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Abstract

Retrieval-Augmented Generation (RAG) aims to mitigate hallucinations in large1

language models (LLMs) by grounding responses in retrieved documents. Yet,2

RAG-based LLMs still hallucinate even when provided with correct and sufficient3

context. A growing line of work suggests that this stems from an imbalance be-4

tween how models use external context and their internal knowledge, and several5

approaches have attempted to quantify these signals for hallucination detection.6

However, existing methods require extensive hyperparameter tuning, limiting their7

generalizability. We propose LUMINA, a novel framework that detects halluci-8

nations in RAG systems through context–knowledge signals: external context9

utilization is quantified via distributional distance, while internal knowledge uti-10

lization is measured by tracking how predicted tokens evolve across transformer11

layers. We further introduce a framework for statistically validating these mea-12

surements. Experiments on common RAG hallucination benchmarks and four13

open-source LLMs show that LUMINA achieves consistently high AUROC and14

AUPRC scores, outperforming prior utilization-based methods by up to +13%15

AUROC on HalluRAG. Moreover, LUMINA remains robust under relaxed assump-16

tions about retrieval quality and model matching, offering both effectiveness and17

practicality.18

1 Introduction19

Large language models (LLMs) are prone to hallucination, i.e., producing responses that are factually20

incorrect, nonsensical, or not grounded in the input or available data, while still appearing fluent21

and plausible [1, 2, 3]. One commonly used strategy to mitigate hallucination is providing LLMs22

with relevant information retrieved from external knowledge bases, so-called Retrieval-Augmented23

Generation (RAG) [4, 5, 6]. However, despite having sufficient and relevant retrieved documents,24

RAG systems still have a chance to hallucinate and produce statements that are either unsupported or25

contradict the retrieved information [7, 8].26

Recent work has shown that such failures often arise from conflicts between an LLM’s internal27

knowledge and the retrieved external context [9]. In these cases, models tend to over-rely on internal28

knowledge regardless of correctness, undermining factual reliability [10, 11, 12, 13]. Inspired by this29

observation, recent approaches attempt to quantify hallucinations in RAG [14, 15, 16]. However,30

existing methods rely on mechanistic interpretability heuristics—such as selecting specific attention31

heads or transformer layers to achieve the optimal hallucination detection performance—which32

require heavy hyperparameter tuning and often fail to generalize across models and datasets.33

To overcome these limitations, we propose LUMINA, a new framework for detecting hallucinations in34

RAG system through context–knowledge signals, namely the signals of external context utilization and35

internal knowledge utilization, as shown in Figure 1. Rather than targeting particular attention heads36
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Figure 1: The overview of LUMINA. For external context utilization, we propose to measure the
maximum mean discrepancy between two next token probability distributions conditioned on different
documents. For internal knowledge utilization, we introduce the idea of information processing rate
by looking at the ratio of the most probable output token’s probability across transformer layers and
use it to determine the amount of utilized internal knowledge when generating the next token.

or layers, LUMINA measures these signals in a layer-agnostic manner, requiring less hyperparameter37

tuning. Specifically, for external context utilization, we measure the discrepancy between predictive38

distributions conditioned on retrieved documents vs. random documents. A larger discrepancy39

indicates that the LLM is more sensitive to semantic changes in documents when generating the40

answer, implying higher reliance on the external context. For internal knowledge utilization, we41

track how the model’s internal states and token predictions evolve across layers: if the internal layers’42

predictions do not converge to the final output until later layers, it suggests more information is added43

during the layer-wise process, implying stronger reliance on internal knowledge. We further validate44

the soundness of our measurements through statistical hypothesis testing on verifiable implications,45

establishing a stronger link between the proposed scores and actual utilization.46

We conduct extensive experiments on common RAG hallucination benchmarks and across four47

LLMs to evaluate the performance of LUMINA on hallucination detection. The results show that48

the hallucination score calculated with LUMINA outperforms existing methods by a significant49

margin. For example, LUMINA achieves more than 0.9 AUROC on the HalluRAG datasets across50

models, with improvements of up to +13% over prior state-of-the-art. Importantly, the decomposition51

into external context utilization and internal knowledge utilization provides interpretable insights:52

hallucinations are strongly associated with low external context scores and disproportionately high53

internal knowledge scores. We further demonstrate that LUMINA is robust across different retrieval54

settings. These results validate both the effectiveness and practicality of our framework.55

Our key contributions are summarized as follows:56

1. We propose LUMINA, a novel approach to quantify utilization of external context and57

internal knowledge for RAG-based hallucination detection.58

2. We propose a framework to statistically validate LUMINA, showing that they align with the59

intended results.60

3. We conduct extensive experiments and show that LUMINA outperforms both score-based61

and learning based methods in hallucination detection, establishing new state-of-the-art.62

2 Preliminaries63

2.1 Problem Formulation and Motivation64

RAG systems aim to improve factuality by incorporating external documents into the generation65

process. However, hallucinations still occur when a model over-relies on its internal parametric66

knowledge and under-utilizes the retrieved external context. We provide a formal definition below.67

Conjecture 1 (External context vs. internal knowledge utilization). Let pθ be an RAG-based LLM68

that takes a query q and retrieved documents d as inputs to generate a response a. Assume d is relevant69

to q and contains correct and sufficient information to respond to q. Denote Epθ
(a|q, d), Ipθ

(a|q, d) ∈70
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R be the signals of external context utilization and internal knowledge utilization of pθ, respectively,71

when generating a. The response a is more likely to be hallucination if Ipθ
(a|q, d) ≫ Epθ

(a|q, d).72

Definition 2.1 (Hallucination in an RAG system). Based on Conjecture 1, we define hallucination73

scores at both the token and response level. Specifically, for a generated answer a = (a1, . . . , aT )74

with T tokens, let Epθ
(at|q, d, a<t), Ipθ

(at|q, d, a<t) ∈ R be the signals of external context utilization75

and internal knowledge utilization of pθ when generating the token at, respectively. The token-level76

hallucination score of at is defined as77

Ht(at|q, d, a<t) := λ · Ipθ
(at|q, d, a<t)− (1− λ) · Epθ

(at|q, d, a<t), (1)

where λ is a hyperparameter. Similarly, the response-level hallucination score of the response a is78

defined as the average of the token-level hallucination scores, i.e.,79

Hr(a|q, d) :=
1

T

T∑
t=1

Ht(at|q, d, a<t). (2)

In this paper, we focus on the core question: How to quantify the utilization of external context and80

internal knowledge?81

2.2 Related Work82

Prior works have attempted to quantify Epθ
(at|q, d, a<t) and Ipθ

(at|q, d, a<t) using empirical met-83

rics [14, 15]. For example, Sun et al. [14] proposed ReDeEP, which measures external context84

utilization through cosine similarity between the generated token and tokens in context that have85

high attention weights w.r.t. certain attention heads. For internal knowledge utilization, it measures86

the Jensen-Shannon (JS) divergence between the hidden states before/after the FFN layer of certain87

transformer layers. The success of ReDeEP on some RAG hallucination detection datasets validates88

the idea of Conjecture 1. Wang [15] combine the idea of ReDeEP with semantic entropy probes89

(SEP) [17]. They quantified external context utilization by measuring the semantic correlation90

between the semantic entropy of the generated token and attended tokens in the context. For in-91

ternal knowledge utilization, they measured the absolute difference between the semantic entropy92

corresponding to hidden states before and after the FFN layer.93

Although these approaches effectively detect hallucinations in the RAG system, they have two major94

limitations. First, these approaches require selecting specific attention heads and transformer layers95

to compute the external context score and internal knowledge score. However, the selection process96

is non-trivial and requires extensive hyperparameter tuning. In addition, these hyperparameters are97

dataset and model-specific, limiting the generalizability across different datasets and models. Another98

limitation is that although these works demonstrated the correlation between their proposed scores99

and hallucination, they did not validate whether the scores truly reflect the utilization of external100

context and internal knowledge.101

3 Methodology102

Overview. To overcome the limitations of prior empirical approaches, we introduce LUMINA, a new103

framework for quantifying both external context and internal knowledge utilization. In Section 3.1 and104

Section 3.2, we formalize the quantification of the two signals, which will be combined to compute105

the final hallucination score. In Section 3.3, we propose to validate the soundness of LUMINA through106

extensive hypothesis testing, addressing the challenges of score validation in previous works.107

3.1 Quantifying External Context Utilization108

To measure LLM’s external context utilization, our key idea is to assess its sensitivity to semantic109

changes in the input documents. If the LLM effectively incorporates the external context to generate110

a response, then replacing relevant documents with random ones should noticeably change the token111

probability distribution. Formally, we propose the following measurement:112

Measurement 1 (External context utilization). Let a be an LLM-generated answer to query q113

with retrieved documents d as input. Assume d is relevant to q and contains correct and sufficient114
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information to respond to q. Let d′ be a subset of random documents irrelevant to q. The model’s115

predictive distribution over tokens induces two (approximated) distributions over embeddings:116

P (Ev) = pθ(v | q, d, a<t), Q(Ev) = pθ(v | q, d′, a<t), (3)

where each token v ∈ V in the vocabulary space is associated with an embedding Ev ∈ RD.117

Then, the degree to which the model uses external context for generating token at is reflected in the118

divergence between the two distributions conditioned on d versus d′:119

Epθ
(at|q, d, a<t) := ∆(P,Q), (4)

where ∆ : P × P → R+ is a distance function between two probability distributions.120

Note that we adopt P (Ev) and Q(Ev) as proxies to approximate the ground truth embedding121

distribution, as it is challenging to estimate it over the high-dimensional vector space. We instantiate122

∆ with Maximum Mean Discrepancy (MMD), which measures the distance of two probability123

distributions by mapping them into a Reproducing Kernel Hilbert Space.124

Definition 3.1 (Maximum Mean Discrepancy [18]). Given a positive semi-definite kernel function125

k, the squared MMD between two probability distributions P and Q is defined as126

MMD2
k(P,Q) := EA,A′∼P [k(A,A′)] + EB,B′∼Q[k(B,B′)]− 2EA∼P,B∼Q[k(A,B)], (5)

where A,A′ are i.i.d. vectors randomly sampled from P and B,B′ are sampled from Q.127

This metric provides us with a non-parametric and LLM-agnostic way to quantify the utilization of128

external context, making it generalizable to different models and datasets.129

By rewriting MMD with P and Q we defined in Eq. (3) over token embeddings, we obtain:130

Epθ
(at|q, d, a<t) :=

∑
u,v∈V

P (Eu)P (Ev)k(Eu, Ev) +
∑

u,v∈V
Q(Eu)Q(Ev)k(Eu, Ev)

− 2
∑

u,v∈V
P (Eu)Q(Ev)k(Eu, Ev).

(6)

We adopt the cosine kernel:131

kcos(Eu, Ev) :=
1

2

(
1 +

ET
u Ev

∥Eu∥2∥Ev∥2

)
. (7)

Note that the cosine kernel acts equivalent to computing cosine similarity between two token em-132

beddings, which is commonly used to measure the semantic similarity of two pieces of text. In133

Section 4.4, we experiment with alternative kernels such as the Gaussian kernel, and we show that134

our method is not sensitive to the choice of kernels.135

3.2 Quantifying Internal Knowledge Utilization136

To quantify the utilization of internal knowledge, we focus on the signals in internal states of an137

LLM. Specifically, a transformer-based autoregressive LLM has multiple layers, through which138

information is gradually added into a residual stream that flows from the input layer to the output139

layer, shaping the output token representation and probability distribution [19]. Studies have found140

that by projecting the hidden state of each layer to the token representation space, we can interpret141

what an LLM believes after the process of each layer [20]. In addition, via logit lens [20], studies142

have identified the saturation event in an LLM, i.e., the top-k prediction of the LLM remains constant143

in all subsequent layers after a certain layer called the k-th saturation layer [19, 21].144

Inspired by these observations, we propose a metric that quantifies how actively the model updates its145

predictions across layers. Formally, we define the rate of information processing below.146

Definition 3.2 (Information processing rate). Given an LLM pθ with L layers, which takes x<t as147

the input and generate the next token xt, we denote xt,1 := argmaxv pθ(v|x<t) as the most probable148

next token and ht,l ∈ RD as the l-th layer hidden state when generating xt. Let f : RD → P be a149

projection from a hidden state to a probability distribution over the vocabulary V . The information150

processing rate of pθ conditioned on x<t is defined as151

Rpθ
(x<t) :=

∑L−1
l=1

(
1−min

{
[f(ht,l)]xt,1

pθ(xt,1|x<t)
, 1
})

· l∑L−1
l′=1

l′

H(f(ht,l′ ))

, (8)
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where H(·) is the entropy function, and f is the logit lens [20] that projects the hidden state of each152

layer to logits using the LayerNorm and the unembedding matrix W , i.e.,153

LogitLens(h) := LayerNorm(h)W , f(·) := Softmax(LogitLens(·)). (9)

Specifically, Rpθ
(x<t) captures two key elements: (1) The numerator measures the extent to which154

each layer’s prediction for the most probable token differs from the final output, weighted by layer155

depth to emphasize later-layer processing. When
[f(ht,l)]xt,1

pθ(xt,1|x<t)
is small, it indicates the layer has not156

yet converged to the final prediction, suggesting active information processing. (2) The denominator157

provides adaptive normalization based on each layer’s prediction uncertainty (entropy), giving higher158

relative weight to layers that exhibit confident, decisive processing patterns. Given this definition, we159

attribute the utilization of internal knowledge to the 1st information processing rate and propose the160

following measurement:161

Measurement 2 (Internal knowledge utilization). An LLM is considered to be more heavily162

utilizing its internal knowledge to generate at when it exhibits a higher information processing rate.163

Specifically, we propose that the internal knowledge utilization of an LLM to generate at given q and164

d can be measured as165

Ipθ
(at|q, d, a<t) := Rpθ

(q, d, a<t). (10)

3.3 Statistical Validation of the Measurement166

In this section, we validate the soundness of our approach. Previous work such as Sun et al. [14]167

primarily verified whether their scores have a causal relationship with hallucination but failed to show168

the relationship between the scores and actual external context/internal knowledge utilization. To169

address this, we directly assess whether our measurements capture the intended notion of utilization.170

Specifically, we derive verifiable implications that must hold if our proposed measurements are valid.171

We then use the proposed score to verify these implications with statistical hypothesis testing. If the172

proposed score passes all tests, the score reflects the corresponding utilization.173

External context utilization. To validate Measurement 1, we examine the following implications:174

H1. If Measurement 1 is valid, then Epθ
(at|q, d, a<t) > Epθ

(a′t|q,∅, a′<t). That is, generations with175

retrieved documents have stronger external context utilization than generations without.176

H2. If Measurement 1 is valid, then Epθ
(at|qsum, dsum, a<t) > Epθ

(at|qQA, dQA, a<t). That is,177

summarization tasks should exhibit higher external context utilization than question answering.178

Internal knowledge utilization. To validate Measurement 2, we examine the following:179

H3. If Measurement 2 is valid, then R1
pθ
(q,∅, a<t) > R1

pθ
(q, d, a<t). That is, generating an answer180

without retrieved documents requires more internal knowledge than with retrieved documents.181

H4. If Measurement 2 is valid, then R1
pθ
(qD2T, dD2T, a<t) > R1

pθ
(qsum, dsum, a<t). In other words,182

data-to-text generation requires more internal knowledge than summarization.183

Table 1: All the hypotheses pass the statistical tests. For H1, H2, H4, we report one-tailed t-statistic;
for H3, we report paired-sample one-tailed t-statistic. All four implications reject their null hypothesis,
validating the soundness of LUMINA. Note that the tests are run with > 65k tokens and the magnitude
of the t-statistic means how easy we can distinguish the two distributions. * p < 0.05; ** p < 0.01;
*** p < 0.001.

LLM H1 H2 H3 H4

Llama2-7B 79.85*** 27.67*** 101.20*** 15.36***
Llama2-13B 73.49*** 20.51*** 91.00*** 7.71***
Llama3-8B 94.15*** 6.35*** 102.44*** 15.85***
Mistral-7B 88.70*** 6.21*** 109.26*** 9.69***

To examine H1, we utilize data in the QA set of RAGTruth [7]. We use the original data to compute184

Epθ
(at|q, d, a<t), and generate additional answers without providing retrieved documents as a′ to185

compute Epθ
(a′t|q,∅, a′<t). For H2, we utilize the Summary and QA set of RAGTruth; for H4,186

the Summary and Data2Text set; and for H3, the entire RAGTruth dataset. We test the hypotheses187
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with four different instruction-tuned LLMs, including Llama2-{7B, 13B} [22], Llama3-8B [23], and188

Mistral-7B [24]. Results in Table 1 indicate that all four implications reject their null hypothesis,189

validating our measurements for external context utilization and internal knowledge utilization.190

4 Experiments191

4.1 Experimental Settings192

Baselines. We compare LUMINA with baselines across 8 different hallucination detection strategies:193

(1) Uncertainty-based, which detects hallucination by estimating uncertainty via token-level proba-194

bility or entropy. Baselines of this category include Perplexity [25], LN-Entropy [26], and Focus [27].195

(2) Cross-sample consistency, which detects hallucination by sampling multiple responses for a196

query and measuring their (logic/semantic) consistency. Approaches include SelfCKGPT [28] and197

EigenScore [29]. (3) Verbalization, which detects hallucinations by prompting another LLM to score198

the correctness of the answer. Approaches include P(True) [30] and RefChecker [31]. (4) Utilization199

of external context and internal knowledge, which decouples these two signals via findings in200

the study of mechanistic interpretability. Baseline of this category is ReDeEP [14]. Details of each201

baseline are introduced in Appendix B.202

LLMs. To demonstrate the generalizability of LUMINA, we conduct experiments with four open-203

sourced LLMs, including Llama2-{7B, 13B}, Llama3-8B, and Mistral-7B. Specifically, each LLM204

is used to detect hallucinations in responses generated by the same model. We also report the205

performance of proxy LLM setting, i.e., using one LLM to detect hallucinations in responses206

generated by another model, in Sec. 4.3. All LLMs are the instruction-tuned version.207

Datasets. Experiments are conducted on two representative RAG hallucination detection bench-208

marks: RAGTruth [7], the first high-quality RAG hallucination detection dataset, consisting of three209

types of RAG tasks, including question answering, data-to-text writing, and news summarization.210

HalluRAG [8], a dataset of free-form question answering in an RAG setting. Details of these datasets211

are introduced in Appendix C.212

Evaluation metrics. We measure the performance with three metrics: AUROC, AUPRC, and213

Pearson’s correlation coefficient (PCC). AUPRC captures precision-recall trade-offs, while AUROC214

evaluates the trade-offs between true and false positive rates. These metrics are threshold-agnostic215

and better suited for comparing scoring-based methods. We also report the optimal precision, recall,216

and F1 score (PrecOpt,RecallOpt,F1Opt) in Appendix E.1, where F1Opt is the optimal F1 score217

among all possible threshold and PrecOpt and RecallOpt are corresponding Precision and Recall.218

Implementation details. We adopt λ = 0.5 to compute Eq. (1) as ablations show that balancing219

the scores of external context and internal knowledge yields relatively strong performance (see220

Appendix E.3 for detailed ablations). Other implementation details and computational resources of221

LUMINA are reported in Appendix D and G, respectively.222

4.2 Main Results223

LUMINA achieves state-of-the-art performance. Table 2 summarizes the experimental compar-224

ison across methods. The results show that LUMINA has a consistently high performance across225

datasets and LLMs. In particular, it almost always outperforms ReDeEP, the previous attempt of226

measuring the utilization of external context and internal knowledge to detect hallucinations. The gap227

between them is particularly large on the HalluRAG dataset. Noticeably, LUMINA achieves more than228

0.9 AUROC on the HalluRAG dataset across models, outperforming the baselines by a substantial229

margin. We further conduct an error analysis to see when and why LUMINA fails. Specifically,230

we sample 20 false-negative and false-positive cases from the RAGTruth dataset, respectively, and231

qualitatively analyze the reason of errors. The result reveals that most of the errors stem from incorrect232

labels and low-quality retrieved documents of the dataset, suggesting a potentially higher performance233

in a setting with high-quality data. The details of this analysis can be found in Appendix F.234
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Table 2: LUMINA consistently achieves a high performance across datasets and LLMs. The
highest scores are set in bold. Note that HalluRAG dataset does not contain responses generated by
Llama3-8B.

RAGTruth HalluRAG

LLM Approach AUROC ↑ PCC ↑ AUPRC ↑ AUROC ↑ PCC ↑ AUPRC ↑

Llama2-7B

Perplexity 0.5103 -0.0118 0.4836 0.4610 -0.0673 0.2332
LN-Entropy 0.6964 0.3318 0.6615 0.9102 0.5133 0.6812
Focus 0.5633 0.0811 0.5386 0.5652 0.2415 0.3844
SelfCKGPT 0.4787 -0.0279 0.4859 0.4669 -0.0070 0.2377
EigenScore 0.5454 0.0717 0.5183 0.6720 0.2705 0.4470
P(True) 0.5197 0.0404 0.5334 0.5847 0.1143 0.2976
RefChecker 0.5869 0.1751 0.6827 0.4907 -0.0255 0.2750
ReDeEP 0.7273 0.3859 0.6971 0.6771 0.1468 0.3378
LUMINA 0.7646 0.4546 0.7491 0.9153 0.6554 0.7572

Llama2-13B

Perplexity 0.4539 -0.1020 0.3993 0.2548 -0.2366 0.0944
LN-Entropy 0.7677 0.4446 0.6838 0.7826 0.3262 0.3567
Focus 0.5451 0.0130 0.4603 0.6739 0.2563 0.3181
SelfCKGPT 0.4545 -0.0835 0.4106 0.7729 0.2640 0.3029
EigenScore 0.6329 0.2080 0.5202 0.7862 0.4250 0.4867
P(True) 0.7543 0.3821 0.7418 0.6914 0.2480 0.2146
RefChecker 0.6363 0.2723 0.6988 0.5670 0.1390 0.3169
ReDeEP 0.8055 0.5195 0.7792 0.7645 0.2705 0.3001
LUMINA 0.8569 0.6041 0.8436 0.9166 0.6044 0.8497

Llama3-8B

Perplexity 0.7130 0.3568 0.7183 - - -
LN-Entropy 0.7072 0.3500 0.7109 - - -
Focus 0.5258 0.0375 0.5380 - - -
SelfCKGPT 0.5339 0.0491 0.5550 - - -
EigenScore 0.6001 0.1774 0.5824 - - -
P(True) 0.5407 0.0928 0.5502 - - -
RefChecker 0.5718 0.1494 0.6874 - - -
ReDeEP 0.7495 0.4458 0.7817 - - -
LUMINA 0.7446 0.4236 0.7874 - - -

Mistral-7B

Perplexity 0.6200 0.1463 0.6106 0.5362 -0.0264 0.1261
LN-Entropy 0.7607 0.4386 0.7377 0.9188 0.6076 0.7347
Focus 0.7803 0.4188 0.7647 0.8565 0.4318 0.4219
SelfCKGPT 0.5680 0.0812 0.5698 0.8275 0.5552 0.6098
EigenScore 0.5642 0.1006 0.5637 0.8652 0.6411 0.7337
P(True) 0.7530 0.4334 0.7494 0.5899 0.0886 0.1771
RefChecker 0.6017 0.2047 0.7303 0.5065 0.0153 0.1784
ReDeEP 0.7615 0.4613 0.8133 0.7870 0.2611 0.3516
LUMINA 0.7685 0.4623 0.7942 0.9899 0.7529 0.9431

Comparison with supervised approach. We also compare LUMINA with SAPLMA [32], a super-235

vised approach that trained a binary classifier on the last token hidden states to detect hallucination.236

Since our method is unsupervised in nature and does not rely on labeled data, the supervised baseline237

can be viewed as a performance upper bound. Results in Appendix E.2 show that LUMINA achieves238

a competitive performance against SAPLMA and even sometimes outperforms it, all without any239

training, highlighting both its supreme performance and ease of deployment.240

4.3 Relaxing Assumptions241

In Section 3, we implicitly make two assumptions: 1) perfect context assumption: we assume the242

retrieved documents d are correct, sufficient, and relevant to the query. 2) same LLM assumption:243

we assume the LLM used to compute the external context score and internal knowledge score is244

the same as the LLM used to generate responses. These two assumptions are usually introduced245

in other hallucination detection works as well [27, 14]. Unfortunately, they are often strong and246

have a significant impact on the performance, limiting the usability of these methods (such as for247

open-sourced model-generated responses only). In this section, we investigate the performance of248

LUMINA when relaxing these two assumptions, showing the robustness of LUMINA.249

7



Llama2-7B Llama2-13B Llama3-8B Mistral-7B

N
oi

se
s 

in
 re

tr
ie

ve
d 

do
c 

(%
)

Noises in random doc (%)
0 30

0
30

AUPRC

Figure 2: Noises in context do not largely degrade the performance of LUMINA. We add 0 ∼ 30%
noises to the retrieved documents and random documents and evaluate the hallucination detection
performance. The experiment is conducted on the RAGTruth dataset.
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Figure 3: The “same LLM” setting is not essential for LUMINA to achieve the optimal perfor-
mance. On the RAGTruth dataset, for each set of responses generated by the same LLM, we apply
LUMINA with a different base LLM to detect hallucination. Bars in more saturated shades indicate
settings where the same LLM is used for both generation and detection.

Relaxing perfect context assumption. We relax this assumption by gradually injecting noise into250

the retrieved documents d and random documents d′. Specifically, for the assumption on retrieved251

documents, we randomly remove {0%, 10%, 20%, 30%} sentences from d. And for the assumption252

on the random documents, we randomly add {0%, 10%, 20%, 30%} sentences from d to d′. Figure 2253

shows the AUPRC of all noise injection combinations on the RAGTruth dataset. The result shows that254

except Llama2-13B, which has a > 0.1 performance drop after injecting noises, LUMINA with other255

LLMs yields stable performance. Furthermore, after removing sentences from retrieved documents,256

LUMINA with Llama3-8B even achieves a higher AUPRC. These results demonstrate the robustness257

of LUMINA against context noises.258

Relaxing the same LLM assumption. We relax this assumption by using different LLMs to259

compute the scores for a response. Specifically, we use Llama2-7B, Llama2-13B, Llama3-8B,260

Mistral-7B, and Qwen2.5-7B [33] to detect hallucination on the RAGTruth dataset, which contains261

responses generated by Llama2-7B, Llama2-13B, Llama2-70B, Llama3-8B, Mistral-7B, GPT-3.5,262

and GPT-4. Figure 3 shows AUROC across different generator-detector LLM pairs.263

The results show that the same model setting is not always necessary. Specifically, Llama2-7B264

achieves a comparable or higher AUROC than Llama3-8B on Llama3-8B responses. Moreover,265

LUMINA with Llama2-7B and Llama3-8B has stable performance across different generation LLMs.266

Overall, LUMINA demonstrates a plausible solution for generation LLM-agnostic hallucination267

detection, which is more practical in real-world scenarios.268

4.4 Ablation Study269

Impact of external context & internal knowledge. Our final hallucination score is the combination270

of the external context score and internal knowledge score. To obtain more insights into how each271
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Figure 4: Combining scores of external context and internal knowledge boosts the hallucination
detection performance. Left: 2D kernel density estimation (KDE) of the distribution of external
context score and internal knowledge score of Llama2-13B responses on the RAGTruth dataset. Right:
Hallucination detection performance with external/internal score only, as well as the performance of
their combination.

component contributes to the final score, we ablate on the components by considering only the272

external context score and internal knowledge score. The right plot of Figure 4 shows that combining273

scores of external context and internal knowledge achieves the highest AUPRC on the RAGTruth274

dataset for every LLM. For example, on Llama2-13B, the combination leads to more than 10%275

improvement. This observation justifies the effectiveness of the hallucination score introduced in276

Definition 2.1. In addition, the left plot of Figure 4 shows that a response generated by Llama2-13B277

is more likely to be hallucination if it has a high internal knowledge score and a low external context278

score. This observation validates Conjecture 1 and suggests that Eq. (1) does not imply an objective279

function that forces LLM only using external context to answer questions. Instead, it suggests that280

the internal knowledge utilization should be grounded in an external context to achieve a reliable281

generation. Further experiments are shown in Appendix E.3.282

A
U
P
R
C

𝜎

Llama2-7B

Llama2-13B

Llama3-8B

Mistral-7B

LLM

Kernel

RBF

Cosine

Figure 5: MMD with cosine kernel performs
similarly or better than with RBF kernel.

Impact of kernel selection. We ablate on283

the selection of kernel k ∈ {Cosine,RBF0.5,284

RBF0.7,RBF1,RBF2,RBF3}, where RBFσ285

is a RBF kernel, i.e., RBFσ(Eu, Ev) :=286

exp
(
−∥Eu−Ev∥2

2

2σ2

)
. Figure 5 shows the287

AUPRC of different kernels on the RAGTruth288

dataset. The results show that the optimal setting289

of the RBF kernel has a similar performance to290

the cosine kernel, suggesting our external con-291

text score is insensitive to the kernel selection.292

We default to the cosine kernel as it is less de-293

pendent on hyperparameters, making it easy to294

use in practice.295

5 Conclusion296

In this paper, we introduce LUMINA, a novel approach to quantify the utilization of external con-297

text and internal knowledge. These context–knowledge signals provide a principled way to assess298

how LLMs balance retrieved evidence against their own parametric knowledge during generation.299

Experimental results on common benchmarks across four LLMs demonstrate that LUMINA has a300

consistently high performance on hallucination detection for RAG-based generations, outperforming301

prior attempts of quantifying external context and internal knowledge utilization, and being com-302

petitive with supervised hallucination detection models. Analyses also show that LUMINA is robust303

against noise in retrieved documents and can be generalized to the proxy LLM setting, demonstrating304

its usability in real-world scenarios.305
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Ethics Statement306

This work introduces LUMINA, a novel way to estimate the utilization of external context and internal307

knowledge when an LLM generates responses with the RAG setup. LUMINA significantly improves308

the performance of hallucination detection, which will help increase the reliability of RAG systems309

in real-world deployments and reduce the risk of sharing misinformation. Through a deeper analysis310

of LUMINA in the future, researchers may better understand how LLMs utilize external context and311

internal knowledge to generate responses. Such findings will help the community design approaches312

to mitigate hallucinations and create a more reliable AI system.313

Reproducibility Statement314

We provide all details of the implementation of LUMINA in Appendix D, including the approximation315

of MMD, the selection of kernel, and the choice of random documents for measuring external context316

score, as well as the calibration of internal knowledge score. In Sec. 4.1, we illustrate the experimental317

settings, including baselines, datasets, LLMs, and evaluation metrics. The details of baselines and318

datasets are further provided in Appendix B and C, respectively. Furthermore, we provide the319

codebase of LUMINA at https://anonymous.4open.science/r/LUMINA-E71B. These320

comprehensive reports will help future studies easily reproduce our experiments.321
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A Broader Impacts435

Beyond hallucination detection, LUMINA has broader impacts in interpretability and LLM under-436

standing. Specifically, our proposed score validation framework in Sec. 3.3 suggests a novel way to437

empirically validate the finding of mechanistic interpretability, which can be used to highlight the438

soundness of proposed hypotheses. In addition, our proposed information processing rate in Sec. 3.2439

presents a new lens for examining the internal states of LLMs. Deeper investigation of this measure440

could help the community better characterize how LLMs reason and leverage internal knowledge,441

potentially leading to more reliable training and inference processes. While our experiments focus on442

using LUMINA for hallucination detection, its utility extends further. For instance, it could inform443

the design of new training objectives or decoding algorithms aimed at mitigating hallucinations,444

ultimately making LLMs more reliable and trustworthy.445

B Details of Baselines446

(1) Token-level uncertainty:447

• Perplexity: This approach measured the perplexity of the generated response as uncertainty448

and to detect hallucinations.449

• LN-Entropy: This approach measured sequence-level uncertainty with entropy normalized450

by sequence length. A higher entropy indicates greater uncertainty and a higher likelihood451

of hallucinations.452

• Focus: This approach used entropy and token probability as a based score, and calibrated453

it by focusing only on key informative tokens and propagating the score according to the454

attention weight.455

(2) Cross-sample consistency:456

• SelfCKGPT: This approach sampled multiple responses and used an NLI model to check the457

logistic consistency between the target generation and additional samples. In our experiment,458

we follow the setting of Manakul et al. [28] to set the sample size as 20.459
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• EigenScore: Similar to SelfCKGPT, this approach sampled multiple responses and checked460

the semantic consistency between the additional samples and the target generation through461

measuring the eigenvalues of responses’ covariance matrix. In our experiment, we set the462

sample size as 20.463

(3) Verbalization:464

• P(True): This approach prompted an LLM with the generated answer and asked whether465

the LLM think the answer is true. The approach then estimated the probability of the “Yes”466

generated by the LLM.467

• RefChecker: This approach prompted an LLM to extract claims from generation, and468

prompted another LLM to verify the logical consistency between each claim and reference469

documents. In our experiment, we use dongyru/Mistral-7B-Claim-Extractor,470

the model finetuned by Hu et al. [31], to extract claims.471

(4) Utilization of external context and internal knowledge:472

• ReDeEP: For external context utilization, ReDeEP measured the cosine similarity between473

the generated token and topK attended tokens in retrieved documents. For internal knowledge474

utilization, it measured the JS divergence of the vocabulary distributions between logit lens475

outputs before and after FFN layers in a Transformer. At the end, it weighted summed the476

two scores to obtain a hallucination score.477

C Details of Datasets478

RAGTruth. The RAGTruth dataset is a human annotated hallucination detection dataset, containing479

15,090 training data and 2,700 testing data. Each data point consists of a query, retrieved documents,480

LLM-generated answer, and span-level hallucination annotation. The dataset covers three tasks,481

including summarization, data to text generation, and question answering. For each query-and-482

documents pair, RAGTruth provides answers generated by six different LLMs, including Llama2-7B,483

Llama2-13B, Llama2-70B, Mistral-7B, GPT-3.5, and GPT-4. In our experiment, we also utilize484

the extended test set provided by Sun et al. [14], who curated and annotated Llama3-8B generated485

responses.486

HalluRAG. HalluRAG is an LLM annotated hallucination detection dataset for question answering.487

Ridder and Schilling [8] prompted GPT-4o to generate question given sentences from Wikipedia, then488

used Llama2-7B, Llama2-13B, and Mistral-7B to generate answer for each question given the relevant489

Wikipedia article. The hallucination labels were assigned by GPT-4o with a Chain-of-Thought (CoT)490

prompt and verified by human. HalluRAG contains both answerable and unanswerable questions,491

while we only use the answerable instances for evaluation.492

D Implementation Details of LUMINA493

For external context utilization, we measure MMD with Eq. (6), which requires summing over the494

combinations of the entire vocabulary. In practice we approximate it with the top 100 tokens to495

reduce the computational cost. To obtain pctx′ , in our experiment we treat the retrieved documents of496

another data point as the d′ of the target data point. In a real-world RAG system, d′ can be obtained497

by selecting random documents from the data store or retrieving less relevant documents of the query498

with a retrieval model.499

For internal knowledge utilization, Eq. (10) computes the first information process rate of generating500

at based on the next token with the highest probability. However, due to the sampling process of501

generation, the generated token at is not always the highest probability token. Thus, the internal502

knowledge used during the generation process may not fully apply to at. To take this factor into503

account, we calibrate the internal knowledge score by the ratio of probability between the generated504

token and the highest probability token. In the end, the calibrated internal knowledge score of at is505
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Table 3: LUMINA consistently achieves a balanced precision-recall trade-off and high F1 score
across datasets and LLMs. We report the score of PrecOpt, RecallOpt, and F1Opt for LUMINA and
baselines on each dataset.

RAGTruth HalluRAG

LLM Approach PrecOpt ↑ RecallOpt ↑ F1Opt ↑ PrecOpt ↑ RecallOpt ↑ F1Opt ↑

Llama2-7B

Perplexity 0.5080 0.9867 0.6707 0.2531 1.0000 0.4040
LN-Entropy 0.6303 0.7920 0.7020 0.7143 0.7500 0.7317
Focus 0.5276 0.9292 0.6731 0.3077 1.0000 0.4706
SelfCKGPT 0.5125 1.0000 0.6777 0.2631 1.0000 0.4167
EigenScore 0.5201 0.9735 0.6780 0.4333 0.6500 0.5200
P(True) 0.5079 0.9956 0.6726 0.3065 0.9500 0.4634
RefChecker 0.5022 1.0000 0.6686 0.2532 1.0000 0.4040
ReDeEP 0.6898 0.7478 0.7176 0.4167 0.7500 0.5357
LUMINA 0.7131 0.7699 0.7404 0.7826 0.9000 0.8372

Llama2-13B

Perplexity 0.4926 0.9662 0.6525 0.1519 1.0000 0.2637
LN-Entropy 0.6602 0.8164 0.7300 0.5385 0.5833 0.5600
Focus 0.4938 0.9565 0.6513 0.5556 0.4167 0.4762
SelfCKGPT 0.4801 0.9903 0.6467 0.3056 0.9167 0.4583
EigenScore 0.5389 0.9034 0.6751 0.5833 0.5833 0.5833
P(True) 0.6890 0.6957 0.6923 0.2449 1.0000 0.3934
RefChecker 0.4600 1.0000 0.6301 0.2727 0.2500 0.2609
ReDeEP 0.7772 0.7246 0.7500 0.4706 0.6667 0.5517
LUMINA 0.7816 0.7778 0.7797 1.0000 0.7500 0.8571

Llama3-8B

Perplexity 0.6369 0.8519 0.7289 - - -
LN-Entropy 0.5852 0.9465 0.7233 - - -
Focus 0.5571 0.9630 0.7059 - - -
SelfCKGPT 0.5657 0.9918 0.7205 - - -
EigenScore 0.5907 0.9383 0.7250 - - -
P(True) 0.5718 0.9342 0.7094 - - -
RefChecker 0.5400 1.0000 0.7013 - - -
ReDeEP 0.6621 0.7901 0.7205 - - -
LUMINA 0.6988 0.7449 0.7211 - - -

Mistral-7B

Perplexity 0.6187 0.9243 0.7412 0.1702 0.8000 0.2807
LN-Entropy 0.6890 0.9040 0.7820 0.8571 0.6000 0.7059
Focus 0.7175 0.9004 0.7986 0.7143 0.5000 0.5882
SelfCKGPT 0.5914 0.9920 0.7411 0.5385 0.7000 0.6087
EigenScore 0.5931 0.9522 0.7309 1.0000 0.5000 0.6667
P(True) 0.7030 0.8486 0.7690 0.3333 0.3000 0.3158
RefChecker 0.5578 1.0000 0.7161 0.1266 1.0000 0.2247
ReDeEP 0.6506 0.8640 0.7423 0.6250 0.5000 0.5556
LUMINA 0.6600 0.9320 0.7728 0.9000 0.9000 0.9000

defined as506

Ipθ
(at|q, d, a<t) :=

pθ(at|q, d, a<t)

pθ(at,1|q, d, a<t)
· R1

pθ
(q, d, a<t). (11)

E Additional Experimental Results507

E.1 Evaluation with Other Metrics508

Table 3 shows the scores of PrecOpt, RecallOpt, and F1Opt on each dataset. The results show that LU-509

MINA consistently has a balanced precision-recall trade-off, where the differences between PrecOpt510

and RecallOpt are smaller than other baselines. Specifically, it achieves (PrecOpt,RecallOpt) =511

(0.9, 0.9) on HalluRAG with Mistral-7B. This suggests that LUMINA does not over-predict hallucina-512

tions to achieve a high F1Opt score.513
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Table 4: LUMINA achieves a competitive performance against supervised approaches. We report
the score of AUROC (ROC), Pearson’s correlation coefficient (PCC), and AUPRC (PRC) for LUMINA
and baselines on each dataset. The highest scores are set in bold.

RAGTruth HalluRAG

LLM Approach ROC ↑ PCC ↑ PRC ↑ ROC ↑ PCC ↑ PRC ↑

Llama2-7B SAPLMA 0.6508 0.2530 0.6446 0.8813 0.6710 0.8023
LUMINA 0.7646 0.4546 0.7491 0.9153 0.6554 0.7572

Llama2-13B SAPLMA 0.8337 0.5623 0.8466 0.8925 0.8249 0.8647
LUMINA 0.8569 0.6041 0.8436 0.9166 0.6044 0.8497

Mistral-7B SAPLMA 0.8073 0.5027 0.8164 0.9667 0.7920 0.9088
LUMINA 0.7685 0.4623 0.7942 0.9899 0.7529 0.9431
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Figure 6: A good performance of LUMINA happens with a medium λ value. We alter λ in Eq. (1)
to control the weight of internal knowledge score and external context score and evaluate the resulted
hallucination detection performance. We conduct the experiment on the RAGTruth dataset and report
the AUPRC score.

E.2 Compare with supervised baselines514

We further compare LUMINA with SAPLMA [32], a supervised approach that trained a MLP model515

over the internal hidden states of the last generated token to classify whether the generation is516

hallucination or not. Following the original paper, we use hidden states at the 20th layer as input517

features of SAPLMA. Result in Table 4 shows that LUMINA has a competitive performance against518

SAPLMA and even sometimes outperforms it. Note that Table 4 doesn’t show the result of Llama3-8B519

as the training set doesn’t contain responses generated by Llama3-8B.520

E.3 Performance with Hyperparameter Tuning521

We evaluate the hallucination detection performance with λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,522

0.9}. Figure 6 shows the AUPRC of different λ on the RAGTruth dataset. The results show that523

the LUMINA achieves the optimal performance with varies λ across LLMs. For Llama2-13B and524

Mistral-7B, setting λ = 0.5, i.e., the default setting, is the optimal. While for Llama2-7B and525

Llama3-8B, the optimal λ is 0.2. However, for these two models, their performance only drops less526

than 0.025 when setting λ = 0.5, suggesting that weighting internal knowledge and external context527

utilization equally is still a good practice.528
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F Error Analysis529

To analyze the failure of LUMINA, we sample 20 cases from the RAGTruth dataset that are (1)530

hallucinated with high-external context and low-internal knowledge scores (i.e., false negative) or (2)531

non-hallucinated with low-external context and high-internal knowledge scores (i.e., false positive).532

We qualitatively analyze these cases and categorize them into three groups:533

(1) Incorrect labels. Sometimes LLMs generate fabricated content that is not sourced from the534

retrieved document (e.g., a detailed menu of a restaurant). However, these fabricated contents are535

sometimes not identified by human annotators. Also, human annotators sometimes misclassify536

semantically equivalent content as hallucination. In these cases, the provided labels are incorrect, and537

LUMINA indeed correctly detects hallucination.538

(2) Generally low hallucination score for the summarization task. We observe that many false539

negative samples come from the summarization task. In these cases, the LLM does generate content540

that contradicts the retrieved documents and has a relatively high internal knowledge score. However,541

since most of the generated content is still grounded in the retrieved documents, they usually have a542

high external score as well, resulting in a relatively low hallucination score. This observation suggests543

that different tasks might have different distributions of hallucination scores. A better practice is to544

independently evaluate the hallucination detection performance on each task.545

(3) Low quality of retrieved documents. For the false positive cases, we observe that many of546

them are due to the quality issue of the retrieved documents. These documents often contain only547

irrelevant information or are too vague to concretely answer the query. Thus, the LLM has to reason548

over them and respond with “unable to answer” or use its internal knowledge to generate answers with549

details and examples. This results in a relatively high internal knowledge score and a low external550

context score. To address this, a future direction can focus on assessing whether the utilization of551

internal knowledge is necessary and correct, and using that to calibrate the hallucination score.552

G Computational Resources553

LUMINA is a lightweight and efficient approach, which requires only two forward passes to obtain the554

necessary information to compute external context and internal knowledge scores. As LUMINA does555

not require generating multiple samples nor training, it is easy to scale up to a large amount of data.556

All the experiments of LUMINA are conducted on a single Nvidia H100 GPU. The execution time of557

computing both external context and internal knowledge scores varies depending on the length of the558

response. For responses around 150 tokens, the average computational time is less than 1 second.559

17



NeurIPS Paper Checklist560

1. Claims561
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Answer: [Yes]564
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model well-specification, asymptotic approximations only holding locally). The authors587
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tant role in developing norms that preserve the integrity of the community. Reviewers606

will be specifically instructed to not penalize honesty concerning limitations.607

3. Theory assumptions and proofs608
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a complete (and correct) proof?610

Answer: [NA]611
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Answer: [Yes]628
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one good way to accomplish this, but reproducibility can also be provided via detailed642

instructions for how to replicate the results, access to a hosted model (e.g., in the case643

of a large language model), releasing of a model checkpoint, or other means that are644

appropriate to the research performed.645

• While NeurIPS does not require releasing code, the conference does require all submis-646

sions to provide some reasonable avenue for reproducibility, which may depend on the647

nature of the contribution. For example648

(a) If the contribution is primarily a new algorithm, the paper should make it clear how649

to reproduce that algorithm.650

(b) If the contribution is primarily a new model architecture, the paper should describe651

the architecture clearly and fully.652

(c) If the contribution is a new model (e.g., a large language model), then there should653

either be a way to access this model for reproducing the results or a way to reproduce654
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Answer: [Yes]692
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• For asymmetric distributions, the authors should be careful not to show in tables or721

figures symmetric error bars that would yield results that are out of range (e.g. negative722

error rates).723
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8. Experiments compute resources726
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the experiments?729

Answer: [Yes]730

Justification: We provide details on computing resources in Appendix G.731
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• The answer NA means that the paper does not include experiments.733

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,734

or cloud provider, including relevant memory and storage.735

• The paper should provide the amount of compute required for each of the individual736

experimental runs as well as estimate the total compute.737

• The paper should disclose whether the full research project required more compute738

than the experiments reported in the paper (e.g., preliminary or failed experiments that739

didn’t make it into the paper).740

9. Code of ethics741

Question: Does the research conducted in the paper conform, in every respect, with the742
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Answer: [Yes]744
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not deviate from it.746
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.748

• If the authors answer No, they should explain the special circumstances that require a749

deviation from the Code of Ethics.750

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-751

eration due to laws or regulations in their jurisdiction).752

10. Broader impacts753

Question: Does the paper discuss both potential positive societal impacts and negative754

societal impacts of the work performed?755

Answer: [Yes]756

Justification: We discuss broader impacts in Appendix A757
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• The answer NA means that there is no societal impact of the work performed.759
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• The authors should consider possible harms that could arise when the technology is773

being used as intended and functioning correctly, harms that could arise when the774

technology is being used as intended but gives incorrect results, and harms following775

from (intentional or unintentional) misuse of the technology.776

• If there are negative societal impacts, the authors could also discuss possible mitigation777
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11. Safeguards781

Question: Does the paper describe safeguards that have been put in place for responsible782

release of data or models that have a high risk for misuse (e.g., pretrained language models,783

image generators, or scraped datasets)?784

Answer: [NA]785

Justification: The paper poses no such risks.786
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• The answer NA means that the paper poses no such risks.788
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that users adhere to usage guidelines or restrictions to access the model or implementing791
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should describe how they avoided releasing unsafe images.794

• We recognize that providing effective safeguards is challenging, and many papers do795

not require this, but we encourage authors to take this into account and make a best796

faith effort.797

12. Licenses for existing assets798
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• The answer NA means that the paper does not release new assets.826
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16. Declaration of LLM usage868

Question: Does the paper describe the usage of LLMs if it is an important, original, or869

non-standard component of the core methods in this research? Note that if the LLM is used870

only for writing, editing, or formatting purposes and does not impact the core methodology,871

scientific rigorousness, or originality of the research, declaration is not required.872
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LLM) for what should or should not be described.878
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