
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FROM EXPLICIT COT TO IMPLICIT COT:
LEARNING TO INTERNALIZE COT STEP BY STEP

Anonymous authors
Paper under double-blind review

ABSTRACT

When leveraging language models for reasoning tasks, generating explicit chain-
of-thought (CoT) steps often proves essential for achieving high accuracy in final
outputs. In this paper, we investigate if models can be taught to internalize these
CoT steps. To this end, we propose a simple yet effective method for internalizing
CoT steps: starting with a model trained for explicit CoT reasoning, we gradually
remove the intermediate steps and finetune the model. This process allows the
model to internalize the intermediate reasoning steps, thus simplifying the reason-
ing process while maintaining high performance. Our approach enables training a
GPT-2 Small model to solve 20-by-20 multiplication with 99.5% accuracy while
being 26 times faster than explicit CoT, whereas standard training cannot solve
beyond 4-by-4 multiplication. Furthermore, our method proves effective on larger
language models, such as Mistral 7B, achieving over 50% accuracy on GSM8K
without producing any intermediate steps.

1 INTRODUCTION

A prevalent approach to improving the performance of language models (LMs) to perform complex
reasoning tasks is chain-of-thought (CoT) reasoning, in which the LM generates explicit interme-
diate reasoning steps before arriving at a final answer (Nye et al., 2021; Wei et al., 2022). This
method allows models to break down complex problems into simpler, manageable parts, thereby
improving the accuracy of their final predictions. However, this explicit reasoning process can be
computationally expensive, especially when the reasoning chain is long (Deng et al., 2023). Addi-
tionally, using explicit intermediate steps might not align with the intrinsic computational strengths
of LMs (Lehnert et al., 2024): for instance, multi-digit multiplication is very easy for calculators but
remains challenging for GPT-4 (Yang et al., 2023).

In this work, we examine the possibility of internalizing the reasoning process in the model’s hidden
states. We propose an approach, Stepwise Internalization, which begins with a model trained for
explicit CoT reasoning. We then gradually remove the intermediate steps and finetune the model,
forcing it to internalize the reasoning process. Once all intermediate steps are internalized, we
achieve a model capable of full implicit CoT reasoning. Moreover, even in cases where the model
does not have the capacity for full implicit CoT reasoning, this method still allows for shortening
the reasoning chain while maintaining accuracy.

Our approach is an alternative to the approach proposed by Deng et al. (2023), which shares the
goal of implicitly reasoning using the hidden states of transformers instead of relying on explicit
CoT tokens. To teach the model to use hidden states for reasoning, that method employs a teacher
model that performs explicit CoT reasoning, and then distills the teacher’s hidden states into the
student model’s hidden states. In comparison, our approach is much simpler yet more effective.

Our approach demonstrates significant improvements over standard training methods. For instance,
a GPT-2 Small model trained with Stepwise Internalization on multiplication can solve 20-by-20
multiplication problems nearly perfectly, while standard training without CoT struggles even with
4-by-4 multiplication. Furthermore, our method scales effectively to larger models, such as the
Mistral 7B model (Jiang et al., 2023), achieving over 50% accuracy on the GSM8K dataset of
grade-school math word problems (Cobbe et al., 2021), without producing any explicit intermediate
steps, outperforming the much larger GPT-4 model without chain-of-thought reasoning, which only
scores 44% when prompted to directly generate the answer.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

It is important to note that our empirical evaluation focuses on specific reasoning tasks like multi-
digit multiplication and grade-school math problems. While our results show the potential of Step-
wise Internalization in these contexts, and the simplicity of the method makes it applicable to chain-
of-thought approaches in a wide range of tasks, further research is needed to explore its efficacy
across a broader range of tasks and more diverse CoT traces. Due to limitations in available compu-
tational resources, experiments on other tasks are out of scope for this work. This paper aims to lay
the groundwork for this new approach and highlight its promise, while acknowledging that its full
generalization is still under investigation.

The contributions of our work are as follows: First, we introduce Stepwise Internalization, a sim-
ple method for implicit CoT reasoning. Second, we demonstrate the effectiveness of internal-
izing intermediate hidden states via Stepwise Internalization. Third, we provide empirical re-
sults showing the superior performance of models trained with Stepwise Internalization on dif-
ferent reasoning tasks and model scales. Our code, data, and pretrained models are available at
https://anonymous.4open.science/r/Internalize_CoT_Step_by_Step.

2 BACKGROUND: IMPLICIT CHAIN-OF-THOUGHT REASONING

Implicit chain-of-thought reasoning (implicit CoT, or ICoT) is a concept introduced by Deng et al.
(2023), where during generation, the language model does not produce explicit intermediate rea-
soning steps in words. It is distinct from not using chain-of-thought reasoning (No CoT), in that
explicit reasoning steps are allowed during training, enabling the ICoT model to learn the underly-
ing reasoning approach from the supervision provided on the reasoning process. The key insight
of Deng et al. (2023) is that intermediate reasoning steps serve two purposes in explicit CoT: they
provide supervision during training to facilitate learning the task (Nye et al., 2021), and they act as
a scratchpad during inference to assist in solving the task (Wei et al., 2022). However, the latter
purpose can be fulfilled by utilizing the internal states of the model instead of explicit tokens.

As an illustrative example, consider using a language model to solve a multi-digit multiplication
problem, such as 12× 34. (The actual input reverses the digit order as 2 1 * 4 3 for consistency
with Deng et al. (2023).) In the long multiplication algorithm, 12× 34 is broken into:

12× 4 + 12× 30 = 48︸︷︷︸
reversed: 84

+ 360︸︷︷︸
reversed: 063

.

In explicit CoT, the model is trained to predict these intermediate steps 8 4 + 0 6 3 before
predicting the final answer 8 0 4 (408 reversed). Predicting these intermediate steps facilitates the
model’s ability to solve the task. (The intermediate steps are also reversed to make it easier for the
model to predict (Shen et al., 2023).)

In both No CoT and implicit CoT settings, the model needs to directly predict the answer 408 from
the input, bypassing the intermediate steps. This approach can make inference much faster for long
reasoning chains, albeit at the cost of accuracy.

The primary difference between implicit CoT and No CoT lies in the use of intermediate reason-
ing steps as supervision during training. In Deng et al. (2023), a knowledge distillation approach
was employed to distill explicit reasoning into implicit reasoning within the hidden states. This
method involves training a teacher model to perform explicit CoT reasoning and then transferring
this knowledge to a student model, which internalizes the reasoning process within its hidden states.

In the present work, we propose a far simpler yet more effective approach based on a kind of cur-
riculum learning that we call Stepwise Internalization, which we detail in the next section.

3 STEPWISE INTERNALIZATION

Stepwise Internalization is a method designed to achieve implicit chain-of-thought reasoning by
gradually removing intermediate reasoning steps during training. We define the input as x, the inter-
mediate steps as z = z1, z2, · · · , zm, and the final output as y. A language model with parameters θ
is first trained using the following loss function:

min
θ

− logPθ(y, z1:m | x),

2

https://anonymous.4open.science/r/Internalize_CoT_Step_by_Step


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 1: Stepwise Internalization for Implicit CoT Reasoning. This figure uses 12 × 34 as an
example. The training process consists of multiple stages. At Stage 0, the model is trained to predict
both the full chain-of-thought (CoT) and the final output, which is the same as explicit CoT training.
At Stage 1, the first CoT token is removed, and the model is finetuned to predict the remaining CoT
tokens and the output. This process continues with each subsequent stage removing an additional
CoT token. By Stage 6, all CoT tokens have been removed, and the model is trained to directly
predict the output from the input, achieving implicit CoT reasoning. This gradual removal and
finetuning process allows the model to gradually internalize the reasoning steps.

where z1:m denotes the sequence of intermediate steps z1, z2, · · · , zm.

At each step t of the training process, we remove (up to) s(t) tokens from the intermediate steps z.
The updated loss function then becomes:

min
θ

− logPθ(y, z1+min(s(t),m):m | x).

There are multiple ways to parameterize s(t). For instance, it might be based on a threshold of the
loss value or a predefined schedule similar to learning rate schedulers used in optimizers. In this
work, for simplicity, we use a linear schedule for removing tokens:

s(t) =

⌊
∆

t

T

⌋
,

where T is the total number of steps per epoch, and ∆ is a hyperparameter controlling how many
CoT tokens are removed per epoch. (Once s(t) exceeds the number of actual chain-of-thought
tokens, all tokens are removed.)

During initial experiments, we observed instability in the training process due to changes in the loss
function over time. This instability arises for two primary reasons:

First, the optimizer commonly used in training language models, such as AdamW (Kingma & Ba,
2017; Loshchilov & Hutter, 2019), maintains estimates of second-order gradients. A sudden change
in the loss function, caused by the removal of one more CoT token, results in abrupt changes in the
second-order gradients. To address this issue, we reset the optimizer’s state whenever an additional
CoT token is removed.

Second, even if a model fits perfectly to the current loss when s tokens are removed, transitioning
to the next stage, where s + 1 tokens are removed, leads to a significant increase in the loss, as
the model is not yet trained for this new setting. To mitigate this issue, we introduce a technique
which we term “Removal Smoothing”, where we add a small random offset to the original number
of tokens to remove s(t), such that:

s(t)∗ = s(t) + o,

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Table 1: Dataset statistics. The number of tokens is the median based on the GPT-2 tokenizer.

Dataset Size # Input Tokens # CoT Tokens # Output tokens

Train Dev Test Train Dev Test Train Dev Test Train Dev Test

Parity 808k 1k 1k 159 159 159 128 128 128 1 1 1
Coinflip 32k 1k 1k 930 930 930 533 533 533 1 1 1
4× 4 Mult 808k 1k 1k 9 9 9 46 46 46 9 9 9
5× 5 Mult 808k 1k 1k 11 11 11 74 74 74 11 11 11
7× 7 Mult 808k 1k 1k 15 15 15 148 148 148 15 15 15
9× 9 Mult 808k 1k 1k 19 19 19 246 246 246 19 19 19
GSM8K 378k 0.5k 1.3k 40 51 53 19 21 24 2 2 2

where o is a random variable with support of non-negative integers Z≥0, and its distribution is
parameterized by another hyperparameter λ:

P (o) ∝ exp(−λo).

When λ = ∞, o = 0 and we recover the version without Removal Smoothing. However, when
λ < ∞, the model is trained to remove more than s(t) tokens at step t with a small probability,
which helps smooth the transition into the next stage of removing s(t) + 1 tokens, reducing the
abrupt jumps in the loss function.

Figure 1 illustrates the high-level idea of the Stepwise Internalization approach. The training process
consists of multiple stages, where the model progressively learns to internalize reasoning steps by
removing tokens from the CoT at each stage, eventually achieving implicit CoT reasoning.

4 EXPERIMENTAL SETUP

4.1 DATA

We evaluate our proposed Stepwise Internalization method on four reasoning tasks: the parity task
from Graves (2017), the coinflip task from Wei et al. (2022), and multi-digit multiplication and
grade-school math reasoning following the setup from Deng et al. (2023).

Parity The parity task was introduced by Graves (2017), where the goal is to determine the parity
of a sequence of numbers. In this task, the input is a sequence of 128 numbers.1 A random number
of positions (between 1 and 128) were randomly set to 1 or −1, and the rest were set to 0. The target
is 1 if there is an odd number of 1’s in the input and 0 otherwise. The chain of thought in this task
is also a sequence of 128 numbers, with the n-th number being the parity of the subsequence from 1
to n. An example from this dataset is:

• Input: 1 -1 0 0 -1 0 -1 1 1 1 -1 [. . . 128 numbers in total]
• CoT: 1 1 1 1 1 1 1 0 1 [. . . ]
• Target: 0 [the number of 1’s in input modulo 2]

Coinflip We also evaluated the coinflip task introduced by Wei et al. (2022). This task asks the
model to predict whether a coin is still heads-up after people either flip or do not flip the coin. The
original task was constructed for evaluating few-shot prompting, but we adapted it by generating a
training set of 32K examples with 64 names per example. The chain of thought in this case records
whether the coin remains heads-up after each person’s action. For example:

• Input: A coin is heads up. Yamy does not flip the coin. Nana flips the coin. [. . . 64 names
in total] Is the coin still heads up?

• CoT: Yamy: yes Nana: no [. . . ]
• Target: no [whether the coin is still heads up in the end]

1Graves (2017) used 64 numbers, but we found it to be too simple to be solved even without CoT.

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 2: Acc on parity & coinflip

Task Parity Coinflip

Explicit CoT 1.00 1.00

Random 0.50 0.50
No CoT 0.53 0.51
ICoT-SI 1.00 0.99

Table 3: Acc on GSM8K. †: 5-shot prompted

Model GPT-2 S GPT-2 M Mistral 7B GPT-3.5† GPT-4†

Explicit CoT 0.41 0.44 0.68 0.62 0.91

No CoT 0.13 0.17 0.38 0.03 0.44
ICoT-KD 0.20 0.22 - - -
ICoT-SI 0.30 0.35 0.52 - -

Multi-digit multiplication. We use two of the most challenging arithmetic tasks from BIG-bench
(bench authors, 2023): 4-by-4 multiplication and 5-by-5 multiplication, as described by Deng et al.
(2023). Given the effectiveness of Stepwise Internalization on these tasks, we extend our evaluation
to 7-by-7 and 9-by-9 multiplication. The complexity of multiplication tasks grows significantly with
the number of digits, as the program length grows quadratically with the number of digits (Dziri
et al., 2024). We use the scripts and setup from Deng et al. (2023) to generate synthetic training data
for our main experiments.2

Grade school math. We use the GSM8K dataset (Cobbe et al., 2021), with the augmented training
data provided by Deng et al. (2023). Detailed dataset statistics are provided in Table 1.

4.2 BASELINES AND MODELS

We compare our method to the following baselines:

• No CoT: Models directly trained or finetuned without chain-of-thought supervision, except
for GPT-3.5 and GPT-4 which are prompted with five-shot demonstrations.

• Explicit CoT: Models finetuned or prompted with explicit chain-of-thought reasoning. We
use 5-shot prompting for GPT 3.5 and GPT-4 but full finetuning for other models.

• ICoT-KD: The implicit chain-of-thought via knowledge distillation method proposed by
Deng et al. (2023).

Our proposed method, implicit chain-of-thought via Stepwise Internalization, is termed ICoT-SI.
To verify the effectiveness of our approach across different model scales, we use pretrained models
GPT-2 (Radford et al., 2019) and Mistral-7B (Jiang et al., 2023).

4.3 EVALUATION

Because the premise for implicit chain-of-thought methods is to approach the speed of no chain-of-
thought and the accuracy of explicit chain-of-thought, we use two main evaluation metrics: First, we
evaluate the accuracy of each method on the respective tasks of generating the final output. Second,
we compare the inference speed of each method to the No CoT baseline. We measure speed, in
examples per second, on an Nvidia H100 GPU with a batch size of 1. For ICoT-KD, we directly
take numbers from Deng et al. (2023). However, due to hardware differences, we recompute speed
relative to No CoT when speed numbers from ICoT-KD are not available.

5 RESULTS

Table 2, Table 3, Table 4, Table 5, and Figure 2 present the main results, where we compare Stepwise
Internalization to baselines.

Stepwise Internalization enables solving tasks not solvable by No CoT. Stepwise Internaliza-
tion (ICoT-SI) enables solving problems previously not solvable without using CoT. For example,
as shown in Table 2, No CoT cannot solve either the parity or coinflip tasks, achieving accuracy
around random guessing. In contrast, ICoT-SI can solve both tasks nearly perfectly.

2Following Deng et al. (2023), K-byK multiplication only considers K-digit numbers but not lower digits.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 4: Results on multiplication. ICoT-KD: Implicit CoT via knowledge distillation (Deng et al.,
2023). ICoT-SI: Implicit CoT via Stepwise Internalization (this work). Acc measures the exact
match accuracy. Speed measures the number of examples per second during inference using a batch
size of 1, normalized by the speed of the corresponding No CoT model. †: 5-shot prompted.

Model 4× 4 5× 5 7× 7 9× 9

Acc Speed Acc Speed Acc Speed Acc Speed

GPT-2 Small (117M)
Explicit CoT 1.00 0.17 1.00 0.14 1.00 0.12 1.00 0.09
No CoT 0.29 1.00 0.01 1.00 0.00 1.00 0.00 1.00
ICoT-KD 0.97 0.67 0.10 0.71 - - - -
ICoT-SI 1.00 1.02 1.00 1.00 0.95 1.00 0.99 1.00

GPT-3.5†
Explicit CoT 0.43 0.10 0.05 0.07 0.00 0.15 0.00 0.11
No CoT 0.02 1.00 0.00 1.00 0.00 1.00 0.00 1.00

GPT-4†
Explicit CoT 0.77 0.14 0.44 0.14 0.03 0.09 0.00 0.07
No CoT 0.04 1.00 0.00 1.00 0.00 1.00 0.00 1.00

Table 5: Comparison between ICoT-SI and MathGLM (Yang et al., 2023), where input and target
digits are not reversed, consistent with the setup in the original MathGLM paper.

Approach Model Architecture Layers # Parameters 4× 4 Acc 5× 5 Acc

MathGLM
MathGLM-100M 35 142M 0.80 0.56
MathGLM-500M 40 568M 0.90 0.60

MathGLM-2B 40 2.1B 0.95 0.90

ICoT-SI GPT-2 Small 12 117M 0.97 0.88
MathGLM-100M 35 142M 0.99 0.93

On multiplication tasks (Table 4), No CoT fails even on 4×4 multiplication. In comparison, ICoT-SI
enables a GPT-2 Small model to solve even 20 × 20 multiplication problems with an accuracy of
over 99.5%, as shown in Figure 2a.

When compared to existing literature, ICoT-SI is also competitive. For instance, as shown in Table 4,
while ICoT-KD fails to solve 5 × 5 multiplication using a GPT-2 Small model, ICoT-SI can solve
9 × 9 (and even 20 × 20) multiplication. Additionally, while ICoT-KD is slightly slower than No
CoT due to the additional emulator model, ICoT-SI has the same speed as No CoT.3 When compared
to MathGLM (Yang et al., 2023) following the same setup of not reversing input and target digits,
ICoT-SI outperforms a 2.1B parameter model using only 142M parameters, as shown in Table 5.
Another related work, Shen et al. (2023), is able to train a GPT-2 Small model to solve up to 14×14
multiplication, whereas the approach proposed in this work can solve up to 20× 20 (Figure 2a).

ICoT-SI enables internalizing CoT in a general way, making it applicable to tasks beyond arithmetic,
such as grade-school math problems. On the GSM8K dataset (Table 3), ICoT-SI finetunes Mistral-
7B to achieve an accuracy of 0.52, whereas GPT-4 only gets 0.44 without using intermediate steps.

Stepwise Internalization lags behind explicit CoT in accuracy but is faster. In terms of accu-
racy, implicit CoT methods still lag behind explicit CoT. For instance, a finetuned Mistral-7B model
achieves an accuracy of 0.68 on GSM8K with explicit CoT, but ICoT-SI achieves only 0.51. How-
ever, implicit CoT methods offer significant speed advantages. As shown in Figure 2b, ICoT-SI is
over 26 times faster than explicit CoT on 20× 20 multiplication.

3The speed of ICoT-SI in Table 4 is not always exactly 1.00 due to randomness in hardware performance.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 2: (a) Accuracy of ICoT-SI on m-digit by n-digit multiplication tasks. (b) Speedup of ICoT-
SI on m-digit by n-digit multiplication tasks compared to explicit CoT.

Figure 3: Accuracy during training for various ablations. This figure plots the validation accuracy
versus the target number of removed CoT tokens during training (7 × 7 Mult, GPT-2 Small). The
black dashed vertical line indicates the point at which the schedule has removed all CoT tokens. The
curves compare the following variants: “Full Approach”; “Without Removal Smoothing”; “Without
Optimizer Reset”; “Right-Side Removal” (CoT tokens are removed from the end instead of the
beginning); and “Aggressive Removal” (16 instead of 8 CoT tokens are removed per epoch).

Overall, our results demonstrate that Stepwise Internalization is an effective method for compress-
ing chain-of-thought reasoning, offering a compelling trade-off between accuracy and speed. This
makes it a valuable approach for reducing inference latency for tasks requiring long CoTs.

6 ANALYSIS

6.1 MECHANISTIC INTERPRETABILITY

To understand the internal algorithm used by the trained model, we conducted a probing analysis.
We trained a probe to detect every digit in the explicit CoT for a 3× 3 multiplication problem from

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Input: a1 a2 a3 × b1 b2 b3

CoT: p11 p12 p13 p14

p1 = b1 × a3a2a1

p21 p22 p23 p24

p2 = b2 × a3a2a1

s1 s2 s3 s4 s5

s = p1 + 10p2

p31 p32 p33 p34

p3 = b3 × a3a2a1

Model
States:

a1 a2 a3 × b1 b2 b3 =

Figure 4: Mechanistic interpretability analysis of 3 × 3 multiplication. The top row displays the
input digits; the middle row shows the CoT tokens in explicit CoT reasoning (partial products p1,
p2, and p3, and a partial sum s = p1 + 10p2); the bottom row represents the hidden states of a
trained implicit CoT model. Connections indicate the earliest positions where each CoT token can
be probed from the hidden states with over 95% accuracy.

the hidden states at each input position in an implicit CoT model.4 Figure 4 shows the results. We
observe that all partial products of the 3 × 1 multiplications have been computed at the earliest
possible positions. For example, immediately after processing b1, the hidden states already encode
p1 = b1×a3a2a1; similarly, after b2, they encode p2 = b2×a3a2a1. This suggests that the implicit
CoT model internally replicates these partial product steps in explicit CoT.

However, the implicit CoT reasoning process doesn’t fully replicate explicit CoT reasoning: the
partial sum s = p1 + 10p2 cannot be reliably detected in any hidden state. This might be due to
limitations of the probe, but it’s also likely that the model doesn’t compute the partial sum inter-
nally.5 We suspect that the model first computes the partial products and then sums them in parallel,
leveraging the language model’s ability to sum sequences of numbers together (Chen et al., 2024).
This might explain why a 12-layer GPT-2 Small can be trained to perform 20× 20 multiplication.

6.2 ABLATION STUDIES

Figure 3 plots the validation accuracy versus the schedule for the number of CoT tokens removed
during training for the 7 × 7 multiplication task. This figure compares the full approach to several
ablated variants. Even for the full approach, there are fluctuations in the curve, and the validation
accuracy briefly drops to zero at one point during training but eventually recovers. However, the
ablated variants do not fully recover when accuracy drops.

Removal smoothing. As mentioned in Section 3, adding a small random offset o to the number of
removed tokens is crucial when the loss function changes due to the removal of more CoT tokens.
The distribution of o is parameterized by a hyperparameter λ, as introduced in Section 3. We use
λ = 4 throughout this work, resulting in the distribution shown in Figure 5. In this distribution, 98%
of the time, o = 0, but about 2% of the time, one or more additional tokens are removed. As shown
in Figure 3, the “Without Removal Smoothing” curve fails to recover after the accuracy drops to
zero at around s(t) = 50, whereas the full approach does much better.

4The probe is a one-layer MLP with a hidden dimension 16 times the input dimension. We trained one
probe per layer, sharing it across all positions within the same layer by adding a trainable position embedding
to the input hidden states. The accuracy per position is the maximum across all layers.

5We observed a similar phenomenon with 4× 4 multiplication.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Resetting the optimizer. Another important technique for stabilizing training is resetting the op-
timizer when more tokens are removed. This avoids large estimates of second-order derivatives
and stabilizes training. In Figure 3, the “Without Optimizer Reset” curve drops to zero around
100 steps and does not recover, showing the importance of resetting the optimizer during training.

Figure 5: Distribution
over Random Removal
Offset o in Removal
Smoothing with λ =
4. The distribution is
mostly concentrated at
o = 0 with a proba-
bility of 0.98, and o ≥
1 has a probability of
only 0.02. Despite this,
the removal smoothing
proves to be effective, as
demonstrated in the ab-
lation studies.

Removal side. In our main experiments, CoT tokens are removed from
the beginning (left side). Removing CoT tokens from the right side per-
forms significantly worse, as shown by the “Right-Side Removal” curve
in Figure 3. We suspect this is because internalizing tokens at the be-
ginning is easier than internalizing tokens at the end. CoT tokens at
the end depend on the earlier tokens, so internalizing them between the
end of CoT and the beginning of the final answer, which only has a few
positions, is more challenging. In contrast, internalizing tokens at the
beginning allows distributing them across the entire input.

Number of tokens removed per epoch. The number of tokens re-
moved per epoch (∆) significantly affects the training stability and
speed. In the main experiments, we used ∆ = 8, which removes 8 tokens
per epoch. A higher ∆ value leads to faster training but risks not con-
verging, as the model may not be able to keep up with the rapid changes
in the loss function. For instance, when using ∆ = 16, the training fails
to converge, as shown by the “Aggressive Removal” curve in Figure 3.
Conversely, a lower ∆ value is more likely to result in successful training
but at a slower pace. Future work could explore adaptive ∆ schedules
based on loss values to balance speed and stability more effectively.

6.3 MODEL ARCHITECTURE

When comparing different model architectures for ICoT-SI in Table 5,
we find that MathGLM with 35 layers outperforms GPT-2 Small with 12
layers, despite having a similar number of parameters. This result sug-
gests that deeper models may be better for implicit reasoning, echoing
the findings of Ye et al. (2024).

7 RELATED WORK

No CoT approaches. Several works in the literature focus on train-
ing language models to solve arithmetic tasks without outputting inter-
mediate steps. MathGLM (Yang et al., 2023) demonstrated that with
sufficient training data, including both lower-digit and higher-digit arith-
metic task demonstrations, a 2 billion parameter LM can solve multi-
digit arithmetic tasks without any intermediate steps. Compared to this
work, Stepwise Internalization achieves higher accuracy in solving multi-digit multiplication with
much smaller models, likely due to leveraging chain-of-thought supervision during training. An-
other notable work by Shen et al. (2023) showed that by mixing lower-digit and higher-digit mul-
tiplication demonstrations, even a GPT-2 Small can learn up to 14-digit multiplication. However,
Stepwise Internalization does not require specially prepared training data with mixed task difficul-
ties. Additionally, Stepwise Internalization is theoretically applicable to any reasoning task with
CoT reasoning steps, as demonstrated by its effectiveness on grade-school math problems.

Also relevant is the work of Pfau et al. (2024), which shows that transformer language models can
reason using filler tokens as an alternative to CoT tokens. They showed reasoning using these filler
tokens improves a language model’s expressivity. Our approach has the potential to be combined
with their approach to solve even more challenging tasks.

Internalizing CoT. Our work is closely related to that of Deng et al. (2023) (ICoT-KD), which
introduced the task of implicit CoT reasoning. ICoT-KD allows using CoT during training but not

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

during generation, and it implements this via knowledge distillation to internalize the reasoning
steps within hidden states. Compared to ICoT-KD, Stepwise Internalization has three advantages:
First, it is simpler to implement as it does not require a teacher model. Second, while ICoT-KD
internalizes reasoning into a single “column” of states (corresponding to the final input position),
Stepwise Internalization allows the model to internalize reasoning across all input positions. Lastly,
Stepwise Internalization achieves better accuracy compared to ICoT-KD.

Our work is also related to Context Distillation (Snell et al., 2022), which trains a model to produce
the same output when conditioned on a scratchpad versus without it. Each stage of Stepwise Inter-
nalization can be viewed as a form of context distillation, where one CoT token is distilled into the
model’s internal states.

Another relevant work is Searchformer (Lehnert et al., 2024), which first trains a transformer to
imitate A* search and then finetunes it on sampled shorter search traces. While Searchformer relies
on sampling to find shorter traces, Stepwise Internalization forces the model to internalize steps.

8 LIMITATIONS

Training costs. One limitation of the proposed approach is its high training cost due to the fine-
tuning required when removing each set of CoT tokens. As discussed in Section 6.2, removing
CoT tokens too fast leads to non-convergence. Therefore, the longer the CoT chain, the longer the
training duration. For tasks like N -digit multiplication, where the reasoning chain length grows
quadratically with N , training becomes expensive as N increases.

Instability. Another practical issue we observed is the instability of training with aggressive ∆
values. For example, Figure 6 in Appendix B shows a case where the model could not recover
from a drop in accuracy. Using lower ∆ values generally leads to more stable training, but at the
cost of longer training time. Identifying and addressing unstable dynamics early on, potentially by
restarting training as suggested by Hu et al. (2024), could be a valuable improvement.

Interpretability. Models trained using our approach lose interpretable intermediate steps. How-
ever, as shown in Section 6.1, it is still possible to interpret the internal hidden states of these models
using probing techniques (Belinkov, 2018; Hewitt & Liang, 2019). Additionally, combining implicit
and explicit CoT training could allow users to choose between interpretability and latency, providing
flexibility based on the requirements of future tasks.

Accuracy. Undoubtedly, explicit CoT still achieves higher accuracies compared to our approach
to implicit CoT. However, our method enables a trade-off between latency and accuracy. Moreover,
our results demonstrate the potential of leveraging hidden states for reasoning: even a GPT-2 Small
model can be trained to solve 20×20 multiplication, despite having only 12 layers, far fewer than the
number of reasoning steps in the CoT for 20×20 multiplication. When scaled to larger models with
hundreds of billions of parameters and up to a hundred layers, such as GPT-3 (Brown et al., 2020),
they could potentially solve even more challenging reasoning tasks without explicit CoT steps.

9 CONCLUSION AND FUTURE WORK

In this work, we introduced Stepwise Internalization, a novel approach for achieving implicit chain-
of-thought reasoning in language models. By gradually removing intermediate CoT tokens and
finetuning the model, we enable the internalization of reasoning steps incrementally. Our approach
demonstrates significant improvements over existing methods, achieving high accuracy on up to
20×20 multiplication using GPT-2 Small and outperforming GPT-4 on GSM8K while not outputting
any intermediate reasoning steps. Compared to explicit CoT methods, our approach can be up to 26
times faster while maintaining similar accuracies.

For future work, developing a mixed-mode approach that combines implicit and explicit CoT reason-
ing could potentially offer the best of both worlds, balancing accuracy, latency, and interpretability
based on user preferences. Another promising direction is scaling Stepwise Internalization to larger
models and more extensive training/pretraining setups, which could further enhance its effectiveness
on a broader range of reasoning tasks.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yonatan Belinkov. On internal language representations in deep learning: An analysis of machine
translation and speech recognition. PhD thesis, Massachusetts Institute of Technology, 2018.

BIG bench authors. Beyond the imitation game: Quantifying and extrapolating the capabilities of
language models. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL
https://openreview.net/forum?id=uyTL5Bvosj.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020.

Junhao Chen, Shengding Hu, Zhiyuan Liu, and Maosong Sun. States hidden in hidden states:
Llms emerge discrete state representations implicitly, 2024. URL https://arxiv.org/
abs/2407.11421.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021.

Yuntian Deng, Kiran Prasad, Roland Fernandez, Paul Smolensky, Vishrav Chaudhary, and Stuart
Shieber. Implicit chain of thought reasoning via knowledge distillation, 2023.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine Li, Liwei Jiang, Bill Yuchen Lin, Sean
Welleck, Peter West, Chandra Bhagavatula, Ronan Le Bras, et al. Faith and fate: Limits of
transformers on compositionality. Advances in Neural Information Processing Systems, 36, 2024.

Alex Graves. Adaptive computation time for recurrent neural networks, 2017. URL https://
arxiv.org/abs/1603.08983.

John Hewitt and Percy Liang. Designing and interpreting probes with control tasks, 2019.

Michael Y. Hu, Angelica Chen, Naomi Saphra, and Kyunghyun Cho. Latent state models of training
dynamics, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017.

Lucas Lehnert, Sainbayar Sukhbaatar, DiJia Su, Qinqing Zheng, Paul Mcvay, Michael Rabbat, and
Yuandong Tian. Beyond a*: Better planning with transformers via search dynamics bootstrap-
ping, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Maxwell Nye, Anders Johan Andreassen, Guy Gur-Ari, Henryk Michalewski, Jacob Austin, David
Bieber, David Dohan, Aitor Lewkowycz, Maarten Bosma, David Luan, Charles Sutton, and Au-
gustus Odena. Show your work: Scratchpads for intermediate computation with language models,
2021.

Jacob Pfau, William Merrill, and Samuel R. Bowman. Let’s think dot by dot: Hidden computation
in transformer language models, 2024.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

11

https://openreview.net/forum?id=uyTL5Bvosj
https://arxiv.org/abs/2407.11421
https://arxiv.org/abs/2407.11421
https://arxiv.org/abs/1603.08983
https://arxiv.org/abs/1603.08983
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat Lee, Yuanzhi Li, and Yi Zhang. Positional
description matters for transformers arithmetic, 2023.

Charlie Snell, Dan Klein, and Ruiqi Zhong. Learning by distilling context, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter, Fei Xia, Ed H. Chi,
Quoc V Le, and Denny Zhou. Chain of thought prompting elicits reasoning in large language
models. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Ad-
vances in Neural Information Processing Systems, 2022. URL https://openreview.net/
forum?id=_VjQlMeSB_J.

Zhen Yang, Ming Ding, Qingsong Lv, Zhihuan Jiang, Zehai He, Yuyi Guo, Jinfeng Bai, and Jie
Tang. Gpt can solve mathematical problems without a calculator, 2023.

Tian Ye, Zicheng Xu, Yuanzhi Li, and Zeyuan Allen-Zhu. Physics of language models: Part 2.1,
grade-school math and the hidden reasoning process, 2024. URL https://arxiv.org/
abs/2407.20311.

12

https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
https://arxiv.org/abs/2407.20311
https://arxiv.org/abs/2407.20311


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Figure 6: Validation Accuracy during Training for two different random seeds. This figure plots the
validation accuracy as a function of the potential number of removed CoT tokens during training for
the 9 × 9 multiplication task using GPT-2 Small and ∆ = 8. The two curves only differ in random
seeds. The black dashed vertical line indicates the point beyond which all CoT tokens are removed.

A HYPERPARAMETERS

For all experiments, we use the AdamW optimizer (Loshchilov & Hutter, 2019), with λ = 4 and
an effective batch size of 32 by default. For Mistral 7B, we use a batch size of 16 with a gradient
accumulation of 2. For the multiplication tasks, we use a learning rate of 5 × 10−5 and ∆ = 8.
For GSM8K, we use a learning rate of 5 × 10−5 and ∆ = 1 for GPT-2 Small and GPT-2 Medium,
and a learning rate of 1 × 10−5 and ∆ = 8 for Mistral 7B, with bfloat16 precision. Additionally,
for GSM8K, we only consider sequences with 150 or fewer tokens for training and remove all CoT
tokens when 39 or more tokens are scheduled to be removed. All experiments are run on a single
H100 with 80GB of GPU memory for up to 200 epochs or 24 hours, whichever is reached first.

B STABILITY ISSUES FOR AGGRESSIVE REMOVAL

We found that using aggressive removal schedules (that is, bigger ∆ values) can sometimes lead
to unstable training dynamics. As one example, Figure 6 shows two different runs under identical
configurations except for the random seed. One run was eventually able to solve the task after all
CoT tokens were removed, whereas the other failed to solve the task after all CoT tokens were
removed.

C ADDITIONAL EXPERIMENTS

Keeping position IDs. As CoT tokens are removed, the position where the final output starts
changes. We tried a variant where position IDs remain unchanged, meaning the position ID of the
next token is used directly after removing a CoT token. Although this approach was more stable
during training, its performance was similar to the current approach. For simplicity, we did not use
this variant in our main experiments.

Alternative CoT formats. Different valid reasoning paths can lead to the correct final answer
for the same problem. We explored using a binary tree formatted CoT chain for the multiplication
problems. This format decomposes an N -digit multiplication into a sequence of N -digit-by-1-digit
multiplication problems, merges the results using sum operators, and continues merging until the
final sum is computed. This program has a shorter description length, potentially making it easier

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Input: a1 a2 a3 × b1 b2 b3

CoT: p11 p12 p13 p14

p1 = b1 × a3a2a1

p21 p22 p23 p24

p2 = b2 × a3a2a1

s1 s2 s3 s4 s5

s = p1 + 10p2

p31 p32 p33 p34

p3 = b3 × a3a2a1

Model
States:

a1 a2 a3 × b1 b2 b3 =

Figure 7: Mechanistic interpretability analysis of 3 × 3 multiplication on an explicit CoT model.
The top row shows the input digits; the middle row depicts the CoT tokens used in explicit CoT
reasoning (partial products p1, p2, p3, and a partial sum s = p1 + 10p2); the bottom row represents
the hidden states of a trained explicit CoT model. The connections indicate the earliest positions
where each CoT token can be probed from the hidden states with an accuracy greater than 95%.

for transformers to learn (Dziri et al., 2024). However, its performance was similar to the current
approach.

D DETAILS OF MECHANISTIC INTERPRETABILITY ANALYSIS

For the probing experiment, we used a one-layer MLP as the probe, with a hidden dimension set to
16 times the input dimension (input dimension = 768, corresponding to the hidden size). A separate
probe was trained for each layer, using the hidden state at a given position as the input. To enable
position-agnostic probing within a layer, we incorporated a trainable position embedding of the same
size as the hidden dimension, allowing a single probe to be shared across all positions within the
layer.

The probes were optimized using the AdamW optimizer with a learning rate of 5e-5 and a batch size
of 32. Each probe was trained for 10 epochs on the training set. Probing accuracy was evaluated on
the validation set, and results were aggregated across layers by selecting the maximum accuracy at
each position. A threshold of 95% accuracy was used to generate the visualizations.

E ADDITIONAL MECHANISTIC INTERPRETABILITY ANALYSIS

As a control experiment, Figure 7 presents the mechanistic interpretability analysis performed on
an explicit CoT model. Surprisingly, we observed that even in an explicit CoT model, which was
not trained to internalize any CoT tokens, the internal hidden states can predict some CoT tokens.
Specifically, the first and last digits of the partial products and partial sums are predictable at the
earliest positions.

We hypothesize that this is because predicting these digits is relatively straightforward, and the probe
likely learned the necessary patterns. For instance:

• Predicting the lowest digit of the first partial product (p11) only requires computing a1×b1.

• Similarly, predicting the highest digit of the first partial product (p14) largely depends on
computing a3 × b1, except in rare cases where a carry from lower digits alters the result.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 8: Token-level accuracy during training for various ablations. This figure shows the valida-
tion token-level accuracy versus the target number of removed CoT tokens during training (7 × 7
Multiplication, GPT-2 Small). The brown dashed horizontal line represents the final token-level
accuracy achieved by the No CoT approach, while the black dashed vertical line marks the point at
which all CoT tokens have been removed according to the schedule. The curves compare the follow-
ing variants of our approach: “Full Approach”; “Without Removal Smoothing”; “Without Optimizer
Reset”; “Right-Side Removal” (removing CoT tokens from the end instead of the beginning); and
“Aggressive Removal” (removing 16 instead of 8 CoT tokens per epoch).

For the partial sums, the situation is analogous:

• The lowest digit of the first partial sum (s1) is equivalent to p11, making it predictable from
the same position.

• Similarly, the highest digit of the final partial sum (s5) corresponds to p23, which is also
predictable from the position where p23 is predictable.

When comparing the probing results of the explicit CoT model (Figure 7) with those of the implicit
CoT model (Figure 4), the differences are clear. In the implicit CoT model, the hidden states contain
information about the full partial product results, including p12, p13, p22, p23, p32, and p33—all of
which are not predictable from the hidden states of the explicit CoT model.

This discrepancy highlights the key advantage of internalization: the training process compels the
model to internalize intermediate computations, such as partial products, within its hidden states.
This internalization enables the implicit CoT model to encode richer computational information,
which is absent in the explicit CoT model despite having the same capacity.

F TOKEN ACCURACY

Figure 8 illustrates the token-level accuracy for various ablation variants of our proposed approach.
Notably, for all variants, token-level accuracy remains above 90% during most of the training process
(when fewer than 112 CoT tokens have been removed). However, as training progresses and all CoT
tokens are removed, the token-level accuracy of the ablation variants drops to approximately 75%
and does not recover. Qualitative analysis reveals that these variants often struggle with predicting
the middle digits of the final result.

In contrast, the No CoT approach, despite training for over 24 hours, achieves a token-level accuracy
of only 61% (represented by the brown dashed horizontal line). This difference underscores the
effectiveness of our internalization approach in retaining high token-level accuracy throughout the
training process, even under ablated conditions.

15


	Introduction
	Background: Implicit Chain-of-Thought Reasoning
	Stepwise Internalization
	Experimental Setup
	Data
	Baselines and Models
	Evaluation

	Results
	Analysis
	Mechanistic Interpretability
	Ablation Studies
	Model Architecture

	Related Work
	Limitations
	Conclusion and Future Work
	Hyperparameters
	Stability Issues for Aggressive Removal
	Additional Experiments
	Details of Mechanistic Interpretability Analysis
	Additional Mechanistic Interpretability Analysis
	Token Accuracy

