys, a JUMP2.0
center sponsored by DARPA and SRC, the National Sci-
ence Foundation (CAREER Award, Grant #2312366, Grant
#2318152), the DARPA Young Faculty Award and the DoE
MMICC center SEA-CROGS (Award #DE-SC0023198).

MEADOW: Memory-efficient Dataflow and Data Packing for Low Power Edge LLMs

REFERENCES

AMD Alveo™ Adaptable Accelerator Cards. URL
https://www.amd.com/en/products/
accelerators/alveo.html.

Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit,
a. URL https://www.xilinx.com/products/
boards-and-kits/ek-u1-zcu102-g.html.

Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit,
b. URL https://www.xilinx.com/products/
boards-and-kits/zcu104.html.

Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K.,
Chen, H., Yi, X., Wang, C., Wang, Y., et al. A survey on
evaluation of large language models. ACM Transactions
on Intelligent Systems and Technology, 15(3):1–45, 2024.

Chen, Z., Qu, Z., Quan, Y., Liu, L., Ding, Y., and Xie, Y.
Dynamic n: M fine-grained structured sparse attention
mechanism. In Proceedings of the 28th ACM SIGPLAN
Annual Symposium on Principles and Practice of Parallel
Programming, pp. 369–379, 2023.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei,
L. Imagenet: A large-scale hierarchical image database.
In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

Fang, C., Zhou, A., and Wang, Z. An algorithm–hardware
co-optimized framework for accelerating n: M sparse
transformers. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 30(11):1573–1586, 2022.

Huang, N.-C., Chang, C.-C., Lin, W.-C., Taka, E., Mar-
culescu, D., and Wu, K.-C. ELSA: Exploiting Layer-wise
N: M Sparsity for Vision Transformer Acceleration. In
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8006–8015, 2024.

Lin, J., Tang, J., Tang, H., Yang, S., Chen, W.-M., Wang,
W.-C., Xiao, G., Dang, X., Gan, C., and Han, S. AWQ:
Activation-aware weight quantization for on-device LLM
compression and acceleration. Proceedings of Machine
Learning and Systems, 6:87–100, 2024.

Ma, X., Fang, G., and Wang, X. Llm-pruner: On the struc-
tural pruning of large language models. Advances in
neural information processing systems, 36:21702–21720,
2023.

Marcu, A.-M., Chen, L., Hünermann, J., Karnsund, A.,
Hanotte, B., Chidananda, P., Nair, S., Badrinarayanan,
V., Kendall, A., Shotton, J., and Sinavski, O. Lingoqa:
Visual question answering for autonomous driving. arXiv
preprint arXiv:2312.14115, 2023.

Miao, X., Oliaro, G., Cheng, X., Wu, M., Unger, C., and
Jia, Z. Flexllm: A system for co-serving large language
model inference and parameter-efficient finetuning. arXiv
preprint arXiv:2402.18789, 2024.

Minaee, S., Mikolov, T., Nikzad, N., Chenaghlu, M., Socher,
R., Amatriain, X., and Gao, J. Large language models: A
survey. arXiv preprint arXiv:2402.06196, 2024.

Moitra, A., Bhattacharjee, A., Kim, Y., and Panda, P. Trex-
reusing vision transformer’s attention for efficient xbar-
based computing. arXiv preprint arXiv:2408.12742,
2024a.

Moitra, A., Bhattacharjee, A., and Panda, P. Pivot-input-
aware path selection for energy-efficient vit inference.
arXiv preprint arXiv:2404.15185, 2024b.

Murthy, R., Yang, L., Tan, J., Awalgaonkar, T. M., Zhou, Y.,
Heinecke, S., Desai, S., Wu, J., Xu, R., Tan, S., Zhang, J.,
Liu, Z., Kokane, S., Liu, Z., Zhu, M., Wang, H., Xiong,
C., and Savarese, S. Mobileaibench: Benchmarking llms
and lmms for on-device use cases, 2024. URL https:
//arxiv.org/abs/2406.10290.

Park, S.-S., Kim, K., So, J., Jung, J., Lee, J., Woo, K., Kim,
N., Lee, Y., Kim, H., Kwon, Y., et al. An lpddr-based cxl-
pnm platform for tco-efficient inference of transformer-
based large language models. In 2024 IEEE International
Symposium on High-Performance Computer Architecture
(HPCA), pp. 970–982. IEEE, 2024.

Qin, Y., Wang, Y., Deng, D., Zhao, Z., Yang, X., Liu, L.,
Wei, S., Hu, Y., and Yin, S. Fact: Ffn-attention co-
optimized transformer architecture with eager correlation
prediction. In Proceedings of the 50th Annual Interna-
tional Symposium on Computer Architecture, pp. 1–14,
2023.

Qin, Y., Wang, Y., Zhao, Z., Yang, X., Zhou, Y., Wei, S.,
Hu, Y., and Yin, S. Mecla: Memory-compute-efficient
llm accelerator with scaling sub-matrix partition. In
2024 ACM/IEEE 51st Annual International Symposium
on Computer Architecture (ISCA), pp. 1032–1047. IEEE,
2024.

Tambe, T., Hooper, C., Pentecost, L., Jia, T., Yang, E.-
Y., Donato, M., Sanh, V., Whatmough, P., Rush, A. M.,
Brooks, D., et al. Edgebert: Sentence-level energy op-
timizations for latency-aware multi-task nlp inference.
In MICRO-54: 54th Annual IEEE/ACM International
Symposium on Microarchitecture, pp. 830–844, 2021.

Tambe, T., Zhang, J., Hooper, C., Jia, T., Whatmough,
P. N., Zuckerman, J., Dos Santos, M. C., Loscalzo, E. J.,
Giri, D., Shepard, K., et al. 22.9 a 12nm 18.1 tflops/w
sparse transformer processor with entropy-based early

https://www.amd.com/en/products/accelerators/alveo.html
https://www.amd.com/en/products/accelerators/alveo.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://www.xilinx.com/products/boards-and-kits/zcu104.html
https://arxiv.org/abs/2406.10290
https://arxiv.org/abs/2406.10290

MEADOW: Memory-efficient Dataflow and Data Packing for Low Power Edge LLMs

exit, mixed-precision predication and fine-grained power
management. In 2023 IEEE International Solid-State
Circuits Conference (ISSCC), pp. 342–344. IEEE, 2023.

Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles,
A., and Jégou, H. Training data-efficient image transform-
ers & distillation through attention. In International con-
ference on machine learning, pp. 10347–10357. PMLR,
2021.

Wang, H., Xu, H., Wang, Y., and Han, Y. Cta: Hardware-
software co-design for compressed token attention mech-
anism. In 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA), pp. 429–
441. IEEE, 2023.

Xiao, G., Lin, J., Seznec, M., Wu, H., Demouth, J., and Han,
S. Smoothquant: Accurate and efficient post-training
quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099.
PMLR, 2023.

Xu, H., Li, Y., and Ji, S. Llamaf: An efficient LLAMA2
architecture accelerator on embedded FPGAs. arXiv
preprint arXiv:2409.11424, 2024.

Zeng, S., Liu, J., Dai, G., Yang, X., Fu, T., Wang, H., Ma,
W., Sun, H., Li, S., Huang, Z., et al. Flightllm: Efficient
large language model inference with a complete mapping
flow on fpgas. In Proceedings of the 2024 ACM/SIGDA
International Symposium on Field Programmable Gate
Arrays, pp. 223–234, 2024.

Zhang, H., Ning, A., Prabhakar, R. B., and Wentzlaff, D.
LLMCompass: Enabling Efficient Hardware Design for
Large Language Model Inference. In 2024 ACM/IEEE
51st Annual International Symposium on Computer Ar-
chitecture (ISCA), pp. 1080–1096. IEEE, 2024.

Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M.,
Chen, S., Dewan, C., Diab, M., Li, X., Lin, X. V.,
et al. Opt: Open pre-trained transformer language models.
arXiv preprint arXiv:2205.01068, 2022.

Zhao, Y., Wu, D., and Wang, J. Alisa: Accelerating large
language model inference via sparsity-aware kv caching.
arXiv preprint arXiv:2403.17312, 2024.

