

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 IMPROVING ATTRIBUTED LONG-FORM QUESTION ANSWERING WITH INTENT AWARENESS

Anonymous authors

Paper under double-blind review

ABSTRACT

Large language models (LLMs) are increasingly being used to generate comprehensive, knowledge-intensive reports. However, while these models are trained on diverse academic papers and reports, they are not exposed to the reasoning processes and intents that guide authors in crafting these documents. We hypothesize that enhancing a model’s intent awareness can significantly improve the quality of generated long-form reports. We develop and employ structured, tag-based schemes to elicit underlying intents more effectively for writing or citation. We demonstrate that these extracted intents enhance both zero-shot generation capabilities in LLMs and enable the creation of high-quality synthetic data for fine-tuning smaller models. Our experiments show improved performance across various challenging scientific report generation tasks, with an average improvement of +2.9 and +12.3 absolute points for large and small models over baselines, respectively. Furthermore, our analysis illuminates how intent awareness enhances model citation usage and substantially improves report readability.

1 INTRODUCTION

Recent advances in LLMs have fueled growing interest in building deep research systems that analyze information from various sources and produce a detailed report (DeepMind, 2025; OpenAI, 2025; Skarlinski et al., 2024; Yang et al., 2024; Singh et al., 2025). Unlike older question answering systems, which focus on retrieving a few relevant documents to produce concise answers to specific questions, deep research systems aim to gather dozens or even hundreds of sources and organize them into a coherent report. These often lengthy reports demand more than simply aggregating retrieved content. They require careful organization of retrieved content, structured argumentation that weaves evidence into a coherent narrative, and proper attribution.

In this work, we argue that deep research systems can benefit from strategies humans use during the process of sensemaking (Pirolli & Card, 2005) and writing (Flower & Hayes, 1981). Humans write with *intent*—every paragraph and sentence serves a particular purpose (Lauscher et al., 2022). Much of this intent remains invisible in the final text, though its role is measurable through observation: in a recent study recorded scholars writing on Overleaf (Wang et al., 2025a) showed nearly 10% of keystrokes were devoted to outlining, planning, and organization. These high-level intents, though essential for guiding the writing process, are not preserved in the final written texts and thus remain absent from data used to train language models. Therefore, models learn to mimic human writing style but don’t explicitly model the thought process that goes into writing.

In this work, we explore whether incorporating intent awareness helps language models generate better quality text, especially for scientific deep research tasks. Specifically, we propose an intent-aware writing framework that consists of intents at two levels—paragraphs and citations in sentences. These intents are represented in a tag-based format inspired by STaR (Zelikman et al., 2022) and ToW (Xu et al., 2025), which also includes an intent type and a natural language rationale (see Figure 1 for an example). For citation intents, we identify fine-grained types from literature on citation intent classification (Teufel et al., 2006; Jurgens et al., 2018; Cohan et al., 2019; Lauscher et al., 2022). We adopt the six-category framework from ACL-ARC (Jurgens et al., 2018), which includes categories such as *Background*, *Motivation*, and *Uses*. For paragraph intents, we draw fine-grained types from well-established discourse modes that capture the functional purpose of

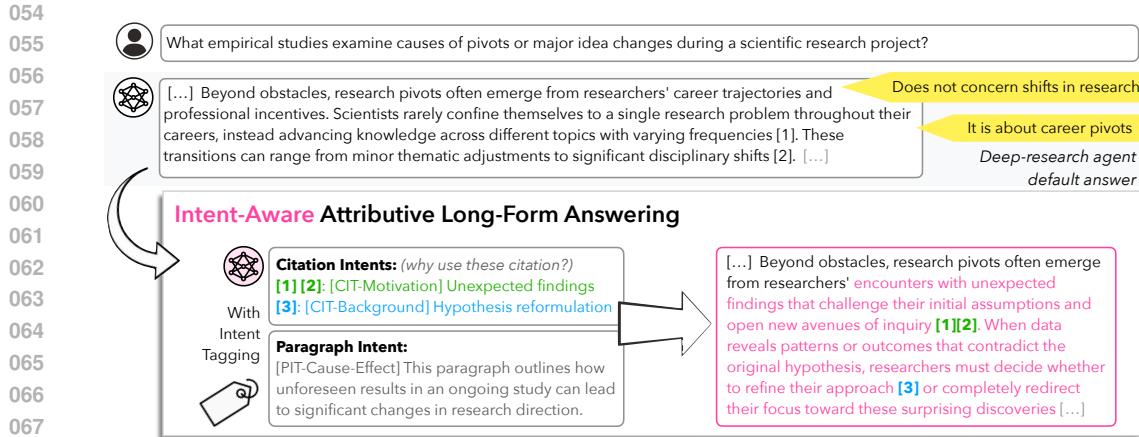


Figure 1: Current long-form question answering systems don't consider intents when generating responses. The figure above shows how having explicit citation intents and paragraph intents helps reason about the text and generate better responses.

writing (Smith, 2003; Song et al., 2017), with categories such as *Exposition*, *Definition*, *Compare and Contrast*, *Problem-solution*, and etc.

We explore the effectiveness of our intent-aware writing framework in improving the performance of scientific deep research systems (Singh et al., 2025), when incorporated during inference as well as training. At inference time, intent awareness is incorporated by prompting a model to produce reports with embedded intents (Tian et al., 2023). For intent-aware training, we first prompt a teacher model to produce reports with embedded intents; this data, containing intent information, is then used as high-quality training data for smaller models.

We conduct experiments on three recent long-form report generation benchmarks (Bragg et al., 2025; Patel et al., 2025; Yifei et al., 2025). Extensive results show that the intent awareness we induced consistently improves model performance across different model backbones and tasks. Across tasks, with a macro-average across metrics, we observe an average improvement of +2.9 absolute points for large commercial language models, despite the already strong base model performance. For small models, we observe +12.3 absolute point improvement after intent-aware SFT, where best variants reach large-model-level performance, e.g., gemini-2.5-pro. **The performance improvements in automatic evaluations are driven by substantial gains in citation metrics which evaluate attribution quality. With intent awareness, we see +3.7 and +18.7 absolute point gains (averaged across models), for large commercial language models and small models, respectively.**

We perform a detailed analysis of how the model's behavior changes with intent awareness. We also conduct a small-scale human study showing that intents produced by our system aid in transparency and improved readability of long-form answers, e.g., through guiding readers' attention, especially when the material is unfamiliar to them.

2 RELATED WORK

Attributed long-form generation. Associating claims with evidence from identifiable sources plays a key role in measuring the faithfulness of model-generated text (Bohnet et al., 2023; Rashkin et al., 2023). Researchers have studied citation quality in scientific text generation (Funkquist et al., 2022), generative search engines (Liu et al., 2023), and Wikipedia-style document generation (Gao et al., 2023b). Prior work has predominantly used retrieval-augmented generation (RAG, Lewis et al., 2020) frameworks, wherein LLMs are trained to incorporate external or parametric knowledge sources and supporting documents while generating citations (Nakano et al., 2022; Menick et al., 2022; Gao et al., 2023a). More recently, the introduction of *deep research* systems (DeepMind, 2025; OpenAI, 2025) has led to improved performance on knowledge- and reasoning-intensive short-form question-answering tasks (Mialon et al., 2023; Phan et al., 2025; Wei et al., 2025) through active and strategic usage of retrieval. Such success motivates the community to further assess broader

108 capabilities of these systems in answering open-ended questions from real-world applications with
 109 attributed reports, such as advanced search engine use (Du et al., 2025), scientific QA systems (Bragg
 110 et al., 2025), and literature synthesis and comparison (Patel et al., 2025; Yifei et al., 2025).

111 In our work, we explore how introducing intent awareness during writing and citation selection can
 112 improve performance on attributed long-form report generation tasks. Our work focuses on post-hoc
 113 changes through decoding time strategies and distillation, leaving existing training and inference
 114 processes intact for retrievers and language models, enabling potential plug-and-play generalization.
 115

116 **Intents in writing.** Understanding how people determine what to write has interested researchers
 117 for decades. Prior work has examined intents underlying both citations (Goodwin, 1980; Teufel et al.,
 118 2006) and discourse structures (Bain, 1890; Smith, 2003; Song et al., 2017), often treating intent
 119 understanding as a classification or parsing task, e.g., citation intent classification (Cohan et al., 2019)
 120 and discourse parsing (Marcu, 2000; Feng & Hirst, 2012; Li et al., 2014). Advances in LLMs have
 121 opened up new opportunities to assist and automate writing (Lee et al., 2024; Shen et al., 2023),
 122 motivating researchers to incorporate intent understanding into generation (Padmakumar et al., 2025;
 123 Wang et al., 2025b). Recently, Wu et al. (2025) discussed the LLM sensitivity of human intentions
 124 and incentives. In our work, we propose methods to add intent awareness during both training and
 125 inference, resulting in improved LLM text generation capabilities.

126 **Learning with rationales.** Besides drawing inspiration from human writing processes, our method
 127 connects to prior work on eliciting additional context or rationales to augment and improve model
 128 generation, including chain-of-thought (CoT) style inference (Wei et al., 2022a; Kojima et al., 2022),
 129 rationale bootstrapping training Zelikman et al. (2022), text metadata conditioning (Gao et al., 2025),
 130 word-level reasoning (Xu et al., 2025), and confidence verbalization to improve calibration (Tian
 131 et al., 2023). From this perspective, our intent-aware methods can be considered as strategies for
 132 models to justify the structure and organization of their generated outputs, with the goals of both
 133 report quality and transparency.

135 3 TASK FORMULATION AND METHODOLOGY

136 We first briefly describe the formulation of the attributed long-form question-answering task. Then,
 137 we introduce our intent-aware writing framework, describing: (i) how intents are represented while
 138 writing, and (ii) the types of intent that can be produced. Finally, we discuss how we incorporate
 139 intent awareness into LLMs for long-form question answering, during both inference and training
 140 stages.

143 3.1 TASK FORMULATION

144 We focus on the task of attributed long-form scientific question answering, which is formalized
 145 as follows: given a user query q , a system is required to generate a multi-section report \mathcal{R} , with
 146 each section consisting of multiple paragraphs $\{p_1, p_2, \dots\}$. Each paragraph p_i contains sentences
 147 s_{i1}, s_{i2}, \dots with supporting citations $c_1, c_2, \dots \in \mathcal{C}$ added wherever external references are required.
 148 The list of potential texts to cite (\mathcal{C}) can either come from the model’s parametric knowledge or from
 149 retrieved documents.

151 3.2 INTENT-AWARE WRITING FRAMEWORK

152 We propose an intent-aware writing framework that incorporates two broad categories of intents,
 153 often used in prior work: (i) paragraph-level writing intents (**paragraph intents**, hereafter), and (ii)
 154 sentence-level **citation intents**. Paragraph intents specify the purpose of every paragraph p_i within
 155 the overall narrative of the report (e.g., *this paragraph provides background context* or *this paragraph*
 156 *compares two state-of-the-art methods*). Citation intents, which are more granular, are designed to
 157 capture why a certain citation c_j is used to support a particular sentence s_{ix} (e.g., *this sentence uses*
 158 *the method proposed in the citation* or *this sentence expresses similarities to or differences from the*
 159 *cited work*). By generating such intents ahead of the paragraph text or with supporting citations, we
 160 provide the model with cues helpful for the writing process. We prime the model to consider intents
 161 during text generation.

162 Table 1: The types and descriptions for our intent awareness schemes. We adopt the citation intent
 163 types from ACL-ARC (Jurgens et al., 2018) and extend the paragraph intent types from the discourse
 164 modes studied in (Song et al., 2017).

Intent Category & Type		Description
Citation Intent	Background	The citation provides relevant information for this domain
	Motivation	The citation illustrates the need for data, goals, methods, etc.
	Uses	The sentence uses data, methods, etc. from the citation
	Extension	The sentence extends the referenced work’s data, methods, etc. of the citation
	Comparison or Contrast	The sentence expresses similarity/differences to the referenced work
Paragraph Intent	Future	The citation identifies the reference as a potential avenue for future work
	Exposition	Explains, clarifies, or provides background information on a topic
	Definition	Defines a key term, concept, or theory with necessary boundaries
	Argumentation	Presents a claim supported by evidence, logic, or reasoning
	Compare-contrast	Highlights similarities and/or differences between subjects or findings
	Cause-effect	Explains causal relationships between events or phenomena
	Problem-solution	Identifies a problem and proposes a solution or response
Evaluation	Evaluation	Assesses strengths, weaknesses, or significance according to criteria
	Narration	Recounts a sequence of events or chronological processes

178
 179 **Intent Representation.** We use an inline tag-based scheme with rationales, to represent intents,
 180 designed to help models distinguish the intent texts from report text. More specifically, intents
 181 are represented using the following template: `<begin intent> [intent type] rationale <end intent>`.
 182 For begin and end intent tags, we use `<bcit><ecit>` and `<bpit><epit>` for citation and paragraph
 183 intents, respectively. Rationales for paragraph intents are brief textual explanations of why the
 184 paragraph fits the chosen type, based on its planned content and function within the report. For
 185 citation intents, rationales typically explain the connection between the sentence containing the
 186 citation and a brief summary of supporting evidence from the cited reference.

187
 188 **Intent Types.** Within both paragraph and citation intents, we utilize a more fine-grained set of
 189 intent types, summarized in Table 1. We adapt our citation intent types from the defined categories in
 190 ACL-ARC (Jurgens et al., 2018), and paragraph intent types from the discourse modes (types) from
 191 (Song et al., 2017)¹ as shown in Table 1.

193 3.3 INTENT AWARENESS DURING INFERENCE

195 First, we explore the effectiveness of incorporating our intent-aware writing framework at inference
 196 time for attributed long-form report generation. Models are prompted to directly output reports with
 197 paragraph and citation intent tags embedded within them. For paragraph intents, the intent tags are
 198 placed before the text of each paragraph. For citation intents, intent tags are placed between the citing
 199 sentence and the inline citation. This intent-aware prompting strategy, *verbalized intents*, can be
 200 considered a variant of test-time scaling, focused on eliciting a specific category of thoughts (i.e.,
 201 intents), alongside the reports.

202 3.4 INTENT AWARENESS DURING TRAINING

204 Besides inference-time augmentation, we explore strategies to incorporate intent awareness during
 205 training. This is especially useful for smaller models, as adding extra instructions to elicit intents
 206 during report generation increases the complexity of the task, when they already lag behind large
 207 models (Asta Bench, Bragg et al., 2025).

208 For intent-aware training, we first apply our intent-aware prompting strategy to a large teacher model
 209 to produce training data with embedded intent tags and rationales. We then conduct supervised
 210 fine-tuning (SFT) on this data, in the following settings:

212 • **intent-implicit SFT:** We remove the embedded intent tags and rationales before training.
 213 While training reports for SFT are generated in an intent-aware manner, the intent information
 214 is not explicitly present during training, i.e., the large teacher model considers the intents when

215 ¹We focus on the non-psycho-lingual functional intents and remove the *emotion expressing* mode

216 presenting the data, but the small models only learn the direct report generation task, not intent
 217 elicitation.
 218 • **intent-explicit SFT**: This variant retains the embedded intent tags and rationales. These
 219 explicit tags can potentially help smaller models understand how to better structure paragraphs
 220 and use citations. This setting is motivated by previous work that augments training data with
 221 explanations (Murty et al., 2020) and thoughts (Xu et al., 2025).
 222 • **intent-multiview SFT**: Previous variants require small models to learn how to use both ci-
 223 tation and paragraph intents simultaneously. To further reduce the instruction complexity of
 224 each data point during training, we decompose intent-aware generation into multiple sub-tasks,
 225 corresponding to overall intent categories. Following Liang et al. (2023), for each data point,
 226 we produce four instruction-report pairs: (1) an intent-explicit version (intent tags/rationales
 227 retained); (2) a paragraph-intent version with only paragraph intents retained in prompts/reports;
 228 (3) a citation-intent version with only citation intents retained in prompts/reports; (4) a no-intent
 229 version with tags/rationales removed and the prompt scrubbed of intent-related instructions. We
 230 train a model on all of the instruction-report pairs (4x the instances of teacher-generated reports).

231 We consider two baselines: (1) directly prompting models without additional training, (2) fine-tuning
 232 models on reports generated for the same query subset from the same teacher model, but without
 233 intent awareness (baseline SFT).

235 4 EXPERIMENTS AND ANALYSIS

237 4.1 EXPERIMENTAL SETTING

239 We conduct experiments on several recent datasets for attributed long-form text generation. These
 240 tasks expect long report-style answers to open-ended questions. We run experiments with the
 241 following three datasets:

242 **SQA-CS-V2** (Bragg et al., 2025): AstaBench provides a suite of tasks to allow a holistic measure
 243 of agents for scientific research, including literature understanding, data analysis, paper search,
 244 coding, etc². We evaluate on their report generation benchmark AstaBench-ScholarQA-CS2. For
 245 this benchmark, the task is to generate reports for complex scientific questions. Our main results are
 246 on the 100-sample test set, and our ablations are on the 100-sample validation set. Each generated
 247 report is evaluated based on four metrics: rubric-based evaluation (whether key points identified
 248 by human-verified rubrics are contained in the answer), answer precision (whether each paragraph
 249 of the answer is on-topic and addresses the question), citation precision (whether the cited source
 250 text supports the claim), and citation recall (whether each claim in the answer is well-supported
 251 by citations, if necessary). These metrics were scored using an LLM-judge pipeline with answer
 252 decomposition and atomic evaluation.

253 **DeepScholar Bench** (Patel et al., 2025) is a benchmark for generating related-work sections for recent
 254 arXiv papers. The task involves retrieving, synthesizing, and citing prior research. Generated reports
 255 are judged for nugget coverage (are essential facts found in the report; akin to Rubric measures),
 256 organization (structure and coherence of system answer), citation precision (paralleling SQA-CS-V2
 257 citation precision), and claim coverage (assesses fraction of claims that are fully supported by cited
 258 sources). We elide the retrieval quality metrics as we use a fixed retrieval set for all experiments.
 259 We use the 63 papers from the official GitHub Repository as our dataset. The original task involves
 260 writing a related work section for a given paper title and abstract. Since this task is under-specified,
 261 we slightly modify the task setting and generate the related work section using the title and the
 262 sub-section headers in the ground truth related work section.

263 **ResearchQA** (Yifei et al., 2025) is a dataset of twenty thousand queries (3.7k test), answers, and
 264 rubrics derived from survey articles written by humans. Every ResearchQA question is paired with
 265 rubrics generated from the same survey article as the one used for generating the question. We use the
 266 ResearchQA questions with the subdomain: Artificial Intelligence (50 test questions). Following the
 267 official benchmark guidelines, we report the averaged rubric scores (RQA) to evaluate responses to
 268 ResearchQA questions. Since the original paper shows better results in a parametric setting without
 269 retrieval, we follow this setting and only use paragraph intents for this task.

²<https://asta.allen.ai/chat>

Table 2: Performance comparison across various models on SQA-CS-V2. *Overall* denotes the macro-average of other sub-metrics. **Bold** indicates the best-performing row for overall metrics. *+intent* denotes the use of our intent-aware-writing framework with both paragraph and citation intents.

Method	SQA-CS-V2				
	Overall	Rubrics	Ans. P	Citation P	Citation R
o3	85.1	91.4	96.5	89.4	63.4
+ intent	86.0	90.7	96.6	89.9	66.9
gemini-2.5-pro	88.1	82.6	94.1	93.2	82.4
+ intent	89.7	82.6	94.5	95.7	86.1
Claude opus-4	85.4	84.3	87.9	89.6	79.6
+ intent	89.0	85.5	89.3	95.1	86.0

Table 3: Performance comparison on DeepScholar Bench and ResearchQA. RQA denotes ResearchQA. *Overall* denotes the macro-average of other sub-metrics. **Bold** indicates the best-performing row for overall metrics.

Method	DeepScholar Bench (DSB)					RQA
	Overall	Nug. Cov.	Org.	Cite-P	Claim Cov	Rubrics
o3	46.8	47.0	61.1	39.1	40.2	76.3
+ intent	43.2	49.1	64.1	27.2	34.3	79.3
gemini-2.5-pro	54.8	49.0	63.1	53.0	54.2	71.9
+ intent	57.8	49.0	58.0	61.1	63.3	74.0
Claude opus-4	58.1	54.0	64.1	56.6	57.6	74.3
+ intent	59.9	53.3	65.3	60.1	61.1	75.7

For all tasks, we use the official implementations for evaluation. For retrieval, we use the publicly available Semantic Scholar keyword search API (Kinney et al., 2023) and Semantic Scholar snippet search API (Singh et al., 2025). The retrieved snippets are often overly lengthy, so we use an LLM to extract only the salient parts. We fix the retrieved information set for each query in order to control for retrieval quality, only measuring writing performance differences in our experimental settings.

We test the effectiveness of intent-aware inference with commercial large language models, including o3 from OpenAI (OpenAI, 2025), gemini-2.5-pro (Comanici et al., 2025), and claude-4.1-opus (Anthropic, 2025). For intent-aware training, we utilize 1,000 random-sampled queries from OpenScholar (Asai et al., 2024) and generate synthetic data with gemini-2.5-pro. We use qwen3-4B/8B (Yang et al., 2025) and 11ama3.1-8B (Gratia et al., 2024) as the base models for SFT training. We will open-source both our training data and model checkpoints to support future research in this area.

We compare all the variants in Section 4.2 with a control on the training steps, i.e., even if we can reformat 4x multiview data points from a certain number of data points generated from the large models, we use 1/4 steps to allow fair comparison in terms of compute. We include further details of the inference, training, and evaluation setup in Appendix A.1.

4.2 EXPERIMENTAL RESULTS

Eliciting intents at test time improves model performance. We test the effectiveness of the intents by eliciting intents directly during inference (see appendix A.7 for the prompt). Table 2 and Table 3 show that using intents leads to improved overall performance for all model backbones, despite default generation from these models being a strong baseline. From the specific metric scores, we observe that intents help models to perform better attribution compared to default report generation: both citation metrics improve substantially (citation precision and citation recall increase by 5-7 absolute points for Claude). The rubric score and the answer precision score, which do not consider citation quality, remain the same because state-of-the-art LLMs are already highly capable

Table 4: SQA-CS-V2 Performance Across different base models and method variants. For each of the intent-aware method variants, the inference prompt explicitly asks the model to use intents.

Base Model	Variant	Overall	Rubrics	Answer P	Citation P	Citation R
gemini-2.5-pro(ref)	-	88.1	82.6	94.1	93.2	82.4
qwen3-8b	no training	80.7	82.1	90.4	83.2	66.9
	baseline SFT	83.2	78.7	94.3	85.8	73.9
	intent-explicit SFT	88.0	80.5	93.0	93.6	85.0
	intent-implicit SFT	87.1	78.9	94.0	92.5	82.9
11lama3.1-8B	intent-multiview SFT	88.6	81.4	94.7	93.7	84.7
	no training	66.4	64.6	77.5	67.2	56.1
	baseline SFT	84.4	78.1	92.3	89.8	77.4
	intent-explicit SFT	85.8	77.6	93.1	90.5	82.2
qwen3-4b	intent-implicit SFT	87.8	77.9	93.3	94.0	85.9
	intent-multiview SFT	89.2	79.5	95.1	95.4	86.7
	no training	80.9	78.0	94.6	82.8	68.1
	baseline SFT	83.4	80.1	92.4	86.2	74.8
gemini-2.5-pro	intent-explicit SFT	87.5	80.1	97.0	91.5	81.3
	intent-implicit SFT	85.2	78.4	93.5	90.1	78.7
	intent-multiview SFT	87.0	80.2	92.2	93.3	82.5

of extracting key facts from retrieved information and ensuring that the presented information is topically relevant to the query. To further validate the performance of rows with small margins, we conduct a paired t-test to test the hypothesis that +intent is better than default inference for the Overall scores. For gemini-2.5-pro, the p-value is 0.013; For o3, the p-value is 0.072. The low p-value shows that our results are statistically significant if we set alpha =0.1.

Interestingly, during our experiments, we observed that o3 has much worse citation behavior than other frontier LLMs, especially on citation recall. From a qualitative analysis of 20 claims from o3-generated answers, we observe that for nearly 60% cases, the claims contain additional information about a paper added from o3’s own memory, going beyond the specific snippets provided from that paper in context. Adding citation intents seems to have mixed effects on this behavior, improving citation quality on AstaBench-SQA-CSV2 while dropping citation quality on DeepScholar Bench.

To further validate the effectiveness of our method, we further report the o3 performance of our intent-aware inference with paragraph intent only to tackle the worse citation behavior in Appendix A.8, which achieves 49.3 points overall, achieving a 2.5 absolute point gain over the default inference.

Intent-aware generations help smaller models. We further explore the effectiveness of intent-aware training with SQA-CS-V2. Table 4 presents the performance of different language models trained with the SFT variants described in Section 3.4. We test all the intent-aware method variants by prompting the resulting models to generate intents during inference. We ablate training with intents, by using the default inference prompt without explicitly asking for intents (Appendix; Table 7).

As shown in Table 4, across various LLMs, intent-aware SFT variants show improved performance when compared to no training or baseline SFT, with +7.9, 22.8, 6.1 absolute points of improvement compared to the base models, for qwen3-8b, 11lama3.1-8b, and qwen3-4b, respectively. For 8B models, intent-multiview SFT consistently leads to the best performance, surpassing gemini-2.5-pro, showing benefit from SFT with data points decomposed into multiple subtasks. For qwen3-4b, intent-explicit SFT and intent-multiview SFT perform much better than intent-implicit SFT; validating our hypothesis that the retained intent tags and rationales can potentially serve as explanations and help small models to better understand how to structure paragraphs and citations. As with the larger models, our performance gains primarily come from improved attribution (citation precision and citation recall).

To further validate the generalizability of our SFT variants, we further report the performance on DeepScholar Bench of the qwen3-8b variants in Appendix A.8. The best performing intent-implicit variant achieves 60.3 overall, which is better than the best performance large models, i.e., Claude opus-4, Table 3.

Intent awareness influences model citation usage. In addition to the performance improvements on the metrics listed above, we conduct an analysis on gemini-2.5-pro and qwen3-8b to understand how intent awareness during inference and training shapes the model behavior. Figure 2 presents the change of (1) average portion of retrieved candidates used in the report and (2) average coverage

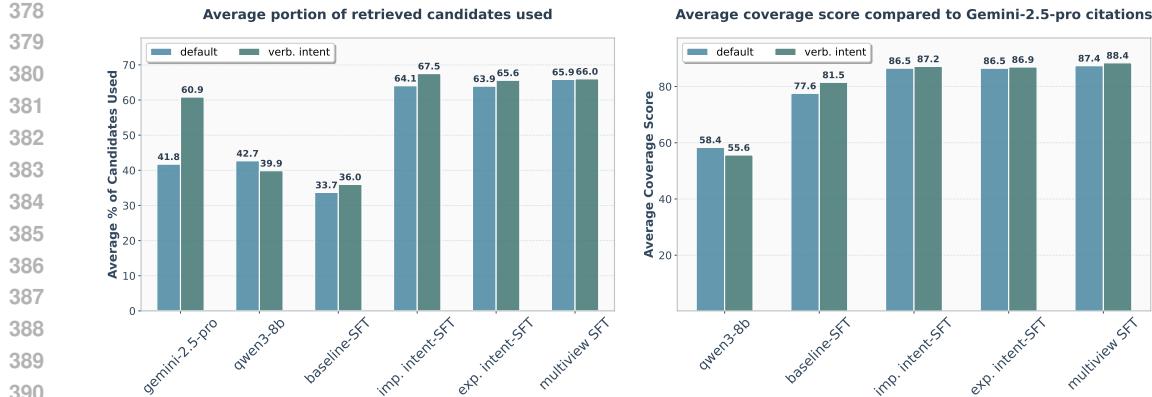


Figure 2: (left) average portion of retrieved candidates used in the generated reports; (right) average citation coverage between small model variants and gemini-2.5-pro. All average scores are computed at a query level. *default* and *verb. intent* denotes the different instructions. *verb. intent* denotes the augmentation of intent awareness. The analysis is done on SQA-CS-V2.

Table 5: SQA-CS-V2-dev Performance results with *verbalized intents* and gemini-2.5-pro. We **bold** the best row for the Overall metric.

Method	Variant	Overall	Rubrics	Answer P	Citation P	Citation R
verbalized intent (gemini)	no	88.1	82.6	94.1	93.2	82.4
	all	89.7	82.6	94.5	95.7	86.1
	citation-only	88.6	81.5	91.7	95.3	86.2
	paragraph-only	89.1	82.7	92.9	95.2	85.6
other inference methods	CoT	81.3	71.5	94.5	83.3	76.1
	ReAct	77.6	67.4	94.6	76.5	72.0

score between citations of qwen3-8b variants and gemini-2.5-pro. Adding intents at inference time significantly improves the portion of retrieval candidates used in the report generation, without precision loss, as shown previously in Table 2. The increased retrieved candidate usage **without precision loss indicates that the model can appropriately use a diverse set of snippets to support the various claims in the answer**. Similarly, intent-aware training leads to much higher retrieved candidates usage compared to the base model or baseline SFT, which sheds light on the model behavior change beyond averaged performance.

The coverage analysis shows a similar signal: after intent-aware SFT, small models are able to use citations with better overlap with large models, while the inference-time *verbalized intents* also consistently offer extra gain on the SFT-ed models.

Extended Ablations and Baseline Comparison. To further validate the performance of verbalized *intents*, we conduct ablations on gemini-2.5-pro with different intent categories. Table 5 presents the complementary benefits of both intent categories. On the development set of SQA-CS-V2, citation intents and paragraph intents work orthogonally to result in the best performance. **We also compare our inference methods with zero-shot CoT (Wei et al., 2022b; Kojima et al., 2023) prompting and ReAct (Yao et al., 2023).** Results show that our intent-aware inference shows better performance than these previous work with fine-grained model thoughts on citation and writing for the attributed long-form question answering task.

4.3 EFFECTIVENESS OF INTENTS IN UNDERSTANDING MODEL BEHAVIOR

Intent types reveal the model differences in behavior. We further study the distribution of the tag types for citation and paragraph intents in Table 6, by comparing the model generations with human annotations in the original ACL-ARC (Jurgens et al., 2018) dataset. Overall, the trends align with human annotations, where *Background* and *Uses* emerge as dominant citation intent categories. This suggests that models have learned to capture core citation functions used in scholarly writing.

432 Table 6: Distribution of the intent types: (left) citation intents and (right) paragraph intents. See Table 1 for the
 433 full intent type reference. *others* denotes that the model does not output these pre-defined categories, e.g., just
 434 *comparison* for citation intents. We report the human reference from Jurgens et al. (2018) on their ACL-ARC
 435 dataset labels, as a reference to general human writing distributions.

Citation (%)	o3	gemini	opus-4.1		Human ref	Paragraph (%)	o3	gemini	opus-4.1
Background	28.2	29.6	21.1		51.9	Expos.	41.5	51.5	39.9
Motivation	10.6	7.1	6.8		5.0	Def.	7.0	7.1	7.3
Uses	40.4	55.9	47.4		18.5	Argu.	11.6	8.6	5.1
Extension	6.9	0.7	12.8		3.7	Comp.-Contr.	6.4	6.1	9.7
Comparison	4.7	4.8	3.8		17.5	Cause-Eff.	6.1	2.6	5.4
Future	4.2	0.9	2.8		3.5	Prob.-Sol.	14.5	13.4	22.8
(error)	5.0	0.9	5.3		0.0	Narr.	2.7	5.2	1.3
						Eval.	9.6	5.4	8.5
						(error)	0.0	0.0	0.0

444 However, notable differences also arise — we see that models significantly underuse *Comparison*
 445 or *Contrast* (around 5%), a category more prevalent in human writing (17%). This gap highlights a
 446 limitation in current systems: a tendency to inform or describe rather than synthesize or compare,
 447 which is central to deep scholarly reasoning.

448 We also observe model-specific differences. *gemini-2.5-pro* achieves lowest error rate but leans
 449 heavily on *Uses* (55.9%). It also rarely produces *Extension* or *Future Work* intents, indicating a
 450 narrower functional diversity. In contrast, *o3* distributes its citations more evenly, with higher use of
 451 *Motivation* and *Future* categories. These differences suggest that intent tagging can help diagnose
 452 model tendencies and may guide fine-tuning or evaluation strategies.

453 **Case Study: Intent awareness improves transparency to readers.** We conducted a case study
 454 with three PhD students (P1, P2, P3) to evaluate how paragraph- and citation-level intent annotations
 455 affect the reading experience of AI-generated reports from *gemini-2.5-pro*. Each participant read
 456 3–4 paragraph-long reports, which were partially tagged with either a paragraph-level or citation-level
 457 intent. In a within-subject design, each participant experienced both tagged and untagged instances
 458 during the same reading session. Specifically, participants were first exposed to the untagged instances
 459 to establish a baseline experience. We then asked them to read the tagged instances while rating
 460 each intent on different aspects. This allowed them to more directly compare the two conditions.
 461 Each participant labeled 24 sections of reports (randomly selected per participant) using four 5-point
 462 Likert scale questions assessing: (1) the intent’s relevance to the paragraph; (2) its accuracy and
 463 informativeness; (3) its support for understanding (readability); and (4) whether it improved reading
 464 speed (efficiency). Participants also provided freeform feedback on their reading experience.³

465 Averaging all 24 labels across 3 participants, they rated intents as relevant (5.0 ± 0.0), informative
 466 (4.7 ± 0.3), helpful for comprehension (4.7 ± 1.2), and somewhat helpful for speed (4 ± 1.1). Writing and citation intents were perceived to serve complementary purposes: paragraph-level intents
 467 supported understanding (5.0 ± 0.1) and efficient reading (4.9 ± 0.5) more directly, while citation
 468 intents helped clarify the context and expectations surrounding cited works, particularly for unfamiliar
 469 material. These ratings were also aligned with the participants’ reported experience: they described
 470 the intents as self-explanatory and useful for guiding attention. For example, a paragraph intent such
 471 as “[Cause-Effect] this paragraph focuses on timeout mechanisms at the Data Link Layer, where a
 472 lack of communication is interpreted as a failed connection...” enabled P1 to better judge whether to
 473 continue reading a paragraph. Similarly, P3 noted that citation intents offered extra context, especially
 474 helpful for unfamiliar technical terms. These findings highlight the promise of incorporating intent
 475 annotations into reading interfaces to support targeted comprehension (Russell et al., 1993; Chang
 476 et al., 2023; Lo et al., 2023).

479 5 DISCUSSION

480 **The Complexity and Hierarchy of Intent.** Our results show that paragraph- and citation-level
 481 intents already offer complementary perspectives on the structure of scientific writing. However,
 482 we believe these two levels likely only scratch the surface. Human authors often operate with
 483 multi-layered, hierarchical intents—where paragraphs build upon one another and citations serve

484
 485 ³Full study details are provided in Appendix A.3.

486 nuanced rhetorical roles (Samraj, 2013; Bhatnagar et al., 2022). For instance, writers may structure
 487 paragraphs to contrast ideas or build a multi-step argument, and use citations to critique, anticipate,
 488 or contextualize claims. Our schema — though effective — was purely synthetic. We hypothesize
 489 that grounding intent schemas in human annotation or behavioral data (e.g., writing process logs,
 490 document plans, or outlining strategies) could lead to more sophisticated, accurate modeling of intent
 491 hierarchies. Future work could explore tree-structured or graph-based representations of intent to
 492 reflect how one paragraph supports, contrasts, or contextualizes another, allowing models to generate
 493 globally coherent narratives rather than well-formed but somewhat isolated paragraphs.

494 **Intent as a Diagnostic and Analysis Layer.** Besides enabling the generation of higher-quality reports,
 495 we see that intent awareness provides a new lens for model evaluation and analysis. While existing
 496 benchmarks emphasize factuality and citation correctness, they often miss why and how content is
 497 organized. In contrast, our intent-centric analysis already helps highlight the distributional differences
 498 between human- and model-written texts in Sec. 4.3 (e.g., human writing include significantly more
 499 comparisons). This suggests that intents can help inform the design of new benchmarks or scoring
 500 rubrics that reward desirable patterns of argumentation, such as balanced comparisons, causality
 501 chains, or synthesis of conflicting evidence, so as to distinguish models that have strong capability to
 502 synthesize complex information beyond factual lists. Intent scaffolding may also support self-critique
 503 or refinement loops, where models justify and revise their own structure.

504 **Generalization Across Domains.** Our study focused on scientific domains, where writing tends to
 505 follow conventional structures. But in other fields—e.g., policy, law, or the humanities—intent types
 506 may differ significantly (Harrington et al., 2019; Lafia et al., 2023). Citations might serve rhetorical,
 507 historical, or ethical functions that our current schema does not capture. To generalize, future work
 508 is needed for understanding how intent distributions vary by domain, whether schemas need to be
 509 domain-adaptive, and how models might learn new intent categories from domain-specific corpora.

510 6 CONCLUSION

511 Drawing inspiration from the human writing process, we develop an intent-aware writing framework
 512 that helps language models produce better quality text for scientific deep research tasks. Our
 513 strategies of incorporating intent awareness, during both inference and training, lead to improved
 514 model performance across several challenging benchmarks. We further showed that our methods
 515 can be used for distillation; enabling the base models to match unimproved larger models and come
 516 close to matching the improved larger models. We demonstrate potential utility beyond generation; a
 517 case study with researchers suggests that our intents can potentially aid reading comprehension and
 518 efficiency. More broadly, our results provide preliminary yet encouraging evidence that incorporating
 519 elements of human writing processes—especially those missing from data used to train language
 520 models—can enhance their text generation capabilities. We will open-source our code and model
 521 checkpoints to encourage further research in this area.

522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539

540 REFERENCES
541

542 Anthropic. Introducing claude 4, May 2025. URL <https://www.anthropic.com/news/claude-4>.
543 Anthropic News Release.

544 Akari Asai, Jacqueline He, Rulin Shao, Weijia Shi, Amanpreet Singh, Joseph Chee Chang, Kyle Lo,
545 Luca Soldaini, Sergey Feldman, Mike D’arcy, et al. Openscholar: Synthesizing scientific literature
546 with retrieval-augmented lms. *arXiv preprint arXiv:2411.14199*, 2024.

547 A. Bain. *English Composition and Rhetoric*. Number 1 in English Composition and Rhetoric. Long-
548 mans, Green & Company, 1890. URL <https://books.google.com/books?id=ycMCAAAAYAAJ>.
549

550 Vasudha Bhatnagar, Swagata Duari, and SK Gupta. Quantitative discourse cohesion analysis of
551 scientific scholarly texts using multilayer networks. *IEEE Access*, 10:88538–88557, 2022.

552 Bernd Bohnet, Vinh Q. Tran, Pat Verga, Roee Aharoni, Daniel Andor, Livio Baldini Soares,
553 Massimiliano Ciaramita, Jacob Eisenstein, Kuzman Ganchev, Jonathan Herzig, Kai Hui, Tom
554 Kwiatkowski, Ji Ma, Jianmo Ni, Lierni Sestorain Saralegui, Tal Schuster, William W. Cohen,
555 Michael Collins, Dipanjan Das, Donald Metzler, Slav Petrov, and Kellie Webster. Attributed
556 question answering: Evaluation and modeling for attributed large language models, 2023. URL
557 <https://arxiv.org/abs/2212.08037>.

558 Jonathan Bragg, Mike D’Arcy, Nishant Balepur, Dan Bareket, Bhavana Dalvi, Sergey Feldman,
559 Dany Haddad, Jena D. Hwang, Peter Jansen, Varsha Kishore, Bodhisattwa Prasad Majumder,
560 Aakanksha Naik, Sigal Rahamimov, Kyle Richardson, Amanpreet Singh, Harshit Surana, Aryeh
561 Tiktinsky, Rosni Vasu, Guy Wiener, et al. Astabench: Rigorous benchmarking of ai agents with
562 a holistic scientific research suite. *arXiv preprint*, 2025. URL <https://www.datocms-assets.com/64837/1756213171-astabench-16.pdf>.
563

564 Joseph Chee Chang, Amy X. Zhang, Jonathan Bragg, Andrew Head, Kyle Lo, Doug Downey, and
565 Daniel S. Weld. Citeseer: Augmenting citations in scientific papers with persistent and personalized
566 historical context. In *Proceedings of the 2023 CHI Conference on Human Factors in Computing
567 Systems*, CHI ’23, New York, NY, USA, 2023. Association for Computing Machinery. ISBN
568 9781450394215. doi: 10.1145/3544548.3580847. URL [https://doi.org/10.1145/3544548.
569 3580847](https://doi.org/10.1145/3544548.3580847).
570

571 Arman Cohan, Waleed Ammar, Madeleine van Zuylen, and Field Cady. Structural scaffolds for
572 citation intent classification in scientific publications. In Jill Burstein, Christy Doran, and Thamar
573 Solorio (eds.), *Proceedings of the 2019 Conference of the North American Chapter of the As-
574 sociation for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
575 Short Papers)*, pp. 3586–3596, Minneapolis, Minnesota, June 2019. Association for Computational
576 Linguistics. doi: 10.18653/v1/N19-1361. URL <https://aclanthology.org/N19-1361/>.
577

578 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
579 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, Luke Marrs, Sam Petulla, Colin
580 Gaffney, Asaf Aharoni, Nathan Lintz, Tiago Cardal Pais, Henrik Jacobsson, Idan Szpektor, Nan-
581 Jiang Jiang, Krishna Haridasan, Ahmed Omran, Nikunj Saunshi, Dara Bahri, Gaurav Mishra, Eric
582 Chu, Toby Boyd, Brad Hekman, Aaron Parisi, Chaoyi Zhang, Kornraphop Kawintiranon, Tania
583 Bedrax-Weiss, Oliver Wang, Ya Xu, Ollie Purkiss, Uri Mendlovic, Ilaï Deutel, Nam Nguyen, Adam
584 Langley, Flip Korn, Lucia Rossazza, Alexandre Ramé, Sagar Waghmare, Helen Miller, Nathan
585 Byrd, Ashrith Sheshan, Raia Hadsell Sangnie Bhardwaj, Pawel Janus, Tero Rissa, Dan Horgan,
586 Sharon Silver, Ayzaan Wahid, Sergey Brin, Yves Raimond, Klemen Kloboves, Cindy Wang,
587 Nitesh Bharadwaj Gundavarapu, Ilia Shumailov, Bo Wang, Mantas Pajarskas, Joe Heyward, Martin
588 Nikoltchev, Maciej Kula, Hao Zhou, Zachary Garrett, Sushant Kafle, Sercan Arik, Ankita Goel,
589 Mingyao Yang, Jiho Park, Koji Kojima, Parsa Mahmoudieh, Koray Kavukcuoglu, Grace Chen,
590 Doug Fritz, Anton Bulyenov, Sudeshna Roy, Dimitris Paparas, Hadar Shemtov, Bo-Juen Chen,
591 Robin Strudel, David Reitter, Aurko Roy, Andrey Vlasov, Changwan Ryu, Chas Leichner, Haichuan
592 Yang, Zelma Mariet, Denis Vnukov, Tim Sohn, Amy Stuart, Wei Liang, Minmin Chen, Praynaa
593 Rawlani, Christy Koh, JD Co-Reyes, Guangda Lai, Praseem Banzal, Dimitrios Vytiniotis, Jieru
Mei, Mu Cai, Mohammed Badawi, Corey Fry, Ale Hartman, Daniel Zheng, Eric Jia, James Keeling,
Annie Louis, Ying Chen, Efren Robles, Wei-Chih Hung, Howard Zhou, Nikita Saxena, Sonam
Goenka, Olivia Ma, Zach Fisher, Mor Hazan Taege, Emily Graves, David Steiner, Yujia Li, Sarah

594 Nguyen, Rahul Sukthankar, Joe Stanton, Ali Eslami, Gloria Shen, Berkin Akin, Alexey Guseynov,
 595 Yiqian Zhou, Jean-Baptiste Alayrac, Armand Joulin, Efrat Farkash, Ashish Thapliyal, Stephen
 596 Roller, Noam Shazeer, Todor Davchev, Terry Koo, Hannah Forbes-Pollard, Kartik Audhkhasi,
 597 Greg Farquhar, Adi Mayrav Gilady, Maggie Song, John Aslanides, Piermaria Mendolicchio,
 598 Alicia Parrish, John Blitzer, Pramod Gupta, Xiaoen Ju, Xiaochen Yang, Puranjay Datta, Andrea
 599 Tacchetti, Sanket Vaibhav Mehta, Gregory Dibb, Shubham Gupta, Federico Piccinini, Raia Hadsell,
 600 Sujee Rajayogam, Jiepu Jiang, Patrick Griffin, Patrik Sundberg, Jamie Hayes, Alexey Frolov,
 601 Tian Xie, Adam Zhang, Kingshuk Dasgupta, Uday Kalra, Lior Shani, Klaus Macherey, Tzu-
 602 Kuo Huang, Liam MacDermed, Karthik Duddu, Paulo Zucchello, Zi Yang, Jessica Lo, Kai Hui,
 603 Matej Kastelic, Derek Gasaway, Qijun Tan, Summer Yue, Pablo Barrio, John Wieting, Weel
 604 Yang, Andrew Nystrom, Solomon Demmessie, Anselm Levskaya, Fabio Viola, Chetan Tekur,
 605 Greg Billock, George Necula, Mandar Joshi, Rylan Schaeffer, Swachhand Lokhande, Christina
 606 Sorokin, Pradeep Shenoy, Mia Chen, Mark Collier, Hongji Li, Taylor Bos, Nevan Wickers,
 607 Sun Jae Lee, Angéline Pouget, Santhosh Thangaraj, Kyriakos Axiotis, Phil Crone, Rachel Sterneck,
 608 Nikolai Chinaev, Victoria Krakovna, Oleksandr Ferludin, Ian Gemp, Stephanie Winkler, Dan
 609 Goldberg, Ivan Korotkov, Kefan Xiao, Malika Mehrotra, Sandeep Mariserla, Vihari Piratla, Terry
 610 Thurk, Khiem Pham, Hongxu Ma, Alexandre Senges, Ravi Kumar, Clemens Meyer, Ellie Talius,
 611 Nuo Wang Pierse, Ballie Sandhu, Horia Toma, Kuo Lin, Swaroop Nath, Tom Stone, Dorsa Sadigh,
 612 Nikita Gupta, Arthur Guez, Avi Singh, Matt Thomas, Tom Duerig, Yuan Gong, Richard Tanburn,
 613 Lydia Lihui Zhang, Phuong Dao, Mohamed Hammad, Sirui Xie, Shruti Rijhwani, Ben Murdoch,
 614 Duhyeon Kim, Will Thompson, Heng-Tze Cheng, Daniel Sohn, Pablo Sprechmann, Qiantong
 615 Xu, Srinivas Tadepalli, Peter Young, Ye Zhang, Hansa Srinivasan, Miranda Aperghis, Aditya
 616 Ayyar, Hen Fitoussi, Ryan Burnell, David Madras, Mike Dusenberry, Xi Xiong, Tayo Oguntobi,
 617 Ben Albrecht, Jörg Bornschein, Jovana Mitrović, Mason Dimarco, Bhargav Kanagal Shamanna,
 618 Premal Shah, Eren Sezener, Shyam Upadhyay, Dave Lacey, Craig Schiff, Sébastien Baur, Sanjay
 619 Ganapathy, Eva Schnider, Mateo Wirth, Connor Schenck, Andrey Simanovsky, Yi-Xuan Tan,
 620 Philipp Fränken, Dennis Duan, Bharath Mankalale, Nikhil Dhawan, Kevin Sequeira, Zichuan
 621 Wei, Shivanker Goel, Caglar Unlu, Yukun Zhu, Haitian Sun, Ananth Balashankar, Kurt Shuster,
 622 Megh Umekar, Mahmoud Alnahlawi, Aäron van den Oord, Kelly Chen, Yuexiang Zhai, Zihang
 623 Dai, Kuang-Huei Lee, Eric Doi, Lukas Zilka, Rohith Vallu, Disha Shrivastava, Jason Lee, Hisham
 624 Husain, Honglei Zhuang, Vincent Cohen-Addad, Jarred Barber, James Atwood, Adam Sadovsky,
 625 Quentin Wellens, Steven Hand, Arunkumar Rajendran, Aybuke Turker, CJ Carey, Yuanzhong Xu,
 626 Hagen Soltau, Zefei Li, Xinying Song, Conglong Li, Iurii Kemaev, Sasha Brown, Andrea Burns,
 627 Viorica Patraucean, Piotr Stanczyk, Renga Aravamudhan, Mathieu Blondel, Hila Noga, Lorenzo
 628 Blanco, Will Song, Michael Isard, Mandar Sharma, Reid Hayes, Dalia El Badawy, Avery Lamp,
 629 Itay Laish, Olga Kozlova, Kelvin Chan, Sahil Singla, Srinivas Sunkara, Mayank Upadhyay, Chang
 630 Liu, Aijun Bai, Jarek Wilkiewicz, Martin Zlocha, Jeremiah Liu, Zhuowan Li, Haiguang Li, Omer
 631 Barak, Ganna Raboshchuk, Jiho Choi, Fangyu Liu, Erik Jue, Mohit Sharma, Andreea Marzoca,
 632 Robert Busa-Fekete, Anna Korsun, Andre Elisseeff, Zhe Shen, Sara Mc Carthy, Kay Lamerigts,
 633 Anahita Hosseini, Hanzhao Lin, Charlie Chen, Fan Yang, Kushal Chauhan, Mark Omernick,
 634 Dawei Jia, Karina Zainullina, Demis Hassabis, Danny Vainstein, Ehsan Amid, Xiang Zhou, Ronny
 635 Votel, Eszter Vértes, Xinjian Li, Zongwei Zhou, Angeliki Lazaridou, Brendan McMahan, Arjun
 636 Narayanan, Hubert Soyer, Sujoy Basu, Kayi Lee, Bryan Perozzi, Qin Cao, Leonard Berrada, Rahul
 637 Arya, Ke Chen, Katrina Xu, Matthias Lochbrunner, Alex Hofer, Sahand Sharifzadeh, Renjie
 638 Wu, Sally Goldman, Pranjal Awasthi, Xuezhi Wang, Yan Wu, Claire Sha, Biao Zhang, Maciej
 639 Mikuła, Filippo Graziano, Siobhan McLaughlin, Irene Giannoumis, Youhei Namiki, Chase Malik,
 640 Carey Radebaugh, Jamie Hall, Ramiro Leal-Cavazos, Jianmin Chen, Vikas Sindhwani, David Kao,
 641 David Greene, Jordan Griffith, Chris Welty, Ceslee Montgomery, Toshihiro Yoshino, Liangzhe
 642 Yuan, Noah Goodman, Assaf Hurwitz Michaely, Kevin Lee, KP Sawhney, Wei Chen, Zheng
 643 Zheng, Megan Shum, Nikolay Savinov, Etienne Pot, Alex Pak, Morteza Zadimoghaddam, Sijal
 644 Bhatnagar, Yoad Lewenberg, Blair Kutzman, Ji Liu, Lesley Katzen, Jeremy Selier, Josip Djolonga,
 645 Dmitry Lepikhin, Kelvin Xu, Jacky Liang, Jiewen Tan, Benoit Schillings, Muge Ersoy, Pete
 646 Blois, Bernd Bandemer, Abhimanyu Singh, Sergei Lebedev, Pankaj Joshi, Adam R. Brown, Evan
 647 Palmer, Shreya Pathak, Komal Jalan, Fedir Zubach, Shuba Lall, Randall Parker, Alok Gunjan,
 Sergey Rogulenko, Sumit Sanghai, Zhaoqi Leng, Zoltan Egyed, Shixin Li, Maria Ivanova, Kostas
 Andriopoulos, Jin Xie, Elan Rosenfeld, Auriel Wright, Ankur Sharma, Xinyang Geng, Yicheng
 Wang, Sam Kwei, Renke Pan, Yujing Zhang, Gabby Wang, Xi Liu, Chak Yeung, Elizabeth
 Cole, Aviv Rosenberg, Zhen Yang, Phil Chen, George Polovets, Pranav Nair, Rohun Saxena,
 Josh Smith, Shuo yiin Chang, Aroma Mahendru, Svetlana Grant, Anand Iyer, Irene Cai, Jed

648 McGiffin, Jiaming Shen, Alanna Walton, Antonious Girgis, Oliver Woodman, Rosemary Ke, Mike
 649 Kwong, Louis Rouillard, Jinmeng Rao, Zhihao Li, Yuntao Xu, Flavien Prost, Chi Zou, Ziwei Ji,
 650 Alberto Magni, Tyler Liechty, Dan A. Calian, Deepak Ramachandran, Igor Krivokon, Hui Huang,
 651 Terry Chen, Anja Hauth, Anastasija Ilić, Weijuan Xi, Hyeontaek Lim, Vlad-Doru Ion, Pooya
 652 Moradi, Metin Toksoz-Exley, Kalesha Bullard, Miltos Allamanis, Xiaomeng Yang, Sophie Wang,
 653 Zhi Hong, Anita Gergely, Cheng Li, Bhavishya Mittal, Vitaly Kovalev, Victor Ungureanu, Jane
 654 Labanowski, Jan Wassenberg, Nicolas Lacasse, Geoffrey Cideron, Petar Dević, Annie Marsden,
 655 Lynn Nguyen, Michael Fink, Yin Zhong, Tatsuya Kiyono, Desi Ivanov, Sally Ma, Max Bain,
 656 Kiran Yalasangi, Jennifer She, Anastasia Petrushkina, Mayank Lunayach, Carla Bromberg, Sarah
 657 Hodkinson, Vilobh Meshram, Daniel Vlasic, Austin Kyker, Steve Xu, Jeff Stanway, Zuguang Yang,
 658 Kai Zhao, Matthew Tung, Seth Odoom, Yasuhisa Fujii, Justin Gilmer, Eunyoung Kim, Felix Halim,
 659 Quoc Le, Bernd Bohnet, Seliem El-Sayed, Behnam Neyshabur, Malcolm Reynolds, Dean Reich,
 660 Yang Xu, Erica Moreira, Anuj Sharma, Zeyu Liu, Mohammad Javad Hosseini, Naina Raisinghani,
 661 Yi Su, Ni Lao, Daniel Formoso, Marco Gelmi, Almog Gueta, Tapomay Dey, Elena Gribovskaya,
 662 Domagoj Ćevid, Sidharth Mudgal, Garrett Bingham, Jianling Wang, Anurag Kumar, Alex Cullum,
 663 Feng Han, Konstantinos Bousmalis, Diego Cedillo, Grace Chu, Vladimír Magay, Paul Michel,
 664 Ester Hlavnova, Daniele Calandriello, Setareh Ariafar, Kaisheng Yao, Vikash Sehwag, Arpi Vezer,
 665 Agustin Dal Lago, Zhenkai Zhu, Paul Kishan Rubenstein, Allen Porter, Anirudh Baddepudi, Oriana
 666 Riva, Mihai Dorin Istin, Chih-Kuan Yeh, Zhi Li, Andrew Howard, Nilpa Jha, Jeremy Chen, Raoul
 667 de Liedekerke, Zafarali Ahmed, Mikel Rodriguez, Tanuj Bhatia, Bangju Wang, Ali Elqursh, David
 668 Klinghoffer, Peter Chen, Pushmeet Kohli, Te I, Weiyang Zhang, Zack Nado, Jilin Chen, Maxwell
 669 Chen, George Zhang, Aayush Singh, Adam Hillier, Federico Lebron, Yiqing Tao, Ting Liu, Gabriel
 670 Dulac-Arnold, Jingwei Zhang, Shashi Narayan, Buhuang Liu, Orhan Firat, Abhishek Bhowmick,
 671 Bingyuan Liu, Hao Zhang, Zizhao Zhang, Georges Rotival, Nathan Howard, Anu Sinha, Alexander
 672 Grushetsky, Benjamin Beyret, Keerthana Gopalakrishnan, James Zhao, Kyle He, Szabolcs Payrits,
 673 Zaid Nabulsi, Zhaoyi Zhang, Weijie Chen, Edward Lee, Nova Fallen, Sreenivas Gollapudi, Aurick
 674 Zhou, Filip Pavetić, Thomas Köppe, Shiyu Huang, Rama Pasumarthi, Nick Fernando, Felix
 675 Fischer, Daria Čurko, Yang Gao, James Svensson, Austin Stone, Haroon Qureshi, Abhishek
 676 Sinha, Apoorv Kulshreshtha, Martin Matysiak, Jieming Mao, Carl Saroufim, Aleksandra Faust,
 677 Qingnan Duan, Gil Fidel, Kaan Katircioglu, Raphaël Lopez Kaufman, Dhruv Shah, Weize Kong,
 678 Abhishek Bapna, Gellért Weisz, Emma Dunleavy, Praneet Dutta, Tianqi Liu, Rahma Chaabouni,
 679 Carolina Parada, Marcus Wu, Alexandra Belias, Alessandro Bissacco, Stanislav Fort, Li Xiao,
 680 Fantine Huot, Chris Knutson, Yochai Blau, Gang Li, Jennifer Prendki, Juliette Love, Yinlam
 681 Chow, Pichi Charoenpanit, Hidetoshi Shimokawa, Vincent Coriou, Karol Gregor, Tomas Izo, Arjun
 682 Akula, Mario Pinto, Chris Hahn, Dominik Paulus, Jiaxian Guo, Neha Sharma, Cho-Jui Hsieh,
 683 Adaeze Chukwuka, Kazuma Hashimoto, Nathalie Rauschmayr, Ling Wu, Christof Angermueller,
 684 Yulong Wang, Sebastian Gerlach, Michael Pliskin, Daniil Mirylenka, Min Ma, Lexi Baugher,
 685 Bryan Gale, Shaan Bijwadia, Nemanja Rakićević, David Wood, Jane Park, Chung-Ching Chang,
 686 Babi Seal, Chris Tar, Kacper Krasowiak, Yiwen Song, Georgi Stephanov, Gary Wang, Marcello
 687 Maggioni, Stein Xudong Lin, Felix Wu, Shachi Paul, Zixuan Jiang, Shubham Agrawal, Bilal Piot,
 688 Alex Feng, Cheolmin Kim, Tulsee Doshi, Jonathan Lai, Chuqiao, Xu, Sharad Vikram, Ciprian
 689 Chelba, Sebastian Krause, Vincent Zhuang, Jack Rae, Timo Denk, Adrian Collister, Lotte Weerts,
 690 Xianghong Luo, Yifeng Lu, Håvard Garnes, Nitish Gupta, Terry Spitz, Avinatan Hassidim, Lihao
 691 Liang, Izhak Shafran, Peter Humphreys, Kenny Vassigh, Phil Wallis, Virat Shejwalkar, Nicolas
 692 Perez-Nieves, Rachel Hornung, Melissa Tan, Beka Westberg, Andy Ly, Richard Zhang, Brian
 693 Farris, Jongbin Park, Alec Kosik, Zeynep Cankara, Andrii Maksai, Yunhan Xu, Albin Cassirer,
 694 Sergi Caelles, Abbas Abdolmaleki, Mencher Chiang, Alex Fabrikant, Shravya Shetty, Luheng
 695 He, Mai Giménez, Hadi Hashemi, Sheena Panthaplatzel, Yana Kulizhskaya, Salil Deshmukh,
 696 Daniele Pighin, Robin Alazard, Disha Jindal, Seb Noury, Pradeep Kumar S, Siyang Qin, Xerxes
 697 Dotiwalla, Stephen Spencer, Mohammad Babaeizadeh, Blake JianHang Chen, Vaibhav Mehta,
 698 Jennie Lees, Andrew Leach, Penporn Koanantakool, Ilia Akolzin, Ramona Comanescu, Junwhan
 699 Ahn, Alexey Svyatkovskiy, Basil Mustafa, David D'Ambrosio, Shiva Mohan Reddy Garlapati,
 700 Pascal Lamblin, Alekh Agarwal, Shuang Song, Pier Giuseppe Sessa, Pauline Coquinot, John
 701 Maggs, Hussain Masoom, Divya Pitta, Yaqing Wang, Patrick Morris-Suzuki, Billy Porter, Johnson
 Jia, Jeffrey Dudek, Raghavender R, Cosmin Paduraru, Alan Ansell, Tolga Bolukbasi, Tony Lu,
 Ramya Ganeshan, Zi Wang, Henry Griffiths, Rodrigo Benenson, Yifan He, James Swirhun, George
 Papamakarios, Aditya Chawla, Kuntal Sengupta, Yan Wang, Vedrana Milutinovic, Igor Mordatch,
 Zhipeng Jia, Jamie Smith, Will Ng, Shitij Nigam, Matt Young, Eugen Vušák, Blake Hechtman,
 Sheela Goenka, Avital Zipori, Kareem Ayoub, Ashok Popat, Trilok Acharya, Luo Yu, Dawn

Bloxwich, Hugo Song, Paul Roit, Haiqiong Li, Aviel Boag, Nigamaa Nayakanti, Bilva Chandra,
 Tianli Ding, Aahil Mehta, Cath Hope, Jiageng Zhang, Idan Heimlich Shtacher, Kartikeya Badola,
 Ryo Nakashima, Andrei Sozanschi, Iulia Comșa, Ante Žužul, Emily Caveness, Julian Odell,
 Matthew Watson, Dario de Cesare, Phillip Lippe, Derek Lockhart, Siddharth Verma, Huizhong
 Chen, Sean Sun, Lin Zhuo, Aditya Shah, Prakhar Gupta, Alex Muzio, Ning Niu, Amir Zait,
 Abhinav Singh, Meenu Gaba, Fan Ye, Prajit Ramachandran, Mohammad Saleh, Raluca Ada Popa,
 Ayush Dubey, Frederick Liu, Sara Javanmardi, Mark Epstein, Ross Hemsley, Richard Green,
 Nishant Ranka, Eden Cohen, Chuyuan Kelly Fu, Sanjay Ghemawat, Jed Borovik, James Martens,
 Anthony Chen, Pranav Shyam, André Susano Pinto, Ming-Hsuan Yang, Alexandru Țifrea, David
 Du, Boqing Gong, Ayushi Agarwal, Seungyeon Kim, Christian Frank, Saloni Shah, Xiaodan Song,
 Zhiwei Deng, Ales Mikhalap, Kleopatra Chatziprimou, Timothy Chung, Toni Creswell, Susan
 Zhang, Yennie Jun, Carl Lebsack, Will Truong, Slavica Andačić, Itay Yona, Marco Fornoni, Rong
 Rong, Serge Toropov, Afzal Shama Soudagar, Andrew Audibert, Salah Zaiem, Zaheer Abbas,
 Andrei Rusu, Sahitya Potluri, Shitao Weng, Anastasios Kementsietsidis, Anton Tsitsulin, Daiyi
 Peng, Natalie Ha, Sanil Jain, Tejasji Latkar, Simeon Ivanov, Cory McLean, Anirudh GP, Rajesh
 Venkataraman, Canoe Liu, Dilip Krishnan, Joel D'sa, Roey Yogev, Paul Collins, Benjamin Lee,
 Lewis Ho, Carl Doersch, Gal Yona, Shawn Gao, Felipe Tiengo Ferreira, Adnan Ozturk, Hannah
 Muckenheim, Ce Zheng, Gargi Balasubramaniam, Mudit Bansal, George van den Driessche, Sivan
 Eiger, Salem Haykal, Vedant Misra, Abhimanyu Goyal, Danilo Martins, Gary Leung, Jonas
 Valfridsson, Four Flynn, Will Bishop, Chenxi Pang, Yoni Halpern, Honglin Yu, Lawrence Moore,
 Yuvein, Zhu, Sridhar Thiagarajan, Yoel Drori, Zhisheng Xiao, Lucio Dery, Rolf Jagerman, Jing
 Lu, Eric Ge, Vaibhav Aggarwal, Arjun Khare, Vinh Tran, Oded Elyada, Ferran Alet, James Rubin,
 Ian Chou, David Tian, Libin Bai, Lawrence Chan, Lukasz Lew, Karolis Misiunas, Taylan Bilal,
 Aniket Ray, Sindhu Raghuram, Alex Castro-Ros, Viral Carpenter, CJ Zheng, Michael Kilgore,
 Josef Broder, Emily Xue, Praveen Kallakuri, Dheeru Dua, Nancy Yuen, Steve Chien, John Schultz,
 Saurabh Agrawal, Reut Tsarfaty, Jingcao Hu, Ajay Kannan, Dror Marcus, Nisarg Kothari, Baochen
 Sun, Ben Horn, Matko Bošnjak, Ferjad Naeem, Dean Hirsch, Lewis Chiang, Boya Fang, Jie Han,
 Qifei Wang, Ben Hora, Antoine He, Mario Lučić, Beer Changpinyo, Anshuman Tripathi, John
 Youssef, Chester Kwak, Philippe Schlattner, Cat Graves, Rémi Leblond, Wenjun Zeng, Anders
 Andreassen, Gabriel Rasskin, Yue Song, Eddie Cao, Junhyuk Oh, Matt Hoffman, Wojtek Skut,
 Yichi Zhang, Jon Stritar, Xingyu Cai, Saarthak Khanna, Kathie Wang, Shriya Sharma, Christian
 Reisswig, Younghoon Jun, Aman Prasad, Tatiana Sholokhova, Preeti Singh, Adi Gerzi Rosenthal,
 Anian Ruoss, Françoise Beaufays, Sean Kirmani, Dongkai Chen, Johan Schalkwyk, Jonathan
 Herzig, Been Kim, Josh Jacob, Damien Vincent, Adrian N Reyes, Ivana Balazevic, Léonard
 Hussenot, Jon Schneider, Parker Barnes, Luis Castro, Spandana Raj Babbula, Simon Green,
 Serkan Cabi, Nico Duduta, Danny Driess, Rich Galt, Noam Velan, Junjie Wang, Hongyang Jiao,
 Matthew Mauger, Du Phan, Miteyan Patel, Vlado Galić, Jerry Chang, Eyal Marcus, Matt Harvey,
 Julian Salazar, Elahe Dabir, Suraj Satishkumar Sheth, Amol Mandhane, Hanie Sedghi, Jeremiah
 Willcock, Amir Zandieh, Shruthi Prabhakara, Aida Amini, Antoine Miech, Victor Stone, Massimo
 Nicosia, Paul Niemczyk, Ying Xiao, Lucy Kim, Sławek Kwasiborski, Vikas Verma, Ada Maksutaj
 Oflazer, Christoph Hirnschall, Peter Sung, Lu Liu, Richard Everett, Michiel Bakker, Ágoston
 Weisz, Yufei Wang, Vivek Sampathkumar, Uri Shaham, Bibo Xu, Yasemin Altun, Mingqiu Wang,
 Takaaki Saeki, Guanjie Chen, Emanuel Taropa, Shanthal Vasanth, Sophia Austin, Lu Huang,
 Goran Petrovic, Qingyun Dou, Daniel Golovin, Grigory Rozhdestvenskiy, Allie Culp, Will Wu,
 Motoki Sano, Divya Jain, Julia Proskurnia, Sébastien Cevey, Alejandro Cruzado Ruiz, Piyush
 Patil, Mahdi Mirzazadeh, Eric Ni, Javier Snaider, Lijie Fan, Alexandre Fréchette, AJ Piergiovanni,
 Shariq Iqbal, Kenton Lee, Claudio Fantacci, Jinwei Xing, Lisa Wang, Alex Irpan, David Raposo,
 Yi Luan, Zhuoyuan Chen, Harish Ganapathy, Kevin Hui, Jiazhong Nie, Isabelle Guyon, Heming
 Ge, Roopali Vij, Hui Zheng, Dayeong Lee, Alfonso Castaño, Khuslen Baatarsukh, Gabriel
 Ibagon, Alexandra Chronopoulou, Nicholas FitzGerald, Shashank Viswanadha, Safeen Huda,
 Rivka Moroshko, Georgi Stoyanov, Prateek Kolhar, Alain Vaucher, Ishaan Watts, Adhi Kuncoro,
 Henryk Michalewski, Satish Kambala, Bat-Orgil Batsaikhan, Alek Andreev, Irina Jurenka, Maigo
 Le, Qihang Chen, Wael Al Jishi, Sarah Chakera, Zhe Chen, Aditya Kini, Vikas Yadav, Aditya
 Siddhant, Ilia Labzovsky, Balaji Lakshminarayanan, Carrie Grimes Bostock, Pankil Botadra,
 Ankesh Anand, Colton Bishop, Sam Conway-Rahman, Mohit Agarwal, Yani Donchev, Achintya
 Singhal, Félix de Chaumont Quirky, Natalia Ponomareva, Nishant Agrawal, Bin Ni, Kalpesh
 Krishna, Masha Samsikova, John Karro, Yilun Du, Tamara von Glehn, Caden Lu, Christopher A.
 Choquette-Choo, Zhen Qin, Tingnan Zhang, Sicheng Li, Divya Tyam, Swaroop Mishra, Wing
 Lowe, Colin Ji, Weiyi Wang, Manaal Faruqui, Ambrose Slone, Valentin Dalibard, Arunachalam

756 Narayanaswamy, John Lambert, Pierre-Antoine Manzagol, Dan Karliner, Andrew Bolt, Ivan
 757 Lobov, Aditya Kusupati, Chang Ye, Xuan Yang, Heiga Zen, Nelson George, Mukul Bhutani,
 758 Olivier Lacombe, Robert Riachi, Gagan Bansal, Rachel Soh, Yue Gao, Yang Yu, Adams Yu,
 759 Emily Nottage, Tania Rojas-Esponda, James Noraky, Manish Gupta, Ragha Kotikalapudi, Jichuan
 760 Chang, Sanja Deur, Dan Graur, Alex Mossin, Erin Farnese, Ricardo Figueira, Alexandre Moufarek,
 761 Austin Huang, Patrik Zochbauer, Ben Ingram, Tongzhou Chen, Zelin Wu, Adrià Puigdomènec,
 762 Leland Rechis, Da Yu, Sri Gayatri Sundara Padmanabhan, Rui Zhu, Chu ling Ko, Andrea Banino,
 763 Samira Daruki, Aarush Selvan, Dhruba Bhaswar, Daniel Hernandez Diaz, Chen Su, Salvatore
 764 Scellato, Jennifer Brennan, Woohyun Han, Grace Chung, Priyanka Agrawal, Urvashi Khandelwal,
 765 Khe Chai Sim, Morgane Lustman, Sam Ritter, Kelvin Guu, Jiawei Xia, Prateek Jain, Emma Wang,
 766 Tyrone Hill, Mirko Rossini, Marija Kostelac, Tautvydas Misiunas, Amit Sabne, Kyuyeun Kim,
 767 Ahmet Iscen, Congchao Wang, José Leal, Ashwin Sreevatsa, Utku Evcı, Manfred Warmuth, Saket
 768 Joshi, Daniel Suo, James Lottes, Garrett Honke, Brendan Jou, Stefani Karp, Jieru Hu, Himanshu
 769 Sahni, Adrien Ali Taïga, William Kong, Samrat Ghosh, Renshen Wang, Jay Pavagadhi, Natalie
 770 Axelsson, Nikolai Grigorev, Patrick Siegler, Rebecca Lin, Guohui Wang, Emilio Parisotto, Sharath
 771 Maddineni, Krishan Subudhi, Eyal Ben-David, Elena Pochernina, Orgad Keller, Thi Avrahami,
 772 Zhe Yuan, Pulkit Mehta, Jialu Liu, Sherry Yang, Wendy Kan, Katherine Lee, Tom Funkhouser,
 773 Derek Cheng, Hongzhi Shi, Archit Sharma, Joe Kelley, Matan Eyal, Yury Malkov, Corentin Tallec,
 774 Yuval Bahat, Shen Yan, Xintian, Wu, David Lindner, Chengda Wu, Avi Caciularu, Xiyang Luo,
 775 Rodolphe Jenatton, Tim Zaman, Yingying Bi, Ilya Kornakov, Ganesh Mallya, Daisuke Ikeda, Itay
 776 Karo, Anima Singh, Colin Evans, Praneeth Netrapalli, Vincent Nallatamby, Isaac Tian, Yannis
 777 Assael, Vikas Raunak, Victor Carbune, Ioana Bica, Lior Madmoni, Dee Cattle, Snchit Grover,
 778 Krishna Somandepalli, Sid Lall, Amelio Vázquez-Reina, Riccardo Patana, Jiaqi Mu, Pranav Talluri,
 779 Maggie Tran, Rajeev Aggarwal, RJ Skerry-Ryan, Jun Xu, Mike Burrows, Xiaoyue Pan, Edouard
 780 Yvinec, Di Lu, Zhiying Zhang, Duc Dung Nguyen, Hairong Mu, Gabriel Barcik, Helen Ran,
 781 Lauren Beltrone, Krzysztof Choromanski, Dia Kharrat, Samuel Albanie, Sean Purser-haskell,
 782 David Bieber, Carrie Zhang, Jing Wang, Tom Hudson, Zhiyuan Zhang, Han Fu, Johannes Mauerer,
 783 Mohammad Hossein Bateni, AJ Maschinot, Bing Wang, Muye Zhu, Arjun Pillai, Tobias Weyand,
 784 Shuang Liu, Oscar Akerlund, Fred Bertsch, Vittal Premachandran, Alicia Jin, Vincent Roulet,
 785 Peter de Boursac, Shubham Mittal, Ndaba Ndebele, Georgi Karadzhov, Sahra Ghalebikesabi,
 786 Ricky Liang, Allen Wu, Yale Cong, Nimesh Ghelani, Sumeet Singh, Bahar Fatemi, Warren, Chen,
 787 Charles Kwong, Alexey Kolganov, Steve Li, Richard Song, Chenkai Kuang, Sobhan Miryoosefi,
 788 Dale Webster, James Wendt, Arkadiusz Socala, Guolong Su, Artur Mendonça, Abhinav Gupta,
 789 Xiaowei Li, Tomy Tsai, Qiong, Hu, Kai Kang, Angie Chen, Sertan Girgin, Yongqin Xian, Andrew
 790 Lee, Nolan Ramsden, Leslie Baker, Madeleine Clare Elish, Varvara Krayvanova, Rishabh Joshi,
 791 Jiri Simsa, Yao-Yuan Yang, Piotr Ambroszczyk, Dipankar Ghosh, Arjun Kar, Yuan Shangguan,
 792 Yumeya Yamamori, Yaroslav Akulov, Andy Brock, Haotian Tang, Siddharth Vashishtha, Rich
 793 Munoz, Andreas Steiner, Kalyan Andra, Daniel Eppens, Qixuan Feng, Hayato Kobayashi, Sasha
 794 Goldshtein, Mona El Mahdy, Xin Wang, Jilei, Wang, Richard Killam, Tom Kwiatkowski, Kavya
 795 Kopparapu, Serena Zhan, Chao Jia, Alexei Bendebury, Sheryl Luo, Adrià Recasens, Timothy
 796 Knight, Jing Chen, Mohak Patel, YaGuang Li, Ben Withbroe, Dean Weesner, Kush Bhatia, Jie
 797 Ren, Danielle Eisenbud, Ebrahim Songhori, Yanhua Sun, Travis Choma, Tasos Kementsietsidis,
 798 Lucas Manning, Brian Roark, Wael Farhan, Jie Feng, Susheel Tatineni, James Cobon-Kerr, Yunjie
 799 Li, Lisa Anne Hendricks, Isaac Noble, Chris Breaux, Nate Kushman, Liqian Peng, Fuzhao Xue,
 800 Taylor Tobin, Jamie Rogers, Josh Lipschultz, Chris Alberti, Alexey Vlaskin, Mostafa Dehghani,
 801 Roshan Sharma, Tris Warkentin, Chen-Yu Lee, Benigno Uria, Da-Cheng Juan, Angad Chandorkar,
 802 Hila Sheftel, Ruibo Liu, Elnaz Davoodi, Borja De Balle Pigem, Kedar Dhamdhere, David Ross,
 803 Jonathan Hoech, Mahdis Mahdieh, Li Liu, Qiuqia Li, Liam McCafferty, Chenxi Liu, Markus
 804 Mircea, Yunting Song, Omkar Savant, Alaa Saade, Colin Cherry, Vincent Hellendoorn, Siddharth
 805 Goyal, Paul Pucciarelli, David Vilar Torres, Zohar Yahav, Hyo Lee, Lars Lowe Sjoesund, Christo
 806 Kirov, Bo Chang, Deepanway Ghoshal, Lu Li, Gilles Baechler, Sébastien Pereira, Tara Sainath,
 807 Anudhyan Boral, Dominik Grewe, Afief Halumi, Nguyen Minh Phu, Tianxiao Shen, Marco Tulio
 808 Ribeiro, Dhriti Varma, Alex Kaskasoli, Vlad Feinberg, Navneet Potti, Jarrod Kahn, Matheus
 809 Wisniewski, Shakir Mohamed, Arnar Mar Hrafnkelsson, Bobak Shahriari, Jean-Baptiste Lespiau,
 Lisa Patel, Legg Yeung, Tom Paine, Lantao Mei, Alex Ramirez, Rakesh Shivanna, Li Zhong, Josh
 Woodward, Guilherme Tubone, Samira Khan, Heng Chen, Elizabeth Nielsen, Catalin Ionescu,
 Utsav Prabhu, Mingcen Gao, Qingze Wang, Sean Augenstein, Neesha Subramaniam, Jason Chang,
 Fotis Iliopoulos, Jiaming Luo, Myriam Khan, Weicheng Kuo, Denis Teplyashin, Florence Perot,
 Logan Kilpatrick, Amir Globerson, Hongkun Yu, Anfal Siddiqui, Nick Sukhanov, Arun Kandoor,

810 Umang Gupta, Marco Andreetto, Moran Ambar, Donnie Kim, Paweł Wesołowski, Sarah Perrin,
 811 Ben Limonchik, Wei Fan, Jim Stephan, Ian Stewart-Binks, Ryan Kappedal, Tong He, Sarah Cogan,
 812 Romina Datta, Tong Zhou, Jiayu Ye, Leandro Kieliger, Ana Ramalho, Kyle Kastner, Fabian
 813 Mentzer, Wei-Jen Ko, Arun Suggala, Tianhao Zhou, Shiraz Butt, Hana Strejček, Lior Belenki,
 814 Subhashini Venugopalan, Mingyang Ling, Evgenii Eltyshev, Yunxiao Deng, Geza Kovacs, Mukund
 815 Raghavachari, Hanjun Dai, Tal Schuster, Steven Schwarcz, Richard Nguyen, Arthur Nguyen, Gavin
 816 Buttimore, Shrestha Basu Mallick, Sudeep Gandhe, Seth Benjamin, Michal Jastrzebski, Le Yan,
 817 Sugato Basu, Chris Apps, Isabel Edkins, James Allingham, Immanuel Odisho, Tomas Kociský,
 818 Jewel Zhao, Linting Xue, Apoorv Reddy, Chrysovalantis Anastasiou, Aviel Atias, Sam Redmond,
 819 Kieran Milan, Nicolas Heess, Herman Schmit, Allan Dafoe, Daniel Andor, Tynan Gangwani,
 820 Anca Dragan, Sheng Zhang, Ashyana Kachra, Gang Wu, Siyang Xue, Kevin Aydin, Siqi Liu,
 821 Yuxiang Zhou, Mahan Malihi, Austin Wu, Siddharth Gopal, Candice Schumann, Peter Stys,
 822 Alek Wang, Mirek Olšák, Dangyi Liu, Christian Schallhart, Yiran Mao, Demetra Brady, Hao
 823 Xu, Tomas Mery, Chawin Sitawarin, Siva Velusamy, Tom Cobley, Alex Zhai, Christian Walder,
 824 Nitzan Katz, Ganesh Jawahar, Chinmay Kulkarni, Antoine Yang, Adam Paszke, Yinan Wang,
 825 Bogdan Damoc, Zalán Borsos, Ray Smith, Jinning Li, Mansi Gupta, Andrei Kapishnikov, Sushant
 826 Prakash, Florian Luisier, Rishabh Agarwal, Will Grathwohl, Kuangyuan Chen, Kehang Han,
 827 Nikhil Mehta, Andrew Over, Shekoofeh Azizi, Lei Meng, Niccolò Dal Santo, Kelvin Zheng, Jane
 828 Shapiro, Igor Petrovski, Jeffrey Hui, Amin Ghafouri, Jasper Snoek, James Qin, Mandy Jordan,
 829 Caitlin Sikora, Jonathan Malmaud, Yuheng Kuang, Aga Świertlik, Ruoxin Sang, Chongyang Shi,
 830 Leon Li, Andrew Rosenberg, Shubin Zhao, Andy Crawford, Jan-Thorsten Peter, Yun Lei, Xavier
 831 Garcia, Long Le, Todd Wang, Julien Amelot, Dave Orr, Praneeth Kacham, Dana Alon, Gladys
 832 Tyen, Abhinav Arora, James Lyon, Alex Kurakin, Mimi Ly, Theo Guidroz, Zhipeng Yan, Rina
 833 Panigrahy, Pingmei Xu, Thais Kagohara, Yong Cheng, Eric Noland, Jinhyuk Lee, Jonathan Lee,
 834 Cathy Yip, Maria Wang, Efrat Nehoran, Alexander Bykovsky, Zhihao Shan, Ankit Bhagatwala,
 835 Chaochao Yan, Jie Tan, Guillermo Garrido, Dan Ethier, Nate Hurley, Grace Vesom, Xu Chen,
 836 Siyuan Qiao, Abhishek Nayyar, Julian Walker, Paramjit Sandhu, Mihaela Rosca, Danny Swisher,
 837 Mikhail Dektiarev, Josh Dillon, George-Cristian Muraru, Manuel Tragut, Artiom Myaskovsky,
 838 David Reid, Marko Velic, Owen Xiao, Jasmine George, Mark Brand, Jing Li, Wenhao Yu, Shane
 839 Gu, Xiang Deng, François-Xavier Aubet, Soheil Hassas Yeganeh, Fred Alcober, Celine Smith,
 840 Trevor Cohn, Kay McKinney, Michael Tschanen, Ramesh Sampath, Gowoon Cheon, Liangchen
 841 Luo, Luyang Liu, Jordi Orbay, Hui Peng, Gabriela Botea, Xiaofan Zhang, Charles Yoon, Cesar
 842 Magalhaes, Paweł Stradomski, Ian Mackinnon, Steven Hemingray, Kumaran Venkatesan, Rhys
 843 May, Jaeyoun Kim, Alex Druinsky, Jingchen Ye, Zheng Xu, Terry Huang, Jad Al Abdallah, Adil
 844 Dostmohamed, Rachana Fellinger, Tsendsuren Munkhdalai, Akanksha Maurya, Peter Garst, Yin
 845 Zhang, Maxim Krikun, Simon Bucher, Aditya Srikanth Veerubhotla, Yixin Liu, Sheng Li, Nishesh
 846 Gupta, Jakub Adamek, Hanwen Chen, Bennett Orlando, Aleksandr Zaks, Joost van Amersfoort,
 847 Josh Camp, Hui Wan, HyunJeong Choe, Zhichun Wu, Kate Olszewska, Weiren Yu, Archita Vadali,
 848 Martin Scholz, Daniel De Freitas, Jason Lin, Amy Hua, Xin Liu, Frank Ding, Yichao Zhou, Boone
 849 Severson, Katerina Tsihlas, Samuel Yang, Tammo Spalink, Varun Yerram, Helena Pankov, Rory
 850 Blevins, Ben Vargas, Sarthak Jauhari, Matt Miecnikowski, Ming Zhang, Sandeep Kumar, Clement
 851 Farabet, Charline Le Lan, Sebastian Flennerhag, Yonatan Bitton, Ada Ma, Arthur Bražinskas,
 852 Eli Collins, Niharika Ahuja, Sneha Kudugunta, Anna Bortsova, Minh Giang, Wanzheng Zhu,
 853 Ed Chi, Scott Lundberg, Alexey Stern, Subha Puttagunta, Jing Xiong, Xiao Wu, Yash Pande,
 854 Amit Jhindal, Daniel Murphy, Jon Clark, Marc Brockschmidt, Maxine Deines, Kevin R. McKee,
 855 Dan Bahir, Jiajun Shen, Minh Truong, Daniel McDuff, Andrea Gesmundo, Edouard Rosseel,
 856 Bowen Liang, Ken Caluwaerts, Jessica Hamrick, Joseph Kready, Mary Cassin, Rishikesh Ingale,
 857 Li Lao, Scott Pollock, Yifan Ding, Wei He, Lizzeth Bellot, Joana Iljazi, Ramya Sree Boppana,
 858 Shan Han, Tara Thompson, Amr Khalifa, Anna Bulanova, Blagoj Mitrevski, Bo Pang, Emma
 859 Cooney, Tian Shi, Rey Coaguila, Tamar Yakar, Marc'aurelio Ranzato, Nikola Momchev, Chris
 860 Rawles, Zachary Charles, Young Maeng, Yuan Zhang, Rishabh Bansal, Xiaokai Zhao, Brian
 861 Albert, Yuan Yuan, Sudheendra Vijayanarasimhan, Roy Hirsch, Vinay Ramasesh, Kiran Vodrahalli,
 862 Xingyu Wang, Arushi Gupta, DJ Strouse, Jianmo Ni, Roma Patel, Gabe Taubman, Zhouyuan
 863 Huo, Dero Gharibian, Marianne Monteiro, Hoi Lam, Shobha Vasudevan, Aditi Chaudhary, Isabela
 Albuquerque, Kilol Gupta, Sebastian Riedel, Chaitra Hegde, Avraham Ruderman, András György,
 Marcus Wainwright, Ashwin Chaugule, Burcu Karagol Ayan, Tomer Levinboim, Sam Shleifer,
 Yogesh Kalley, Vahab Mirrokni, Abhishek Rao, Prabakar Radhakrishnan, Jay Hartford, Jialin
 Wu, Zhenhai Zhu, Francesco Bertolini, Hao Xiong, Nicolas Serrano, Hamish Tomlinson, Myle
 Ott, Yifan Chang, Mark Graham, Jian Li, Marco Liang, Xiangzhu Long, Sebastian Borgeaud,

864 Yanif Ahmad, Alex Grills, Diana Mincu, Martin Izzard, Yuan Liu, Jinyu Xie, Louis O'Bryan,
 865 Sameera Ponda, Simon Tong, Michelle Liu, Dan Malkin, Khalid Salama, Yuankai Chen, Rohan
 866 Anil, Anand Rao, Rigel Swavely, Misha Bilenko, Nina Anderson, Tat Tan, Jing Xie, Xing Wu,
 867 Lijun Yu, Oriol Vinyals, Andrey Ryabtsev, Rumen Dangovski, Kate Baumli, Daniel Keysers,
 868 Christian Wright, Zoe Ashwood, Betty Chan, Artem Shtefan, Yaohui Guo, Ankur Bapna, Radu
 869 Soricut, Steven Pecht, Sabela Ramos, Rui Wang, Jiahao Cai, Trieu Trinh, Paul Barham, Linda
 870 Friso, Eli Stickgold, Xiangzhuo Ding, Siamak Shakeri, Diego Ardila, Eleftheria Briakou, Phil
 871 Culliton, Adam Raveret, Jingyu Cui, David Saxton, Subhrajit Roy, Javad Azizi, Pengcheng Yin,
 872 Lucia Loher, Andrew Bunner, Min Choi, Faruk Ahmed, Eric Li, Yin Li, Shengyang Dai, Michael
 873 Elabd, Sriram Ganapathy, Shivani Agrawal, Yiqing Hua, Paige Kunkle, Sujeevan Rajayogam, Arun
 874 Ahuja, Arthur Conmy, Alex Vasiloff, Parker Beak, Christopher Yew, Jayaram Mudigonda, Bartek
 875 Wydrowski, Jon Blanton, Zhengdong Wang, Yann Dauphin, Zhuo Xu, Martin Polacek, Xi Chen,
 876 Hexiang Hu, Pauline Sho, Markus Kunesch, Mehdi Hafezi Manshadi, Eliza Rutherford, Bo Li,
 877 Sissie Hsiao, Iain Barr, Alex Tudor, Matija Kecman, Arsha Nagrani, Vladimir Pchelin, Martin
 878 Sundermeyer, Aishwarya P S, Abhijit Karmarkar, Yi Gao, Grishma Chole, Olivier Bachem, Isabel
 879 Gao, Arturo BC, Matt Dibb, Mauro Verzetti, Felix Hernandez-Campos, Yana Lunts, Matthew
 880 Johnson, Julia Di Trapani, Raphael Koster, Idan Brusilovsky, Binbin Xiong, Megha Mohabey, Han
 881 Ke, Joe Zou, Tea Sabolić, Víctor Campos, John Palowitch, Alex Morris, Linhai Qiu, Pranavaraj
 882 Ponnuramu, Fangtao Li, Vivek Sharma, Kiranbir Sodhia, Kaan Tekelioglu, Aleksandr Chuklin,
 883 Madhavi Yenugula, Erika Gemzer, Theofilos Strinopoulos, Sam El-Husseini, Huiyu Wang, Yan
 884 Zhong, Edouard Leurent, Paul Natsev, Weijun Wang, Dre Mahaarachchi, Tao Zhu, Songyou Peng,
 885 Sami Alabd, Cheng-Chun Lee, Anthony Brohan, Arthur Szlam, GS Oh, Anton Kovsharov, Jenny
 886 Lee, Renee Wong, Megan Barnes, Gregory Thornton, Felix Gimeno, Omer Levy, Martin Sevenich,
 887 Melvin Johnson, Jonathan Mallinson, Robert Dadashi, Ziyue Wang, Qingchun Ren, Preethi Lahoti,
 888 Arka Dhar, Josh Feldman, Dan Zheng, Thatcher Ulrich, Liviu Panait, Michiel Blokzijl, Cip
 889 Baetu, Josip Matak, Jitendra Harlalka, Maulik Shah, Tal Marian, Daniel von Dincklage, Cosmo
 890 Du, Ruy Ley-Wild, Bethanie Brownfield, Max Schumacher, Yury Stuken, Shadi Noghabi, Sonal
 891 Gupta, Xiaoqi Ren, Eric Malmi, Felix Weissberger, Blanca Huergo, Maria Bauza, Thomas
 892 Lampe, Arthur Douillard, Mojtaba Seyedhosseini, Roy Frostig, Zoubin Ghahramani, Kelvin
 893 Nguyen, Kashyap Krishnakumar, Chengxi Ye, Rahul Gupta, Alireza Nazari, Robert Geirhos, Pete
 894 Shaw, Ahmed Eleryan, Dima Damen, Jennimaria Palomaki, Ted Xiao, Qiyin Wu, Quan Yuan,
 895 Phoenix Meadowlark, Matthew Bilotti, Raymond Lin, Mukund Sridhar, Yannick Schroecker,
 896 Da-Woon Chung, Jincheng Luo, Trevor Strohman, Tianlin Liu, Anne Zheng, Jesse Emond, Wei
 897 Wang, Andrew Lampinen, Toshiyuki Fukuzawa, Folawayo Campbell-Ajala, Monica Roy, James
 898 Lee-Thorp, Lily Wang, Iftekhar Naim, Tony, Nguy ên, Guy Bensky, Aditya Gupta, Dominika
 899 Rogozińska, Justin Fu, Thanumalayan Sankaranarayana Pillai, Petar Veličković, Shahar Drath,
 900 Philipp Neubeck, Vaibhav Tulsyan, Arseniy Klimovskiy, Don Metzler, Sage Stevens, Angel
 901 Yeh, Junwei Yuan, Tianhe Yu, Kelvin Zhang, Alec Go, Vincent Tsang, Ying Xu, Andy Wan,
 902 Isaac Galatzer-Levy, Sam Sobell, Abodunrinwa Toki, Elizabeth Salesky, Wenlei Zhou, Diego
 903 Antognini, Sholto Douglas, Shimu Wu, Adam Lelkes, Frank Kim, Paul Cavallaro, Ana Salazar,
 904 Yuchi Liu, James Besley, Tiziana Refice, Yiling Jia, Zhang Li, Michal Sokolik, Arvind Kannan,
 905 Jon Simon, Jo Chick, Avia Aharon, Meet Gandhi, Mayank Daswani, Keyvan Amiri, Vighnesh
 906 Birodkar, Abe Ittycheriah, Peter Grabowski, Oscar Chang, Charles Sutton, Zhixin, Lai, Umesh
 907 Telang, Susie Sargsyan, Tao Jiang, Raphael Hoffmann, Nicole Brichtova, Matteo Hessel, Jonathan
 908 Halcrow, Sammy Jerome, Geoff Brown, Alex Tomala, Elena Buchatskaya, Dian Yu, Sachit
 909 Menon, Pol Moreno, Yuguo Liao, Vicky Zayats, Luming Tang, SQ Mah, Ashish Shenoy, Alex
 910 Siegman, Majid Hadian, Okwan Kwon, Tao Tu, Nima Khajehnouri, Ryan Foley, Parisa Haghani,
 911 Zhongru Wu, Vaishakh Keshava, Khyatti Gupta, Tony Bruguier, Rui Yao, Danny Karmon, Luisa
 912 Zintgraf, Zhicheng Wang, Enrique Piqueras, Junehyuk Jung, Jenny Brennan, Diego Machado,
 913 Marissa Giustina, MH Tessler, Kamyu Lee, Qiao Zhang, Joss Moore, Kaspar Daugaard, Alexander
 914 Frömmgen, Jennifer Beattie, Fred Zhang, Daniel Kasenberg, Ty Geri, Danfeng Qin, Gaurav Singh
 915 Tomar, Tom Ouyang, Tianli Yu, Luowei Zhou, Rajiv Mathews, Andy Davis, Yaoyiran Li, Jai
 916 Gupta, Damion Yates, Linda Deng, Elizabeth Kemp, Ga-Young Joung, Sergei Vassilvitskii, Mandy
 917 Guo, Pallavi LV, Dave Dopson, Sami Lachgar, Lara McConaughey, Himadri Choudhury, Dragos
 918 Dena, Aaron Cohen, Joshua Ainslie, Sergey Levi, Parthasarathy Gopavarapu, Polina Zablotskaia,
 919 Hugo Vallet, Sanaz Bahargam, Xiaodan Tang, Nenad Tomasev, Ethan Dyer, Daniel Balle, Hongrae
 920 Lee, William Bono, Jorge Gonzalez Mendez, Vadim Zubov, Shentao Yang, Ivor Rendulic, Yanyan
 921 Zheng, Andrew Hogue, Golan Pundak, Ralph Leith, Avishkar Bhoopchand, Michael Han, Mislav
 922 Žanić, Tom Schaul, Manolis Delakis, Tejas Iyer, Guanyu Wang, Harman Singh, Abdelrahman

918 Abdelhamed, Tara Thomas, Siddhartha Brahma, Hilal Dib, Naveen Kumar, Wenxuan Zhou, Liang
 919 Bai, Pushkar Mishra, Jiao Sun, Valentin Anklin, Roykrong Sukkerd, Lauren Agubuzu, Anton
 920 Briukhov, Anmol Gulati, Maximilian Sieb, Fabio Pardo, Sara Nasso, Junquan Chen, Kexin Zhu,
 921 Tiberiu Sosea, Alex Goldin, Keith Rush, Spurthi Amba Hombaiah, Andreas Noever, Allan Zhou,
 922 Sam Haves, Mary Phuong, Jake Ades, Yi ting Chen, Lin Yang, Joseph Pagadora, Stan Bileschi,
 923 Victor Cotruta, Rachel Saputro, Arijit Pramanik, Sean Ammirati, Dan Garrette, Kevin Villela, Tim
 924 Blyth, Canfer Akbulut, Neha Jha, Alban Rustemi, Arissa Wongpanich, Chirag Nagpal, Yonghui
 925 Wu, Morgane Rivière, Sergey Kishchenko, Pranesh Srinivasan, Alice Chen, Animesh Sinha, Trang
 926 Pham, Bill Jia, Tom Hennigan, Anton Bakalov, Nithya Attaluri, Drew Garmon, Daniel Rodriguez,
 927 Dawid Wegner, Wenhao Jia, Evan Senter, Noah Fiedel, Denis Petek, Yuchuan Liu, Cassidy Hardin,
 928 Harshal Tushar Lehri, Joao Carreira, Sara Smoot, Marcel Prasetya, Nami Akazawa, Anca Stefanou,
 929 Chia-Hua Ho, Anelia Angelova, Kate Lin, Min Kim, Charles Chen, Marcin Sieniek, Alice Li,
 930 Tongfei Guo, Sorin Baltateanu, Pouya Tafti, Michael Wunder, Nadav Olmert, Divyansh Shukla,
 931 Jingwei Shen, Neel Kovelamudi, Balaji Venkatraman, Seth Neel, Romal Thoppilan, Jerome Connor,
 932 Frederik Benzing, Axel Stjerngren, Golnaz Ghiasi, Alex Polozov, Joshua Howland, Theophane
 933 Weber, Justin Chiu, Ganesh Poomal Girirajan, Andreas Terzis, Pidong Wang, Fangda Li, Yoav Ben
 934 Shalom, Dinesh Tewari, Matthew Denton, Roee Aharoni, Norbert Kalb, Heri Zhao, Junlin Zhang,
 935 Angelos Filos, Matthew Rahtz, Lalit Jain, Connie Fan, Vitor Rodrigues, Ruth Wang, Richard
 936 Shin, Jacob Austin, Roman Ring, Mariella Sanchez-Vargas, Mehadi Hassen, Ido Kessler, Uri Alon,
 937 Gufeng Zhang, Wenhua Chen, Yenai Ma, Xiance Si, Le Hou, Azalia Mirhoseini, Marc Wilson,
 938 Geoff Bacon, Becca Roelofs, Lei Shu, Gautam Vasudevan, Jonas Adler, Artur Dwornik, Tayfun
 939 Terzi, Matt Lawlor, Harry Askham, Mike Bernico, Xuanyi Dong, Chris Hidey, Kevin Kilgour,
 940 Gaël Liu, Surya Bhupatiraju, Luke Leonhard, Sigi Zuo, Partha Talukdar, Qing Wei, Aliaksei
 941 Severyn, Vít Listík, Jong Lee, Aditya Tripathi, SK Park, Yossi Matias, Hao Liu, Alex Ruiz, Rajesh
 942 Jayaram, Jackson Tolins, Pierre Marcenac, Yiming Wang, Bryan Seybold, Henry Prior, Deepak
 943 Sharma, Jack Weber, Mikhail Sirotenko, Yunhsuan Sung, Dayou Du, Ellie Pavlick, Stefan Zinke,
 944 Markus Freitag, Max Dylla, Montse Gonzalez Arenas, Natan Potikha, Omer Goldman, Connie
 945 Tao, Rachita Chhaparia, Maria Voitovich, Pawan Dogra, Andrija Ražnatović, Zak Tsai, Chong
 946 You, Oleaser Johnson, George Tucker, Chenjie Gu, Jae Yoo, Maryam Majzoubi, Valentin Gabeur,
 947 Bahram Raad, Rocky Rhodes, Kashyap Kolipaka, Heidi Howard, Geta Sampemane, Benny Li,
 948 Chulayuth Asawaroengchai, Duy Nguyen, Chiyuan Zhang, Timothee Cour, Xinxin Yu, Zhao Fu,
 949 Joe Jiang, Po-Sen Huang, Gabriela Surita, Iñaki Iturrate, Yael Karov, Michael Collins, Martin
 950 Baeuml, Fabian Fuchs, Shilpa Shetty, Swaroop Ramaswamy, Sayna Ebrahimi, Qiuchen Guo,
 951 Jeremy Shar, Gabe Barth-Maron, Sravanti Addepalli, Bryan Richter, Chin-Yi Cheng, Eugénie
 952 Rives, Fei Zheng, Johannes Griesser, Nishanth Dikkala, Yoel Zeldes, Ilkin Safarli, Dipanjan Das,
 953 Himanshu Srivastava, Sadh MNM Khan, Xin Li, Aditya Pandey, Larisa Markeeva, Dan Belov, Qiqi
 954 Yan, Mikołaj Rybiński, Tao Chen, Megha Nawhal, Michael Quinn, Vineetha Govindaraj, Sarah
 955 York, Reed Roberts, Roopal Garg, Namrata Godbole, Jake Abernethy, Anil Das, Lam Nguyen
 956 Thiet, Jonathan Tompson, John Nham, Neera Vats, Ben Caine, Wesley Helmholz, Francesco
 957 Pongetti, Yeongil Ko, James An, Clara Huiyi Hu, Yu-Cheng Ling, Julia Pawar, Robert Leland,
 958 Keisuke Kinoshita, Waleed Khawaja, Marco Selvi, Eugene Ie, Danila Sinopalnikov, Lev Proleev,
 959 Nilesh Tripuraneni, Michele Bevilacqua, Seungji Lee, Clayton Sanford, Dan Suh, Dustin Tran,
 960 Jeff Dean, Simon Baumgartner, Jens Heitkaemper, Sagar Gubbi, Kristina Toutanova, Yichong Xu,
 961 Chandu Thekkath, Keran Rong, Palak Jain, Annie Xie, Yan Virin, Yang Li, Lubo Litchev, Richard
 962 Powell, Tarun Bharti, Adam Kraft, Nan Hua, Marissa Ikonomidis, Ayal Hitron, Sanjiv Kumar,
 963 Loic Matthey, Sophie Bridgers, Lauren Lax, Ishaan Malhi, Ondrej Skopek, Ashish Gupta, Jiawei
 964 Cao, Michelle Rasquinha, Siim Põder, Wojciech Stokowiec, Nicholas Roth, Guowang Li, Michaël
 965 Sander, Joshua Kessinger, Vihan Jain, Edward Loper, Wonpyo Park, Michal Yarom, Lijun Cheng,
 966 Guru Guruganesh, Kanishka Rao, Yan Li, Catarina Barros, Mikhail Sushkov, Chun-Sung Ferng,
 967 Rohin Shah, Ophir Aharoni, Ravin Kumar, Tim McConnell, Peiran Li, Chen Wang, Fernando
 968 Pereira, Craig Swanson, Fayaz Jamil, Yan Xiong, Anitha Vijayakumar, Prakash Shroff, Kedar
 969 Soparkar, Jindong Gu, Livio Baldini Soares, Eric Wang, Kushal Majmundar, Aurora Wei, Kai
 970 Bailey, Nora Kassner, Chizu Kawamoto, Goran Žužić, Victor Gomes, Abhirut Gupta, Michael
 971 Guzman, Ishita Dasgupta, Xinyi Bai, Zhufeng Pan, Francesco Piccinno, Hadas Natalie Vogel,
 Octavio Ponce, Adrian Hutter, Paul Chang, Pan-Pan Jiang, Ionel Gog, Vlad Ionescu, James
 Manyika, Fabian Pedregosa, Harry Ragan, Zach Behrman, Ryan Mullins, Coline Devin, Aroonalok
 Pyne, Swapnil Gawde, Martin Chadwick, Yiming Gu, Sasan Tavakkol, Andy Twigg, Naman
 Goyal, Ndidi Elue, Anna Goldie, Srinivasan Venkatachary, Hongliang Fei, Ziqiang Feng, Marvin
 Ritter, Isabel Leal, Sudeep Dasari, Pei Sun, Alif Raditya Rochman, Brendan O'Donoghue, Yuchen

972 Liu, Jim Sproch, Kai Chen, Natalie Clay, Slav Petrov, Sailesh Sidhwani, Ioana Mihailescu, Alex
 973 Panagopoulos, AJ Piergiovanni, Yunfei Bai, George Powell, Deep Karkhanis, Trevor Yacovone,
 974 Petr Mitrichev, Joe Kovac, Dave Uthus, Amir Yazdanbakhsh, David Amos, Steven Zheng, Bing
 975 Zhang, Jin Miao, Bhuvana Ramabhadran, Soroush Radpour, Shantanu Thakoor, Josh Newlan, Oran
 976 Lang, Orion Jankowski, Shikhar Bharadwaj, Jean-Michel Sarr, Shereen Ashraf, Sneha Mondal, Jun
 977 Yan, Ankit Singh Rawat, Sarmishta Velury, Greg Kochanski, Tom Eccles, Franz Och, Abhanshu
 978 Sharma, Ethan Mahintorabi, Alex Gurney, Carrie Muir, Vered Cohen, Saksham Thakur, Adam
 979 Bloniarz, Asier Mujika, Alexander Pritzel, Paul Caron, Altaf Rahman, Fiona Lang, Yasumasa Onoe,
 980 Petar Sirkovic, Jay Hoover, Ying Jian, Pablo Duque, Arun Narayanan, David Soergel, Alex Haig,
 981 Loren Maggiore, Shyamal Buch, Josef Dean, Ilya Figotin, Igor Karpov, Shaleen Gupta, Denny
 982 Zhou, Muhan Huang, Ashwin Vaswani, Christopher Semturs, Kaushik Shivakumar, Yu Watanabe,
 983 Vinodh Kumar Rajendran, Eva Lu, Yanhan Hou, Wenting Ye, Shikhar Vashishth, Nana Nti, Vytenis
 984 Sakenas, Darren Ni, Doug DeCarlo, Michael Bendersky, Sumit Bagri, Nacho Cano, Elijah Peake,
 985 Simon Tokumine, Varun Godbole, Carlos Guía, Tanya Lando, Vittorio Selo, Seher Ellis, Danny
 986 Tarlow, Daniel Gillick, Alessandro Epasto, Siddhartha Reddy Jonnalagadda, Meng Wei, Meiyang
 987 Xie, Ankur Taly, Michela Paganini, Mukund Sundararajan, Daniel Toyama, Ting Yu, Dessie
 988 Petrova, Aneesh Pappu, Rohan Agrawal, Senaka Buthpitiya, Justin Frye, Thomas Buschmann,
 989 Remi Crocker, Marco Tagliasacchi, Mengchao Wang, Da Huang, Sagi Perel, Brian Wieder, Hideto
 990 Kazawa, Weiyue Wang, Jeremy Cole, Himanshu Gupta, Ben Golan, Seojin Bang, Nitish Kulkarni,
 991 Ken Franko, Casper Liu, Doug Reid, Sid Dalmia, Jay Whang, Kevin Cen, Prasha Sundaram, Johan
 992 Ferret, Berivan Isik, Lucian Ionita, Guan Sun, Anna Shekhawat, Muqthar Mohammad, Philip
 993 Pham, Ronny Huang, Karthik Raman, Xingyi Zhou, Ross Mcilroy, Austin Myers, Sheng Peng,
 994 Jacob Scott, Paul Covington, Sofia Erell, Pratik Joshi, João Gabriel Oliveira, Natasha Noy, Tajwar
 995 Nasir, Jake Walker, Vera Axelrod, Tim Dozat, Pu Han, Chun-Te Chu, Eugene Weinstein, Anand
 996 Shukla, Shreyas Chandrakaladharan, Petra Poklukar, Bonnie Li, Ye Jin, Prem Erubetidine, Steven
 997 Hansen, Avigail Dabush, Alon Jacovi, Samrat Phatale, Chen Zhu, Steven Baker, Mo Shomrat, Yang
 998 Xiao, Jean Pouget-Abadie, Mingyang Zhang, Fanny Wei, Yang Song, Helen King, Yiling Huang,
 999 Yun Zhu, Ruoxi Sun, Juliana Vicente Franco, Chu-Cheng Lin, Sho Arora, Hui, Li, Vivian Xia,
 1000 Luke Vilnis, Mariano Schain, Kaiz Alarakyia, Laurel Prince, Aaron Phillips, Caleb Habtegebriel,
 1001 Luyao Xu, Huan Gui, Santiago Ontanon, Lora Aroyo, Karan Gill, Peggy Lu, Yash Katariya,
 1002 Dhruv Madeka, Shankar Krishnan, Shubha Srinivas Raghvendra, James Freedman, Yi Tay, Gaurav
 1003 Menghani, Peter Choy, Nishita Shetty, Dan Abolafia, Doron Kukliansky, Edward Chou, Jared
 1004 Lichtarge, Ken Burke, Ben Coleman, Dee Guo, Larry Jin, Indro Bhattacharya, Victoria Langston,
 1005 Yiming Li, Suyog Kotecha, Alex Yakubovich, Xinyun Chen, Petre Petrov, Tolly Powell, Yanzhang
 1006 He, Corbin Quick, Kanav Garg, Dawsen Hwang, Yang Lu, Srinadh Bhojanapalli, Kristian Kjems,
 1007 Ramin Mehran, Aaron Archer, Hado van Hasselt, Ashwin Balakrishna, JK Kearns, Meiqi Guo,
 1008 Jason Riesa, Mikita Sazanovich, Xu Gao, Chris Sauer, Chengrun Yang, XiangHai Sheng, Thomas
 1009 Jimma, Wouter Van Gansbeke, Vitaly Nikolaev, Wei Wei, Katie Millican, Ruizhe Zhao, Justin
 1010 Snyder, Levent Boelli, Maura O'Brien, Shawn Xu, Fei Xia, Wentao Yuan, Arvind Neelakantan,
 1011 David Barker, Sachin Yadav, Hannah Kirkwood, Farooq Ahmad, Joel Wee, Jordan Grimstad, Boyu
 1012 Wang, Matthew Wiethoff, Shane Settle, Miaosen Wang, Charles Blundell, Jingjing Chen, Chris
 1013 Duvarney, Grace Hu, Olaf Ronneberger, Alex Lee, Yuanzhen Li, Abhishek Chakladar, Alena
 1014 Butryna, Georgios Evangelopoulos, Guillaume Desjardins, Jonni Kanerva, Henry Wang, Averi
 1015 Nowak, Nick Li, Alyssa Loo, Art Khurshudov, Laurent El Shafey, Nagabhushan Baddi, Karel Lenc,
 1016 Yasaman Razeghi, Tom Lieber, Amer Sinha, Xiao Ma, Yao Su, James Huang, Asahi Ushio, Hanna
 1017 Klimczak-Plucińska, Kareem Mohamed, JD Chen, Simon Osindero, Stav Ginzburg, Lampros
 1018 Lamprou, Vasilisa Bashlovkina, Duc-Hieu Tran, Ali Khodaei, Ankit Anand, Yixian Di, Ramy
 1019 Eskander, Manish Reddy Vuyyuru, Jasmine Liu, Aishwarya Kamath, Roman Goldenberg, Mathias
 1020 Bellaiche, Juliette Pluto, Bill Rosgen, Hassan Mansoor, William Wong, Suhas Ganesh, Eric Bailey,
 1021 Scott Baird, Dan Deutsch, Jinoo Baek, Xuhui Jia, Chansoo Lee, Abe Friesen, Nathaniel Braun, Kate
 1022 Lee, Amayika Panda, Steven M. Hernandez, Duncan Williams, Jianqiao Liu, Ethan Liang, Arnaud
 1023 Autef, Emily Pitler, Deepali Jain, Phoebe Kirk, Oskar Bunyan, Jaume Sanchez Elias, Tongxin Yin,
 1024 Machel Reid, Aedan Pope, Nikita Putikhin, Bidisha Samanta, Sergio Guadarrama, Dahun Kim,
 1025 Simon Rowe, Marcella Valentine, Geng Yan, Alex Salcianu, David Silver, Gan Song, Richa Singh,
 Shuai Ye, Hannah DeBalsi, Majd Al Merey, Eran Ofek, Albert Webson, Shibli Mourad, Ashwin
 Kakarla, Silvio Lattanzi, Nick Roy, Evgeny Sluzhaev, Christina Butterfield, Alessio Tonioni,
 Nathan Waters, Sudhindra Kopalle, Jason Chase, James Cohan, Girish Ramchandra Rao, Robert
 Berry, Michael Voznesensky, Shuguang Hu, Kristen Chiafullo, Sharat Chikkerur, George Scrivener,
 Ivy Zheng, Jeremy Wiesner, Wolfgang Macherey, Timothy Lillicrap, Fei Liu, Brian Walker, David

1026 Welling, Elinor Davies, Yangsibo Huang, Lijie Ren, Nir Shabat, Alessandro Agostini, Mariko
 1027 Iinuma, Dustin Zelle, Rohit Sathyanarayana, Andrea D’olimpio, Morgan Redshaw, Matt Ginsberg,
 1028 Ashwin Murthy, Mark Geller, Tatiana Matejovicova, Ayan Chakrabarti, Ryan Julian, Christine
 1029 Chan, Qiong Hu, Daniel Jarrett, Manu Agarwal, Jeshwanth Challagundla, Tao Li, Sandeep Tata,
 1030 Wen Ding, Maya Meng, Zhuyun Dai, Giulia Vezzani, Shefali Garg, Jannis Bulian, Mary Jasarevic,
 1031 Honglong Cai, Harish Rajamani, Adam Santoro, Florian Hartmann, Chen Liang, Bartek Perz,
 1032 Apoorv Jindal, Fan Bu, Sungyong Seo, Ryan Poplin, Adrian Goedeckemeyer, Badih Ghazi, Nikhil
 1033 Khadke, Leon Liu, Kevin Mather, Mingda Zhang, Ali Shah, Alex Chen, Jinliang Wei, Keshav
 1034 Shivam, Yuan Cao, Donghyun Cho, Angelo Scorza Scarpati, Michael Moffitt, Clara Barbu, Ivan
 1035 Jurin, Ming-Wei Chang, Hongbin Liu, Hao Zheng, Shachi Dave, Christine Kaeser-Chen, Xiaobin
 1036 Yu, Alvin Abdagic, Lucas Gonzalez, Yanping Huang, Peilin Zhong, Cordelia Schmid, Bryce
 1037 Petri, Alex Wertheim, Jifan Zhu, Hoang Nguyen, Kaiyang Ji, Yanqi Zhou, Tao Zhou, Fangxiaoyu
 1038 Feng, Regev Cohen, David Rim, Shubham Milind Phal, Petko Georgiev, Ariel Brand, Yue Ma,
 1039 Wei Li, Somit Gupta, Chao Wang, Pavel Dubov, Jean Tarbouriech, Kingshuk Majumder, Huijian
 1040 Li, Norman Rink, Apurv Suman, Yang Guo, Yinghao Sun, Arun Nair, Xiaowei Xu, Mohamed
 1041 Elhawaty, Rodrigo Cabrera, Guangxing Han, Julian Eisenschlos, Junwen Bai, Yuqi Li, Yamini
 1042 Bansal, Thibault Sellam, Mina Khan, Hung Nguyen, Justin Mao-Jones, Nikos Parotsidis, Jake
 1043 Marcus, Cindy Fan, Roland Zimmermann, Yony Kochinski, Laura Graesser, Feryal Behbahani,
 1044 Alvaro Caceres, Michael Riley, Patrick Kane, Sandra Lefdal, Rob Willoughby, Paul Vicol, Lun
 1045 Wang, Shujian Zhang, Ashleah Gill, Yu Liang, Gautam Prasad, Soroosh Mariooryad, Mehran
 1046 Kazemi, Zifeng Wang, Kritika Muralidharan, Paul Voigtlaender, Jeffrey Zhao, Huanjie Zhou,
 1047 Nina D’Souza, Aditi Mavalankar, Séb Arnold, Nick Young, Obaid Sarvana, Chace Lee, Milad
 1048 Nasr, Tingting Zou, Seokhwan Kim, Lukas Haas, Kaushal Patel, Neslihan Bulut, David Parkinson,
 1049 Courtney Biles, Dmitry Kalashnikov, Chi Ming To, Aviral Kumar, Jessica Austin, Alex Greve,
 1050 Lei Zhang, Megha Goel, Yeqing Li, Sergey Yaroshenko, Max Chang, Abhishek Jindal, Geoff
 1051 Clark, Hagai Taitelbaum, Dale Johnson, Ofir Roval, Jeongwoo Ko, Anhad Mohananey, Christian
 1052 Schuler, Shenil Dodhia, Ruichao Li, Kazuki Osawa, Claire Cui, Peng Xu, Rushin Shah, Tao Huang,
 1053 Ela Gruzecka, Nathan Clement, Mudit Verma, Olcan Sercinoglu, Hai Qian, Viral Shah, Masa
 1054 Yamaguchi, Abhinit Modi, Takahiro Kosakai, Thomas Strohmann, Junhao Zeng, Beliz Gunel, Jun
 1055 Qian, Austin Tarango, Krzysztof Jastrzębski, Robert David, Jyn Shan, Parker Schuh, Kunal Lad,
 1056 Willi Gierke, Mukundan Madhavan, Xinyi Chen, Mark Kurzeja, Rebeca Santamaria-Fernandez,
 1057 Dawn Chen, Alexandra Cordell, Yuri Chervonyi, Frankie Garcia, Nithish Kannen, Vincent Perot,
 1058 Nan Ding, Shlomi Cohen-Ganor, Victor Lavrenko, Junru Wu, Georgie Evans, Cicero Nogueira dos
 1059 Santos, Madhavi Sewak, Ashley Brown, Andrew Hard, Joan Puigcerver, Zeyu Zheng, Yizhong
 1060 Liang, Evgeny Gladchenko, Reeve Ingle, Uri First, Pierre Sermanet, Charlotte Magister, Mihajlo
 1061 Velimirović, Sashank Reddi, Susanna Ricco, Eirikur Agustsson, Hartwig Adam, Nir Levine, David
 1062 Gaddy, Dan Holtmann-Rice, Xuanhui Wang, Ashutosh Sathe, Abhijit Guha Roy, Blaž Bratanič,
 1063 Alen Carin, Harsh Mehta, Silvano Bonacina, Nicola De Cao, Mara Finkelstein, Verena Rieser,
 1064 Xinyi Wu, Florent Altché, Dylan Scandinaro, Li Li, Nino Vieillard, Nikhil Sethi, Garrett Tanzer,
 1065 Zhi Xing, Shibo Wang, Parul Bhatia, Gui Citovsky, Thomas Anthony, Sharon Lin, Tianze Shi,
 1066 Shoshana Jakobovits, Gena Gibson, Raj Apte, Lisa Lee, Mingqing Chen, Arunkumar Byravan,
 1067 Petros Maniatis, Kellie Webster, Andrew Dai, Pu-Chin Chen, Jiaqi Pan, Asya Fadeeva, Zach
 1068 Gleicher, Thang Luong, and Niket Kumar Bhumihar. Gemini 2.5: Pushing the frontier with
 1069 advanced reasoning, multimodality, long context, and next generation agentic capabilities, 2025.
 1070 URL <https://arxiv.org/abs/2507.06261>.

1071 Google DeepMind. Gemini Deep Research, 2025. URL <https://gemini.google/overview/deep-research/?hl=en>.

1072 Mingxuan Du, Benfeng Xu, Chiwei Zhu, Xiaorui Wang, and Zhendong Mao. Deepresearch bench: A
 1073 comprehensive benchmark for deep research agents. *arXiv preprint*, 2025.

1074 Vanessa Wei Feng and Graeme Hirst. Text-level discourse parsing with rich linguistic features. In
 1075 Haizhou Li, Chin-Yew Lin, Miles Osborne, Gary Geunbae Lee, and Jong C. Park (eds.), *Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
 1076 Papers)*, pp. 60–68, Jeju Island, Korea, July 2012. Association for Computational Linguistics. URL
 1077 <https://aclanthology.org/P12-1007/>.

1078 Linda Flower and John R. Hayes. A cognitive process theory of writing. *College Composition & Com-
 1079 munication*, 32(4):365–387, 1981. ISSN 1939-9006. doi: <https://doi.org/10.58680/ccc198115885>.
 URL <https://publicationsncte.org/content/journals/10.58680/ccc198115885>.

1080 Martin Funkquist, Ilia Kuznetsov, Yufang Hou, and Iryna Gurevych. Citebench: A benchmark for
 1081 scientific citation text generation. *arXiv preprint arXiv:2212.09577*, 2022.

1082

1083 Luyu Gao, Zhuyun Dai, Panupong Pasupat, Anthony Chen, Arun Tejasvi Chaganty, Yicheng Fan,
 1084 Vincent Zhao, Ni Lao, Hongrae Lee, Da-Cheng Juan, and Kelvin Guu. RARR: Researching
 1085 and revising what language models say, using language models. In Anna Rogers, Jordan Boyd-
 1086 Gruber, and Naoaki Okazaki (eds.), *Proceedings of the 61st Annual Meeting of the Association
 1087 for Computational Linguistics (Volume 1: Long Papers)*, pp. 16477–16508, Toronto, Canada, July
 1088 2023a. Association for Computational Linguistics. doi: 10.18653/v1/2023.acl-long.910. URL
 1089 <https://aclanthology.org/2023.acl-long.910/>.

1090 Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. Enabling large language models to generate
 1091 text with citations. In *Empirical Methods in Natural Language Processing (EMNLP)*, 2023b.

1092

1093 Tianyu Gao, Alexander Wettig, Luxi He, Yihe Dong, Sadhika Malladi, and Danqi Chen. Metadata
 1094 conditioning accelerates language model pre-training. In *ICML*, 2025.

1095 Jack Goodwin. Citation indexing—its theory and application in science, technology, and humanities
 1096 by eugene garfield. *Technology and Culture*, 21(4):714–715, 1980.

1097

1098 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
 1099 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan,
 1100 Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev,
 1101 Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru,
 1102 Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak,
 1103 Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu,
 1104 Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle
 1105 Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego
 1106 Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,
 1107 Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang, Gabriel
 1108 Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire Mialon,
 1109 Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron, Iliyan
 1110 Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang, Jade Copet,
 1111 Jaewon Lee, Jan Geffert, Jana Vrane, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde,
 1112 Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie
 1113 Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua
 1114 Saxe, Junteng Jia, Kalyan Vasudevan Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak,
 1115 Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
 1116 Chiu, Kunal Bhalla, Kushal Lakhota, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence
 1117 Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas
 1118 Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri,
 1119 Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie
 1120 Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes
 1121 Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,
 1122 Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajwal
 1123 Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao Dong,
 1124 Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert Stojnic,
 1125 Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre, Ronnie
 1126 Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hosseini, Sahana
 1127 Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang Nie,
 1128 Sharan Narang, Sharath Raparth, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
 1129 Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan,
 1130 Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas
 1131 Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami,
 1132 Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti,
 1133 Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier
 Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao
 Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei, Yi Wen, Yiwen Song,
 Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan, Zhengxing Chen, Zoe
 Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey, Adam Shajnfeld, Adithya

1134 Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma, Alex Boesenber, Alexei
 1135 Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo, Anam Yunus, Andrei Lupu,
 1136 Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit
 1137 Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury,
 1138 Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer,
 1139 Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu,
 1140 Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
 1141 Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu
 1142 Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer,
 1143 Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu,
 1144 Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc
 1145 Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily
 1146 Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,
 1147 Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank
 1148 Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,
 1149 Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan Inan,
 1150 Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison Rudolph,
 1151 Helen Suk, Henry Aspegen, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj, Igor Molybog,
 1152 Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman, James Geboski, James
 1153 Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny
 1154 Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe Cummings,
 1155 Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang, Kai
 1156 Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
 1157 Veeraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle
 1158 Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng
 1159 Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish
 1160 Bhatt, Martynas Mankus, Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim
 1161 Naumov, Maya Lathi, Meghan Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle
 1162 Restrepo, Mihir Patel, Mik Vyatskov, Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang,
 1163 Miquel Jubert Hermoso, Mo Metanat, Mohammad Rastegari, Munish Bansal, Nandhini Santhanam,
 1164 Natascha Parks, Natasha White, Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier,
 1165 Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia
 1166 Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro
 1167 Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani,
 1168 Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy,
 1169 Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin
 1170 Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu,
 1171 Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
 1172 Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay,
 1173 Sheng Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang,
 1174 Shuqiang Zhang, Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie
 1175 Max, Stephen Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta,
 1176 Summer Deng, Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman,
 1177 Tal Remez, Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun
 1178 Zhang, Tim Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria
 1179 Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru,
 1180 Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wencheng Wang, Wenwen Jiang, Wes Bouaziz,
 1181 Will Constable, Xiaocheng Tang, Xiaoqian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv
 1182 Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
 1183 Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait,
 1184 Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The
 1185 llama 3 herd of models, 2024. URL <https://arxiv.org/abs/2407.21783>.
 1186
 1187 John Harrington, Lucy Series, and Alexander Ruck-Keene. Law and rhetoric: critical possibilities.
 1188 *Journal of law and Society*, 46(2):302–327, 2019.
 1189
 1190 David Jurgens, Srijan Kumar, Raine Hoover, Dan McFarland, and Dan Jurafsky. Measuring the
 1191 evolution of a scientific field through citation frames. *Transactions of the Association for Compu-
 1192 tational Linguistics*, 6:391–406, 07 2018. ISSN 2307-387X. doi: 10.1162/tacl_a_00028. URL
 1193 https://doi.org/10.1162/tacl_a_00028.

1188 Rodney Kinney, Chloe Anastasiades, Russell Authur, Iz Beltagy, Jonathan Bragg, Alexandra Bu-
 1189 raczynski, Isabel Cachola, Stefan Candra, Yoganand Chandrasekhar, Arman Cohan, et al. The
 1190 semantic scholar open data platform. *arXiv preprint arXiv:2301.10140*, 2023.

1191 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 1192 language models are zero-shot reasoners. *Advances in neural information processing systems*, 35:
 1193 22199–22213, 2022.

1194 Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
 1195 language models are zero-shot reasoners, 2023. URL <https://arxiv.org/abs/2205.11916>.

1196 Sara Lafia, Andrea Thomer, Elizabeth Moss, David Bleckley, and Libby Hemphill. How and why
 1197 do researchers reference data? a study of rhetorical features and functions of data references in
 1198 academic articles. *arXiv preprint arXiv:2302.08477*, 2023.

1199 Anne Lauscher, Brandon Ko, Bailey Kuehl, Sophie Johnson, Arman Cohan, David Jurgens, and Kyle
 1200 Lo. MultiCite: Modeling realistic citations requires moving beyond the single-sentence single-
 1201 label setting. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz
 1202 (eds.), *Proceedings of the 2022 Conference of the North American Chapter of the Association for
 1203 Computational Linguistics: Human Language Technologies*, pp. 1875–1889, Seattle, United States,
 1204 July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.137.
 1205 URL <https://aclanthology.org/2022.naacl-main.137/>.

1206 Mina Lee, Katy Ilonka Gero, John Joon Young Chung, Simon Buckingham Shum, Vipul Raheja,
 1207 Hua Shen, Subhashini Venugopalan, Thiemo Wambsganss, David Zhou, Emad A Alghamdi, et al.
 1208 A design space for intelligent and interactive writing assistants. In *Proceedings of the 2024 CHI
 1209 Conference on Human Factors in Computing Systems*, pp. 1–35, 2024.

1210 Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
 1211 Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela.
 1212 Retrieval-augmented generation for knowledge-intensive nlp tasks. In *Proceedings of the 34th
 1213 International Conference on Neural Information Processing Systems*, NIPS '20, Red Hook, NY,
 1214 USA, 2020. Curran Associates Inc. ISBN 9781713829546.

1215 Jiwei Li, Rumeng Li, and Eduard Hovy. Recursive deep models for discourse parsing. In *Proceedings
 1216 of the 2014 conference on empirical methods in natural language processing (EMNLP)*, pp.
 1217 2061–2069, 2014.

1218 Zhenwen Liang, Dian Yu, Xiaoman Pan, Wenlin Yao, Qingkai Zeng, Xiangliang Zhang, and Dong
 1219 Yu. Mint: Boosting generalization in mathematical reasoning via multi-view fine-tuning. *arXiv
 1220 preprint arXiv:2307.07951*, 2023.

1221 Nelson F Liu, Tianyi Zhang, and Percy Liang. Evaluating verifiability in generative search engines.
 1222 *arXiv preprint arXiv:2304.09848*, 2023.

1223 Kyle Lo, Joseph Chee Chang, Andrew Head, Jonathan Bragg, Amy X Zhang, Cassidy Trier, Chloe
 1224 Anastasiades, Tal August, Russell Authur, Danielle Bragg, et al. The semantic reader project:
 1225 Augmenting scholarly documents through ai-powered interactive reading interfaces. *arXiv preprint
 1226 arXiv:2303.14334*, 2023.

1227 Daniel Marcu. *The theory and practice of discourse parsing and summarization*. MIT press, 2000.

1228 Jacob Menick, Maja Trebacz, Vladimir Mikulik, John Aslanides, Francis Song, Martin Chadwick,
 1229 Mia Glaese, Susannah Young, Lucy Campbell-Gillingham, Geoffrey Irving, et al. Teaching
 1230 language models to support answers with verified quotes. *arXiv preprint arXiv:2203.11147*, 2022.

1231 Grégoire Mialon, Clémentine Fourrier, Craig Swift, Thomas Wolf, Yann LeCun, and Thomas Scialom.
 1232 Gaia: a benchmark for general ai assistants, 2023. URL <https://arxiv.org/abs/2311.12983>.

1233 Shikhar Murty, Pang Wei Koh, and Percy Liang. ExpBERT: Representation engineering with natural
 1234 language explanations. In Dan Jurafsky, Joyce Chai, Natalie Schluter, and Joel Tetreault (eds.),
 1235 *Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics*, pp.
 1236 2106–2113, Online, July 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.
 1237 acl-main.190. URL <https://aclanthology.org/2020.acl-main.190/>.

1242 Reiichiro Nakano, Jacob Hilton, Suchir Balaji, Jeff Wu, Long Ouyang, Christina Kim, Christopher
 1243 Hesse, Shantanu Jain, Vineet Kosaraju, William Saunders, Xu Jiang, Karl Cobbe, Tyna Eloundou,
 1244 Gretchen Krueger, Kevin Button, Matthew Knight, Benjamin Chess, and John Schulman. Webgpt:
 1245 Browser-assisted question-answering with human feedback, 2022. URL <https://arxiv.org/abs/2112.09332>.

1246

1247 OpenAI. Openai o3 and o4-mini system card. System card, OpenAI, April
 1248 2025. URL <https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf>.

1249

1250

1251 OpenAI. Introducing deep research, 2025. URL <https://openai.com/index/introducing-deep-research/>.

1252

1253

1254 Vishakh Padmakumar, Katy Gero, Thiem Wambsganss, Sarah Sterman, Ting-Hao Huang, David
 1255 Zhou, and John Chung (eds.). *Proceedings of the Fourth Workshop on Intelligent and Interactive
 1256 Writing Assistants (In2Writing 2025)*, Albuquerque, New Mexico, US, May 2025. Association
 1257 for Computational Linguistics. ISBN 979-8-89176-239-8. doi: 10.18653/v1/2025.in2writing-1.0.
 1258 URL <https://aclanthology.org/2025.in2writing-1.0/>.

1259

1260 Liana Patel, Negar Arabzadeh, Harshit Gupta, Ankita Sundar, Ion Stoica, Matei Zaharia, and Carlos
 1261 Guestrin. Deepscholar-bench: A live benchmark and automated evaluation for generative research
 1262 synthesis. 2025. URL <https://arxiv.org/abs/2508.20033>.

1263

1264 Long Phan, Alice Gatti, Ziwen Han, Nathaniel Li, Josephina Hu, Hugh Zhang, Chen Bo Calvin
 1265 Zhang, Mohamed Shaaban, John Ling, Sean Shi, Michael Choi, Anish Agrawal, Arnav Chopra,
 1266 Adam Khoja, Ryan Kim, Richard Ren, Jason Hausenloy, Oliver Zhang, Mantas Mazeika, Dmitry
 1267 Dodonov, Tung Nguyen, Jaeho Lee, Daron Anderson, Mikhail Doroshenko, Alun Cennith Stokes,
 1268 Mobeen Mahmood, Oleksandr Pokutnyi, Oleg Iskra, Jessica P. Wang, John-Clark Levin, Mstyslav
 1269 Kazakov, Fiona Feng, Steven Y. Feng, Haoran Zhao, Michael Yu, Varun Gangal, Chelsea Zou,
 1270 Zihan Wang, Serguei Popov, Robert Gerbic, Geoff Galgon, Johannes Schmitt, Will Yeadon,
 1271 Yongki Lee, Scott Sauers, Alvaro Sanchez, Fabian Giska, Marc Roth, Søren Riis, Saiteja Utpala,
 1272 Noah Burns, Gashaw M. Goshu, Mohinder Maheshbhai Naiya, Chidozie Agu, Zachary Giboney,
 1273 Antrell Cheatom, Francesco Fournier-Facio, Sarah-Jane Crowson, Lennart Finke, Zerui Cheng,
 1274 Jennifer Zampese, Ryan G. Hoerr, Mark Nandor, Hyunwoo Park, Tim Gehrunger, Jiaqi Cai, Ben
 1275 McCarty, Alexis C Garretson, Edwin Taylor, Damien Sileo, Qiuyu Ren, Usman Qazi, Lianghui
 1276 Li, Jungbae Nam, John B. Wydallis, Pavel Arkhipov, Jack Wei Lun Shi, Aras Bacho, Chris G.
 1277 Willcocks, Hangrui Cao, Sumeet Motwani, Emily de Oliveira Santos, Johannes Veith, Edward
 1278 Vendrow, Doru Cojoc, Kengo Zenitani, Joshua Robinson, Longke Tang, Yuqi Li, Joshua Vendrow,
 1279 Natanael Wildner Fraga, Vladyslav Kuchkin, Andrey Pupasov Maksimov, Pierre Marion, Denis
 1280 Efremov, Jayson Lynch, Kaiqu Liang, Aleksandar Mikov, Andrew Gritsevskiy, Julien Guillod,
 1281 Gözdenur Demir, Dakotah Martinez, Ben Pageler, Kevin Zhou, Saeed Soori, Ori Press, Henry Tang,
 1282 Paolo Rissone, Sean R. Green, Lina Brüssel, Moon Twayana, Aymeric Dieuleveut, Joseph Marvin
 1283 Imperial, Ameya Prabhu, Jinzhou Yang, Nick Crispino, Arun Rao, Dimitri Zvonkine, Gabriel
 1284 Loiseau, Mikhail Kalinin, Marco Lukas, Ciprian Manolescu, Nate Stambaugh, Subrata Mishra, Tad
 1285 Hogg, Carlo Bosio, Brian P Coppola, Julian Salazar, Jaehyeok Jin, Rafael Sayous, Stefan Ivanov,
 1286 Philippe Schwaller, Shaipranesh Senthilkuma, Andres M Bran, Andres Algaba, Kelsey Van den
 1287 Houte, Lynn Van Der Sypt, Brecht Verbeken, David Noever, Alexei Kopylov, Benjamin Myklebust,
 1288 Bikun Li, Lisa Schut, Evgenii Zheltonozhskii, Qiaochu Yuan, Derek Lim, Richard Stanley, Tong
 1289 Yang, John Maar, Julian Wykowski, Martí Oller, Anmol Sahu, Cesare Giulio Ardito, Yuzheng Hu,
 1290 Ariel Ghislain Kemogne Kamdoum, Alvin Jin, Tobias Garcia Vilchis, Yuexuan Zu, Martin Lackner,
 1291 James Koppel, Gongbo Sun, Daniil S. Antonenko, Steffi Chern, Bingchen Zhao, Pierrot Arsene,
 1292 Joseph M Cavanagh, Daofeng Li, Jiawei Shen, Donato Crisostomi, Wenjin Zhang, Ali Dehghan,
 1293 Sergey Ivanov, David Perrella, Nurdin Kaparov, Allen Zang, Ilia Sucholutsky, Arina Kharlamova,
 1294 Daniil Orel, Vladislav Poritski, Shalev Ben-David, Zachary Berger, Parker Whitfill, Michael Foster,
 1295 Daniel Munro, Linh Ho, Shankar Sivarajan, Dan Bar Hava, Aleksey Kuchkin, David Holmes,
 1296 Alexandra Rodriguez-Romero, Frank Sommerhage, Anji Zhang, Richard Moat, Keith Schneider,
 1297 Zakayo Kazibwe, Don Clarke, Dae Hyun Kim, Felipe Meneguitti Dias, Sara Fish, Veit Elser,
 1298 Tobias Kreiman, Victor Efren Guadarrama Vilchis, Immo Klose, Ujjwala Anantheswaran, Adam
 1299 Zweiger, Kaivalya Rawal, Jeffery Li, Jeremy Nguyen, Nicolas Daans, Haline Heidinger, Maksim
 1300 Radionov, Václav Rozhoň, Vincent Ginis, Christian Stump, Niv Cohen, Rafał Poświata, Josef

1296 Tkadlec, Alan Goldfarb, Chenguang Wang, Piotr Padlewski, Stanislaw Barzowski, Kyle Mont-
 1297 gomery, Ryan Stendall, Jamie Tucker-Foltz, Jack Stade, T. Ryan Rogers, Tom Goertzen, Declan
 1298 Grabb, Abhishek Shukla, Alan Givré, John Arnold Ambay, Archan Sen, Muhammad Fayez Aziz,
 1299 Mark H Inlow, Hao He, Ling Zhang, Younesse Kaddar, Ivar Ängquist, Yanxu Chen, Harrison K
 1300 Wang, Kalyan Ramakrishnan, Elliott Thornley, Antonio Terpin, Hailey Schoelkopf, Eric Zheng,
 1301 Avishy Carmi, Ethan D. L. Brown, Kelin Zhu, Max Bartolo, Richard Wheeler, Martin Stehberger,
 1302 Peter Bradshaw, JP Heimonen, Kaustubh Sridhar, Ido Akov, Jennifer Sandlin, Yury Makarychev,
 1303 Joanna Tam, Hieu Hoang, David M. Cunningham, Vladimir Goryachev, Demosthenes Patramanis,
 1304 Michael Krause, Andrew Redenti, David Aldous, Jesyin Lai, Shannon Coleman, Jiangnan Xu,
 1305 Sangwon Lee, Ilias Magoulas, Sandy Zhao, Ning Tang, Michael K. Cohen, Orr Paradise, Jan Hen-
 1306 dric Kirchner, Maksym Ovchinnikov, Jason O. Matos, Adithya Shenoy, Michael Wang, Yuzhou
 1307 Nie, Anna Sztyber-Betley, Paolo Faraboschi, Robin Riblet, Jonathan Crozier, Shiv Halasyamani,
 1308 Shreyas Verma, Prashant Joshi, Eli Meril, Ziqiao Ma, Jérémie Andréeoletti, Raghav Singhal, Jacob
 1309 Platnick, Volodymyr Nevirkovets, Luke Basler, Alexander Ivanov, Seri Khoury, Nils Gustafsson,
 1310 Marco Piccardo, Hamid Mostaghimi, Qijia Chen, Virendra Singh, Tran Quoc Khánh, Paul Rosu,
 1311 Hannah Szlyk, Zachary Brown, Himanshu Narayan, Aline Menezes, Jonathan Roberts, William
 1312 Alley, Kunyang Sun, Arkil Patel, Max Lamparth, Anka Reuel, Linwei Xin, Hanmeng Xu, Jacob
 1313 Loader, Freddie Martin, Zixuan Wang, Andrea Achilleos, Thomas Preu, Tomek Korbak, Ida Bosio,
 1314 Fereshteh Kazemi, Ziye Chen, Biró Bálint, Eve J. Y. Lo, Jiaqi Wang, Maria Inês S. Nunes, Jeremiah
 1315 Milbauer, M Saiful Bari, Zihao Wang, Behzad Ansarinejad, Yewen Sun, Stephane Durand, Hossam
 1316 Elgnainy, Guillaume Douville, Daniel Tordera, George Balabanian, Hew Wolff, Lynna Kvistad,
 1317 Hsiaoyun Milliron, Ahmad Sakor, Murat Eron, Andrew Favre D. O., Shailesh Shah, Xiaoxiang
 1318 Zhou, Firuz Kamalov, Sherwin Abdoli, Tim Santens, Shaul Barkan, Allison Tee, Robin Zhang,
 1319 Alessandro Tomasiello, G. Bruno De Luca, Shi-Zhuo Looi, Vinh-Kha Le, Noam Kolt, Jiayi Pan,
 1320 Emma Rodman, Jacob Drori, Carl J Fossum, Niklas Muennighoff, Milind Jagota, Ronak Pradeep,
 1321 Honglu Fan, Jonathan Eicher, Michael Chen, Kushal Thaman, William Merrill, Moritz Firsching,
 1322 Carter Harris, Stefan Ciobâcă, Jason Gross, Rohan Pandey, Ilya Gusev, Adam Jones, Shashank
 1323 Agnihotri, Pavel Zhelnov, Mohammadreza Mofayzei, Alexander Piperski, David K. Zhang, Kos-
 1324 tantyn Dobarskyi, Roman Leventov, Ignat Soroko, Joshua Duersch, Vage Taamazyan, Andrew Ho,
 1325 Wenjie Ma, William Held, Ruicheng Xian, Armel Randy Zebaze, Mohanad Mohamed, Julian Noah
 1326 Leser, Michelle X Yuan, Laila Yacar, Johannes Lengler, Katarzyna Olszewska, Claudio Di Fratta,
 1327 Edson Oliveira, Joseph W. Jackson, Andy Zou, Muthu Chidambaram, Timothy Manik, Hector
 1328 Haffenden, Dashiell Stander, Ali Dasouqi, Alexander Shen, Bita Golshani, David Stap, Egor
 1329 Kretov, Mikalai Uzhou, Alina Borisovna Zhidkovskaya, Nick Winter, Miguel Orbegozo Rodriguez,
 1330 Robert Lauff, Dustin Wehr, Colin Tang, Zaki Hossain, Shaun Phillips, Fortuna Samuele, Fredrik
 1331 Ekström, Angela Hammon, Oam Patel, Faraz Farhidi, George Medley, Forough Mohammadzadeh,
 1332 Madellene Peñaflor, Haile Kassahun, Alena Friedrich, Rayner Hernandez Perez, Daniel Pyda,
 1333 Taom Sakal, Omkar Dhamane, Ali Khajegili Mirabadi, Eric Hallman, Kenchi Okutsu, Mike
 1334 Battaglia, Mohammad Maghsoudimehrabani, Alon Amit, Dave Hulbert, Roberto Pereira, Simon
 1335 Weber, Handoko, Anton Peristyy, Stephen Malina, Mustafa Mehkary, Rami Aly, Frank Reidegeld,
 1336 Anna-Katharina Dick, Cary Friday, Mukhwinder Singh, Hassan Shapourian, Wanyoung Kim, Mar-
 1337 iana Costa, Hubeyb Gurdogan, Harsh Kumar, Chiara Ceconello, Chao Zhuang, Haon Park, Micah
 1338 Carroll, Andrew R. Tawfeek, Stefan Steinerberger, Daattavya Aggarwal, Michael Kirchhof, Linjie
 1339 Dai, Evan Kim, Johan Ferret, Jainam Shah, Yuzhou Wang, Minghao Yan, Krzysztof Burdzy, Lixin
 1340 Zhang, Antonio Franca, Diana T. Pham, Kang Yong Loh, Joshua Robinson, Abram Jackson, Paolo
 1341 Giordano, Philipp Petersen, Adrian Cosma, Jesus Colino, Colin White, Jacob Votava, Vladimir
 1342 Vinnikov, Ethan Delaney, Petr Spelda, Vit Stritecky, Syed M. Shahid, Jean-Christophe Mourrat,
 1343 Lavr Vetroshkin, Koen Sponselee, Renas Bacho, Zheng-Xin Yong, Florencia de la Rosa, Nathan
 1344 Cho, Xiuyu Li, Guillaume Malod, Orion Weller, Guglielmo Albani, Leon Lang, Julien Laurendeau,
 1345 Dmitry Kazakov, Fatimah Adesanya, Julien Portier, Lawrence Hollom, Victor Souza, Yuchen Anna
 1346 Zhou, Julien Degorre, Yiğit Yalın, Gbenga Daniel Obikoya, Rai, Filippo Bigi, M. C. Boscá, Oleg
 1347 Shumar, Kaniuar Bacho, Gabriel Recchia, Mara Popescu, Nikita Shulga, Ngefor Mildred Tanwie,
 1348 Thomas C. H. Lux, Ben Rank, Colin Ni, Matthew Brooks, Alesia Yakimchyk, Huanxu, Liu,
 1349 Stefano Cavalleri, Olle Häggström, Emil Verkama, Joshua Newbould, Hans Gundlach, Leonor
 Brito-Santana, Brian Amaro, Vivek Vajipey, Rynaa Grover, Ting Wang, Yosi Kratish, Wen-Ding
 Li, Sivakanth Gopi, Andrea Caciolai, Christian Schroeder de Witt, Pablo Hernández-Cámarra,
 Emanuele Rodolà, Jules Robins, Dominic Williamson, Vincent Cheng, Brad Raynor, Hao Qi, Ben
 Segev, Jingxuan Fan, Sarah Martinson, Erik Y. Wang, Kaylie Hausknecht, Michael P. Brenner,
 Mao Mao, Christoph Demian, Peyman Kassani, Xinyu Zhang, David Avagian, Eshawn Jessica

1350 Scipio, Alon Ragoler, Justin Tan, Blake Sims, Rebeka Plecnik, Aaron Kirtland, Omer Faruk
 1351 Bodur, D. P. Shinde, Yan Carlos Leyva Labrador, Zahra Adoul, Mohamed Zekry, Ali Karakoc,
 1352 Tania C. B. Santos, Samir Shamseldeen, Loukmene Karim, Anna Liakhovitskaia, Nate Resman,
 1353 Nicholas Farina, Juan Carlos Gonzalez, Gabe Maayan, Earth Anderson, Rodrigo De Oliveira
 1354 Pena, Elizabeth Kelley, Hodjat Mariji, Rasoul Pouriamanesh, Wentao Wu, Ross Finocchio, Ismail
 1355 Alarab, Joshua Cole, Danyelle Ferreira, Bryan Johnson, Mohammad Safdari, Liangti Dai, Siriphan
 1356 Arthornthurasuk, Isaac C. McAlister, Alejandro José Moyano, Alexey Pronin, Jing Fan, Angel
 1357 Ramirez-Trinidad, Yana Malyshева, Daphny Pottmaier, Omid Taheri, Stanley Stepanic, Samuel
 1358 Perry, Luke Askew, Raúl Adrián Huerta Rodríguez, Ali M. R. Minissi, Ricardo Lorena, Krishnamurthy
 1359 Iyer, Arshad Anil Fasiludeen, Ronald Clark, Josh Ducey, Matheus Piza, Maja Somrak, Eric
 1360 Vergo, Juehang Qin, Benjamín Borbás, Eric Chu, Jack Lindsey, Antoine Jallon, I. M. J. McInnis,
 1361 Evan Chen, Avi Semler, Luk Gloor, Tej Shah, Marc Carauleanu, Pascal Lauer, Tran Đức Huy,
 1362 Hossein Shahrtash, Emilien Duc, Lukas Lewark, Assaf Brown, Samuel Albanie, Brian Weber,
 1363 Warren S. Vaz, Pierre Clavier, Yiyang Fan, Gabriel Poesia Reis e Silva, Long, Lian, Marcus
 1364 Abramovitch, Xi Jiang, Sandra Mendoza, Murat Islam, Juan Gonzalez, Vasilios Mavroudis, Justin
 1365 Xu, Pawan Kumar, Laxman Prasad Goswami, Daniel Bugas, Nasser Heydari, Ferenc Jeanplong,
 1366 Thorben Jansen, Antonella Pinto, Archimedes Apronti, Abdallah Galal, Ng Ze-An, Ankit Singh,
 1367 Tong Jiang, Joan of Arc Xavier, Kanu Priya Agarwal, Mohammed Berkani, Gang Zhang, Zhehang
 1368 Du, Benedito Alves de Oliveira Junior, Dmitry Malishev, Nicolas Remy, Taylor D. Hartman, Tim
 1369 Tarver, Stephen Mensah, Gautier Abou Loume, Wiktor Morak, Farzad Habibi, Sarah Hoback, Will
 1370 Cai, Javier Gimenez, Roselynn Grace Montecillo, Jakub Łucki, Russell Campbell, Asankhaya
 1371 Sharma, Khalida Meer, Shreen Gul, Daniel Espinosa Gonzalez, Xavier Alapont, Alex Hoover, Gunjan
 1372 Chhablani, Freddie Vargus, Arunim Agarwal, Yibo Jiang, Deepakkumar Patil, David Outevsky,
 1373 Kevin Joseph Scaria, Rajat Maheshwari, Abdelkader Dendane, Priti Shukla, Ashley Cartwright,
 1374 Sergei Bogdanov, Niels Mündler, Sören Möller, Luca Arnaboldi, Kunvar Thaman, Muhammad Rehan
 1375 Siddiqi, Prajvi Saxena, Himanshu Gupta, Tony Fruhauff, Glen Sherman, Mátyás Vincze,
 1376 Siranut Usawasutsakorn, Dylan Ler, Anil Radhakrishnan, Innocent Enyekwe, Sk Md Salauddin,
 1377 Jiang Muzhen, Aleksandr Maksapetyan, Vivien Rossbach, Chris Harjadi, Mohsen Bahalooohoreh,
 1378 Claire Sparrow, Jasdeep Sidhu, Sam Ali, Song Bian, John Lai, Eric Singer, Justine Leon Uro,
 1379 Greg Bateman, Mohamed Sayed, Ahmed Menshawy, Darling Duclosel, Dario Bezzi, Yashaswini
 1380 Jain, Ashley Aaron, Murat Tiryakioglu, Sheeshram Siddh, Keith Krenek, Imad Ali Shah, Jun Jin,
 1381 Scott Creighton, Denis Peskoff, Zienab EL-Wasif, Ragavendran P V, Michael Richmond, Joseph
 1382 McGowan, Tejal Patwardhan, Hao-Yu Sun, Ting Sun, Nikola Zubić, Samuele Sala, Stephen Ebert,
 1383 Jean Kaddour, Manuel Schottdorf, Dianzhuo Wang, Gerol Petruzzella, Alex Meiburg, Tilen Medved,
 1384 Ali ElSheikh, S Ashwin Hebbar, Lorenzo Vaquero, Xianjun Yang, Jason Poulos, Vilém Zouhar,
 1385 Sergey Bogdanik, Mingfang Zhang, Jorge Sanz-Ros, David Anugraha, Yinwei Dai, Anh N. Nhu,
 1386 Xue Wang, Ali Anil Demircali, Zhibai Jia, Yuyin Zhou, Juncheng Wu, Mike He, Nitin Chandok,
 1387 Aarush Sinha, Gaoxiang Luo, Long Le, Mickaël Noyé, Michał Perełkiewicz, Ioannis Pantidis,
 1388 Tianbo Qi, Soham Sachin Purohit, Letitia Parcalabescu, Thai-Hoa Nguyen, Genta Indra Winata,
 1389 Edoardo M. Ponti, Hanchen Li, Kaustubh Dhole, Jongee Park, Dario Abbondanza, Yuanli Wang,
 1390 Anupam Nayak, Diogo M. Caetano, Antonio A. W. L. Wong, Maria del Rio-Chanona, Dániel
 1391 Kondor, Pieter Francois, Ed Chalstrey, Jakob Zsambok, Dan Hoyer, Jenny Reddish, Jakob Hauser,
 1392 Francisco-Javier Rodrigo-Ginés, Suchandra Datta, Maxwell Shepherd, Thom Kamphuis, Qizheng
 1393 Zhang, Hyunjung Kim, Ruiji Sun, Jianzhu Yao, Franck Dernoncourt, Satyapriya Krishna, Sina
 1394 Rismanchian, Bonan Pu, Francesco Pinto, Yingheng Wang, Kumar Shridhar, Kalon J. Overholt,
 1395 Glib Briia, Hieu Nguyen, David, Soler Bartomeu, Tony CY Pang, Adam Wecker, Yifan Xiong,
 1396 Fanfei Li, Lukas S. Huber, Joshua Jaeger, Romano De Maddalena, Xing Han Lù, Yuhui Zhang,
 1397 Claas Beger, Patrick Tser Jern Kon, Sean Li, Vivek Sanker, Ming Yin, Yihao Liang, Xinlu Zhang,
 1398 Ankit Agrawal, Li S. Yifei, Zechen Zhang, Mu Cai, Yasin Sonmez, Costin Cozianu, Changhao
 1399 Li, Alex Slen, Shoubin Yu, Hyun Kyu Park, Gabriele Sarti, Marcin Briański, Alessandro Stolfo,
 1400 Truong An Nguyen, Mike Zhang, Yotam Perlitz, Jose Hernandez-Orallo, Runjia Li, Amin Shabani,
 1401 Felix Juefei-Xu, Shikhar Dhingra, Orr Zohar, My Chiffon Nguyen, Alexander Pondaven,
 1402 Abdurrahim Yilmaz, Xuandong Zhao, Chuanyang Jin, Muyan Jiang, Stefan Todoran, Xinyao
 1403 Han, Jules Kreuer, Brian Rabern, Anna Plassart, Martino Maggetti, Luther Yap, Robert Geirhos,
 1404 Jonathon Kean, Dingsu Wang, Sina Mollaei, Chenkai Sun, Yifan Yin, Shiqi Wang, Rui Li, Yaowen
 1405 Chang, Anjiang Wei, Alice Bizeul, Xiaohan Wang, Alexandre Oliveira Arrais, Kushin Mukherjee,
 1406 Jorge Chamorro-Padial, Jiachen Liu, Xingyu Qu, Junyi Guan, Adam Bouyamoun, Shuyu Wu,
 1407 Martyna Plomecka, Junda Chen, Mengze Tang, Jiaqi Deng, Shreyas Subramanian, Haocheng Xi,
 1408 Haoxuan Chen, Weizhi Zhang, Yinuo Ren, Haoqin Tu, Sejong Kim, Yushun Chen, Sara Vera

1404 Marjanović, Junwoo Ha, Grzegorz Luczyna, Jeff J. Ma, Zewen Shen, Dawn Song, Cedegao E.
 1405 Zhang, Zhun Wang, Gaël Gendron, Yunze Xiao, Leo Smucker, Erica Weng, Kwok Hao Lee,
 1406 Zhe Ye, Stefano Ermon, Ignacio D. Lopez-Miguel, Theo Knights, Anthony Gitter, Namkyu Park,
 1407 Boyi Wei, Hongzheng Chen, Kunal Pai, Ahmed Elkhannany, Han Lin, Philipp D. Siedler, Jichao
 1408 Fang, Ritwik Mishra, Károly Zsolnai-Fehér, Xilin Jiang, Shadab Khan, Jun Yuan, Rishab Kumar
 1409 Jain, Xi Lin, Mike Peterson, Zhe Wang, Aditya Malusare, Maosen Tang, Isha Gupta, Ivan Fosin,
 1410 Timothy Kang, Barbara Dworakowska, Kazuki Matsumoto, Guangyao Zheng, Gerben Sewuster,
 1411 Jorge Pretel Villanueva, Ivan Rannev, Igor Chernyavsky, Jiale Chen, Deepayan Banik, Ben Racz,
 1412 Wenchao Dong, Jianxin Wang, Laila Bashmal, Duarte V. Gonçalves, Wei Hu, Kaushik Bar, Ondrej
 1413 Bohdal, Atharv Singh Patlan, Shehzaad Dhuliawala, Caroline Geirhos, Julien Wist, Yuval Kansal,
 1414 Bingsen Chen, Kutay Tire, Atak Talay Yücel, Brandon Christof, Veerupaksh Singla, Zijian Song,
 1415 Sanxing Chen, Jiaxin Ge, Kaustubh Ponkshe, Isaac Park, Tianneng Shi, Martin Q. Ma, Joshua
 1416 Mak, Sherwin Lai, Antoine Moulin, Zhuo Cheng, Zhanda Zhu, Ziyi Zhang, Vaidehi Patil, Ketan
 1417 Jha, Qiutong Men, Jiaxuan Wu, Tianchi Zhang, Bruno Hebling Vieira, Alham Fikri Aji, Jae-Won
 1418 Chung, Mohammed Mahfoud, Ha Thi Hoang, Marc Sperzel, Wei Hao, Kristof Meding, Sihan
 1419 Xu, Vassilis Kostakos, Davide Manini, Yueying Liu, Christopher Toukmaji, Jay Paek, Eunmi Yu,
 1420 Arif Engin Demircali, Zhiyi Sun, Ivan Dewerpe, Hongsen Qin, Roman Pflugfelder, James Bailey,
 1421 Johnathan Morris, Ville Heilala, Sybille Rosset, Zishun Yu, Peter E. Chen, Woongyeong Yeo,
 1422 Eeshaan Jain, Ryan Yang, Sreekar Chigurupati, Julia Chernyavsky, Sai Prajwal Reddy, Subhashini
 1423 Venugopalan, Hunar Batra, Core Francisco Park, Hieu Tran, Guilherme Maximiano, Genghan
 1424 Zhang, Yizhuo Liang, Hu Shiyu, Rongwu Xu, Rui Pan, Siddharth Suresh, Ziqi Liu, Samaksh Gu-
 1425 lati, Songyang Zhang, Peter Turchin, Christopher W. Bartlett, Christopher R. Scotese, Phuong M.
 1426 Cao, Aakaash Nattanmai, Gordon McKellips, Anish Cheraku, Asim Suhail, Ethan Luo, Marvin
 1427 Deng, Jason Luo, Ashley Zhang, Kavin Jindel, Jay Paek, Kasper Halevy, Allen Baranov, Michael
 1428 Liu, Advaith Avadhanam, David Zhang, Vincent Cheng, Brad Ma, Evan Fu, Liam Do, Joshua
 1429 Lass, Hubert Yang, Surya Sunkari, Vishruth Bharath, Violet Ai, James Leung, Rishit Agrawal,
 1430 Alan Zhou, Kevin Chen, Tejas Kalpathi, Ziqi Xu, Gavin Wang, Tyler Xiao, Erik Maung, Sam
 1431 Lee, Ryan Yang, Roy Yue, Ben Zhao, Julia Yoon, Sunny Sun, Aryan Singh, Ethan Luo, Clark
 1432 Peng, Tyler Osbey, Taozhi Wang, Daryl Echeazu, Hubert Yang, Timothy Wu, Spandan Patel, Vidhi
 1433 Kulkarni, Vijaykaarti Sundarapandiyan, Ashley Zhang, Andrew Le, Zafir Nasim, Srikanth Yalam,
 1434 Ritesh Kasamsetty, Soham Samal, Hubert Yang, David Sun, Nihar Shah, Abhijeet Saha, Alex
 1435 Zhang, Leon Nguyen, Laasya Nagumalli, Kaixin Wang, Alan Zhou, Aidan Wu, Jason Luo, Anwith
 Telluri, Summer Yue, Alexandr Wang, and Dan Hendrycks. Humanity’s last exam, 2025. URL
<https://arxiv.org/abs/2501.14249>.

1436 Peter Pirolli and Stuart Card. The sensemaking process and leverage points for analyst technology
 1437 as identified through cognitive task analysis. In *Proceedings of international conference on*
 1438 *intelligence analysis*, volume 5, pp. 2–4. McLean, VA, USA, 2005.

1439

1440 Hannah Rashkin, Vitaly Nikolaev, Matthew Lamm, Lora Aroyo, Michael Collins, Dipanjan Das,
 1441 Slav Petrov, Gaurav Singh Tomar, Iulia Turc, and David Reitter. Measuring attribution in natural
 1442 language generation models. *Computational Linguistics*, 49(4):777–840, 2023.

1443 Daniel M. Russell, Mark J. Stefk, Peter Pirolli, and Stuart K. Card. The cost structure of sensemaking.
 1444 In *Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors in Computing*
 1445 *Systems*, CHI ’93, pp. 269–276, New York, NY, USA, 1993. Association for Computing Machinery.
 1446 ISBN 0897915755. doi: 10.1145/169059.169209. URL <https://doi.org/10.1145/169059.169209>.

1447

1448 Betty Samraj. Form and function of citations in discussion sections of master’s theses and research
 1449 articles. *Journal of English for Academic Purposes*, 12(4):299–310, 2013.

1450

1451 Zejiang Shen, Tal August, Pao Siangliulue, Kyle Lo, Jonathan Bragg, Jeff Hammerbacher, Doug
 1452 Downey, Joseph Chee Chang, and David Sontag. Beyond summarization: Designing ai support for
 1453 real-world expository writing tasks. *arXiv preprint arXiv:2304.02623*, 2023.

1454

1455 Amanpreet Singh, Joseph Chee Chang, Chloe Anastasiades, Dany Haddad, Aakanksha Naik, Amber
 1456 Tanaka, Angele Zamarron, Cecile Nguyen, Jena D Hwang, Jason Dunkleberger, et al. Ai2 scholar
 1457 qa: Organized literature synthesis with attribution. *arXiv preprint*, 2025. doi: 10.48550/arXiv.
 2504.10861.

1458 Michael D Skarlinski, Sam Cox, Jon M Laurent, James D Braza, Michaela Hinks, Michael J
 1459 Hammerling, Manvitha Ponnappati, Samuel G Rodrigues, and Andrew D White. Language agents
 1460 achieve superhuman synthesis of scientific knowledge. *arXiv preprint*, 2024. doi: 10.48550/arXiv.
 1461 2409.13740.

1462
 1463 Carlota S Smith. *Modes of discourse: The local structure of texts*, volume 103. Cambridge University
 1464 Press, 2003.

1465 Wei Song, Dong Wang, Ruiji Fu, Lizhen Liu, Ting Liu, and Guoping Hu. Discourse mode identifica-
 1466 tion in essays. In Regina Barzilay and Min-Yen Kan (eds.), *Proceedings of the 55th Annual Meeting*
 1467 *of the Association for Computational Linguistics (Volume 1: Long Papers)*, pp. 112–122, Vancou-
 1468 ver, Canada, July 2017. Association for Computational Linguistics. doi: 10.18653/v1/P17-1011.
 1469 URL <https://aclanthology.org/P17-1011/>.

1470
 1471 Simone Teufel, Advaith Siddharthan, and Dan Tidhar. Automatic classification of citation function. In
 1472 Dan Jurafsky and Eric Gaussier (eds.), *Proceedings of the 2006 Conference on Empirical Methods*
 1473 *in Natural Language Processing*, pp. 103–110, Sydney, Australia, July 2006. Association for
 1474 Computational Linguistics. URL <https://aclanthology.org/W06-1613/>.

1475 Katherine Tian, Eric Mitchell, Allan Zhou, Archit Sharma, Rafael Rafailov, Huaxiu Yao, Chelsea Finn,
 1476 and Christopher Manning. Just ask for calibration: Strategies for eliciting calibrated confidence
 1477 scores from language models fine-tuned with human feedback. In Houda Bouamor, Juan Pino,
 1478 and Kalika Bali (eds.), *Proceedings of the 2023 Conference on Empirical Methods in Natural*
 1479 *Language Processing*, pp. 5433–5442, Singapore, December 2023. Association for Computational
 1480 Linguistics. doi: 10.18653/v1/2023.emnlp-main.330. URL <https://aclanthology.org/2023.emnlp-main.330/>.

1481
 1482 Linghe Wang, Minhwa Lee, Ross Volkov, Luan Tuyen Chau, and Dongyeop Kang. Scholawrite: A
 1483 dataset of end-to-end scholarly writing process. *arXiv preprint arXiv:2502.02904*, 2025a.

1484
 1485 Linghe Wang, Minhwa Lee, Ross Volkov, Luan Tuyen Chau, and Dongyeop Kang. Scholawrite:
 1486 A dataset of end-to-end scholarly writing process, 2025b. URL <https://arxiv.org/abs/2502.02904>.

1487
 1488 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 1489 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 1490 *neural information processing systems*, 35:24824–24837, 2022a.

1491
 1492 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed H Chi, Quoc V Le, Denny
 1493 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In *Advances*
 1494 *in Neural Information Processing Systems*, 2022b.

1495
 1496 Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
 1497 Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecmp: A simple yet
 1498 challenging benchmark for browsing agents, 2025. URL <https://arxiv.org/abs/2504.12516>.

1499 Addison J. Wu, Ryan Liu, Kerem Oktar, Theodore R. Sumers, and Thomas L. Griffiths. Are
 1500 large language models sensitive to the motives behind communication?, 2025. URL <https://arxiv.org/abs/2510.19687>.

1501
 1502 Zhikun Xu, Ming Shen, Jacob Dineen, Zhaonan Li, Xiao Ye, Shijie Lu, Aswin Rrv, Chitta Baral,
 1503 and Ben Zhou. ToW: Thoughts of words improve reasoning in large language models. In Luis
 1504 Chiruzzo, Alan Ritter, and Lu Wang (eds.), *Proceedings of the 2025 Conference of the Nations*
 1505 *of the Americas Chapter of the Association for Computational Linguistics: Human Language*
 1506 *Technologies (Volume 1: Long Papers)*, pp. 3057–3075, Albuquerque, New Mexico, April 2025.
 1507 Association for Computational Linguistics. ISBN 979-8-89176-189-6. doi: 10.18653/v1/2025.
 1508 naacl-long.157. URL <https://aclanthology.org/2025.nacl-long.157/>.

1509
 1510 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
 1511 Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*, 2025. doi:
 10.48550/arXiv.2505.09388.

1512 Zonglin Yang, Xinya Du, Junxian Li, Jie Zheng, Soujanya Poria, and Erik Cambria. Large language
1513 models for automated open-domain scientific hypotheses discovery. In Lun-Wei Ku, Andre Martins,
1514 and Vivek Srikumar (eds.), *Association for Computational Linguistics (ACL)*, August 2024. doi:
1515 10.18653/v1/2024.findings-acl.804.

1516 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
1517 ReAct: Synergizing reasoning and acting in language models. In *International Conference on*
1518 *Learning Representations (ICLR)*, 2023.

1519

1520 Li S. Yifei, Allen Chang, Chaitanya Malaviya, and Mark Yatskar. ResearchQA: Evaluating scholarly
1521 question answering at scale across 75 fields with survey-mined questions and rubrics. *arXiv*
1522 *preprint*, 2025.

1523 Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. STar: Bootstrapping reasoning with
1524 reasoning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.),
1525 *Advances in Neural Information Processing Systems*, 2022. URL [https://openreview.net/](https://openreview.net/forum?id=_3ELRdg2sgI)
1526 [forum?id=_3ELRdg2sgI](https://openreview.net/forum?id=_3ELRdg2sgI).

1527 Lianmin Zheng, Liangsheng Yin, Zhiqiang Xie, Chuyue Livia Sun, Jeff Huang, Cody Hao Yu, Shiyi
1528 Cao, Christos Kozyrakis, Ion Stoica, Joseph E Gonzalez, et al. Sglang: Efficient execution of
1529 structured language model programs. *Advances in neural information processing systems*, 37:
1530 62557–62583, 2024.

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

A APPENDIX

A.1 IMPLEMENTATION DETAILS.

For Gemini, Claude, and GPT models, we use the official API service. For other open-sourced models, we use our locally served model on nodes with 8 Nvidia H100 (80G) GPUs with CUDA 12 installed, with an inference structure built upon SGLang (Zheng et al., 2024). If applicable, we set the max output token to be 22,000, the temperature to be 1.0. [If not further specified, we use the original hyperparameters and settings when evaluating the tasks.](#) Following the original LLM-as-a-judge choice. We use `gemini-2.5-flash` for AstaBench-SQA-CS-V2; `gpt-4o` for DeepScholar Bench, and `gpt-4.1-mini` for ResearchQA.

For fine-tuning, we use $5e - 6$ learning rate, 80 training epochs, and 4 gradient accumulation steps for all base models and variants, unless further specified. [We generated training data from Gemini-2.5-pro with our inference pipeline; this model was within 2 points of the best-performing model \(Claude-4-Opus\) on all datasets when we generated answers while eliciting intents at inference time, while being an order of magnitude cheaper.](#) We use the inference prompt in Appendix A.7 to collect the training data.

A.2 THE USE OF LARGE LANGUAGE MODELS (LLMs).

In this work, LLMs are used for correcting grammatical errors in writing and coding. We do not use LLMs to write papers or construct the logic of the whole code base.

A.3 USER STUDY DETAILS

The participants are first introduced to the instructions, background of the report generation tasks, and the schemes for our intents. Then, they will start an interactive session with random intent text and the corresponding context to answer questions one by one. They are also allowed to provide optional qualitative feedback. An example case is shown as follows:

CASE 1: CITATION INTENT

Question: In recommendations, how are new methods that optimize diversity typically...

Section: Introduction: The Role and Challenge of Diversity Evaluation

Intent Type: CIT-MOTIVATION

Intent Description: This source notes that many approaches use an objective that jointly optimizes relevance and diversity, using a parameter to express the trade-off

Context (other intents stripped, current intent highlighted): ...epit> A primary challenge in evaluating diversity-enhancing methods is the inherent trade-off between diversity and accuracy [12] [17]. Increasing diversity can lead to recommending less familiar or seemingly irrelevant items, which may negatively impact accuracy metrics and even user satisfaction if not managed carefully [16]. Consequently, New methods are typically evaluated on their ability to effectively balance these two competing objectives [\[CITATION INTENT\]](#) [\[CIT-MOTIVATION\]: this source notes that many approaches use an objective that jointly optimizes relevance and diversity, using a parameter to express the trade-off \[6\]](#). This is often achieved either by modifying the core recommendation algorithm to be diversity-aware or by applying a post-processing re-ranking step to a list of candidates generated by a standard relevance-based model [18][20][8].

The intent is relevant to the context (1-5): 5

The intent is accurate and informative (1-5): 4

The intent helps understand the writing (1-5): 3

The intent helps me read quicker (1-5): 5

Optional comment (press Enter to skip): Comment:

1620
1621
1622 Table 7: SQA-CS-V2 Performance Results Across Base Models and Variants
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648

Base Model	Variant	Overall	Rubrics	Answer P	Citation P	Citation R
gemini-2.5-pro(ref)	-	88.1	82.6	94.1	93.2	82.4
qwen3-8b	no training	80.7	82.1	90.4	83.2	66.9
	-verb. intent	80.9	80.2	92.6	81.3	69.8
	SFT	83.2	78.7	94.3	85.8	73.9
	-verb. intent	84.6	79.0	94.6	87.6	76.9
	intent-explicit SFT	86.7	79.4	91.7	92.3	83.6
	-verb. intent	88.0	80.5	93.0	93.6	85.0
	intent-implicit SFT	86.7	77.9	91.1	93.7	83.9
	-verb. intent	87.1	78.9	94.0	92.5	82.9
	intent-multiview SFT	87.9	79.2	93.6	94.1	84.7
	-verb. intent	88.6	81.4	94.7	93.7	84.7
llama-3.1-8B	no training	66.4	64.6	77.5	67.2	56.1
	-verb. intent	64.7	59.5	86.1	63.2	49.8
	SFT	84.4	78.1	92.3	89.8	77.4
	-verb. intent	85.5	78.4	93.8	89.9	79.9
	intent-explicit SFT	87.8	80.1	93.1	93.4	84.8
	-verb. intent	85.8	77.6	93.1	90.5	82.2
	intent-implicit SFT	87.2	79.0	92.3	93.2	84.3
	-verb. intent	87.8	77.9	93.3	94.0	85.9
	intent-multiview SFT	87.5	77.3	93.9	93.8	85.0
	-verb. intent	89.2	79.5	95.1	95.4	86.7
qwen3-4b	no training	80.9	78.0	94.6	82.8	68.1
	-verb. intent	80.2	78.6	94.7	80.7	67.0
	SFT	83.4	80.1	92.4	86.2	74.8
	-verb. intent	86.7	77.3	93.2	92.5	83.6
	intent-explicit SFT	86.3	80.4	91.3	92.2	81.5
	-verb. intent	87.5	80.1	97.0	91.5	81.3
	intent-implicit SFT	83.7	77.0	92.8	88.0	77.0
	-verb. intent	85.2	78.4	93.5	90.1	78.7
	intent-multiview SFT	87.9	79.0	93.7	93.7	85.2
	-verb. intent	87.0	80.2	92.2	93.3	82.5

1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
Table 8: SQA-CS-V2 Performance Results with Preplanning

Base Model	Variant	Overall	Rubrics	Answer P	Citation P	Citation R
o3	default	85.1	91.4	96.5	89.4	63.4
	+ pre-planning	86.5	90.5	95.1	91.7	68.8
	+ intents	86.2	89.6	95.1	90.5	69.8
gemini-2.5-pro	default	88.1	82.6	94.1	93.2	82.4
	+ pre-planning	88.4	81.3	93.7	93.4	85.3
	+ intents	90.7	80.6	94.0	97.2	90.9
claude-opus-4.1	Default	85.4	84.3	87.9	89.6	79.6
	+ pre-planning	89.4	85.3	93.9	93.8	84.7
	+ intents	90.0	85.2	93.1	95.7	86.2

A.4 FULL PERFORMANCE FOR SFT VARIANTS

In the main paper, we mainly discuss the performance with intent-aware prompts. Here we further compare the performance difference across different fine-tuned small models in Table 7. We can observe consistent findings in the main content: in most cases, augmenting the models with intent awareness at test time helps improve model performance, especially for fine-tuned models.

A.5 PRE-PLANNING WITH INTENTS

In our proposed method, the intents are generated in-line with the rest of the text. We also tested a variant where we do pre-planning by generating potential citation intents and a relevance score for each retrieved paper before generating the answer. The retrieved papers are reordered according to the generated citation scores and the answer is generated conditioned on the reordered retrieved documents and their corresponding intents. The results from this setting are shown in Table 8.

1674
1675

A.6 ETHICAL STATEMENTS

1676 We foresee no ethical concerns or potential risks in our work. All datasets are open-sourced, as
1677 shown in Section 4.1. The LLMs we applied in the experiments are also publicly available. Given
1678 our context (long-form report generation with queries verified by humans), the outputs of LLMs are
1679 unlikely to contain harmful and dangerous information. The experiments in our paper are mainly on
1680 English.

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

1711

1712

1713

1714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

1727

1728 A.7 PROMPTS USED
17291730 We present the example prompt we used for *verbalized intents* below. During inference, retrieved
1731 information will be provided to the model by replacing {section_references}. Each snippet in
1732 {section_references} will be in the format of “[Citation X] Snippet”, and the model is instructed to
1733 cite the relevant references.1734
1735 A user issued a query and a set of research papers were provided with salient content. The
1736 user query was: query1737
1738 I will provide you with a list of chosen quotes from these papers that may be relevant to the
1739 user query. It's important to note that the quotes may *not* be relevant. Carefully consider
1740 this before adding them to the answer.1741
1742 Your job is to help me write a multi-section answer to the query and cite the provided relevant
1743 quoted references. Cite all of the *relevant* quoted references. Exclude all of the irrelevant
1744 quoted references from your answer.1745
1746 Here are the relevant reference quotes to cite: section_references {section_references}

1747 Citation Instructions:

1748
1749 - Each reference quote (section) is a key value pair, where the key is in the form "[Citation
1750 'int']". You should cite 'int' when referring to any of these sections as evidence.1751
1752 - Please write the answer, making sure to cite the relevant references inline using the
1753 corresponding reference key in the format: [CitationNumber]. You may use more than one
1754 reference key in a row if it's appropriate but no more than five references in a row. In general,
1755 use all of the references that support your written text, but cite no more than five references
1756 in a row. Having more than five references or citations at a time overwhelms the user, so only
1757 include up to the five most relevant.1758
1759 - For each reference you cited in the section content, be sure to carefully consider the intent of
1760 the citation. Your citation intent must be expressed in the format of: your description <bcit>
1761 [citation intent Type]: your rationale <ecit> [Citation 'int']... The Type ([citation intent
1762 Type]) should be a single, capitalized word from the list below, and the rationale should be a
1763 brief explanation of why the citation is used in this context given the type. Only use one type
1764 per citation and add your own type if none of the types fit.

1765 Here is a list of the potential citation intent types:

1766 (1) CIT-BACKGROUND: the citation provides relevant information for this domain;

1767 (2) CIT-MOTIVATION: the citation illustrates need for data, goals, methods, etc.;

1768 (3) CIT-USES: the sentence uses data, methods, etc. from the citation;

1769 (4) CIT-EXTENSION: the sentence extends the referenced work's data, methods, etc. of the
1770 citation;1771 (5) CIT-COMPARISON OR CONTRAST: the sentence expresses similarity/differences to
1772 the referenced work of the citation;1773 (6) CIT-FUTURE: the citation identifies the referenced work as a potential avenue for future
1774 work.1775
1776 - The rationale wrapped in <bcit><ecit> should be a brief and contextual explanation of what
1777 text in the quote triggers the citation.

1782

1783 - **Do not** repeat the information and text that is already in the citing sentence.

1784

1785 - Your rationale should use or summarize the relevant part of the reference quote you are

1786 citing and connect it to the citing sentence.

1787

1788 - You should write **different** citation intents for each citations even if they are in the same

1789 sentence or have the same type.

1790

1791 - Your citation intent should potentially help the reader understand why you are citing the

1792 reference quote and what they could potentially learn from further reading the cited paper.

1793

1794 - Along with the quote, if any of its accompanying inline citations are relevant to or mentioned

1795 in the claim you are writing, you should cite the reference of the section (i.e. the integer in

1796 [Citation 'int'])

1797

1798 - if you are using multiple citations, you should write separate citation intents for each of the

1799 citations, although you can have the same type for multiple citations.

1800

1801 - You can add something from your own knowledge. This should only be done if you are

1802 sure about its truth and if there is not enough information in the references to answer the

1803 user's question. Cite the text from your knowledge as [LLM MEMORY | 2025]. The citation

1804 should follow AFTER the text. Don't cite LLM Memory with another evidence source.

1805

1806

1807

1808 - Note that all citations that support what you write must come after the text you write. That's

1809 how humans read in-line cited text. First text, then the citation intent tag, then the citation.

1810

1811

1812 Writing instructions: Guidance for organizing content:

1813 - Write a well-organized narrative that flows logically, with clear structure and coherence

1814 between ideas.

1815

1816 - The answer should be written in sections that break down the user query for a scientific

1817 audience.

1818

1819 - Each section should discuss a **dimension or theme** that is related to the query.

1820

1821 - Most sections will correspond to a cluster of related quotes that comprise of **similar**

1822 claims, shared concepts, or overlapping evidence******. If multiple quotes from different citations

1823 support the same idea or theme, they should be grouped and cited together in one section.

1824

1825 - Be sure to carefully consider your intents to write each paragraph in the section.

1826 Each section should have the following characteristics:

1827 - Before the section write a 2 sentence "TLDR;" of the section. No citations here. Precede

1828 with the text "TLDR;"

1829

1830 - The first section should almost always be "Background" or "Introduction" to provide the

1831 user the key basics needed to understand the rest of the answer.

1832

1833 - Every section can contain multiple paragraphs and should correspond to a theme or

1834 dimension.

1835 - Use multiple paragraph to organize the content within each section.

1836

1837 - Each paragraph should focus on a central high-level idea and should correspond to a cluster

1838 of similar citations.

1839

1836

1837 - Be sure to carefully consider your intents to write each paragraph. Before each paragraph
 1838 within the text field, you must insert a paragraph intent tag in the format: <bpit>[paragraph
 1839 intent Type]: Rationale... <epit>.

1840

1841 The [paragraph intent Type] should be a single, capitalized word from the list provided below
 1842 extracted from research about discourse mode. The Rationale should be a brief explanation
 1843 of why the paragraph fits the chosen type, based on its content and function within the report.

1844

1845 Here is a list of potential paragraph intent [paragraph intent Type]s and their descriptions:

1846

1847 (1) PIT-Exposition: This paragraph's main function is to explain, clarify, or provide
 1848 background information on a topic (e.g., introducing a concept, summarizing prior work).

1849

1850 (2) PIT-Definition: This paragraph's primary purpose is to define a key term, concept, or
 1851 theory, often providing necessary boundaries for its use in the report.

1852

1853 (3) PIT-Argumentation: This paragraph presents a specific claim or thesis and supports it
 1854 with evidence, logic, or reasoning to persuade the reader.

1855

1856 (4) PIT-Compare-Contrast: This paragraph's structure is organized around highlighting the
 1857 similarities and/or differences between two or more subjects, theories, or findings.

1858

1859 (5) PIT-Cause-Effect: This paragraph focuses on explaining the causal relationship between
 1860 events or phenomena, detailing why something happened or what its results were.

1861

1862 (6) PIT-Problem-Solution: This paragraph identifies a specific problem, gap, or challenge and
 1863 then proposes or describes a potential solution or response.

1864

1865 (7) PIT-Evaluation: This paragraph assesses the strengths, weaknesses, validity, or
 1866 significance of a study, theory, or piece of evidence according to a set of criteria.

1867

1868 (8) PIT-Narration: This paragraph recounts a sequence of events, such as the historical
 1869 development of a field, the chronology of a case study, or the steps in a process.

1870

1871 For example, you can write:

1872

1873 <bpit>[PIT-Exposition] This paragraph provides background context by introducing
 1874 Convolutional Neural Networks (CNNs) and stating their established success in image
 1875 classification, setting the stage for the subsequent discussion. <epit> Convolutional
 1876 neural networks (CNNs) have achieved state-of-the-art results in image classification
 1877 <bcit>[CIT-BACKGROUND]: these citations provides foundational context linking CNN to
 1878 major image classification tasks <ecit> [1] [2]. They have become a foundational tool...

1879

1880 - Use direct and simple language everywhere, like "use" and "can". Avoid using more
 1881 complex words if simple ones will do. Use the citation count to decide what is "notable" or
 1882 "important". If the citation count is 100 or more, you are allowed to use value judgments like
 1883 "notable."

1884

1885 - Some references are older. Something that claims to be "state of the art" but is from 2020
 1886 may not be any more. Please avoid making such claims that may no longer be true.

1887

1888 - The answer should directly respond to the user query. Every paragraph should be directly
 1889 relevant to the user query. If the user asked about "Visual RAG", don't write a paragraph
 about just RAG unless it's in the one background section.

1890

1891

1892

1893

1890

1891 Format Instructions

1892

1893 When references present conflicting findings or contradictory claims:

1894

1895 - Explicitly acknowledge the disagreement rather than ignoring it. Use phrases like "While X
1896 et al. found..., Y et al. reported contrasting results..."

1897

1898 - Present both/all perspectives with their respective citations

1899

1900 - If possible, identify potential reasons for the discrepancy (e.g., different methodologies,

1901 sample sizes, time periods, or contexts)

1902

1903 - Use citation counts as one indicator of relative weight, but do not dismiss lower-cited work
solely on this basis

1904

1905 - If one claim has substantially more supporting evidence across multiple papers, you
1906 may note this: "The majority of studies support..." while still acknowledging the minority view

1907

1908 - Avoid taking sides unless the evidence overwhelmingly supports one position

1909

1910 - If the conflict is central to answering the user's query, consider dedicating a section to
1911 "Conflicting Findings" or "Ongoing Debates"

1912

1913 Start the section with a 'SECTION;' marker followed by its section name and then a newline
and then the text "TLDR;", the actual TLDR, and then write the summary.

1914

1915 Write the section content using markdown format.

1916

1917 Rules for section formatting:

1918

1919 - For each section, decide if it should be a bullet-point list or a synthesis paragraph.

1920

1921 - Bullet-point lists are right when the user wants a list or table of items.

1922

1923 - Synthesis paragraphs are right when the user wants a coherent explanation or comparison or
analysis or singular answer.

1924

1925 - Use section names to judge what section format would be best. Lists and syntheses
1926 paragraphs are the only allowed formats.

1927

1928 - Remember to include both citation intents (<bcit> and <ecit>) and paragraph intents (<bpit>
1929 and <epit>) in your answer.

1930

1931

1932

1933

1934

1935

1936

1937

1938

1939

1940

1941

1942

1943

1944 Table 9: Extended performance comparison on Deepscholar Bench. **Bold** indicates the best-
 1945 performing row for overall metrics.

Method	DeepScholar Bench (DSB)				
	Overall	Nug. Cov.	Org.	Cite-P	Claim Cov
o3	46.8	47.0	61.1	39.1	40.2
+ intent	43.2	49.1	64.1	27.2	34.3
+ intent (paragraph-only)	49.3	48.0	66.0	39.1	44.3
qwen3-8b	56.0	46.0	59.0	57.0	62.0
intent-explicit	59.5	48.2	68.0	61.2	63.1
intent-implicit	60.3	45.1	68.0	63.1	65.0
intent-multiview	57.5	45.1	60.0	62.3	63.1

1958 Table 10: SQA-CS-V2-dev Performance results with *verbalized intents* and *gemini-2.5-pro*. We compare
 1959 variants of intent schema design. *free* denotes the use of model improvised types. *current* denotes the use of our
 1960 schema. *mix* denotes the use of most frequent types in our schema and let the model has freedom on adding their
 1961 own. We **bold** the best row for the Overall metric.

Method	Variant	Overall	Rubrics	Answer P	Citation P	Citation R
verbalized intent (gemini)	free	89.3	82.4	92.0	96.1	86.7
	current	89.7	82.6	94.5	95.7	86.1
	mix	91.6	83.1	95.0	97.3	91.0

A.8 EXTENDED DEEPSCHOLAR BENCH RESULTS

In the main paper, we found that, while o3 has much worse citation behavior than other frontier models on DeepScholar Bench, our intent-aware inference will degrade the citation quality. To further validate the performance of our method, we report the performance on DeepScholar Bench with our paragraph-intent-only inference and SFT variants in Table 9. The variants are with the same setting as in Table 4 and Table 5 in the main paper, without further training.

Results show that our models generalize to DeepScholar Bench: the best performing variant (intent-implicit) achieves better performance than the best performing large model (opus-4) in our Table 3. On the citation metrics, our SFT variants generally show better overall scores compared to o3 as well.

A.9 FURTHER ABLATION ON INTENT SCHEMA DESIGN

We further design a variant of our intent-aware inference with a more dynamic schema: we only keep the top-3 most used types for citation and paragraph intents from Table 6, respectively, in the instruction, and ask the model to improvise if necessary. We denote this variant as intent (mix) and compare with the current version, i.e., intent (current), and an ablated variant, intent (free), where the model outputs their own types.

We observe that keeping the most frequent types in our schema + extra freedom (i.e., intent (mix)) would lead to the best performance. We will update these experiments in the appendix as an alternative design. On the other hand, given that most of our design is kept the same (type + rationale), inference without a pre-set type leads to similar performance as with model-improvised types.

However, beyond the performance, the types used will be inconsistent across questions for intent (mix) and intent (free type) as a trade-off of the freedom, e.g., [Example] vs. [Exemplify] vs. [Instance]. The intent (current) variant, where we extract a unified schema for all questions extracted from literature, has its value in providing consistent types for analysis and readability.