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 Image reconstruction is an inverse problem that solves for a 

computational image based on sampled sensor measurement. 

Sparsely sampled image reconstruction poses addition challenges 

due to limited measurements. In this work, we propose an implicit 

Neural Representation learning methodology with Prior 

embedding (NeRP) to reconstruct a computational image from 

sparsely sampled measurements. The method differs 

fundamentally from previous deep learning-based image 

reconstruction approaches in that NeRP exploits the internal 

information in an image prior, and the physics of the sparsely 

sampled measurements to produce a representation of the 

unknown subject. No large-scale data is required to train the 

NeRP except for a prior image and sparsely sampled 

measurements. In addition, we demonstrate that NeRP is a general 

methodology that generalizes to different imaging modalities such 

as CT and MRI. We also show that NeRP can robustly capture the 

subtle yet significant image changes required for assessing tumor 

progression.   

I. INTRODUCTION 

MAGE reconstruction is conventionally formulated as an 

inverse problem, with the goal of obtaining the computational 

image of an unknown subject from measured sensor data. For 

example, projection data are measured for computed 

tomography imaging (CT) while frequency domain (k-space) 

data are sampled for magnetic resonance imaging (MRI). To 

reconstruct artifact-free images, dense sampling in 

measurement space is required to satisfy the Shannon-Nyquist 

theorem. However, in many practical applications it would be 

desirable to reconstruct images from sparsely sampled data. 

One important application is reducing radiation dose in CT 

imaging. Another application is accelerating MRI. The ill-

posed nature of the sparse sampling image reconstruction 

problem poses a major challenge for algorithm development. 

Many approaches have been studied to solve this problem. One 

widely used approach is to exploit prior knowledge of the 

sparsity of the image in a transform domain, such as in 

compressed sensing, where total-variation, low-rank, and 

dictionary learning have been applied [1]-[7]. 

Unprecedented advances in deep learning driven by learning 

from large-scale data have achieved impressive progress in 

many fields, including computational image reconstruction. 

Many researchers have introduced deep learning models for 

medical imaging modalities such as CT and MRI [8], [9]. The 

key to these deep learning approaches is training convolutional 

neural networks (CNNs) to learn the mapping from raw 

measurement data to the reconstructed image by exploiting the 

large-scale training data. The network exploits the hidden 

transformation information embedded in the data through the 

data-driven training procedure. More advanced methods have 

improved the conventional deep learning reconstruction by 

leveraging prior knowledge from other aspects, such as 

generative adversarial model [10], [11] and geometry-

integrated deep learning frameworks [12]-[15]. Previous works 

have demonstrated the effectiveness of explicitly incorporating 

physics and geometry priors of imaging system with deep 

learning [12], [15]. 

 Although these works show the advantage of deep learning 

for medical image reconstruction, they have also exposed some 

limitations. For example, the acquisition of large-scale training 

data sets can be a bottleneck, the reconstructions may not be 

robust when deployed to unseen subjects, the reconstructions 

can be unstable with subtle yet significant structural changes 

such as tumor growth, and there can also be difficulties 

generalizing to different image modalities or anatomical sites 

[16]. To address these limitations, we propose a new insight for 

deep learning methodology for image reconstruction. We 

propose to learn the implicit Neural Representation of an image 

with Prior embedding (NeRP), instead of learning the 

reconstruction mapping. This is an essentially different 

perspective from previous deep learning-based reconstruction 

methods. 
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Fig. 1. Framework of implicit neural representation learning with prior embedding (NeRP) for image reconstruction.  
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Conventionally, a neural network is trained to learn the 

mapping from the sampled measurement data to reconstruct 

images based on a large-scale training database. The proposed 

NeRP model learns the network, i.e. multi-layer perceptron 

(MLP), to map the image spatial coordinates to the 

corresponding intensity values. The neural network learns the 

continuous implicit neural representation of the entire image by 

encoding the full image spatial field into the weights of MLP 

model [17], [18]. The image reconstruction problem is 

transformed into a network optimization problem. For sparse 

sampling, the measurements may not provide sufficient 

information to precisely reconstruct images of the unknown 

subject due to the ill-posed nature of the inverse problem. The 

proposed NeRP framework exploits prior knowledge from a 

previous image for the same subject. This is particularly 

applicable to clinical protocols where patients are scanned 

serially over time, such as monitoring tumor response to 

therapy. The implicit neural representation first embeds the 

internal information of the prior image into the weights of MLP. 

Note that NeRP requires no training data form external subjects 

except for the sparsely sampled measurements and a prior 

image of the subject. 

The main contributions of this work are: 

1) We present a novel deep learning methodology for 

sparsely sampled medical image reconstruction by learning the 

implicit neural representation of image with prior embedding 

(NeRP). Our method requires no training data from external 

subjects and can be easily generalized across different imaging 

modalities and contrasts, and different anatomical sites. 

2) We propose a prior embedding method in implicit neural 

representation learning by encoding internal information of the 

prior image into network parameters as the initialization of 

network optimization, which enables sparsely sampled image 

reconstruction. 

3) We present extensive experiments for both 2D and 3D 

image reconstruction with various imaging modalities, 

including CT and MRI, and demonstrate the effectiveness and 

generalizability of the proposed NeRP method. In particular, we 

show that our method is robust for capturing subtle yet 

significant structural changes such as those due to tumor 

progression. 

II. METHOD 

Fig. 1 illustrates the basic concept of the proposed implicit 

neural representation learning with prior embedding (NeRP) for 

image reconstruction. NeRP contains three modules to obtain 

the final reconstruction images. First, a prior image from earlier 

scan of the same subject is embedded as the implicit neural 

representation by encoding the entire spatial image field into 

the network’s parameters. Specifically, the network is 

optimized to seek the continuous function that could precisely 

map the spatial coordinates to corresponding intensity values in 

the prior image. Next, using the prior-embedded network as the 

initialization, we aim to learn the neural representation of the 

target reconstruction image from the subsampled measurements 

of an unknown subject without any ground truth, as shown in 

Fig. 1(b). The differentiable forward model corresponding to 

the imaging system (e.g. Radon transform for CT imaging or 

Fourier transform for MRI imaging) is integrated to bridge 

between image space and sensor space. In this way, the network 

is optimized in the continuous function space of the network’s 

parameters, with the constraints of the subsampled 

measurements from the unknown subject. Finally, the 

reconstructed image can be obtained by inferring the trained 

network across all the spatial coordinates in the image field. 

A. Problem Formulation 

To formulate the inverse problem for computational image 

reconstruction, the forward process of imaging system can be 

modeled as: 𝑦 = 𝐴𝑥 + 𝑒 , where 𝑥 is the image of the unknown 

subject while 𝑦 is the sampled sensor measurements. Matrix 𝐴 

represents the forward model of the imaging system, and 𝑒 is 

the acquisition noise.  

 Image reconstruction aims to recover the computational 

image 𝑥  of the unknown subject, given the measurements 𝑦 

from sensors. In the sparsely sampled image reconstruction  

problem, the measurements 𝑦 are undersampled in sensor space 

for either accelerated acquisition, as in MRI, or reduction of 

radiation, as in CT. The inverse problem for sparse sampling is 

ill-posed, and is typically formulated as an optimization 

problem with regularization:  𝑥∗ = argmin 
𝑥

ℰ(𝐴𝑥, 𝑦) + 𝜌(𝑥) 

where ℰ(𝐴𝑥, 𝑦)  is the data term, which measures the errors 

between 𝐴𝑥 and 𝑦, so as to guarantee the data consistency with 

the sensor measurements. Function ℰ can be different distance 

metrics such as L1 or L2 norm. 𝜌(𝑥) is the regularizer term 

characterizing the generic image prior. The regularizer 𝜌(𝑥) 

can be determined in many different ways to capture various 

image characteristics. For example, total variation of the image 

enforces smoothness, while sparsity in a transform domain is 

used in compressed sensing. 

B. Neural Representation for Image 

In implicit neural representation learning, the image is 

represented by a neural network as a continuous function. The 

network ℳ𝜃  with parameters 𝜃  can be defined as: ℳ𝜃 : 𝑐 →
𝑣    𝑤𝑖𝑡ℎ   𝑐 ∈ [0,1)𝑛, 𝑣 ∈ ℝ , where the input 𝑐  is the 

normalized coordinate index in the image spatial field, and the 

output 𝑣 is the corresponding intensity value in the image. The 

network function ℳ𝜃  maps coordinates to the image 

intensities, which actually encodes the internal information of 

entire image into the network parameters. Thus, network 

structure ℳ𝜃  with the parameters 𝜃  is also regarded as the 

neural representation for the image. Note that, theoretically, a 

random image in any modality or in any dimension 𝑥 ∈ ℝ𝑛can 

be parameterized by the network using this method. Below we 

introduce the specific network structure used in our method. 

1) Fourier Feature Embedding  

Since Fourier features are shown to be effective for networks 

to learn high-frequency functions [20], we use a Fourier feature 

mapping 𝛾 to encode the input coordinates 𝑐 before applying 

them to the coordinate-based network. Thus, the encoded 

coordinates are: 𝛾(𝑐) = [cos(2𝜋𝐵𝑐),  sin(2𝜋𝐵𝑐)] 𝑇   ,              
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where matrix 𝐵 represents the coefficients for Fourier feature 

transformation. Following [20], entries of matrix 𝐵 are sampled 

from Gaussian distribution 𝒩(0, 𝜎2) , where 𝜎  is a 

hyperparameter characterizing the standard deviation of the 

prior distribution. After the Fourier feature embedding, the 

input to the network ℳ𝜃 is the encoded coordinates 𝛾(𝑐).  

2) Multi-Layer Perceptron Network  

The network ℳ𝜃 is implemented by a deep fully-connected 

network or multi-layer perceptron (MLP). The coordinate-

based MLP parameterizes the continuous function to represent 

the entire image. This function is defined by the network 

structure as well as the network parameters. In the next section, 

we will describe in detail how to obtain the network parameters 

through optimization. For the network structure, the model 

depth and width of MLP are hyper-parameters, characterizing 

the representative capability of the MLP model. Moreover, we 

use the periodic activation functions in our MLP model after 

each fully-connected layer, which are demonstrated to 

effectively represent fine details in signals [21]. 

C. NeRP for Sparsely Sampled Image Reconstruction 

Next, we introduce how the proposed implicit neural 

representation learning with prior embedding (NeRP) is used to 

solve image reconstruction problem. The goal is to recover the 

image 𝑥  of the target subject, given corresponding sparsely 

sampled measurements 𝑦 and a prior image 𝑥𝑝𝑟. Note that 𝑥𝑝𝑟 

and 𝑥 are different scans for the same subject, but at different 

time points. These capture the changing state of the subject such 

as tumor progression for monitoring therapy response. 

1) Prior Embedding 

In the first step, we embed the prior image 𝑥𝑝𝑟  into the 

network. We use the coordinate-based MLP ℳ𝜙  introduced in 

Sec.III.B to map the spatial coordinates to corresponding 

intensity values in prior image 𝑥𝑝𝑟 . That is, ℳ𝜙: 𝑐𝑖 → 𝑥𝑖
𝑝𝑟

, 

where 𝑖  denotes the coordinate index in image spatial field. 

Given all the coordinate-intensity pairs in prior image 

{𝑐𝑖 , 𝑥𝑖
𝑝𝑟}

𝑖=1

𝑁
 with a total of 𝑁 pixels in the image, the randomly-

initialized MLP is optimized based on the objective: 

𝜙∗ = argmin 
𝜙

1

𝑁
∑ ‖ℳ𝜙(𝑐𝑖) − 𝑥𝑖

𝑝𝑟
‖

2

2𝑁
𝑖=1                (1) 

After optimization, the internal information of prior image 𝑥𝑝𝑟 

is encoded into the MLP network ℳ𝜙∗ with the corresponding 

network parameters 𝜙∗. For clarity, we use ℳ𝑝𝑟 to denote the 

prior-embedded MLP network, i.e. 𝑥𝑝𝑟 = ℳ𝜙∗ = ℳ𝑝𝑟. 

2) Network Training  

Given the prior-embedded MLP ℳ𝑝𝑟 and measurements 𝑦, 

we train the network to learn the neural representation of the 

target image. Based on the formulation in Eq. (2), the unknown 

target image 𝑥 is parametrized by a coordinate-based MLP ℳ𝜃 

with parameters 𝜃 . Thus, the data term is defined as 

min 
𝑥

ℰ(𝐴𝑥, 𝑦) =  min 
𝜃

ℰ(𝐴ℳ𝜃 , 𝑦) , where the optimization in 

image space is transformed to the optimization in the space of 

MLP’s parameters. Furthermore, the regularizer 𝜌(𝑥)  is 

replaced by the implicit image priors from network 

parametrization, including the internal information from prior 

image embedded in ℳ𝑝𝑟  as well as the low-level image 

statistics prior captured by network structure itself ℳ𝜃  [24]. 

Thus, the optimization objective in Eq. (2) can be formulated as 

follows: 

𝜃∗ = argmin 
𝜃

ℰ(𝐴ℳ𝜃 , 𝑦; ℳ𝑝𝑟),      𝑥∗ =  ℳ𝜃∗       (2) 

The network ℳ𝜃  is trained by minimizing the L2-norm loss, 

which is initialized by the prior-embedded network ℳ𝑝𝑟. Note 

that forward model 𝐴 is adapted to the corresponding imaging 

system, such as Radon transform for CT imaging and Fourier 

transform for MRI imaging. The operation 𝐴 is differentiable, 

which enables training the network ℳ𝜃  in an end-to-end 

fashion. 

3) Image Inference  

Finally, after the network is well trained, the reconstruction 

image can be generated by inferring the trained network across 

all the spatial coordinates in the image field. That is: 

𝑥∗: {𝑐𝑖, ℳ𝜃∗(𝑐𝑖)}𝑖=1
𝑁 , where 𝑖 denotes the coordinate index in 

image spatial field. This is denoted in short as 𝑥∗ =  ℳ𝜃∗ in 

Eqs. (6) and (7). Filling the intensity values at all the 

coordinates in image grid constitutes the final reconstruction 

image 𝑥∗.  

 
Fig. 2. Results of 2D CT image reconstruction for pancreas 4D CT data using 20 projections. The first row shows the ground truth cross-sectional 2D slices at 

the same location over 10 phases in the pancreas 4D CT, where each column demonstrates one phase respectively. The final row shows the reconstruction images 

at different phases respectively by using the proposed NeRP method, where the phase-1 image is used as the prior image for reconstructing the images in phase 

2 ~ 10. For comparison, the second row shows the reconstruction results without using the prior embedding. 
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III. EXPERIMENTS AND RESULTS 

 To evaluate the proposed NeRP method, we conducted 

experiments for 2D/3D CT and MRI image reconstruction with 

sparsely sampling. For CT image reconstruction we assume 20 

projections equally distributed across a semi-circle. We 

compute parallel-beam projections for 2D CT and cone-beam 

projections for 3D CT. For MRI image reconstruction, 40 radial 

spokes are sampled in k-space with golden angle as the angular 

interval. Beyond sparsely-sampled measurements data, a prior 

image from an earlier scan is also given. Since the prior image 

and reconstruction image are of the same patient at different 

time points, the prior image can provide useful information 

about the patient’s anatomic structure while still allowing 

crucial structural and functional differences such as tumor or 

lesion changes. We will show the experimental results applying 

NeRP for 2D/3D CT and MRI image reconstruction with 

various image contrasts and at various anatomical sites. The 

experiments datasets contain: (1) a pancreas 4D CT with 10 

phases (phase 1 as the prior image); (2) two clinical patient 

cases including a head and neck CT case and a lung CT case, 

where each case has two longitudinal 3D CT images scanned 

for the same patient during radiation therapy (earlier CT as the 

prior image); (3) brain tumor regression MRI dataset: for each 

patient with primary newly diagnosed glioblastoma, there are 

two MRI exams within 90 days following chemo-radiation 

therapy completion and at tumor progression (set the first MRI 

exam as the prior image). 

A. Experiments on CT Image Reconstruction 

In Fig. 2, we show the 2D CT reconstruction results for phase 

2 to phase 10 using the proposed NeRP algorithm by using 

phase 1 as prior image. The reconstructed images can precisely 

capture the continuous changes with fine detail over different 

phases, although the same prior image is used and only sparse 

projections are sampled for reconstructing the target image in 

each phase. For comparison, we conducted experiments to 

show the results of other reconstruction methods including 

filtered back projection (FBP) and Gaussian random Fourier 

feature (GRFF) [20]. Going beyond 4D CT data, we also 

evaluated the clinical radiation therapy patient data with both 

head and neck CT and lung CT. The quantitative results for 3D 

CT reconstruction evaluated by PSNR and SSIM metrics are 

reported in Table I on different anatomic sites with all 

comparison methods.  

B. Experiments on MRI Image Reconstruction 

We conducted experiments to evaluate the proposed method 

for MRI image reconstruction. Appendix Fig. S1 demonstrates 

2D MRI reconstruction results for multi-contrast MR images. 

We can see the reconstructed images from sparsely subsampled 

k-space data can accurately capture the fine detailed structures 

especially in the tumor region, which differs from that in the 

prior image. Quantitative results of 3D MRI image 

reconstruction evaluated by PSNR and SSIM metrics are 

reported in Table II for different image contrasts including T1, 

T1c, T2 and FLAIR. The reconstruction results indicate that our 

method is able to reconstruct the precise changes in brain tumor 

region even with sparsely sampled k-space data, which is 

crucial for clinical diagnosis and cancer treatment.  

IV. CONCLUSION 

In this work, we propose a new deep learning-based medical 

image reconstruction methodology by learning implicit neural 

representations with prior embedding (NeRP), which 

efficiently incorporates the prior knowledge and learns to 

reconstruct the target image through implicit neural 

representations. Through the experiments for 2D/3D MRI and 

CT image reconstruction, we show that the proposed NeRP 

algorithm is able to provide high-quality reconstruction images 

even with sparsely sampled measurements data. The NeRP 

approach possesses a number of unique advantages: (1) requires 

no training data from external subjects for developing 

networks; (2) accurate reconstruction of small and detailed 

changes such as anatomic structure or tumor progression; (3) 

broad applicability to different body sites, different imaging 

modalities and different patients.  

 

TABLE II 

RESULTS OF 3D MRI IMAGE RECONSTRUCTION  

USING 30 / 40 / 50 RADIAL SPOKES FOR DIFFERENT IMAGE CONTRASTS 

Methods T1 T1c T2 FLAIR 

Spokes = 30 

Adjoint NUFFT 20.91 / 0.63 21.68 / 0.63 19.55 / 0.57 19.77 / 0.58 

GRFF [20] 27.98 / 0.90 27.67 / 0.88 25.66 / 0.85 25.98 / 0.86 

NeRP w/o prior 27.49 / 0.85 27.82 / 0.87 25.91 / 0.85 26.87 / 0.88 

NeRP (ours) 28.43 / 0.90 29.06 / 0.92 26.86 / 0.90 27.52 / 0.90 

Spokes = 40 

Adjoint NUFFT 21.30 / 0.66 22.05 / 0.67 20.17 / 0.62 20.23 / 0.61 

GRFF [20] 28.18 / 0.90 28.11 / 0.89 25.67 / 0.85 25.99 / 0.86 

NeRP w/o prior 29.70 / 0.92 29.29 / 0.91 27.59 / 0.91 27.54 / 0.90 

NeRP (ours) 31.75 / 0.96 30.53 / 0.94 28.73 / 0.93 29.07 / 0.93 

Spokes = 50 

Adjoint NUFFT 21.40 / 0.68 22.26 / 0.69 20.42 / 0.64 20.49 / 0.64 

GRFF [20] 28.50 / 0.91 27.59 / 0.88 25.23 / 0.85 25.90 / 0.87 

NeRP w/o prior 30.65 / 0.94 29.26 / 0.91 28.40 / 0.92 27.68 / 0.90 

NeRP (ours) 32.55 / 0.96 31.37 / 0.95 30.13 / 0.95 30.02 / 0.94 

Evaluation metric: PSNR / SSIM values are reported. 

PSNR (dB), peak signal noise ratio; SSIM, structural similarity. 

 

TABLE I 

RESULTS OF 3D CT IMAGE RECONSTRUCTION  
USING 5 / 10 / 20 PROJECTIONS ON DIFFERENT ANATOMICAL SITES 

Methods Pancreas CT HeadNeck CT Lung CT 

Projections = 10 

FBP 17.95 / 0.461 23.05 / 0.653 21.49 / 0.597 

GRFF [20] 28.07 / 0.855 29.38 / 0.864 27.80 / 0.835 

NeRP w/o prior 28.88 / 0.850 30.40 / 0.858 30.98 / 0.880 

NeRP (ours) 37.66 / 0.981 36.92 / 0.976 32.73 / 0.941 

Projections = 20 

FBP 18.23 / 0.610 23.42 / 0.750 21.74 / 0.717 

GRFF [20] 29.27 / 0.893 32.56 / 0.931 32.75 / 0.935 

NeRP w/o prior 32.41 / 0.927 32.59 / 0.920 32.86 / 0.929 

NeRP (ours) 39.06 / 0.986 38.81 / 0.985 36.52 / 0.972 

Projections = 30 

FBP 18.31 / 0.650 23.54 / 0.773 21.83 / 0.7443 

GRFF [20] 31.53 / 0.932 32.34 / 0.927 33.13 / 0.942 

NeRP w/o prior 33.88 / 0.953 33.53 / 0.942  33.97 / 0.951 

NeRP (ours) 39.65 / 0.987 39.50 / 0.987 37.66 / 0.980 

Evaluation metric: PSNR / SSIM values are reported. 

PSNR (dB), peak signal noise ratio; SSIM, structural similarity. 
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Fig. S1. Results of 2D MRI image reconstruction for multi-contrast MRI data using 40 radial spokes. The first and second rows show the 2D MRI images of the 

prior image (first exam) and the target image (second exam) for four image contrasts (T1, T1c, T2, FLAIR). The third and fourth rows show the reconstruction 

results by using the proposed NeRP method as well as the ablation study without using prior embedding. By zooming in the tumor regions, the last three rows 

show the cropped sub-images of the tumor regions corresponding to the images in the second, third, and fourth rows, respectively.  
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