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ABSTRACT

Foundational vision-language models have shown impressive performance on
various downstream tasks. Yet, there is still a pressing need to update these models
later as new tasks or domains become available. Ongoing Continual Learning
(CL) research provides techniques to overcome catastrophic forgetting of previous
information when new knowledge is acquired. To date, CL techniques focus only
on supervised training sessions. This results in significant forgetting yielding
inferior performance to even the prior model zero shot performance. In this work,
we argue that test-time data hold great information that can be leveraged in a
self-supervised manner to refresh the model’s memory of previously learned tasks
and, hence, greatly reduce forgetting at no extra labeling cost. We study how
unsupervised data can be employed online to improve models’ performance on
prior tasks upon encountering representative samples. We propose a simple yet
effective student-teacher model with gradient-based sparse parameter updates and
show significant performance improvements and reduction in forgetting. This could
alleviate the role of an offline episodic memory/experience replay buffer.

1 INTRODUCTION

Foundation models in computer vision have shown impressive performance on various downstream
tasks and domains, which renders them a key building block of various solutions, including generative
vision language models Li et al. (2022); Chen et al. (2023); Bommasani et al. (2021). However,
naively adapting pretrained models to changes in data distribution or new tasks faces the well-known
catastrophic forgetting phenomena McCloskey & Cohen (1989), where new learning sessions interfere
with what a model has previously acquired. To overcome catastrophic forgetting, Continual Learning
(CL) has emerged as a branch of machine learning to enable models to continuously adapt to evolving
distributions of training samples or supervision signals over time. A variety of approaches have been
proposed to mitigate catastrophic forgetting, such as regularization-based methods Kirkpatrick et al.
(2017); Maltoni & Lomonaco (2019); Schwarz et al. (2018), external memory approaches Lopez-Paz
& Ranzato (2017); Li & Hoiem (2017), and dynamic model architecture techniques Shin et al. (2017);
Singh et al. (2024). Most works focus on training models from scratch, which might fail with large
pretrained models. The rise of foundation models has fueled interest in combining CL with the
strengths of pretrained models. Han et al. (2021); Radford et al. (2021); Ridnik et al. (2021); Caron
et al. (2021); Oquab et al. (2023); Radford et al. (2021).

Despite the increased attempts to efficiently improve foundational models performance on new
streams of data Ermis et al. (2022); Pelosin (2022); Wang et al. (2022e); Smith et al. (2023); Janson
et al. (2022); Zhou et al. (2023); Zhang et al. (2023a); Wang et al. (2022b); Ding et al. (2022); Goyal
et al. (2023); Wang et al. (2022d), forgetting is still a significant problem in applications of continual
learning Wang et al. (2024); Prabhu et al. (2023). Continual learning systems often process large
volumes of unsupervised data throughout their lifecycle. We argue they must learn continuously,
regardless of supervision. However, most works focus on supervised training, leaving models static
during testing.

Consider an embodied agent with a Vision Language Model (VLM) that must handle new objects,
layouts, or skills while still recognizing previously learned tasks during evaluation. To overcome
catastrophic forgetting and accumulate knowledge, we propose leveraging test-time data to reinforce
the model’s understanding of prior tasks. Test-time data reflects the distribution most relevant to the
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Figure 1: An illustration of our proposed Continual Learning with Interleaved Test Time Learning. Following
each session of supervised learning, the model is deployed to adapt in an unsupervised setting. It can encounter
data distributions encompassing all previously encountered tasks or sessions. The model adapts to the classes of
the current task while trying to minimize the forgetting on all the classes of previously seen tasks.

agent’s tasks, while past data never encountered during deployment can be forgotten to prioritize
performance on frequently encountered scenarios.

We consider a scenario where a model undergoes continual supervised training, with unsupervised
data available during deployment between training phases, offering a chance to mitigate forgetting. To
ensure practical computational overhead, we constrain unsupervised adaptation to an online approach.
Additionally, stringent data privacy constraints during deployment Verwimp et al. (2023) require
online algorithms that discard samples immediately after processing.

Test-Time Adaptation (TTA) Sun et al. (2020) and Continual Test-Time Adaptation (CoTTA) Wang
et al. (2022a) are related research areas that focus on leveraging test-time data for dynamic model
adaptation. These areas focus on adapting the model towards unknown distribution shifts using
test-time data, while our formulation aims to use test-time data to control the model forgetting without
any assumption of distribution shifts from training to test data.

To the best of our knowledge, we are the first to explore how test-time data can be leveraged in a
continual learning setting to reduce forgetting. We consider the foundation model CLIP Radford
et al. (2021) for our experiments since it has been shown to encompass an extensive knowledge base
and offer remarkable transferability Rasheed et al. (2023); Pei et al. (2023). It undergoes through
supervised and unsupervised sessions, leveraging the unsupervised data to control forgetting.

We propose an effective approach based on student-teacher models with sparse parameter selection
based on gradient values. Student and teacher models suggest labels for test data, and the predictions
from the most confident model are used to update the student model, where the teacher is updated in
an exponential moving average, adding a stability component to the learning process. We show that
such a simple approach achieves significant improvements on all studied sequences. Our approach
is stable in class incremental learning (CIL), especially in the challenging setting where no replay
buffers are used, which in many cases can be a critical bottleneck.

Our contributions are as follows: 1) We propose a new setting for continual learning where test-time
data can be leveraged, especially in the challenging scenario of CIL-CL. 2) We investigate different
baselines for this setting. 3) We propose a novel approach that illustrates the utility of test-time data
in supervised continual learning and the significant reduction in forgetting without any external replay
buffer.

In the following, we discuss the closely related work, Section 2 and present our setting, and our
approach, Section 3 we evaluate our approach on various CL sequences, Section 4, perform ablations
on different components of our approach, Section 5, put forth some limitations of our work, Section 6
and conclude in Section 7.
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Figure 2: An illustration of our method DoSAPP. It utilises teacher-student (MT , MS) models respectively.
During the Supervised Continual Learning phase, MS undergoes sparse parameter selection through a gradient-
based scoring function F , followed by supervised training of these selected parameters θm ∈ θS . After each
gradient update step, MT parameters, θT , are updated through a weighted exponential smoothing based on the
affine projection of the boolean mask: m. The affine projections are controlled through dual momentum terms
δ, γ for MT and MS , respectively. Now both MT , MS are deployed for the unsupervised test time learning
where the MS is adapted based on the "pseudo label groundtruth" generated from MT - MS logits comparison.
Finally MT model again undergoes weighted smoothing, with dual momentum terms δ, λ for MT and MS

model respectively such that γ < λ < δ. This 2 phase approach preserves the generalizations over previous
knowledge along with adaptability on the latest task.

2 RELATED WORK

Continual Learning: It considers learning in an incremental manner where training data is received
at various time steps (sessions). The typical problem is catastrophic forgetting McCloskey & Cohen
(1989) of previously learned information. We refer to De Lange et al. (2021) for a survey on class
incremental learning where different classes are learned at distinct sessions, a setting we consider
in this work. Weight regularization methods Aljundi et al. (2018); Kirkpatrick et al. (2017) and
functional regularization Li & Hoiem (2017); Asadi et al. (2023) direct the training to stay optimal
for tasks of previous sessions via various regularization terms. Experience Replay French (1999) is
usually deployed where samples of previous training session data are replayed during new sessions to
reduce forgetting. In this work, we consider continual learning with limited or no replay. Our work
is orthogonal to other continual learning methods and can be combined with any CL method in the
supervised training sessions.

Continual Learning from Pre-trained Models: Due to the abundance of powerful pre-trained
models Radford et al. (2021); Oquab et al. (2023); Brown et al. (2020), continual learning that
begins with a pre-trained model is becoming a popular paradigm. Recent methods like Koh et al.
(2022); Boschini et al. (2022) have utilized a Teacher-Student framework for knowledge distillation
on previously seen tasks. However, these methods utilize an additional buffer to mitigate catastrophic
forgetting. This often entails significant memory Zhou et al. (2022); Prabhu et al. (2023). Additionally,
such methods often face an outdated logit problem, as the memory-stored logits are not updated
to preserve information on previous tasks. Boschini et al. (2022) addresses this issue by updating
logits stored in the past using task boundary information (e.g., input’s task identity) during training,
but it may not always be available, especially in task-free CL setups. However, foundation models
Radford et al. (2021); Oquab et al. (2023) often have a reasonable initial performance on novel tasks,
indicating some pre-existing knowledge relevant to these tasks. Zhang et al. (2023b) utilizes this
property and preservers generic knowledge by modifying only a small set of parameters based on
gradient scoring mechanism. However, this method also suffers from recency bias since the gradient
scores are computed for the current task, and only those sparse parameters are updated based on
current task scores. Moreover, none of the methods utilize test data in continual learning scenarios
and leave a strong potential for self-supervised techniques to capture robust feature representations.
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Test Time Adaptation (TTA): TTA has been extensively studied in recent years, focusing on adapting
a pre-trained model based on test data. Typically, the goal is to enhance performance on the test data
used for adaptation. However, our focus is on using this data to mitigate forgetting of past tasks.
Various methods have been proposed for TTA, including those leveraging self-supervised learning
Sun et al. (2020), batch normalization Nado et al. (2020); Vianna et al. (2024), entropy minimization
Wang et al. (2020); Niu et al. (2023), and pseudo labeling Chen et al. (2022); Li & Hoiem (2017). It
is important to note that our method is not merely a modification, a novel variation, or a combination
of existing TTA approaches. Unlike typical TTA methods, which primarily address data corruption
and show limited benefits when changes are restricted to label distributions, our approach leverages
unsupervised data from previous tasks without requiring it to be corrupted to deliver its advantages.

Continual Test-Time Adaptation: Recent work has studied the setting of performing Online Test-
Time Adaptation where the distribution of test-time data is changing over time Wang et al. (2022a).
This is distinct from the proposed setting as we focus on the setting where the model is updated with
supervised data while the test-time data is leveraged to control forgetting on the supervised tasks.

3 METHODOLOGY

We introduce a novel setting for continual learning that leverages test-time data, particularly in
the challenging context of Class Incremental Continual Learning (CIL-CL). As depicted in Figure
1, this setting allows the deployed model to recover lost knowledge from distributions spanning
all previously encountered tasks after each supervised learning session. The model adapts to the
current task’s classes while minimizing forgetting of earlier tasks’ classes. Our proposed approach
demonstrates how test-time data can significantly reduce forgetting in supervised continual learning,
achieving this without relying on an external replay buffer.

3.1 SETTING

We consider a setting where a sequence of supervised datasets [Ds
1,Ds

2, .....Ds
T ] drawn from different

distributions are observed at incremental training sessions t ranging from 0 to T , where Ds
t =

(xt
i, y

t
i)

Nt

i=1 is the t incremental session with Nt instances. Here the training instance xt
i ∈ RD

belongs to class yi ∈ Yt, where Yt is the label space of task/dataset at t step. Yt ∩ Yt′ = ϕ for t ̸= t′,
where t

′
is any other training session. During a given training session, t data samples only from

Ds
t can be accessed. CIL aims to progressively build a unified model encompassing all previously

encountered classes. This involves gaining insights from new classes while retaining knowledge from
previous ones. The model’s performance is evaluated over all the seen classes Yt = Y1 ∪ · · ·Yt after
each incremental task/dataset. Formally, the target is to fit a modelM(x;θ) : X → Yt that achieves
a minimal loss L across all testing datasets De

t :∑
(xj ,yj)∈De

1∪···De
T

L (M (xj ;θ) , yj) (1)

where L(., .) measures the difference between prediction and groundtruth label. De
t denotes a testing

set of task t. Finally, θ denotes the model parameters.

After training is complete on each Ds
t , the model is put into production until Ds

t+1 becomes available
for supervised training. Between supervised phases, an unsupervised dataset, Du

t , is observed
corresponding to test-time data encountered in production. Note that this unsupervised data can
be drawn from a different distribution than the supervised data, including the distributions of old
supervised datasets/tasks. Our goal is to leverage this data to control the forgetting of the model
by allowing online unsupervised adaptation. Figure 1 depicts our setting. Note that we evaluate
our models on test datasets {De} that are distinct in terms of instances from those used during the
self-supervised online adaptation phase to adequately measure model generalization.

We further note that although supervised phases may permit multiple passes through the data until
convergence, it would be impractical to collect unsupervised data in production and then perform
adaptation on it. We thus restrict the unsupervised phase to be in the online setting Sun et al. (2020);
Jang et al. (2022); Cai et al. (2021). This is especially important in cases where data privacy is
important e.g., assistant robot in a private smart home environment.
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3.2 DOSAPP: DOUBLE SMOOTHING VIA AFFINE PROJECTED PARAMETERS

Algorithm 1 DoSAPP algorithm for continual and test time learning

Require: MS(θ
S), CLIP loss: L(., ., .), sparsity threshold c

1: θT = θS ▷ InitializeMT (θ
T ) withMS(θ

S)
2: for t in tasks do
3: θm ← top-K(K=c) params from MLP layers of θS based on F ▷ Sparse Selection, Eq. 2
4: for (xi, yi) in Ds

t do
5: θm = θm − η∇L(MS(xi), yi) ▷ Take one SGD step
6: θTi+1 = pθTi + qθSi+1 ▷ Dual momentum for teacher EMA update, Eq 4
7: end for
8: Compute union of masks for all tasks seen so far mu ▷ Start of Unsupervised Phase
9: Select mu params inMS

10: for xi in Du
t do

11: lT = max(MT (xi), dim = 1)
12: lS = max(MS(xi), dim = 1)
13: if lT > lS then
14: ŷ = argmax(MT (xi))
15: else
16: ŷ = argmax(MS(xi))
17: end if
18: θmu = θmu − η∇L(MS(xi), ŷ) ▷ Take one SGD step
19: θTi+1 = p′θTi + q′θSi+1 ▷ Dual momentum for teacher EMA update, Eq 7
20: end for
21: end for

We propose a simple yet effective method for continual test-time learning, Double Smoothing via
Affine Projected Parameters, aka DoSAPP. Our approach combines two key components: 1) sparse
and local updates: to reduce forgetting, maintain generalization, and ensure efficient updates, and 2)
teacher-student framework to promote stability in online updates and minimize forgetting. In the
continual test time learning, we can identify two distinct phases of learning, as outlined below.

PHASE 1: CONTINUAL LEARNING SUPERVISED TRAINING WITH SPARSE SELECTED
PARAMETERS

Our primary objective is to swiftly accumulate new knowledge without catastrophically forgetting
the generic knowledge both at training and test time. To achieve this, we opt for updating only a
small subset of selected parameters. It has been suggested by Zhang et al. (2023b) that for a generic
pretrained model like CLIP and a given task, relevant parameters can be identified before training,
and updating only those parameters would result in a reduced forgetting of previous knowledge.
Further Geva et al. (2020) suggested that MLP blocks in a transformer model emulate key-value
neural memories, where the first layer of MLP acts as memory keys operating as pattern detectors.
This suggests that for updating knowledge of previously known "patterns", it might be sufficient to
update only the first MLP layer parameters. Thus we limit candidate parameters to the first MLP layer
parameters of each transformer block in the CLIP model Zhang et al. (2023b). From these candidate
parameters of the first MLP layer of each transformer, we select top-K (K=c) parameters. This results
in efficient training without loss of previously acquired knowledge as all other layers remain frozen.

Following Zhang et al. (2023b) we use the gradient magnitude of the loss w.r.t. the incoming data
as a score of how relevant a parameter is, the larger the gradient magnitude the larger the expected
decrease in loss after small changes to that parameter. We refer to the model being optimized as
MS . Upon receiving supervised data, we first estimate the most relevant parameters, θm such that
(θm ∈ θS).

F
(
θS
ij ,Ds

t

)
=

∥∥∥∥∥∥ 1

N ′
t

N ′
t∑

k=1

gij (xk)

∥∥∥∥∥∥ (2)
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where gij (xk) is the gradient of the loss function (L(MS , xk, yk)) regarding the parameter θS
ij

evaluated at the data point and its label xk, yk ∈ Ds
t . The loss function L(MS , xk, yk) is the

same CLIP loss, and the entire data is iterated once to compute the gradient score as given in Eq 2.
Specifying the sparsity threshold (c), top-K (K=c) most relevant parameters are selected. We set
c = 0.1 as shown in Zhang et al. (2023b). This results in a binary mask m where only selected
parameters are updated, and others are masked out and kept frozen.

TEACHER STUDENT FRAMEWORK

To ensure stability later during online updates and reduce forgetting, we utilize a Student-Teacher
framework Tarvainen & Valpola (2017); Koh et al. (2022); Boschini et al. (2022) where the student
model is denoted byMS(θ

S) and the teacher model is denoted byMT (θ
T ).

During both train and test time, teacher modelMT parameters θT move with exponentially moving
average (EMA) of student model parameters θS . Normally in a teacher-student framework, all
teacher model parameters move similarly toward the student parameters with a single smoothing
parameter (momentum). However, in Tables 1 and 3, we show that a single smoothing parameter is
insufficient and yields poor performance. Indeed, in our case, most of the student model parameters
remain frozen, and only a small portion is updated. We propose that the teacher model’s parameters
corresponding to the student-frozen parameters should move at a different pace than those selected
for updates. Therefore we use dual smoothing parameters (referred to as momentum parameters)
based on the affine transformation of the binary mask m to adapt the teacher parameters θT .

WEIGHTED EXPONENTIAL SMOOTHING WITH DUAL MOMENTUM

After each gradient update step (i) forMS , parameters ofMT are updated by EMA of the student
model parameters. Typically, EMA is governed by

θT
i+1 = δθT

i + (1− δ)θS
i+1 (3)

where δ is the smoothing parameter. Further, it has been shown in (Tarvainen & Valpola (2017);
Oquab et al. (2023); Koh et al. (2022)) that setting δ to a high value (eg 0.998) maintains a stable
teacher model that can be considered as a strong reference for past tasks {0, . . . , t− 1}. But updating
the teacher model with a single smoothing parameter in cases where parameters are masked creates
dissonance and increases forgetting because all the parameters are updated with equal importance,
disregarding those parameters which are selected by the gradient scoring function (where [mij = 1]).
To account for masking, we modify Eq 3 as

θT
i+1 = pθT

i + qθS
i+1 (4)

where p and q denote the smoothing parameters for the teacher and student model respectively and
can be computed as

p = (γ − δ)m + δ

q = (δ − γ)m + 1− δ
(5)

where γ < δ. This means that the selected parameters of the teacher model ([mij = 1]) move slightly
faster towards the student model as compared to the frozen candidate parameters (where [mij = 0]).
As such, parameters where [mij = 0] will move at a slow rate of δ, and unmasked parameters would
be updated with γ. When γ = δ, the weighted scheme becomes EMA with a single smoothing
parameter. A detailed proof is given in appendix A.1.

PHASE 2: UNSUPERVISED TEST TIME LEARNING (TTL)

After supervised training is completed, bothMT andMS are deployed for Test Time Learning (TTL).
We consider teacher (MT ) and student (MS) models as two experts on different data distributions,
theMS on the most recent and theMT on previous sessions distributions.

We take inspiration from Out Of Distribution (ODD) literature Hendrycks & Gimpel (2016), where
a sample has to be identified as In Distribution (ID) for a given predictor with a score function
predicting high values for ID samples as opposed to OOD samples. Recently it has been shown that
using the un-normalized maximum logit output of a given predictor as an ID score is significantly
more robust than softmax probability Hendrycks et al. (2019). Indeed the softmax probability is
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shown to provide high probability predictions even for unknown samples Yang et al. (2021), which
we want to avoid in our case. Note that for CLIP, the logit corresponds to the cosine similarity of the
image batch with given text features.

Following Hendrycks et al. (2019), we use the maximum logit value of each expert as an ID score
and select for each test sample the expert with the highest ID score, indicating that the sample is
likely to be better represented by said expert. We then accept the pseudo label of the selected expert.
Formally, the pseudo label can be calculated as follows:

ŷ =

{
ŷT if lT ⩾ lS
ŷS otherwise

(6)

where ŷ is the accepted pseudo label and lT = max(MT (x)) and lS = max(MS(x)) are
the maximum logit score for teacher and student model respectively, and similarly ŷT =
argmax(MT (x)) and ŷS = argmax(MS(x)) are the pseudo labels by teacher and student
models respectively. During test-time training, the student model MS is updated by mini-
mizing CLIP contrastive loss given pseudo label ŷ. In realistic settings, multiple iterations
on test data are often not always possible, for example, in a streaming data pipeline. We
too mimic this setting, where the entire data is processed only once during the TTL phase.

Momentum (γ, λ) Aircraft
Acc. (↑) F. (↓) FTA. (↑)

0.9999, 0.9999 23.99 18.36 12.15
0.5, 0.9 38.41 3.27 37.64
0.7, 0.9 37.22 3.05 37.72

0.8, 0.9* 39.40 2.61 38.13
0.8, 0.6 37.06 5.12 29.63
0.8, 0.5 32.95 3.40 26.33

Table 1: Effect of Momentum (γ, λ) on Average Accu-
racy (Acc in % ), Average Forgetting (F.) and First Task
Accuracy (FTA.) *0.9999, 0.8, 0.9 have been used in the
main results.

Similar to the above-mentioned supervised
phase, we also here apply sparse local updates to
MS . However, the estimation of masks based
on the online data might be noisy and largely
reduce the efficiency as gradients of all param-
eters must be estimated for each mini-batch of
test samples. To overcome this, and following
the assumption that test data are drawn from
the distributions of all previous tasks, we lever-
age the masks estimated for previous tasks. We
accumulate a union of the binary masks (mu)
over all the previously seen tasks t such that
mu = m1∪m2∪ ......mt. To maintain the same
sparsity level (c = 0.1) of performed updates,
we further select the same top-K (K=c) most
relevant parameters from these new masked mu

parameters based on their previously computed gradient scores.

Finally,MT (θ
T ) is updated using the same dual momentum scheme, but with different smoothing

vectors p′, q′ as:
θT
i+1 = p′θT

i + q′θS
i+1 (7)

where p′ = (λ− δ)m+ δ and q′ = (δ−λ)m+1− δ. In the TTL phase, the momentum parameter λ
is kept such that γ < λ < δ. This means that θT moves more slowly in the direction of θS during the
TTL phase as compared to the supervised phase. As we encounter frequent and possibly noisy online
updates, stability is better ensured by a slower pace of movements toward student parameters. We
show the sensitivity of our method on the choice of momentum values λ, δ in Table 1. A high δ has
been chosen to keep the Teacher model stable as shown in Tarvainen & Valpola (2017); Oquab et al.
(2023); Koh et al. (2022). It can be seen that when γ = λ (single momentum EMA), the performance
significantly drops. DoSAPP is less sensitive to on choice of γ, but it highly depends on λ. We can
also see that as λ < γ, the performance again drops. The algorithm can be fully understood as given
in algorithm block 1.

4 EXPERIMENTS

4.1 SETUP

Architecture: We apply DoSAPP to vision-language classification tasks, given their relatively robust
knowledge measurement in such tasks. CLIP-ViT-B/16 Radford et al. (2021), is used as backbone.
We report the accuracies recorded by the Teacher model. We refer to Zhang et al. (2023b) for
hyperparameters selection other than dual momentums, which are given in Appendix A.2.
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Method Aircraft Cars CIFAR100 CUB GTSRB
Acc. (↑) F. (↓) Acc. (↑) F. (↓) Acc. (↑) F. (↓) Acc. (↑) F. (↓) Acc. (↑) F. (↓)

CLIP-Zeroshot Radford et al. (2021) 24.45 - 64.63 - 68.25 - 55.13 - 43.38 -
Finetune Goyal et al. (2023) 18.63 39.93 51.64 25.65 46.26 37.78 45.74 26.62 21.76 55.48
Self-Labelling 10.81 50.81 23.49 30.42 38.03 42.67 28.60 33.82 5.14 62.31
MAS Aljundi et al. (2018) 33.69 27.50 69.43 9.18 63.88 21.16 61.72 12.05 42.04 25.38
L2P Wang et al. (2022e) 32.20 21.73 67.04 11.22 67.71 18.81 64.04 6.82 75.45 2.68
DualPrompt Wang et al. (2022d) 26.61 17.20 63.30 18.67 61.72 19.87 64.38 12.94 69.65 8.43
SLCA Zhang et al. (2023a) 29.40 11.45 62.65 4.42 70.03 0.19 53.87 7.75 46.01 0.83
ZSCL Zheng et al. (2023) 30.96 15.65 67.79 8.27 80.50 1.05 61.09 7.69 62.92 13.54
SparseCL Wang et al. (2022c) 31.95 19.77 71.57 5.38 69.35 15.23 62.50 9.66 48.99 24.91
SPU Zhang et al. (2023b) 30.94 28.36 69.41 16.91 58.80 26.37 62.31 7.2 43.06 19.16

DoSAPP 39.14 12.55 74.87 -0.74 79.16 7.73 68.17 2.15 72.33 1.02
±0.73 ±0.22 ±0.03 ±0.68 ±0.42 ±1.68 ±1.24 ±0.81 ±0.89 ±2.10

ER methods(ER=1000)

ER French (1999) 41.42 31.38 69.08 16.42 82.86 3.41 64.07 17.72 96.28 -7.48
ER + LWF Li & Hoiem (2017) 36.08 18.12 72.56 4.04 74.32 8.16 65.11 5.90 53.56 11.86
ER + PRD Asadi et al. (2023) 37.11 17.35 74.08 3.75 79.66 3.10 65.92 6.55 63.00 12.44
SPU + ER 44.43 14.42 77.51 3.26 83.99 -0.39 71.51 4.84 94.25 -7.87
DoSAPP + ER=200 47.32 8.10 79.17 3.92 88.41 -1.96 74.39 2.77 83.67 1.92

±0.84 ± 0.79 ± 1.02 0.63 ± 1.01 ±0.09 ±0.91 ±0.58 ± 0.95 ± 0.28

Table 2: Acc. (Average Accuracy, ↑) and F. (Forgetting, ↓) of different methods all using CLIP ViT-B/16
backbone with trainable vision and text encoders, without any Replay Buffer in CIL scenario. DoSAPP
can achieve positive backward transfer - forgetting is negative on Cars data. All experiments are mean of 5
experiments with random seeds. STD. is not shown for baselines for the ease of reading and space constraints.

Datasets: We consider five different vision datasets, three fine-grained (Aircraft Maji et al. (2013),
CUB Wah et al. (2011), Stanford Cars Krause et al. (2013), Oxford Pets Parkhi et al. (2012), one
coarse dataset (CIFAR100 Krizhevsky (2012)) and one out-of-distribution dataset (GSTRB Stallkamp
et al. (2012)). These datasets are chosen primarily based on their initially low zero-shot performance
with CLIP pre-trained models. To form the continual learning sequences, we split each dataset into
10 subsets with disjoint classes composing 10 tasks. For all the datasets, the training data is used
in the supervised learning phase. The test data is divided into 2 splits, namely Du,De where Du is
utilized for test-time unsupervised learning and De is used for evaluation.

Evaluation Metrics: After each supervised session ti and the following test-time adaptation session,
we evaluate the model test performance on holdout datasets from all T tasks. To do this, we construct
the matrix R ∈ RT×T , where Ri,j is the test classification accuracy of the model on task tj after
observing the last sample from task ti. Thus, we compute Average Accuracy (Acc. = 1

T

∑T
i=1 RT,i.)

and Average Forgetting (F. = − 1
T−1

∑T−1
i=1 RT,i − Ri,i.) Lopez-Paz & Ranzato (2017). Taken

together, these two metrics allow us to assess how well a continual learner solves a classification
problem while overcoming forgetting. All experiments have been done on NVIDIA A100 GPU and
each one takes approximately 1 hour for completion.

4.2 RESULTS

We compare a variety of baselines with our proposed method in Table. 2, in the challenging scenario
of class incremental learning (CIL). Along with the methods mentioned in Table. 2, we also compare
our method with self-labeling (SL), where the groundtruth pseudo label comes from the trained model
itself (without any student-teacher framework). When comparing methods without ER, DoSAPP
achieves state-of-the-art results in all the five datasets used in the experiments. This highlights the fact
that test time data can be utilized for improving transferability as well as preserving previously learned
knowledge. Even when comparing methods with ER, DoSAPP (without ER) gives a comparable
performance in almost all the datasets. We note that SPU+ER employs a very high buffer of 1000,
which is attributed to such a high performance in some datasets like Cifar100 and GTSRB. Although
our method is robust enough to be used without ER and our primary motivation is to circumvent the
usage of buffer, we still present results with a small buffer (DoSAPP+ER, ER=200), for a comparison
to the baselines using ER. DoSAPP + ER outperforms all other baselines except GTSRB by a
significant margin.
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ID Description Aircraft Cars CIFAR100 CUB GTSRB
Acc. (↑) F. (↓) Acc. (↑) F. (↓) Acc. (↑) F. (↓) Acc. (↑) F. (↓) Acc. (↑) F. (↓)

A1 Only Teacher-Student 30.12 3.50 67.72 3.66 77.82 5.17 62.67 4.11 53.57 5.38
A2 A1 + sparse params 34.16 8.61 69.42 3.41 71.93 8.24 66.32 3.98 55.32 5.81
A3 A2 + EMA(δ) + mu 31.79 10.42 70.99 3.64 72.66 8.86 66.98 3.17 61.54 4.01
A4* A2 + EMA(δ, γ) + mu 39.14 2.55 74.87 -0.74 79.16 7.73 68.17 2.15 72.33 1.02
A5 A4 + imbalanced TTL 35.99 5.22 72.68 6.38 75.70 9.81 64.84 3.73 68.17 5.63

Table 3: Acc. (Average Accuracy, ↑) and F. (Forgetting, ↓) when different components of DoSAPP are
incrementally added to the Student-Teacher framework referred as A1. A2 denotes the sparse parameter selection
added to A1. EMA(δ) represents single momentum updates, while EMA(δ, γ) refers to dual momentum updates.
mu denotes the union of mask technique described in section 3.2. A4 is the configuration used in our proposed
DoSAPP algorithm.

Method (CLIP) Avg Acc. (↑) FTA (↑) CTA (↑) F. (↓)
Finetune (no TTL) 35.24 ± 0.87 5.90 ± 1.20 75.44 ± 0.52 16.87 ± 1.04
SPU 39.62 ± 1.62 24.31 ± 0.30 74.94 ± 2.43 7.32 ± 0.38
DoSAPP 45.01 ± 0.31 30.63 ± 0.76 71.13 ± 1.17 2.34 ± 0.75

Table 4: Average Accuracy (Avg Acc.), First Task Accuracy (FTA), Current Task Accuracy (CTA), and Average
Forgetting (F.) measured for a long sequence of tasks from the concatenation of the Aircraft Maji et al. (2013)
and Cars Krause et al. (2013) datasets. All results are the mean of 5 randomized experiments with different
seeds.

4.3 CLASS INCREMENTAL LONG SEQUENCE SCENARIO WITH DOMAIN SHIFT

We also consider the case where we have a long sequence of tasks, each to be trained in a class
incremental fashion. For these experiments, we combined the 10 tasks of Aircraft data Maji et al.
(2013) and 10 tasks of Cars data Krause et al. (2013). This firstly creates a long sequence of tasks
in a class incremental scenario, and secondly causes a domain shift after 10 tasks of aircraft. From
Table 4, it can be clearly seen that our proposed method, DoSAPP, outperforms SPU without ER
and Finetune (without any TTL phase). Further, it can be inferred that in other baselines, there is
a recency bias towards the current task, whereas in DoSAPP, with a marginal decrease of 3.8% on
current task accuracy (CTA), there is an overall increase in the average accuracy and the first task
accuracy. This shows that our approach retains the knowledge on the first task as well as adapts to the
current task, with strong generalization performance.

5 ABLATION STUDY

In this section, we quantitatively analyze the effect of different components of our proposed method
DoSAPP. We evaluate the effects of each component incrementally, as seen in Table 3. Starting with
only a student and teacher model setup, we subject it to TTL data and this forms our baseline. Next,
we compare with localized sparse updates for the first MLP layer of each of the transformer blocks.
This gives an increase in performance in 4 out of 5 datasets. It is to be noted that the momentum used
to update the teacher model is according to Eq. 3. We then take the union of supervised task masks
to use them at the TTL phase, but this deteriorates performance since the masked parameters and
unmasked parameters are updated with a single momentum. Finally, we add our dual momentum
approach, which gives the best performance. We also subject our approach to a more challenging
scenario where the tasks in TTL phases are class-imbalanced. Here we sample each task from a
symmetric Dirichlet distribution whose concentration parameter is the length of each task. This
causes a high imbalance of classes within each task, and sometimes, even absence of certain classes.
This imbalanced case is of particular importance since, in real settings, test suites are often skewed.
This is done by randomly sampling classes from a Dirichlet distribution. Although the performance
is inferior to the balanced case, it should not be interpreted as a drawback. This is because the model
should adapt more to the classes that are seen often in TTL phases and loss of performance on rarely
seen classes is but natural.
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Method Aircraft Cars CIFAR100 CUB GTSRB
Acc. (↑) F. (↓) Acc. (↑) F. (↓) Acc. (↑) F. (↓) Acc. (↑) F. (↓) Acc. (↑) F. (↓)

SPU 30.94 28.36 69.41 16.91 58.80 26.37 62.31 7.2 43.06 19.16
SPU+Du 27.72 24.86 68.91 7.34 74.09 10.43 61.21 4.01 60.17 6.94
SparsCL+RMT 27.11 16.29 69.81 17.22 70.82 12.25 60.03 10.58 51.98 11.40
SPU+RMT 29.33 15.10 62.32 21.95 63.06 23.28 63.87 6.34 54.13 17.56
DoSAPP 39.14 12.55 74.87 -0.74 79.16 7.73 68.17 2.15 72.33 1.02

Table 5: Acc. (Average Accuracy, ↑) and F. (Forgetting, ↓) for comparing CIL methods like SPU Zhang et al.
(2023b), SparsCL Wang et al. (2022c) integrated with most recent TTA method: RMT Döbler et al. (2023) with
our proposed method: DoSAPP. It can be observed that typically fusing typical TTA method in CIL pipeline
exacerbates the catastrophic forgetting. DoSAPP on the other hand outperforms all of them, by a significant
margin on all the datasets.

We highlight the innovative aspect of our approach, which leverages unsupervised test data—readily
available in production environments, to enhance continual learning. Unlike our method, existing
continual learning (CL) techniques are not inherently designed to incorporate unsupervised test data,
making them less adaptable to this scenario. Indeed, naive approaches to using the unsupervised
data alongside existing methods proved unfruitful in our preliminary analysis. To illustrate this, we
combined the best-performing CL method (compared to ours), SPU, with a simple pseudo-labeling
baseline, namely SPU + test-time data (Du). The model is updated with SPU-learned masks using
a standard self-labeling approach on test-time data, using the max logit of the model as the label.
Further, we integrate RMT Döbler et al. (2023), one of the most recent Test Time Adaptation methods,
with SPU Zhang et al. (2023b) and SparsCL Wang et al. (2022c), and observed that our proposed
method DoSAPP outperforms all of them as shown in Table 5. This highlights that TTA methods,
when fused with continuous supervised training pipeline, cause the model to significantly lose
knowledge. As there are long sequences of distinct tasks, it becomes difficult for any TTA method to
adapt to these ever-changing source distributions. Our method mitigates this issue by intuitive usage
of dual momentum over masked parameters. We further observe that the TTA method gives inferior
performance for almost all datasets in comparison to self-labeling, proving that these methods are
not suitable for deploying under continuous supervised learning and expanding tasks. Further in
Appendx A.3 and A.4, we demonstrate the superiority of our method in adapting to noise present
in the unsupervised test data and the effect of the proportion of test data Du on the performance of
DoSAPP.

6 LIMITATION

DoSAPP is a robust algorithm which can be potentially applied to any CL technique for unsupervised
adaptation of Test Time Data. However, since it utilizes the test data, its primary bottleneck becomes
the quality of test data, especially if it’s highly skewed. Another limitation is the increase in the
computational budget due to two deployed models: Student-Teacher framework. We address this by
leveraging the efficient sparse parameter selection method.

7 DISCUSSION AND CONCLUSION

In this work, we discuss how to leverage test-time data to improve models’ representation of previous
tasks, mimicking human learning and striving for real intelligent agents. In summary, to the best of our
knowledge, we are the first to explore test-time learning to control forgetting. We show that test-time
data can provide a great source of information when leveraged correctly. Our method, DoSAPP, was
able to significantly improve over the zero-shot performance of CLIP when continually learning a
dataset without any replay and with no specific CL method applied at the supervised training session.
DoSAPP is stable due to sparse parameter updates and the weighted EMA teacher-student framework.
Further, during TTL, the max-logit in distribution scores makes it more robust to class imbalance
than other strategies.
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A APPENDIX / SUPPLEMENTAL MATERIAL

A.1 DERIVATION FOR DUAL MOMENTUM

In section 3, the teacher model parameters θT
i undergo exponential moving average as

θT
i+1 = pθT

i + qθS
i+1 (8)

where p and q denote the smoothing parameters for the teacher and student model respectively and
can be computed as

p = α1m + β1

p = α2m + β2
(9)

where αi and βi for i ∈ {1, 2} are the coefficients for the affine transformation of the boolean mask
vector m.

To account for masked parameters, two momentum values δ, γ are introduced for teacher and student
models respectively, such that for the teacher model, affine coefficients α1, β1 are computed by
solving the equations:

α1[mij = 1] + β1 = γ , α1[mij = 0] + β1 = δ (10)

and α2, β2 are computed by solving the equations

α2[mij = 1] + β2 = 1− γ , α2[mij = 0] + β2 = 1− δ (11)

This gives
α1 = γ − δ, β1 = δ

α2 = δ − γ, β2 = 1− δ
(12)

This gives
p = (γ − δ)m + δ

q = (δ − γ)m + 1− δ
(13)

A.2 HYPERPARAMETERS

Table 6 shows different hyperparameters that have been used for all the experiments using CLIP
backbones. The hyperparameters were selected based on the performance of the first task of Cars
Krause et al. (2013) dataset. All the results have been gathered over experiments averaged over 5
random seeds.

Hparams CLIP model

Batch Size 64
Optimizer AdamW

Learning Rate 7.5e− 6
CL Epochs 10

Buffer 0
TTL batch size 64

Momentum-EMA (δ, γ, λ) 0.9999, 0.8, 0.9
sparsity (c) 0.1

Table 6: Hyper Parameters for all the experiments using CLIP ViT-B/16 model.

A.3 DEPENDENCE ON QUALITY OF TEST DATA USED FOR UNSUPERVISED LEARNING

We want to highlight that the trained model is expected to generalize to the distribution of the test
data. We also assume that any quality degradation will be consistent across time steps. For instance, if
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the data is corrupted with noise, our method would generalize and adapt the model to this corruption
as well. To illustrate this, we conducted a small experiment by adding random Gaussian noise (mean
= 0, std = 0.1) to different combinations of the test and evaluation suite (referred to as GN in Table 7).
The results are shown below, with average accuracy (Acc.) followed by forgetting (F.). We observe
that when corruption is present in the test-time data, the model is still able to leverage these data and
improve on clean evaluation data compared to the test-time baseline by a significant margin of 17%
(SPU alone). Interestingly, the model adapted to test-time data with Gausian noise performs better on
evaluation data with Gausian noise than the case when the test-time data is clean. This is the evidence
of our method’s ability to adapt and generalize to the present test-time conditions.

Test Time Data (Du) Evaluation Data (De) Acc. (↑) F. (↓)
Clean Clean 79.16 7.73
GN Clean 75.67 9.93

Clean GN 69.50 12.86
GN GN 73.42 6.86

Table 7: Performance of DoSAPP with noise added to Du and De for CIFAR100 Data

A.4 ABLATION STUDY ABOUT THE SIZE OF TEST-TIME DATA Du

In our method, we divided the evaluation data into two halves. One half is for unsupervised learning
(Du), and the other half is for evaluation (De). In the table below, we feed the fraction of Du for
test time learning. 0.25 means that 25% of the original Du is fed to the model for unsupervised
learning. We notice that when the fraction is below 0.75, there is an appreciable difference between
the performance of our proposed model. However, at 0.75, the performance is quite close to that of
the whole Du.

Fraction of Du Acc. (↑) F. (↓)
0.25 73.97 14.23
0.5 76.83 9.44
0.75 79.02 8.16

1 79.16 7.73

Table 8: Dependence of performance of DoSAPP with different proportion of the testing data Du on
CIFAR100 dataset.
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