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Abstract

We offer the most extensive benchmark for uncertainty quantification (UQ)
in retinal AI screening, providing practical guidance for clinical evalua-
tors/regulators and highlighting the importance of risk–coverage–accuracy
analysis. We methodically assess six well-known post-hoc UQ techniques
in three main diseases: glaucoma (115K+ images), age-related macular
degeneration (29K+ images), and diabetic retinopathy (105K+ images).
Our benchmark comprises three Vision Transformer variations, standardized
train/test/calibration splits, and evaluation on both public datasets and in-
house clinical data from a local hospital. Results show that screening models
can be miscalibrated and overconfident, and although UQ is helpful, its ben-
efits are highly method- and disease-dependent. Our risk–coverage–accuracy
analysis shows coverage drastically decreases as risk limits increase, and no
single approach is consistently dependable in all contexts. While neither
method consistently outperforms the others, Deep Ensembles and Test-
Time Augmentation (TTA) are the two practical UQ approaches that most
frequently enhance selective prediction and/or calibration. Conformal Pre-
diction (CP) serves as a must-have safety rail, ensuring alignment between
nominal and observed coverage. However, no method can reliably achieve
the 2% target-risk required for autonomous screening without sacrificing
coverage. These findings highlight the need for more robust post-hoc UQ
methods, both for in-distribution scenarios and under domain shifts (out-of-
distribution), as well as improved mechanisms for capturing disagreements
and implementing policy-aware thresholding in human-in-the-loop workflows.
To facilitate progress in this field, we release our benchmark, which includes
standardized data splits, trained model checkpoints, code, and an online
demo for interactive exploration, thereby providing a reference for future
UQ research in ophthalmic AI screening.

1 Introduction

The application of Artificial Intelligence (AI) in healthcare holds significant clinical im-
portance, particularly for tasks like early disease screening and automating medical image
analysis. However, despite this potential, the reliability and trustworthiness of these sophis-
ticated systems remain critical concerns, currently limiting their widespread deployment
in real clinical scenarios where patient safety is paramount Khan et al. (2025); Kim et al.
(2023); Rajpurkar et al. (2022). A primary reason for these concerns is the inherent uncer-
tainty associated with AI predictions. AI systems operate using complex models and large
datasets, and factors such as inherent noise within the data and the limitations of the models
themselves lead to unavoidable uncertainty Wang et al. (2025).

As we delve deeper into the nuances of AI-based medical image screening, it becomes
increasingly clear that uncertainty quantification (UQ) is not merely an ancillary consideration
but a fundamental necessity for effective deployment in real-world clinical settings. For
effective machine-assisted medical decision-making, quantifying uncertainty per patient/case
is vital. When faced with ambiguity, AI should be capable of abstaining from predictions,
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Fundus Image Diagnosis & Uncertainty Quantification Demo
Upload a fundus image to get diagnosis predictions. ⚠️ Disclaimer: This is a research demonstration and not for clinical use.

Run Complete Diagnosis

Drop Image Here
- or -

Click to Upload

Age Macular Degeneration

UQ & inference DL Methods

Strategy ViT RETFoundGreen

MSP prob of disease: 0.84
Uncertainty score: 0.160

prob of disease: 0.72
Uncertainty score: 0.283

Predictive_Entropy prob of disease: 0.84
Uncertainty score: 0.439

prob of disease: 0.72
Uncertainty score: 0.596

MC_Dropout prob of disease: 0.79
Uncertainty score: 0.102

prob of disease: 0.73
Uncertainty score: 0.058

TTA prob of disease: 0.97
Uncertainty score: 0.019

prob of disease: 0.40
Uncertainty score: 0.067

Conformal prob of disease: 0.84
Uncertainty score: Low

prob of disease: 0.72
Uncertainty score: Low

Diabetic Retinopathy

UQ & inference DL Methods

Strategy ViT RETFoundGreen

MSP prob of disease: 0.68
Uncertainty score: 0.316

prob of disease: 0.30
Uncertainty score: 0.302

Predictive_Entropy prob of disease: 0.68
Uncertainty score: 0.624

prob of disease: 0.30
Uncertainty score: 0.613

MC_Dropout prob of disease: 0.70
Uncertainty score: 0.087

prob of disease: 0.30
Uncertainty score: 0.068

TTA prob of disease: 0.72
Uncertainty score: 0.087

prob of disease: 0.62
Uncertainty score: 0.051

Conformal prob of disease: 0.68
Uncertainty score: High

prob of disease: 0.30
Uncertainty score: High

Glaucoma

UQ & inference DL Methods

Strategy ViT RETFoundGreen

MSP prob of disease: 0.80
Uncertainty score: 0.202

prob of disease: 0.61
Uncertainty score: 0.387

Predictive_Entropy prob of disease: 0.80
Uncertainty score: 0.503

prob of disease: 0.61
Uncertainty score: 0.668

MC_Dropout prob of disease: 0.79
Uncertainty score: 0.086

prob of disease: 0.62
Uncertainty score: 0.097

TTA prob of disease: 0.79
Uncertainty score: 0.108

prob of disease: 0.64
Uncertainty score: 0.048

Conformal prob of disease: 0.80
Uncertainty score: Low

prob of disease: 0.61
Uncertainty score: High

Legend & Information

Loaded Models: ViT (AMD), RETFoundGreen (AMD), ViT (DR), RETFoundGreen (DR), ViT (GL), RETFoundGreen (GL)

Methods:

MSP: Maximum Softmax Probability

Predictive_Entropy: Shannon entropy of predictions

MC_Dropout: Monte Carlo Dropout sampling

TTA: Test Time Augmentation

Conformal: Conformal prediction sets

Note: Uncertainty scores are numerical values where lower values indicate more certainty and higher values indicate more uncertainty.

⚠️ Disclaimer: This is a research demonstration and not for clinical use.

Examples

Use via API · Built with Gradio · Settings

Upload Fundus Image Analyzed Image

Spaces MahvashJebeli /UncertaintyAIDiagnosis private Running Logs App Files Community Settings

Figure 1: A snapshot of the deployed online demo with trained models and UQ methods, freely
accessible on Hugging Face Spaces (http://). Notice that in this example, even though the fovea
is not fully visible, the AMD model still makes an overconfident prediction. We can also see
inconsistencies between the outputs of different models trained for the same disease but with
different random weight initializations. Uncertainty scores can help improve the final decision in
some inference cases, but not always, and in some cases even incorrect predictions are assigned a
low uncertainty score. Deep ensembles were omitted due to limited online storage capacity.

seeking human expertise (i.e., "learning to defer"), or collecting additional data Zou et al.
(2023); Kompa et al. (2021); Begoli et al. (2019); Challen et al. (2019); Alves et al. (2025).

Deep learning models have great potential for automating medical image analysis, but
ignoring uncertainty can pose serious risks in clinical decision-making, undermining trust in
these systems. Therefore, it is crucial to rigorously evaluate and benchmark UQ methods to
enhance the reliability of deep learning models in medical imaging.

It is important to clarify that our focus is not on creating uncertainty-aware deep learning
models solely to improve their performance. Instead, we are interested in understanding
how to effectively utilize developed models and transfer them to clinical settings during
the inference phase, evaluating them on a per-sample, per-image, and per-patient basis
(post-hoc), and providing guidance for researchers and evaluators on the clinical side. To
save space, the related work section has been moved to the appendix. In summary, while
there are a few uncertainty-aware studies aimed at improving the performance of trained
models for fundus-based diagnosis, they fall outside the scope of our investigation, and their
datasets are limited with no benchmarking.

Objectives and contributions: By providing this evidence-based comparison, we
aim to equip clinical researchers, regulators, and evaluators with the knowledge needed
to assess the reliability and trustworthiness of AI models in clinical settings, particularly
regarding risk–coverage–accuracy trade-offs, which also benefits AI developers. While this
work focuses on retinal image–based screening applications, the shared code and insights
can be valuable for other domains as well. The primary objectives and contributions of this
benchmark are: 1) Conduct a systematic evaluation of six post-hoc UQ methods across three
major retinal diseases—age-related macular degeneration (AMD), glaucoma, and diabetic
retinopathy (DR). 2) Establish a large-scale, multi-disease benchmark with standardized
train/test/calibration splits, ensuring reproducibility and fair comparison. 3) Quantify the
gap between laboratory conditions and real-world deployment (lab to clinic) by testing
methods on both public datasets (in-distribution) and a local clinical dataset with physician
annotations (out-of-distribution). 4) Analyze whether clinically viable screening (<2% target
risk) is achievable, highlighting trade-offs between safety, coverage, and practical utility. 5)
Assess calibration and statistical validity of UQ methods, including reliability diagrams and
conformal prediction coverage. 6) Investigate alignment between UQ outputs and clinical
complexity by testing their ability to detect cases with physician disagreement. 7) Release
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Table 1: Comparison of uncertainty quantification methods. Note: The input for the conformal
prediction/inference method consists of prediction values, allowing it to be applied on top of each prediction
generated by other methods.

None MSP / Entropy TTA MC Dropout Conformal Deep Ensemble

Var Aleatoric Epistemic Total

Prediction value ŷ ŷ
Avg. over

augmentations
Avg. over

dropout passes
Set prediction
with coverage

Avg. over
models same same same

Uncertainty – 1−max(pi)
or −

∑
pi log pi

Length of
prediction set E[Var[p|x]] Var[E[p|x]] Sum of aleatoric

and epistemic

Uncertainty
(Classwise: +) – Variance

across aug.
Variance

across dropout
Variance across

models

Inference strategy Single
pass

Single
pass

Multiple
augmentations

Multiple
stochastic passes

Calibration set
+ test prediction

Multiple
models same same same

open-sourced trained screening models with integrated UQ, online demos, and evaluation
code as open-source resources to accelerate research.

2 Methodology and Experimental Details

Dataset: To achieve our objectives, we compiled a large collection of globally available
fundus photo datasets that include labels or can have labels extracted for glaucoma, diabetic
retinopathy, and age-related macular degeneration. This effort resulted in the accumulation
of over 100,000 images for diabetic retinopathy, 28,000 for age-related macular degeneration,
and 114,000 for glaucoma, as reported in Table 3(appendix).

From these datasets, only the samples designated as test sets by the original publishers
were used for testing; otherwise, the photos were utilized for training. In addition, since the
conformal prediction method requires a calibration set, we randomly selected a subset of
photos from the test sets to serve as the calibration set (20%), ensuring that the selection
was stratified. This calibration set will be excluded from all evaluations and metrics. The
CSV files related to the train, test, and calibration sets are available as a benchmark in our
GitHub repository to enhance reproducibility. All labels are provided as binary values for
screening (0 for healthy, 1 for referral). To our knowledge, this is the largest benchmark
training and evaluation set available, encompassing datasets from around the world.

For further investigation, we also utilized a local dataset from Hospital X that has been
annotated for glaucoma presence and referral by three ophthalmologists. This dataset contains
536 photos of acceptable quality and will be used as an external and out-of-distribution test
set. Similarly, 20% of this dataset has been designated as the calibration set.

Deep Learning Models: We selected three Vision Transformer (ViT) variations as the
backbones for our experiments, all from the timm library and leveraging powerful pretrained
weights Wightman (2019): ViT: A benchmark Vision Transformer model based on the
DINOv2 self-supervised learning paradigm, pretrained on the ImageNet dataset Oquab et al.
(2024). RETFound-Green: This model employs the same architecture but is a foundation
model specifically pretrained on a massive dataset of 1.6 million unlabeled fundus images,
making it particularly suitable for retinal tasks. We used the publicly available weights for
initialization Engelmann and Bernabeu (2025). ViT(FLSD-53): Mukhoti et al. showed that
using focal loss instead of cross-entropy can improve model calibration Mukhoti et al. (2020).
They also demonstrated that the sample-dependent variant FLSD-53 where the hardest and
most uncertain examples (p̂y ∈ [0, 0.2)) receive a stronger focus (γ = 5), and less difficult
samples (p̂y ∈ [0.2, 1]) receive a lower focus (γ = 3) outperforms even temperature-scaled
models. Based on these findings, we selected this approach to train a ViT model as an
uncertainty-aware and calibration-oriented baseline. For all models, we employ a transfer
learning strategy in which the pretrained feature extraction layers are frozen. Only a new
custom classification head, consisting of a single linear layer that maps the feature dimension
to the number of output classes (2 for binary classification: healthy vs. referral), is trained.
The dropout rate in this layer is set at 10%. The input image size for the deep learning
models was set to 392 by 392 pixels.

Image Reprocessing: All fundus photos undergo a multi-step preprocessing pipeline before
being passed to the models. This preprocessing ensures that the retina is present within the
photo, extracts the region of interest, and ultimately resizes the photo to a square format
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Figure 2: Figures of ROC and PR curves for different trained models and inference strategies.

(equal height and width) using zero padding. The scripts used for this process are publicly
available EyeQ Fu et al. (2019) (code at Fu (2019)). Also, all photos, for both training
and testing, are normalized using the standard ImageNet mean and standard deviation.
Augmentations: During training, we improve robustness through data augmentations: images
are resized to 110% and randomly cropped to target resolution, with random flips, small
rotations (≤ 10), color jitter (brightness, contrast, saturation, hue), and Gaussian blur.
For validation and testing, we resize images to the final input resolution without random
augmentations, but we apply the same training augmentations for uncertainty quantification
at test time. Training Protocol: is available at appendix.

Uncertainty Quantification Methods: We implement and compare six distinct uncertainty
quantification (UQ) methods, as shown in Table 1. For Monte Carlo Dropout, we perform
(T = 50) stochastic forward passes for each input image. For the deep ensemble method,
(N = 5) independent models are trained with dropout enabled, and the train/validation
set is randomly initialized for each model’s training. For test time augmentation (TTA),
each test photo is accompanied by (K = 20) augmented photos that are fed to the model,
following the augmentation strategy described above. The justification for these parameters
is provided in the appendix.

Evaluation Metrics: We use a comprehensive set of metrics to evaluate predictive performance
and uncertainty quality (extended description is available in the appendix). As classification
metrics, AUROC(↑) and AUPRC(↑) measure model discriminative ability, while PPV(↑) and
NPV(↑) assess predictive values. In the context of calibration metrics, ECE(↓) quantifies
alignment between predicted confidence and actual accuracy, NLL(↓) evaluates probabilistic
prediction quality, and the Brier Score(↓) assesses calibration and sharpness. For uncertainty
metrics, AURC(↓) measures the effectiveness of uncertainty estimates, Risk@90%(↓) Coverage
reports error rates for low-uncertainty samples, and Coverage@5% Risk(↑) indicates the
fraction of samples processed automatically while maintaining low error rates. Furthermore,
visually, ROC and precision-recall curves illustrate model performance, reliability diagrams
assess calibration quality, risk-coverage curves show the relationship between coverage and
risk, and conformal prediction coverage plots evaluate statistical validity.

3 Results

3.1 Detection and Calibration Performance

First, we establish baseline classification performance on the public test set, as shown in
Figure 2 and Table 4. Our results indicate that most methods achieved high AUROC
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scores and acceptable AUPRC values. The glaucoma and diabetic retinopathy models show
promising screening performance but are not ready for deployment. In contrast, the low
AUPRC for AMD indicates unreliable identification of positive cases, despite a good AUROC
score, and improving this is beyond the scope of this study. For UQ-enabled methods,
averaged predictions are used. TTA consistently improves performance, especially with ViTs
on AMD and glaucoma, while MC Dropout and Deep Ensembles add little. RETFound-Green
performs well for diabetes but is highly TTA-sensitive, leading to severe drops on AMD,
suggesting less robust features.
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Figure 3: Reliability diagrams for disease detection mod-
els, where well-calibrated methods lie near the diagonal.

Our calibration investigation, re-
ported in Figure 3(reliability dia-
grams) and Table 4, shows that
overall calibration improvements
are disease- and model-dependent.
However, TTA stands out as the
most effective strategy for enhanc-
ing model confidence alignment in
AMD and glaucoma. Additionally,
our models for predicting AMD
exhibit the worst calibration and
demonstrate overconfidence. Fur-
thermore, surprisingly, the ViT
(FLSD–53) model—which was ex-
pected to produce more calibrated
outcomes—resulted in worse cali-
bration in our case study. This may
be due to several hyperparameters
(e.g., threshold of p̂y such as 0.2, or values of γ ∈ {3, 5}), while the original experiments were
conducted on substantially different datasets, including CIFAR-10 (10 classes, 60,000 images),
CIFAR-100 (100 classes, 60,000 images), Tiny-ImageNet (200 classes, 110,000 images), and
ImageNet (ILSVRC-2012: 1,000 classes, about 1.2M images). These findings again highlight
the importance of calibration and hyperparameter tuning, particularly when adapting models
under domain shift. Optimizing these parameters was outside the scope of this study.

3.2 Uncertainty Analysis

Figure 4 and Table 5 show the information obtained from risk-coverage (selective prediction)
analysis to assess the effectiveness of UQ methods and their impacts. Conformal prediction
will be discussed in the next subsection due to its distinct nature. The variations in the
distribution of uncertainty scores for each UQ method are shown in Figure 9.

Glaucoma benefits the most from uncertainty-based selective prediction (for both ViT and
RETFound-Green), with a very low AURC (baseline 0.191, dropping to 0.046 with deep
ensemble) and the lowest Risk@90% Coverage ( 0.101). In contrast, Coverage@5% Risk is high
(>0.6), indicating that uncertainty signals effectively identify unreliable cases. For glaucoma,
uncertainty-based methods significantly enhance both efficiency and safety, demonstrating a
clear benefit from selective prediction. In AMD, there are large improvements in AURC and
Risk@90% Coverage, but unstable coverage at low-risk thresholds persists. The amount of
improvement is much greater with the RETFound model (AURC improves from 0.457 to
0.082). Variance ensembles are the only method achieving both better risk and meaningful
coverage, indicating a dramatic gain, though likely at the cost of coverage. In diabetes, there
are modest improvements in AURC and Risk@90% Coverage (for both ViT and RETFound),
but coverage remains generally poor, suggesting that uncertainty signals are less informative.
Overall, improvements are modest and not robust.

Variance-based deep ensembles emerge as the most effective UQ method, providing clear
improvements for AMD and glaucoma across all metrics. Aleatoric and epistemic ensembles
help in diabetes and glaucoma, but with less consistency. In contrast, Maximum Softmax
Probability (MSP), entropy, dropout, and test-time augmentation (TTA) offer only partial
gains and often compromise coverage.
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Figure 4: Figures of Risk–Coverage analysis showing the effectiveness of UQ methods. The
x-axis shows coverage, the proportion of test instances the system predicts automatically,
with the rest rejected (abstained/referred) for expert review. For example, at 90% coverage,
the 10% of test samples with the highest uncertainty scores are removed and referred to an
expert.
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Figure 5: Observed vs. nominal coverage showing under-coverage in raw predictions and
correction with CP. All the raw methods exhibit undercoverage and overconfidence, whereas
CP effectively compensates for these shortcomings.

3.3 Conformal Prediction/Inference

As mentioned previously, conformal prediction (CP) inference can be applied on top of all
other methods, using prediction values as input. Figure 5 presents the Conformal Prediction
Coverage Plot (Observed vs. Nominal Coverage). The Observed Coverage vs. Nominal
Coverage curve shows how often the conformal prediction sets actually contain the true label
compared to the reliability level is requested. If observed coverage stays at or above the
nominal values, the method is reliable or conservative; if observed coverage drops below the
nominal values, the method is overconfident and does not meet the desired guarantee.
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As shown in Figure 5, all raw models (without CP) display a significant gap between nominal
and observed coverage and as expected, the worst-performing model is ViT (FLSD–53),
which exhibited the poorest calibration performance. Consequently, its coverage beyond
80% is nearly zero; however, CP substantially improves its performance. As an example, for
the ViT-Glacuoma, when the raw model claims 90% coverage, it actually only covers about
20–40% of true outcomes, reflecting severe overconfidence and leading to undercoverage in
real setting. CP addresses this issue by pulling the observed coverage curves closer to the
ideal diagonal. With CP, the gap largely disappears, and coverage approaches nominal levels
across diseases and methods.

The reason for this gap is that modern neural classifiers are often miscalibrated, particularly
in medical imaging, where raw softmax probabilities are not reliable confidence estimates.
The substantial gap between raw and CP curves illustrates how unreliable uncalibrated
model confidences are, and why conformal prediction is crucial: it transforms
overconfident raw probabilities into valid guarantees, ensuring that observed coverage aligns
with the desired nominal level. Table 6 (showing only 90% coverage, i.e., α = 0.1) illustrates
the impact of conformal prediction on calibration. We found that CP consistently enforces
near-nominal coverage ( 0.90) across models, methods, and diseases, effectively addressing
the severe undercoverage observed in raw predictions.

3.4 Performance Under Clinical Domain Shift

For further investigation, we evaluated the performance of the models and UQ methods
using a local dataset containing 743 test photos related to glaucoma. Figure 6 presents the
curves and figures of detection performance (ROC, PR), the calibration reliability diagram,
and the achieved risk-coverage (Detailed tables can be found in Appendix Table 7.).

Comparing our local hospital glaucoma results (out-of-distribution) with the earlier test-set
(i.e. publicly available datasets, which are in-distribution) performance: Previously, AUROC
for glaucoma was very strong (0.905–0.928) and AUPRC was similarly high (0.80–0.818).
On the local hospital data, both metrics drop notably: AUROC falls to 0.77 (ViT) and 0.64
(RETFoundGreen), while AUPRC decreases to 0.74 (ViT) and 0.66 (RETFoundGreen).
On local hospital glaucoma data, detection performance drops sharply, particularly for
RETFound-Green, indicating strong domain shift, while ViT remains more robust.

As shown, this degradation under domain shift is significant and important. It may be
because the training data do not fully represent (not limited to) the hospital’s imaging
devices (e.g., Topcon, Zeiss), variations in sensor resolution, dynamic range, illumination,
flash intensity, and color calibration, as well as differences in patient demographics (e.g.,
age, race), disease presentations (e.g., under- or overrepresentation of mild cases), or clinical
workflows (e.g., with or without dilation). These factors introduce significant domain shifts
that reduce model generalization. The amount of degradation may be reduced by considering
domain-shift adaptation techniques Zhou et al. (2022), such as test-time adaptation methods
(e.g., TENT Wang et al. (2020a) or TTT Sun et al. (2020)), where the model dynamically
updates its normalization statistics or minimizes prediction entropy on incoming test streams.

Calibration on local glaucoma data is markedly degraded compared to external test sets,
reflecting domain shift. TTA provides the most noticeable correction, especially for ECE in
RETFoundGreen, but overall reliability remains weaker than in the original experiments.
On local glaucoma data, selective prediction provides only minor improvements over baseline
and fails to achieve the strong error–coverage gains observed on in-distribution test sets
(AURC is higher (0.27–0.38 vs. 0.05 before), indicating less efficient risk–coverage trade-offs).
This indicates a pronounced domain shift, where uncertainty estimates no longer reliably
separate correct from incorrect predictions.

On the local glaucoma dataset, both discriminative performance and calibration degrade
compared to in-distribution test sets, and uncertainty-based selective prediction provides only
a marginal benefit. This highlights a clear domain shift degradation, where models
remain overconfident and uncertainty estimates lose reliability, limiting their practical utility
without further adaptation.
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Figure 6: Achieved results using the trained model on large publicly available datasets
applied to the local dataset (glaucoma only). Compared to Figures 2, 3, and 4, there is a
clear degradation across all performance metrics, including AUROC, AUPRC, the reliability
diagram, and the risk–coverage curve.

3.5 Disagreement analysis

One important source of data inconsistency is the disagreement among physicians when
establishing ground truth. This represents a serious form of aleatoric uncertainty, typically
arising in borderline and clinically challenging cases. To further explore this, we investigated
which UQ methods are most effective at detecting such challenging samples and whether
their uncertainty aligns with physician disagreement. Only two datasets in our study provide
multi-rater labels (both glaucoma): the Drishti dataset, which includes five raters Sivaswamy
et al. (2014), and our local dataset, which includes three raters. In both cases, a sample was
tagged as “disagreement: yes” if not all ophthalmologists provided the same diagnosis.

Figure 7 displays the violin plots of uncertainty scores for the "disagreement" and "no
disagreement" groups, along with the conformal prediction set size for each group (with 2
indicating uncertainty). Monte Carlo Dropout and deep ensemble methods (both aleatoric
and total) show a t-test p-value of less than 0.01 for the local dataset (600 test samples after
removing the calibration set, with 256 disagreements), indicating a significant difference in
uncertainty scores between these groups and suggesting the potential to identify disagreements.
However, this finding is not replicated in the Drishti dataset (40 test samples after removing
the calibration set, with 19 disagreements). Conformal prediction was unable to detect
disagreements. Figure 7 only shows results for the ViT model, while the RETFound-Green
and ViT(FLSD-53) models does and does not demonstrate this capability for identifying
disagreements, respectively (Figures 10, Figures 11).

4 Discussion

Our large-scale benchmark provides several important insights into the role of uncertainty
quantification (UQ) in retinal AI screening. 1) Detection performance insights: While
classification models achieved strong AUROC values across public datasets, especially for
glaucoma and diabetic retinopathy, their calibration and robustness varied substantially across
diseases and UQ methods (due to different inference strategy: Table 1). 2) Out-of-distribution
performance: Our results reveal a significant gap between laboratory performance and clinical
viability for AI-based retinal screening systems. While AUROC scores appear promising
(>0.90 glaucoma) over the in-distribution test set, the substantial performance degradation
on our local clinical dataset (AUROC dropping to 0.69-0.77 for glaucoma) underscores the
persistent challenge of domain shift in medical AI.
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Figure 7: Each subplot shows uncertainty quantification results across disagreement groups
(ViT model): top for the local dataset, bottom for Drishti. MC Dropout and deep ensembles
show clear separability in uncertainty scores, indicating their ability to detect disagreements.

3) UQ performance: Deep Ensembles emerge as the most reliable approach, providing both
improved risk-coverage trade-offs and meaningful uncertainty decomposition into aleatoric
and epistemic components. Test-Time Augmentation shows promise for calibration improve-
ment but exhibits model-dependent behavior. Variance-based Deep Ensembles emerged as
the most effective method in selective prediction, significantly lowering AURC and risk at
fixed coverage, particularly for glaucoma. This suggests that ensemble diversity is a key driver
for uncertainty quality in ophthalmic AI. 4) Conformal Prediction as a Critical Safety Net:
Our conformal prediction analysis reveals a sobering reality about model overconfidence. The
substantial gap between nominal and observed coverage in raw predictions (models claiming
90% confidence while achieving only 10-30% actual coverage) demonstrates dangerous miscal-
ibration that could lead to clinical harm. Conformal prediction’s ability to restore statistical
validity represents a crucial safety mechanism. 5) Out-of-distribution UQ performance: The
performance degradation on our local clinical dataset extends beyond accuracy and cali-
bration breakdown. This suggests that uncertainty estimates themselves become unreliable
under domain shift, limiting their protective value. 6) Physician Disagreement Detection:
The limited ability of UQ methods to identify cases with physician disagreement (significant
only for MC Dropout and deep ensembles on our local dataset) indicates that technical
uncertainty measures may not fully capture clinical complexity and ambiguity. 7) Selective
Prediction Trade-offs: While uncertainty-based selective prediction improves risk-coverage
curves, the coverage rates at clinically relevant risk thresholds remain problematic.

8) The 2% Risk Target: Target risk is the maximum tolerable error for auto-accepted cases;
in ophthalmic screening, it is ideally 2% to ensure high sensitivity. Figure 8 presents the
target risk analysis (ViT only), with the red dashed line at 0.02 indicating our 2% target
risk threshold for clinical deployment. This figure illustrates the performance of the ViT
model alongside different UQ methods while sweeping the acceptable risk targets (from p3
to p17, with p1 as the baseline and p2 reflecting the removal of uncertain samples using
conformal prediction with (α = 0.1)). For each risk target, a threshold (Tau: (τ)) for
the uncertainty score is established to meet that target risk (using the calibration set).
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Figure 8: Clinical task target analysis compares ViT with several UQ methods across a sweep
of acceptable risk targets (p3–p17; p1 = baseline, p2 = conformal filtering with α = 0.1).
For each target, a threshold τ on the uncertainty score is chosen to meet that risk, and
the resulting coverage (auto-accepted fraction), PPV, and NPV are reported. Left) AMD,
Middle) Diabetics, Right) Glaucoma. larger figures are available in the appendix.

Consequently, the achieved coverage (auto-accepted fraction: ratio of test samples satisfying
the policy), PPV, and NPV values are shown. This figure highlights the trade-off between
risk targets, acceptable uncertainty scores, coverage, and detection performance. As the risk
target decreases, coverage drops significantly, which is problematic for screening utility, while
Tau threshold values increase, indicating that higher uncertainty thresholds are necessary.
Performance varies among methods, with the baseline (blue) exhibiting the most aggressive
drop in coverage, reaching near-zero coverage by policies p3-p4. Deep Ensemble methods
(orange/pink) maintain coverage for a longer duration while still reducing risk, whereas
TTA (green) demonstrates the most robust coverage retention across policies. Across all
three conditions, no method consistently meets the target risk until very restrictive policies
(p15-p17) are implemented, and even then, success is sporadic. This suggests that our
trained models and UQ methods (while beneficial) are insufficient for fully automated clinical
deployment. 9) Limitations of this study: While the advantages of UQ were found to be
model-dependent, we only evaluated two deep learning models with frozen feature extractors.
Additionally, the sizes of the test and calibration sets are limited, which is common in medical
AI research. We applied standard conformal prediction, though adaptive or hierarchical
variants may perform better. The training dataset was heavily imbalanced toward the
negative class, which the loss function attempted to address. Disagreement analysis was
limited to glaucoma and two datasets.

5 Conclusion

Our large-scale benchmark with detailed risk–coverage–accuracy analysis shows that while
uncertainty estimation helps, we are still far from an “automate-and-forget” clinical workflow.
No single UQ method is consistently reliable across diseases and models; even at modest risk
targets, coverage often collapses, underscoring the gap to clinically realistic, less than 2% risk
operation. Conformal Prediction is non-negotiable as a safety measure, as it reliably restores
the alignment between nominal and observed coverage that raw models often fail to achieve.
Among practical tools, Deep Ensembles offer the most significant gains in selective prediction
and help identify challenging cases, while Test-Time Augmentation consistently enhances
calibration. However, neither method is uniformly dominant across all scenarios. Real-world
deployment continues to be challenging: in the clinical local dataset, both discrimination and
calibration decline, while the advantages of uncertainty quantification diminish, highlighting
a significant domain shift. We therefore recommend CP as a mandatory layer, with ensembles
or TTA on top, and a human-in-the-loop thresholding policy; however, reaching safe, scalable
screening will require innovative UQ methods that retain validity under shift, better capture
clinician disagreement, and meet strict target-risk constraints. We benchmark and release
standardized training/calibration and test splits, share all trained model checkpoints to
enable replication, and provide an online demo for interactive exploration.
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A Technical Appendices and Supplementary Material

LLM Usage: Large language models (LLMs) were used only for proofreading, grammar
correction, and minor script development. No LLMs contributed to research ideation,
experimental design, or substantive writing.

A.1 Related Work

Our research is situated at the intersection of uncertainty quantification (UQ) in deep
learning, its application in medical screening, and its clinical relevance and performance in
ophthalmology.

The necessity of responsible AI in medicine has become increasingly clear as healthcare
systems integrate artificial intelligence into clinical practice. While AI offers the potential
for enhanced diagnostic accuracy and efficiency, it is imperative to recognize the challenges
associated with its deployment. Issues such as bias in training data, domain shift between
training and real-world settings, and generalization failures can lead to disparities in care
and compromised patient safety. Responsible AI practices aim to mitigate these risks by
ensuring that AI systems are transparent, fair, and reliable, ultimately fostering trust among
healthcare providers and patients alike while supporting equitable access to high-quality
medical care Chen et al. (2023); Park et al. (2021); Stetson et al. (2025).

To build upon these principles of responsible AI, it is crucial to employ structured frameworks
designed to stress-test and ensure model reliability in real-world clinical applications Antao
et al. (2025). Google’s Plex framework, for example, provides comprehensive guidelines
centered on three core requirements for trustworthy machine learning systems: uncertainty,
robust generalization, and adaptation Tran et al. (2022). The first pillar, uncertainty,
addresses a model’s ability to "know what it doesn’t know" Goetz et al. (2024). This is
essential for identifying when a model’s prediction should be trusted, enabling graceful failures
when it is likely to be wrong, and flagging difficult cases for human intervention Goetz et al.
(2024). The second pillar, robust generalization, confronts the challenge of distribution shifts,
ensuring that a model maintains its performance and reliability when encountering new data
from different sources or environments (a common problem when moving from lab to clinic
Goetz et al. (2024)). Finally, adaptation evaluates a model’s capacity to learn efficiently
from new data, a critical feature for systems that must evolve with new clinical information
or changing patient populations. By systematically stress-testing models across these three
pillars, the Plex framework aims to produce AI systems that are not only accurate but also
consistently dependable and safe for deployment in high-stakes medical settings Goetz et al.
(2024).

The need for reliable AI has made UQ an active area of research in medical imaging Zou
et al. (2023). It has been applied to tasks such as disease classification in radiology Park et al.
(2021), tumor segmentation in histopathology Dolezal et al. (2022), and lesion detection in
dermatology Yu et al. (2025). These studies consistently show that leveraging uncertainty can
identify difficult cases, detect out-of-distribution samples, and enable a "human-in-the-loop"
workflow where uncertain predictions are flagged for expert review. However, much of the
existing work focuses on a single disease or a single imaging modality. To our knowledge, a
large-scale, systematic benchmark of modern UQ methods across three major retinal diseases,
particularly with a rigorous evaluation on a real-world clinical dataset, remains a significant
gap in the literature. The sources of uncertainty are diverse, ranging from variability in
image acquisition (e.g., scanner models, protocols), inherent biological variability between
patients, and annotation ambiguity from expert disagreements Alizadehsani et al. (2021);
Loftus et al. (2022).

Currently, there are several AI-based screening methods and devices approved by the FDA
for diabetic retinopathy (DR), including Digital Diagnostics’ IDx DR, EyeNuk’s EyeArt,
AEYE Health, and iPredict Eye Screening for age-related macular degeneration (AMD).
Additionally, Verily Life Sciences LLC, a subsidiary of Alphabet, has announced its CE Mark
for DR in India. It is likely that more systems will emerge in the near future.
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Uncertainty quantification (UQ) is essential in ophthalmic AI systems to safeguard clinical
decision-making. Without calibrated confidence estimates, AI models can become overcon-
fident and mislead clinicians, leading to missed diagnoses or inappropriate referrals Wang
et al. (2023); Akram et al. (2025). Past studies underscore this risk: even highly accurate
algorithms can struggle when faced with real-world shifts in data. For instance, there is a
notable absence of deep learning models that can reliably predict visual fields in clinical
settings Eslami et al. (2023). Additionally, the generalization of image analysis across
different image-capturing environments Kalahasty et al. (2023) and the transferability of
trained models between hospitals and institutions present significant challenges Chuter et al.
(2024); Ktena et al. (2024). UQ offers a remedy by flagging low-confidence predictions so
that ambiguities or out-of-distribution cases are identified before harm occurs.

In response, a variety of UQ approaches, ranging from Bayesian approximations to conformal
prediction, have been developed to create more reliable ophthalmology AI systems capable
of safely handling the complexities of real-world clinical data Lambert et al. (2024); Huang
et al. (2024); Zou et al. (2023). These methods aim to quantify when a model is uncer-
tain, thereby flagging difficult cases for expert review and avoiding potential misdiagnoses,
effectively facilitating a ’second opinion’ workflow Kompa et al. (2021). For instance, the
Plex framework by Tran et al. evaluates model reliability on retinal datasets by testing for
robust generalization under "Country Shift" (a form of covariate shift) and the ability to
detect new disease stages in "Severity Shift" scenarios (a semantic shift) Tran et al. (2022).
In a more targeted application, Wang et al. developed an Uncertainty-Inspired Open Set
(UIOS) model using evidential deep learning to classify nine retinal conditions. Their model
assigns a high uncertainty score to out-of-distribution samples (e.g. unseen diseases, low-
quality images, or even non-fundus images) prompting a manual check by an ophthalmologist
Wang et al. (2023). In the domain of glaucoma, de Vente et al. established the AIROGS
benchmark, explicitly designing a challenge to evaluate AI robustness against ungradable
fundus images and out-of-distribution samples, emphasizing that clinical reliability hinges on
rejecting low-quality inputs de Vente et al. (2024). Similarly, Akram et al. applied Bayesian
deep learning to a DenseNet-121 model for diabetic retinopathy classification. By using
methods like Monte Carlo Dropout to represent a posterior predictive distribution, their
model quantifies predictive uncertainty, which not only improves diagnostic accuracy but
also provides crucial confidence estimates for clinical decision-making Akram et al. (2025).

The closest work to ours is the paper by Band et al. Band et al. (2022), which focused only
on diabetic retinopathy and evaluated just two datasets, with relatively limited discussion
of the risk–coverage–accuracy trade-off. However, they did provide an excellent analysis of
thresholding effects and distribution shifts (i.e., country and severity). Therefore, there
remains a lack of systematic work evaluating uncertainty quantification (UQ) methods
and their advantages and limitations across different aspects of image-based ophthalmic
AI, diagnosis, and screening—specifically from the perspective of clinical evaluators and
researchers. A comprehensive study is needed to provide practical guidance on calibration
analysis and uncertainty considerations. This paper aims to address this gap and provide
thorough benchmarking of these methods.

A.2 Aleatoric and Epistemic Uncertainty

Uncertainty in AI is typically categorized by its source into two main types: aleatoric and
epistemic. Aleatoric uncertainty stems from inherent stochasticity or noise within the data
itself and is generally considered irreducible. Epistemic uncertainty, in contrast, originates
from the model’s limitations, such as being trained on insufficient data, and is related to the
limitations in the model itself. It stems from the model’s imperfect understanding of the
true underlying data distribution and can often be reduced by acquiring more training data
or improving the model architecture Wang et al. (2025); Loftus et al. (2022); Gruber et al.
(2023).

In the domain of retinal fundus photography and image-based screening, both forms of
uncertainty are critically important. Aleatoric uncertainty can arise from sensor noise,
motion blur from the patient, or genuine diagnostic ambiguity in cases of early-stage or
subtle pathology. Epistemic uncertainty can manifest when a model encounters an image
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from an unseen camera type or a rare disease presentation not well-represented in its training
data. Models trained on clean, curated public datasets often fail to generalize to the messy,
heterogeneous data found in clinical practice (a critical "lab-to-clinic" gap). Without a
reliable way to quantify their uncertainty, these models can be confidently wrong, eroding
trust among clinicians and posing a risk to patient safety Kompa et al. (2021); Griot et al.
(2025).

Table 2: Comparison of types of uncertainty.

Aleatoric Uncertainty Epistemic Uncertainty

Arises from inherent noise, random-
ness, or ambiguity in the data itself.

Arises from limitations in the model
or insufficient training data.

Considered irreducible; cannot be
reduced by collecting more of the
same data.

Considered reducible; can be re-
duced with more diverse data or a
better model.

Sources in Fundus Imaging: Sen-
sor noise, motion artifacts, poor fo-
cus, early-stage pathology.

Sources in Fundus Imaging: Out-
of-distribution data, lack of examples
for rare diseases, model misspecifica-
tion.

Quantifies the unpredictability of the
system being measured.

Quantifies the model’s lack of knowl-
edge about the data-generating func-
tion.

A.3 Uncertinaty Quantification Methods

A variety of methods have been proposed to estimate uncertainty in deep neural networks,
which can be broadly categorized into several families. In this study, we focus on Post-hoc
Methods, which retrofit uncertainty estimation onto pre-trained models without requiring
architectural modifications. Table 1 presents the prominent uncertainty quantification (UQ)
methods considered in this study along with their details Huang et al. (2024); Lambert et al.
(2024); Abdar et al. (2021).

Deterministic Methods produce uncertainty estimates through single forward passes without
probabilistic modeling. These methods include Maximum Softmax Probability (MSP),
Predictive Entropy, distance-based approaches, ensemble disagreement metrics, and learned
uncertainty heads that directly output confidence scores alongside predictions. Test Time
Augmentation (TTA) can also be considered a deterministic method when using a fixed set of
predefined augmentations (e.g., always flipping). Bayesian Methods treat model parameters
as probability distributions rather than point estimates, allowing for the natural capture of
epistemic uncertainty, like the Monte Carlo Dropout (MC Dropout) method treats dropout
as a Bayesian approximation to variational inference Gal and Ghahramani (2016). It can
only be applied post-hoc if the original model was trained with dropout layers. Statistical
Methods leverage classical statistical theory, incorporating techniques such as bootstrap
sampling for parameter uncertainty, deep ensembles, and conformal prediction, which offers
distribution-free coverage guarantees. TTA can be considered a statistical method when
augmentations are randomly sampled from probability distributions (e.g., random rotations
from a uniform distribution). Deep ensemble is not strictly Bayesian, but empirically
approximates Bayesian model averaging and often outperforms more formal Bayesian neural
nets Lakshminarayanan et al. (2017). Hybrid Methods combine multiple approaches to
leverage their complementary strengths. For example, Bayesian neural networks may utilize
deterministic feature extractors, or ensemble methods may incorporate both frequentist
and Bayesian components. Deep Ensembles become hybrid when individual ensemble
members employ Bayesian techniques (such as MC Dropout) or are combined with other
UQ methods. Similarly, test-time augmentation becomes hybrid when the augmentation
strategy incorporates learned uncertainty (e.g., learned augmentation policies) or when it is
used alongside other uncertainty methods Huang et al. (2024); Lambert et al. (2024); Abdar
et al. (2021).
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A.4 List of the used dataset for the benchmarking

Our benchmarking dataset is reported in Table 3. The collected dataset is split in a stratified
manner into training (including validation) and test sets. Our in-house local dataset does
not provide any training data. Within the test set, 20% of the samples—also selected in
a stratified way—are designated as the calibration set, which is used only for calibration
and not for evaluation. This was a deliberate methodological choice to reflect a realistic
development workflow in which a model is trained in the “lab” but calibrated and evaluated
on data from a different distribution—the “clinic.” In practice, clinical evaluators only have
access to the deployed model and the clinical test population, not the original training or
validation data. Therefore, drawing the calibration set from the same distribution as the
test set (while keeping it separate) best simulates this lab-to-clinic gap.

Table 3: List of used datasets in this study. The + shows the number of positive samples in
that dataset.

Dataset Glaucoma DR AMD Test NoteTot + Tot + Tot +
AIROGS 101120 3270 de Vente et al. (2024)
APTOS 3662 1857 Karthik et al. (2019)
Aizawl 495 452 Vanlalnunpuia et al. (2025)
BRSET 16264 1070 16264 299 Nakayama et al. (2024b;a); Goldberger et al. (2000)
Cataract 401 101 yiweichen04 (2016)
DDR 13585 7328 4074 Li et al. (2019)
DIARETDB1 89 89 Kauppi et al. (2007)
DR1_DR2 1904 972 Pires et al. (2014)
DeepDRiD 1569 869 400 Liu et al. (2022)
Drishti 101 70 51 Sivaswamy et al. (2014)
FIVES 800 200 800 200 800 200 300 Jin et al. (2022)
G1020 1020 296 Bajwa et al. (2020)
GRAPE 631 631 Huang et al. (2023)
IDRID 516 348 103 Porwal et al. (2018)
JICHI 9939 3810 Takahashi et al. (2017)
JSIEC 51 13 144 106 38 Cen et al. (2021)
KCG 1450 899 Song et al. (2021)
LES-AV 11 Odstrcilik et al. (2013)
Mured 1621 322 1621 131 332 Rodríguez et al. (2022)
ODIR 6985 326 6985 93 6985 280 Wang et al. (2020b)
ORIGA 650 168 Zhang et al. (2010)
PAPILA 488 155 Kovalyk et al. (2022)
RFMiD v1 (RIADD) 2560 508 2560 138 640 Pachade et al. (2021)
RFMiD v2 836 70 836 10 167 Panchal et al. (2023)
MESSIDOR2 1748 731 Abràmoff et al. (2013)
SUSTech-SYSU 1219 588 Lin et al. (2020)
HYGD 747 548 Abramovich et al.; 2025)
TJDR 257 257 55 Mao et al. (2023)
UNA-DR 1437 726 Benítez et al. (2021)
e-ophtha 237 121 Decenciere et al. (2013)
eyePACS_orig 35125 9315 Cuadros and Bresnick (2009)
iChallenge_ADAM 400 89 Fu et al. (2020)
iChallenge_GAMMA 300 149 100 Wu et al. (2023)
iChallenge_PALM Fang et al. (2024)
iChallenge_REFUGE 1200 120 400 Orlando et al. (2020)
mBRSET 4883 1134 Wu et al. (2025)
LOCAL DATASET 743 365 743

A.5 Training Protocol

The training dataset is provided via a single CSV file containing labels and paths to the
fundus photos. The models are trained for 150 epochs using a ReduceLROnPlateau scheduler
to dynamically adjust the learning rate, which is halved if the validation loss does not
improve for a patience of 10 epochs. 25% of the training set is used as the validation set
to monitor the validation loss. Additionally, an early stopping mechanism is employed that
terminates training if the validation loss does not improve for 15 consecutive epochs, with the
model from the best epoch being saved for inference. All models are trained using the Adam
optimizer with an initial learning rate of 5× 10−4. To handle class imbalance, we employ
a weighted Cross-Entropy Loss, where the weights are calculated as the inverse frequency
of each class in the training set. A similar effect is observed for ViT (FLSD-53), as it is
trained using a weighted focal classification loss. The batch size was set to 250, and the
GPU used was a Quadro RTX 6000 with 24 GB of available memory. The entire codebase is
implemented in PyTorch.
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A.6 Evaluation Metrics

We employ a comprehensive set of metrics to evaluate predictive performance and uncertainty
quality across multiple dimensions.

Classification performance metrics include the Area Under the ROC Curve (AUROC)(↑),
which measures the discriminative ability between healthy and diseased cases across all
threshold values, and the Area Under the Precision-Recall Curve (AUPRC)(↑), which
is particularly important for screening applications due to its focus on performance in
imbalanced datasets where positive cases are rare. Furthermore: Positive and negative
predictive values (PPV and NPV)(↑) are considered.

For calibration metrics, we use the Expected Calibration Error (ECE(↓)) to quantify the
alignment between predicted confidence and actual accuracy through binned reliability anal-
ysis. The Negative Log-Likelihood (NLL(↓)) assesses the quality of probabilistic predictions,
penalizing overconfident incorrect predictions, while the Brier Score (↓) evaluates both
calibration and sharpness of probabilistic forecasts.

In terms of uncertainty-specific metrics, the Area Under the Risk-Coverage Curve (AURC)(↓)
measures the effectiveness of uncertainty estimates for selective prediction by evaluating
risk reduction as coverage decreases. Risk@90%(↓) Coverage reports the error rate when
accepting 90% of samples with the lowest uncertainty, indicating safety at high coverage levels,
whereas Coverage@5% (↑) Risk determines the fraction of samples that can be processed
automatically while maintaining a 5% error rate, which is crucial for clinical deployment.

We also utilize various visualization and analysis methods. ROC curves display the true
positive rate versus false positive rate across decision thresholds for each disease and UQ
method, while precision-recall curves illustrate the trade-offs between precision and recall,
providing important insights for imbalanced medical datasets. Reliability diagrams plot
predicted confidence against observed accuracy to visualize calibration quality (closer to the
diagonal = better), and risk-coverage curves illustrate the relationship between coverage (the
fraction of accepted samples) and risk (error rate) for different uncertainty thresholds. Finally,
conformal prediction coverage plots compare nominal versus observed coverage, assessing
the statistical validity of uncertainty estimates and revealing systematic under-coverage in
raw model predictions.

The reliability diagram and the conformal prediction coverage plot measure different aspects
of calibration. The reliability diagram plots average correctness within bins of predicted
confidence; if the curve tracks the diagonal, the model is considered well calibrated on
average. However, this global view can mask slight overconfidence or underconfidence due to
the smoothing effect of binning. In contrast, the conformal prediction coverage plot is more
stringent, evaluating how often the chosen confidence level truly covers the correct label.
Neural networks often exhibit systematic undercoverage, where high predicted probabilities
do not accurately reflect true outcomes. Thus, conformal prediction examines whether
prediction sets fulfill statistical guarantees at all coverage levels, indicating that a model
could appear reasonably calibrated in one plot but fail in coverage validity tests, especially
in the high-confidence range critical for clinical applications.

Together, these metrics provide a thorough assessment of both predictive accuracy and
uncertainty reliability, which are essential for determining the readiness of models for clinical
deployment.

A.7 Hyperparameter Selection and Justification

These hyperparameter values were selected to balance statistical robustness with the compu-
tational constraints of clinical deployment, grounded in established literature:

• Monte Carlo Dropout (T = 50): We set the number of stochastic forward passes
to T = 50. While foundational work by Gal and Ghahramani (2016) suggests that
as few as T = 10 samples can be sufficient for reasonable uncertainty estimation, we
opted for a more conservative value T = 50 > 10. The benchmarking study by Band
et al. Band et al. (2022) evaluated uncertainty estimation for diabetic retinopathy
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using only T = 5 Monte Carlo samples. Furthermore, empirical analysis in medical
imaging contexts, such as Milanés-Hermosilla et al. (2021), specifically supports
T = 50 as a “safe choice” where accuracy reaches evident stabilization, ensuring
robust convergence of the posterior approximation while maintaining acceptable
inference latency for clinical workflows.

• Deep Ensembles (N = 5): We utilized an ensemble size of N = 5. The bench-
marking study by Band et al. Band et al. (2022) evaluated uncertainty estimation
for diabetic retinopathy using an ensemble size of 3. Our choice N = 5 > 3 is
also directly supported by the seminal work of Lakshminarayanan et al. (2017) and
Ovadia et al. (2019), which demonstrated that an ensemble size of 5 is sufficient to
capture the majority of the uncertainty benefit (calibration and accuracy). Increasing
N beyond 5 yields diminishing returns that do not justify the linear increase in
training and inference costs, a critical consideration for resource-constrained hospital
settings.

• Test-Time Augmentation (K = 20): There is no single consensus on the optimal
K in the literature, with values ranging significantly based on the application. Recent
retinal and medical imaging studies have utilized values as low as K = 3 Itoh et al.
(2025) or K = 4 Li et al. (2023), while others perform grid searches settling on K = 6
Nazzal et al. (2024) or use up to K = 14 Yu et al. (2023). We selected K = 20 to be
on the rigorous end of this spectrum. This choice ensures a low-variance estimation
of the predictive distribution Moshkov et al. (2020), prioritizing robustness over the
minimal computational savings of smaller K values (e.g., N = 6 requires ≈ 2.90s
per image Nazzal et al. (2024)), while acknowledging the linear cost increase.

A.8 Detailed Tables and Extended Figures

Table 4: Detailed AUROC and AUPRC results (top table) and calibration outcomes (bottom
table).

ViT RETFoundGreen ViT(FLSD-53)

Disease Baseline MC Dropout TTA Deep Ensemble Baseline MC Dropout TTA Deep Ensemble Baseline MC Dropout TTA Deep Ensemble

AUROC

AMD 0.911 0.911 0.903 0.910 0.883 0.884 0.810 0.884 0.912 0.911 0.911 0.911
Diabetes 0.792 0.791 0.806 0.794 0.819 0.818 0.766 0.816 0.796 0.796 0.809 0.795
Glaucoma 0.908 0.909 0.922 0.902 0.913 0.911 0.905 0.913 0.895 0.894 0.913 0.896

AUPRC

AMD 0.525 0.541 0.514 0.525 0.421 0.432 0.266 0.432 0.540 0.534 0.543 0.534
Diabetes 0.799 0.798 0.797 0.801 0.805 0.804 0.735 0.803 0.803 0.803 0.803 0.801
Glaucoma 0.817 0.817 0.808 0.808 0.819 0.820 0.784 0.818 0.804 0.804 0.802 0.805

ViT RETFoundGreen ViT(FLSD-53)

Disease Baseline MC Dropout TTA Deep Ens. Baseline MC Dropout TTA Deep Ens. Baseline MC Dropout TTA Deep Ens.

NLL

AMD 0.490 0.484 0.357 0.514 0.536 0.528 0.383 0.549 0.569 0.570 0.548 0.570
Diabetes 0.547 0.548 0.549 0.544 0.530 0.531 0.586 0.531 0.617 0.617 0.620 0.614
Glaucoma 0.413 0.417 0.317 0.412 0.368 0.374 0.358 0.373 0.554 0.555 0.526 0.566

ECE

AMD 0.257 0.264 0.183 0.270 0.276 0.282 0.173 0.288 0.350 0.350 0.336 0.350
Diabetes 0.045 0.044 0.063 0.044 0.050 0.049 0.052 0.043 0.165 0.164 0.173 0.164
Glaucoma 0.171 0.175 0.059 0.164 0.127 0.138 0.086 0.132 0.277 0.286 0.261 0.294

Brier Score

AMD 0.156 0.155 0.112 0.164 0.172 0.171 0.118 0.177 0.190 0.191 0.180 0.190
Diabetes 0.183 0.183 0.182 0.182 0.175 0.175 0.199 0.175 0.213 0.213 0.214 0.212
Glaucoma 0.129 0.130 0.095 0.128 0.109 0.111 0.112 0.111 0.183 0.183 0.169 0.188
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Figure 9: Visualization of the diversity of uncertainty measurements based on diseases and
UQ metrics.
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Figure 10: Each subplot presents the results for a different uncertainty quantification method
across the disagreement groups (RETFound-Green model). Top) Local dataset. Bottom)
Drishti dataset.
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Table 5: Results of selective prediction investigations analyzing the impact and importance
of different UQ methods (top: ViT; middle: RETFound-Green; bottom: ViT(FLSD-53)).

Disease Baseline MSP Predictive MC TTA Deep Ensemble
Entropy Dropout Total Aleatoric Epistemic Var

AURC

AMD 0.407 0.126 0.126 0.128 0.052 0.142 0.142 0.172 0.154
Diabetes 0.211 0.167 0.167 0.178 0.184 0.165 0.165 0.216 0.190
Glaucoma 0.224 0.078 0.078 0.078 0.042 0.078 0.078 0.132 0.106

Risk @ 90% Cov

AMD 0.232 0.186 0.186 0.193 0.122 0.197 0.194 0.210 0.207
Diabetes 0.270 0.245 0.245 0.258 0.250 0.242 0.242 0.257 0.252
Glaucoma 0.186 0.145 0.145 0.146 0.108 0.141 0.140 0.152 0.144

Cov @ 5% Risk

AMD 0.002 0.047 0.047 0.023 0.573 0.021 0.021 0.021 0.022
Diabetes 0.040 0.036 0.036 0.053 0.016 0.040 0.040 0.005 0.023
Glaucoma 0.074 0.437 0.437 0.360 0.608 0.385 0.385 0.038 0.175

Disease Baseline MSP Predictive MC TTA Deep Ensemble
Entropy Dropout Total Aleatoric Epistemic Var

AURC

AMD 0.447 0.162 0.162 0.152 0.072 0.172 0.172 0.195 0.181
Diabetes 0.210 0.153 0.153 0.166 0.236 0.155 0.155 0.212 0.194
Glaucoma 0.171 0.055 0.055 0.056 0.053 0.057 0.057 0.090 0.071

Risk @ 90% Cov

AMD 0.252 0.210 0.210 0.210 0.142 0.220 0.219 0.233 0.230
Diabetes 0.258 0.222 0.222 0.236 0.286 0.225 0.224 0.252 0.243
Glaucoma 0.139 0.098 0.098 0.104 0.134 0.100 0.101 0.116 0.116

Cov @ 5% Risk

AMD 0.001 0.003 0.003 0.014 0.393 0.004 0.004 0.000 0.004
Diabetes 0.011 0.011 0.011 0.014 0.001 0.009 0.009 0.005 0.029
Glaucoma 0.055 0.497 0.497 0.515 0.589 0.517 0.519 0.108 0.317

Disease Baseline MSP Predictive MC TTA Deep Ensemble
Entropy Dropout Total Aleatoric Epistemic Var

AURC

AMD 0.402 0.122 0.122 0.168 0.132 0.126 0.126 0.171 0.165
Diabetes 0.211 0.163 0.163 0.250 0.267 0.164 0.164 0.274 0.269
Glaucoma 0.209 0.072 0.072 0.120 0.116 0.081 0.081 0.177 0.171

Risk @ 90% Cov

AMD 0.230 0.179 0.179 0.195 0.179 0.182 0.187 0.203 0.201
Diabetes 0.272 0.238 0.238 0.264 0.262 0.239 0.239 0.265 0.263
Glaucoma 0.173 0.132 0.132 0.137 0.129 0.139 0.143 0.164 0.157

Cov @ 5% Risk

AMD 0.003 0.060 0.060 0.003 0.013 0.050 0.050 0.014 0.021
Diabetes 0.060 0.052 0.052 0.001 0.000 0.042 0.042 0.000 0.000
Glaucoma 0.089 0.394 0.394 0.003 0.038 0.313 0.313 0.002 0.002
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Table 6: Observed coverage with and without conformal prediction (coverage 90%) across
diseases and methods.

None MC Dropout Deep Ensemble TTA

Observed Coverage (CP) (%)
AMD 89.91 86.78 89.30 90.31
Diabetes 90.31 89.27 90.27 90.18
Glaucoma 89.21 88.70 90.92 87.50

Observed Coverage (Raw) (%)
AMD 28.15 23.11 26.54 36.33
Diabetes 12.82 11.80 12.52 12.27
Glaucoma 20.72 19.01 21.92 37.33

ViT

None MC Dropout Deep Ensemble TTA

Observed Coverage (CP) (%)
AMD 90.21 90.72 89.10 91.62
Diabetes 91.99 90.99 89.46 89.63
Glaucoma 90.58 91.10 92.12 85.96

Observed Coverage (Raw) (%)
AMD 23.51 19.68 20.48 19.88
Diabetes 8.26 7.69 8.16 2.43
Glaucoma 19.18 15.75 17.64 36.99

RETFoundGreen

None MC Dropout Deep Ensemble TTA

Observed Coverage (CP) (%)
AMD 90.92 90.21 89.71 88.19
Diabetes 90.10 90.20 89.01 91.08
Glaucoma 87.67 92.12 95.21 90.07

Observed Coverage (Raw) (%)
AMD 0.20 0.10 0.10 0.10
Diabetes 0.00 0.00 0.00 0.00
Glaucoma 0.00 0.00 0.00 0.00

ViT(FLSD-53)

Table 7: Detection and Calibration performance on local dataset (glaucoma only).

ViT RETFoundGreen ViT(FLSD-53))

Metric Baseline MC Dropout TTA Deep Ensemble Baseline MC Dropout TTA Deep Ensemble Baseline MC Dropout TTA Deep Ensemble

AUROC 0.778 0.779 0.742 0.773 0.690 0.691 0.670 0.671 0.767 0.771 0.749 0.769
AUPRC 0.743 0.745 0.733 0.745 0.672 0.674 0.648 0.664 0.737 0.734 0.723 0.739

ViT RETFoundGreen ViT(FLSD-53))

Metric Baseline MC Dropout TTA Deep Ensemble Baseline MC Dropout TTA Deep Ensemble Baseline MC Dropout TTA Deep Ensemble

NLL 0.769 0.748 0.651 0.738 0.956 0.927 0.670 0.984 0.640 0.640 0.646 0.643
ECE 0.252 0.243 0.143 0.233 0.322 0.314 0.071 0.331 0.142 0.144 0.130 0.149
Brier 0.263 0.258 0.228 0.252 0.324 0.318 0.236 0.333 0.224 0.224 0.227 0.226

Table 8: Selective prediction metrics (AURC, Risk@90% Cov, Cov@5% Risk) on the Glaucoma
local test set. The best performance for each metric is highlighted in bold.

Metric Baseline MSP Predictive Entropy MC Dropout TTA Deep Ensemble (Total) Aleatoric Epistemic Var

ViT

AURC 0.316 0.289 0.289 0.291 0.282 0.281 0.281 0.305 0.290
Risk @ 90% Cov 0.449 0.400 0.400 0.392 0.371 0.382 0.379 0.393 0.392
Cov @ 5% Risk 0.009 0.009 0.009 0.009 0.009 0.012 0.012 0.030 0.021

RETFoundGreen

AURC 0.366 0.361 0.361 0.357 0.326 0.368 0.368 0.335 0.338
Risk @ 90% Cov 0.483 0.463 0.463 0.455 0.376 0.472 0.475 0.434 0.447
Cov @ 5% Risk 0.007 0.007 0.007 0.007 0.019 0.009 0.009 0.021 0.012

ViT(FLSD-53)

AURC 0.309 0.270 0.270 0.349 0.354 0.276 0.276 0.338 0.331
Risk @ 90% Cov 0.395 0.348 0.348 0.356 0.380 0.371 0.367 0.395 0.395
Cov @ 5% Risk 0.009 0.009 0.009 0.016 0.012 0.009 0.009 0.012 0.014
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Figure 11: Each subplot presents the results for a different uncertainty quantification method
across the disagreement groups (ViT(FLSD-53)). Top) Local dataset. Bottom) Drishti
dataset.
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Figure 12: Clinical task target analysis compares ViT with several UQ methods across
a sweep of acceptable risk targets (p3–p17; p1 = baseline, p2 = conformal filtering with
α = 0.1). For each target, a threshold τ on the uncertainty score is chosen to meet that risk,
and the resulting coverage (auto-accepted fraction), PPV, and NPV are reported. AMD
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Figure 13: Clinical task target analysis compares ViT with several UQ methods across
a sweep of acceptable risk targets (p3–p17; p1 = baseline, p2 = conformal filtering with
α = 0.1). For each target, a threshold τ on the uncertainty score is chosen to meet that risk,
and the resulting coverage (auto-accepted fraction), PPV, and NPV are reported. Diabetics
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Figure 14: Clinical task target analysis compares ViT with several UQ methods across
a sweep of acceptable risk targets (p3–p17; p1 = baseline, p2 = conformal filtering with
α = 0.1). For each target, a threshold τ on the uncertainty score is chosen to meet that risk,
and the resulting coverage (auto-accepted fraction), PPV, and NPV are reported. Glaucoma
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