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Abstract

Retrieval-Augmented Generation (RAG) aims to mitigate hallucinations in large
language models (LLMs) by grounding responses in retrieved documents. Yet,
RAG-based LLMs still hallucinate even when provided with correct and sufficient
context. A growing line of work suggests that this stems from an imbalance be-
tween how models use external context and their internal knowledge, and several
approaches have attempted to quantify these signals for hallucination detection.
However, existing methods require extensive hyperparameter tuning, limiting their
generalizability. We propose LUMINA, a novel framework that detects halluci-
nations in RAG systems through context–knowledge signals: external context
utilization is quantified via distributional distance, while internal knowledge uti-
lization is measured by tracking how predicted tokens evolve across transformer
layers. We further introduce a framework for statistically validating these mea-
surements. Experiments on common RAG hallucination benchmarks and four
open-source LLMs show that LUMINA achieves consistently high AUROC and
AUPRC scores, outperforming prior utilization-based methods by up to +13%
AUROC on HalluRAG. Moreover, LUMINA remains robust under relaxed assump-
tions about retrieval quality and model matching, offering both effectiveness and
practicality.

1 Introduction

Large language models (LLMs) are prone to hallucination, i.e., producing responses that are factually
incorrect, nonsensical, or not grounded in the input or available data, while still appearing fluent
and plausible [1, 2, 3]. One commonly used strategy to mitigate hallucination is providing LLMs
with relevant information retrieved from external knowledge bases, so-called Retrieval-Augmented
Generation (RAG) [4, 5, 6]. However, despite having sufficient and relevant retrieved documents,
RAG systems still have a chance to hallucinate and produce statements that are either unsupported or
contradict the retrieved information [7, 8].

Recent work has shown that such failures often arise from conflicts between an LLM’s internal
knowledge and the retrieved external context [9]. In these cases, models tend to over-rely on internal
knowledge regardless of correctness, undermining factual reliability [10, 11, 12, 13]. Inspired by this
observation, recent approaches attempt to quantify hallucinations in RAG [14, 15, 16]. However,
existing methods rely on mechanistic interpretability heuristics—such as selecting specific attention
heads or transformer layers to achieve the optimal hallucination detection performance—which
require heavy hyperparameter tuning and often fail to generalize across models and datasets.

To overcome these limitations, we propose LUMINA, a new framework for detecting hallucinations in
RAG system through context–knowledge signals, namely the signals of external context utilization and
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Figure 1: The overview of LUMINA. For external context utilization, we propose to measure the
maximum mean discrepancy between two next token probability distributions conditioned on different
documents. For internal knowledge utilization, we introduce the idea of information processing rate
by looking at the ratio of the most probable output token’s probability across transformer layers and
use it to determine the amount of utilized internal knowledge when generating the next token.

internal knowledge utilization, as shown in Figure 1. Rather than targeting particular attention heads
or layers, LUMINA measures these signals in a layer-agnostic manner, requiring less hyperparameter
tuning. Specifically, for external context utilization, we measure the discrepancy between predictive
distributions conditioned on retrieved documents vs. random documents. A larger discrepancy
indicates that the LLM is more sensitive to semantic changes in documents when generating the
answer, implying higher reliance on the external context. For internal knowledge utilization, we
track how the model’s internal states and token predictions evolve across layers: if the internal layers’
predictions do not converge to the final output until later layers, it suggests more information is added
during the layer-wise process, implying stronger reliance on internal knowledge. We further validate
the soundness of our measurements through statistical hypothesis testing on verifiable implications,
establishing a stronger link between the proposed scores and actual utilization.

We conduct extensive experiments on common RAG hallucination benchmarks and across four
LLMs to evaluate the performance of LUMINA on hallucination detection. The results show that
the hallucination score calculated with LUMINA outperforms existing methods by a significant
margin. For example, LUMINA achieves more than 0.9 AUROC on the HalluRAG datasets across
models, with improvements of up to +13% over prior state-of-the-art. Importantly, the decomposition
into external context utilization and internal knowledge utilization provides interpretable insights:
hallucinations are strongly associated with low external context scores and disproportionately high
internal knowledge scores. We further demonstrate that LUMINA is robust across different retrieval
settings. These results validate both the effectiveness and practicality of our framework.

Our key contributions are summarized as follows:

1. We propose LUMINA, a novel approach to quantify utilization of external context and
internal knowledge for RAG-based hallucination detection.

2. We propose a framework to statistically validate LUMINA, showing that they align with the
intended results.

3. We conduct extensive experiments and show that LUMINA outperforms both score-based
and learning based methods in hallucination detection, establishing new state-of-the-art.

2 Preliminaries

2.1 Problem Formulation and Motivation

RAG systems aim to improve factuality by incorporating external documents into the generation
process. However, hallucinations still occur when a model over-relies on its internal parametric
knowledge and under-utilizes the retrieved external context. We provide a formal definition below.
Conjecture 1 (External context vs. internal knowledge utilization). Let pθ be an RAG-based LLM
that takes a query q and retrieved documents d as inputs to generate a response a. Assume d is relevant
to q and contains correct and sufficient information to respond to q. Denote Epθ

(a|q, d), Ipθ
(a|q, d) ∈
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R be the signals of external context utilization and internal knowledge utilization of pθ, respectively,
when generating a. The response a is more likely to be hallucination if Ipθ

(a|q, d) ≫ Epθ
(a|q, d).

Definition 2.1 (Hallucination in an RAG system). Based on Conjecture 1, we define hallucination
scores at both the token and response level. Specifically, for a generated answer a = (a1, . . . , aT )
with T tokens, let Epθ

(at|q, d, a<t), Ipθ
(at|q, d, a<t) ∈ R be the signals of external context utilization

and internal knowledge utilization of pθ when generating the token at, respectively. The token-level
hallucination score of at is defined as

Ht(at|q, d, a<t) := λ · Ipθ
(at|q, d, a<t)− (1− λ) · Epθ

(at|q, d, a<t), (1)

where λ is a hyperparameter. Similarly, the response-level hallucination score of the response a is
defined as the average of the token-level hallucination scores, i.e.,

Hr(a|q, d) :=
1

T

T∑
t=1

Ht(at|q, d, a<t). (2)

In this paper, we focus on the core question: How to quantify the utilization of external context and
internal knowledge?

2.2 Related Work

Prior works have attempted to quantify Epθ
(at|q, d, a<t) and Ipθ

(at|q, d, a<t) using empirical met-
rics [14, 15]. For example, Sun et al. [14] proposed ReDeEP, which measures external context
utilization through cosine similarity between the generated token and tokens in context that have
high attention weights w.r.t. certain attention heads. For internal knowledge utilization, it measures
the Jensen-Shannon (JS) divergence between the hidden states before/after the FFN layer of certain
transformer layers. The success of ReDeEP on some RAG hallucination detection datasets validates
the idea of Conjecture 1. Wang [15] combine the idea of ReDeEP with semantic entropy probes
(SEP) [17]. They quantified external context utilization by measuring the semantic correlation
between the semantic entropy of the generated token and attended tokens in the context. For in-
ternal knowledge utilization, they measured the absolute difference between the semantic entropy
corresponding to hidden states before and after the FFN layer.

Although these approaches effectively detect hallucinations in the RAG system, they have two major
limitations. First, these approaches require selecting specific attention heads and transformer layers
to compute the external context score and internal knowledge score. However, the selection process
is non-trivial and requires extensive hyperparameter tuning. In addition, these hyperparameters are
dataset and model-specific, limiting the generalizability across different datasets and models. Another
limitation is that although these works demonstrated the correlation between their proposed scores
and hallucination, they did not validate whether the scores truly reflect the utilization of external
context and internal knowledge.

3 Methodology

Overview. To overcome the limitations of prior empirical approaches, we introduce LUMINA, a new
framework for quantifying both external context and internal knowledge utilization. In Section 3.1 and
Section 3.2, we formalize the quantification of the two signals, which will be combined to compute
the final hallucination score. In Section 3.3, we propose to validate the soundness of LUMINA through
extensive hypothesis testing, addressing the challenges of score validation in previous works.

3.1 Quantifying External Context Utilization

To measure LLM’s external context utilization, our key idea is to assess its sensitivity to semantic
changes in the input documents. If the LLM effectively incorporates the external context to generate
a response, then replacing relevant documents with random ones should noticeably change the token
probability distribution. Formally, we propose the following measurement:

Measurement 1 (External context utilization). Let a be an LLM-generated answer to query q
with retrieved documents d as input. Assume d is relevant to q and contains correct and sufficient
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information to respond to q. Let d′ be a subset of random documents irrelevant to q. The model’s
predictive distribution over tokens induces two (approximated) distributions over embeddings:

P (Ev) = pθ(v | q, d, a<t), Q(Ev) = pθ(v | q, d′, a<t), (3)

where each token v ∈ V in the vocabulary space is associated with an embedding Ev ∈ RD.
Then, the degree to which the model uses external context for generating token at is reflected in the
divergence between the two distributions conditioned on d versus d′:

Epθ
(at|q, d, a<t) := ∆(P,Q), (4)

where ∆ : P × P → R+ is a distance function between two probability distributions.

Note that we adopt P (Ev) and Q(Ev) as proxies to approximate the ground truth embedding
distribution, as it is challenging to estimate it over the high-dimensional vector space. We instantiate
∆ with Maximum Mean Discrepancy (MMD), which measures the distance of two probability
distributions by mapping them into a Reproducing Kernel Hilbert Space.
Definition 3.1 (Maximum Mean Discrepancy [18]). Given a positive semi-definite kernel function
k, the squared MMD between two probability distributions P and Q is defined as

MMD2
k(P,Q) := EA,A′∼P [k(A,A′)] + EB,B′∼Q[k(B,B′)]− 2EA∼P,B∼Q[k(A,B)], (5)

where A,A′ are i.i.d. vectors randomly sampled from P and B,B′ are sampled from Q.

This metric provides us with a non-parametric and LLM-agnostic way to quantify the utilization of
external context, making it generalizable to different models and datasets.

By rewriting MMD with P and Q we defined in Eq. (3) over token embeddings, we obtain:

Epθ
(at|q, d, a<t) :=

∑
u,v∈V

P (Eu)P (Ev)k(Eu, Ev) +
∑

u,v∈V
Q(Eu)Q(Ev)k(Eu, Ev)

− 2
∑

u,v∈V
P (Eu)Q(Ev)k(Eu, Ev).

(6)

We adopt the cosine kernel:

kcos(Eu, Ev) :=
1

2

(
1 +

ET
u Ev

∥Eu∥2∥Ev∥2

)
. (7)

Note that the cosine kernel acts equivalent to computing cosine similarity between two token em-
beddings, which is commonly used to measure the semantic similarity of two pieces of text. In
Section 4.4, we experiment with alternative kernels such as the Gaussian kernel, and we show that
our method is not sensitive to the choice of kernels.

3.2 Quantifying Internal Knowledge Utilization

To quantify the utilization of internal knowledge, we focus on the signals in internal states of an
LLM. Specifically, a transformer-based autoregressive LLM has multiple layers, through which
information is gradually added into a residual stream that flows from the input layer to the output
layer, shaping the output token representation and probability distribution [19]. Studies have found
that by projecting the hidden state of each layer to the token representation space, we can interpret
what an LLM believes after the process of each layer [20]. In addition, via logit lens [20], studies
have identified the saturation event in an LLM, i.e., the top-k prediction of the LLM remains constant
in all subsequent layers after a certain layer called the k-th saturation layer [19, 21].

Inspired by these observations, we propose a metric that quantifies how actively the model updates its
predictions across layers. Formally, we define the rate of information processing below.
Definition 3.2 (Information processing rate). Given an LLM pθ with L layers, which takes x<t as
the input and generate the next token xt, we denote xt,1 := argmaxv pθ(v|x<t) as the most probable
next token and ht,l ∈ RD as the l-th layer hidden state when generating xt. Let f : RD → P be a
projection from a hidden state to a probability distribution over the vocabulary V . The information
processing rate of pθ conditioned on x<t is defined as

Rpθ
(x<t) :=

∑L−1
l=1

(
1−min

{
[f(ht,l)]xt,1

pθ(xt,1|x<t)
, 1
})

· l∑L−1
l′=1

l′

H(f(ht,l′ ))

, (8)
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where H(·) is the entropy function, and f is the logit lens [20] that projects the hidden state of each
layer to logits using the LayerNorm and the unembedding matrix W , i.e.,

LogitLens(h) := LayerNorm(h)W , f(·) := Softmax(LogitLens(·)). (9)

Specifically, Rpθ
(x<t) captures two key elements: (1) The numerator measures the extent to which

each layer’s prediction for the most probable token differs from the final output, weighted by layer
depth to emphasize later-layer processing. When

[f(ht,l)]xt,1

pθ(xt,1|x<t)
is small, it indicates the layer has not

yet converged to the final prediction, suggesting active information processing. (2) The denominator
provides adaptive normalization based on each layer’s prediction uncertainty (entropy), giving higher
relative weight to layers that exhibit confident, decisive processing patterns. Given this definition, we
attribute the utilization of internal knowledge to the 1st information processing rate and propose the
following measurement:
Measurement 2 (Internal knowledge utilization). An LLM is considered to be more heavily
utilizing its internal knowledge to generate at when it exhibits a higher information processing rate.
Specifically, we propose that the internal knowledge utilization of an LLM to generate at given q and
d can be measured as

Ipθ
(at|q, d, a<t) := Rpθ

(q, d, a<t). (10)

3.3 Statistical Validation of the Measurement

In this section, we validate the soundness of our approach. Previous work such as Sun et al. [14]
primarily verified whether their scores have a causal relationship with hallucination but failed to show
the relationship between the scores and actual external context/internal knowledge utilization. To
address this, we directly assess whether our measurements capture the intended notion of utilization.
Specifically, we derive verifiable implications that must hold if our proposed measurements are valid.
We then use the proposed score to verify these implications with statistical hypothesis testing. If the
proposed score passes all tests, the score reflects the corresponding utilization.

External context utilization. To validate Measurement 1, we examine the following implications:

H1. If Measurement 1 is valid, then Epθ
(at|q, d, a<t) > Epθ

(a′t|q,∅, a′<t). That is, generations with
retrieved documents have stronger external context utilization than generations without.

H2. If Measurement 1 is valid, then Epθ
(at|qsum, dsum, a<t) > Epθ

(at|qQA, dQA, a<t). That is,
summarization tasks should exhibit higher external context utilization than question answering.

Internal knowledge utilization. To validate Measurement 2, we examine the following:

H3. If Measurement 2 is valid, then R1
pθ
(q,∅, a<t) > R1

pθ
(q, d, a<t). That is, generating an answer

without retrieved documents requires more internal knowledge than with retrieved documents.
H4. If Measurement 2 is valid, then R1

pθ
(qD2T, dD2T, a<t) > R1

pθ
(qsum, dsum, a<t). In other words,

data-to-text generation requires more internal knowledge than summarization.

Table 1: All the hypotheses pass the statistical tests. For H1, H2, H4, we report one-tailed t-statistic;
for H3, we report paired-sample one-tailed t-statistic. All four implications reject their null hypothesis,
validating the soundness of LUMINA. Note that the tests are run with > 65k tokens and the magnitude
of the t-statistic means how easy we can distinguish the two distributions. * p < 0.05; ** p < 0.01;
*** p < 0.001.

LLM H1 H2 H3 H4

Llama2-7B 79.85*** 27.67*** 101.20*** 15.36***
Llama2-13B 73.49*** 20.51*** 91.00*** 7.71***
Llama3-8B 94.15*** 6.35*** 102.44*** 15.85***
Mistral-7B 88.70*** 6.21*** 109.26*** 9.69***

To examine H1, we utilize data in the QA set of RAGTruth [7]. We use the original data to compute
Epθ

(at|q, d, a<t), and generate additional answers without providing retrieved documents as a′ to
compute Epθ

(a′t|q,∅, a′<t). For H2, we utilize the Summary and QA set of RAGTruth; for H4,
the Summary and Data2Text set; and for H3, the entire RAGTruth dataset. We test the hypotheses
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with four different instruction-tuned LLMs, including Llama2-{7B, 13B} [22], Llama3-8B [23], and
Mistral-7B [24]. Results in Table 1 indicate that all four implications reject their null hypothesis,
validating our measurements for external context utilization and internal knowledge utilization.

4 Experiments

4.1 Experimental Settings

Baselines. We compare LUMINA with baselines across 8 different hallucination detection strategies:
(1) Uncertainty-based, which detects hallucination by estimating uncertainty via token-level proba-
bility or entropy. Baselines of this category include Perplexity [25], LN-Entropy [26], and Focus [27].
(2) Cross-sample consistency, which detects hallucination by sampling multiple responses for a
query and measuring their (logic/semantic) consistency. Approaches include SelfCKGPT [28] and
EigenScore [29]. (3) Verbalization, which detects hallucinations by prompting another LLM to score
the correctness of the answer. Approaches include P(True) [30] and RefChecker [31]. (4) Utilization
of external context and internal knowledge, which decouples these two signals via findings in
the study of mechanistic interpretability. Baseline of this category is ReDeEP [14]. Details of each
baseline are introduced in Appendix B.

LLMs. To demonstrate the generalizability of LUMINA, we conduct experiments with four open-
sourced LLMs, including Llama2-{7B, 13B}, Llama3-8B, and Mistral-7B. Specifically, each LLM
is used to detect hallucinations in responses generated by the same model. We also report the
performance of proxy LLM setting, i.e., using one LLM to detect hallucinations in responses
generated by another model, in Sec. 4.3. All LLMs are the instruction-tuned version.

Datasets. Experiments are conducted on two representative RAG hallucination detection bench-
marks: RAGTruth [7], the first high-quality RAG hallucination detection dataset, consisting of three
types of RAG tasks, including question answering, data-to-text writing, and news summarization.
HalluRAG [8], a dataset of free-form question answering in an RAG setting. Details of these datasets
are introduced in Appendix C.

Evaluation metrics. We measure the performance with three metrics: AUROC, AUPRC, and
Pearson’s correlation coefficient (PCC). AUPRC captures precision-recall trade-offs, while AUROC
evaluates the trade-offs between true and false positive rates. These metrics are threshold-agnostic
and better suited for comparing scoring-based methods. We also report the optimal precision, recall,
and F1 score (PrecOpt,RecallOpt,F1Opt) in Appendix E.1, where F1Opt is the optimal F1 score
among all possible threshold and PrecOpt and RecallOpt are corresponding Precision and Recall.

Implementation details. We adopt λ = 0.5 to compute Eq. (1) as ablations show that balancing
the scores of external context and internal knowledge yields relatively strong performance (see
Appendix E.3 for detailed ablations). Other implementation details and computational resources of
LUMINA are reported in Appendix D and G, respectively.

4.2 Main Results

LUMINA achieves state-of-the-art performance. Table 2 summarizes the experimental compar-
ison across methods. The results show that LUMINA has a consistently high performance across
datasets and LLMs. In particular, it almost always outperforms ReDeEP, the previous attempt of
measuring the utilization of external context and internal knowledge to detect hallucinations. The gap
between them is particularly large on the HalluRAG dataset. Noticeably, LUMINA achieves more than
0.9 AUROC on the HalluRAG dataset across models, outperforming the baselines by a substantial
margin. We further conduct an error analysis to see when and why LUMINA fails. Specifically,
we sample 20 false-negative and false-positive cases from the RAGTruth dataset, respectively, and
qualitatively analyze the reason of errors. The result reveals that most of the errors stem from incorrect
labels and low-quality retrieved documents of the dataset, suggesting a potentially higher performance
in a setting with high-quality data. The details of this analysis can be found in Appendix F.
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Table 2: LUMINA consistently achieves a high performance across datasets and LLMs. The
highest scores are set in bold. Note that HalluRAG dataset does not contain responses generated by
Llama3-8B.

RAGTruth HalluRAG

LLM Approach AUROC ↑ PCC ↑ AUPRC ↑ AUROC ↑ PCC ↑ AUPRC ↑

Llama2-7B

Perplexity 0.5103 -0.0118 0.4836 0.4610 -0.0673 0.2332
LN-Entropy 0.6964 0.3318 0.6615 0.9102 0.5133 0.6812
Focus 0.5633 0.0811 0.5386 0.5652 0.2415 0.3844
SelfCKGPT 0.4787 -0.0279 0.4859 0.4669 -0.0070 0.2377
EigenScore 0.5454 0.0717 0.5183 0.6720 0.2705 0.4470
P(True) 0.5197 0.0404 0.5334 0.5847 0.1143 0.2976
RefChecker 0.5869 0.1751 0.6827 0.4907 -0.0255 0.2750
ReDeEP 0.7273 0.3859 0.6971 0.6771 0.1468 0.3378
LUMINA 0.7646 0.4546 0.7491 0.9153 0.6554 0.7572

Llama2-13B

Perplexity 0.4539 -0.1020 0.3993 0.2548 -0.2366 0.0944
LN-Entropy 0.7677 0.4446 0.6838 0.7826 0.3262 0.3567
Focus 0.5451 0.0130 0.4603 0.6739 0.2563 0.3181
SelfCKGPT 0.4545 -0.0835 0.4106 0.7729 0.2640 0.3029
EigenScore 0.6329 0.2080 0.5202 0.7862 0.4250 0.4867
P(True) 0.7543 0.3821 0.7418 0.6914 0.2480 0.2146
RefChecker 0.6363 0.2723 0.6988 0.5670 0.1390 0.3169
ReDeEP 0.8055 0.5195 0.7792 0.7645 0.2705 0.3001
LUMINA 0.8569 0.6041 0.8436 0.9166 0.6044 0.8497

Llama3-8B

Perplexity 0.7130 0.3568 0.7183 - - -
LN-Entropy 0.7072 0.3500 0.7109 - - -
Focus 0.5258 0.0375 0.5380 - - -
SelfCKGPT 0.5339 0.0491 0.5550 - - -
EigenScore 0.6001 0.1774 0.5824 - - -
P(True) 0.5407 0.0928 0.5502 - - -
RefChecker 0.5718 0.1494 0.6874 - - -
ReDeEP 0.7495 0.4458 0.7817 - - -
LUMINA 0.7446 0.4236 0.7874 - - -

Mistral-7B

Perplexity 0.6200 0.1463 0.6106 0.5362 -0.0264 0.1261
LN-Entropy 0.7607 0.4386 0.7377 0.9188 0.6076 0.7347
Focus 0.7803 0.4188 0.7647 0.8565 0.4318 0.4219
SelfCKGPT 0.5680 0.0812 0.5698 0.8275 0.5552 0.6098
EigenScore 0.5642 0.1006 0.5637 0.8652 0.6411 0.7337
P(True) 0.7530 0.4334 0.7494 0.5899 0.0886 0.1771
RefChecker 0.6017 0.2047 0.7303 0.5065 0.0153 0.1784
ReDeEP 0.7615 0.4613 0.8133 0.7870 0.2611 0.3516
LUMINA 0.7685 0.4623 0.7942 0.9899 0.7529 0.9431

Comparison with supervised approach. We also compare LUMINA with SAPLMA [32], a super-
vised approach that trained a binary classifier on the last token hidden states to detect hallucination.
Since our method is unsupervised in nature and does not rely on labeled data, the supervised baseline
can be viewed as a performance upper bound. Results in Appendix E.2 show that LUMINA achieves
a competitive performance against SAPLMA and even sometimes outperforms it, all without any
training, highlighting both its supreme performance and ease of deployment.

4.3 Relaxing Assumptions

In Section 3, we implicitly make two assumptions: 1) perfect context assumption: we assume the
retrieved documents d are correct, sufficient, and relevant to the query. 2) same LLM assumption:
we assume the LLM used to compute the external context score and internal knowledge score is
the same as the LLM used to generate responses. These two assumptions are usually introduced
in other hallucination detection works as well [27, 14]. Unfortunately, they are often strong and
have a significant impact on the performance, limiting the usability of these methods (such as for
open-sourced model-generated responses only). In this section, we investigate the performance of
LUMINA when relaxing these two assumptions, showing the robustness of LUMINA.
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Figure 2: Noises in context do not largely degrade the performance of LUMINA. We add 0 ∼ 30%
noises to the retrieved documents and random documents and evaluate the hallucination detection
performance. The experiment is conducted on the RAGTruth dataset.
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Figure 3: The “same LLM” setting is not essential for LUMINA to achieve the optimal perfor-
mance. On the RAGTruth dataset, for each set of responses generated by the same LLM, we apply
LUMINA with a different base LLM to detect hallucination. Bars in more saturated shades indicate
settings where the same LLM is used for both generation and detection.

Relaxing perfect context assumption. We relax this assumption by gradually injecting noise into
the retrieved documents d and random documents d′. Specifically, for the assumption on retrieved
documents, we randomly remove {0%, 10%, 20%, 30%} sentences from d. And for the assumption
on the random documents, we randomly add {0%, 10%, 20%, 30%} sentences from d to d′. Figure 2
shows the AUPRC of all noise injection combinations on the RAGTruth dataset. The result shows that
except Llama2-13B, which has a > 0.1 performance drop after injecting noises, LUMINA with other
LLMs yields stable performance. Furthermore, after removing sentences from retrieved documents,
LUMINA with Llama3-8B even achieves a higher AUPRC. These results demonstrate the robustness
of LUMINA against context noises.

Relaxing the same LLM assumption. We relax this assumption by using different LLMs to
compute the scores for a response. Specifically, we use Llama2-7B, Llama2-13B, Llama3-8B,
Mistral-7B, and Qwen2.5-7B [33] to detect hallucination on the RAGTruth dataset, which contains
responses generated by Llama2-7B, Llama2-13B, Llama2-70B, Llama3-8B, Mistral-7B, GPT-3.5,
and GPT-4. Figure 3 shows AUROC across different generator-detector LLM pairs.

The results show that the same model setting is not always necessary. Specifically, Llama2-7B
achieves a comparable or higher AUROC than Llama3-8B on Llama3-8B responses. Moreover,
LUMINA with Llama2-7B and Llama3-8B has stable performance across different generation LLMs.
Overall, LUMINA demonstrates a plausible solution for generation LLM-agnostic hallucination
detection, which is more practical in real-world scenarios.

4.4 Ablation Study

Impact of external context & internal knowledge. Our final hallucination score is the combination
of the external context score and internal knowledge score. To obtain more insights into how each
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Figure 4: Combining scores of external context and internal knowledge boosts the hallucination
detection performance. Left: 2D kernel density estimation (KDE) of the distribution of external
context score and internal knowledge score of Llama2-13B responses on the RAGTruth dataset. Right:
Hallucination detection performance with external/internal score only, as well as the performance of
their combination.

component contributes to the final score, we ablate on the components by considering only the
external context score and internal knowledge score. The right plot of Figure 4 shows that combining
scores of external context and internal knowledge achieves the highest AUPRC on the RAGTruth
dataset for every LLM. For example, on Llama2-13B, the combination leads to more than 10%
improvement. This observation justifies the effectiveness of the hallucination score introduced in
Definition 2.1. In addition, the left plot of Figure 4 shows that a response generated by Llama2-13B
is more likely to be hallucination if it has a high internal knowledge score and a low external context
score. This observation validates Conjecture 1 and suggests that Eq. (1) does not imply an objective
function that forces LLM only using external context to answer questions. Instead, it suggests that
the internal knowledge utilization should be grounded in an external context to achieve a reliable
generation. Further experiments are shown in Appendix E.3.
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LLM

Kernel

RBF
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Figure 5: MMD with cosine kernel performs
similarly or better than with RBF kernel.

Impact of kernel selection. We ablate on
the selection of kernel k ∈ {Cosine,RBF0.5,
RBF0.7,RBF1,RBF2,RBF3}, where RBFσ

is a RBF kernel, i.e., RBFσ(Eu, Ev) :=

exp
(
−∥Eu−Ev∥2

2

2σ2

)
. Figure 5 shows the

AUPRC of different kernels on the RAGTruth
dataset. The results show that the optimal setting
of the RBF kernel has a similar performance to
the cosine kernel, suggesting our external con-
text score is insensitive to the kernel selection.
We default to the cosine kernel as it is less de-
pendent on hyperparameters, making it easy to
use in practice.

5 Conclusion

In this paper, we introduce LUMINA, a novel approach to quantify the utilization of external con-
text and internal knowledge. These context–knowledge signals provide a principled way to assess
how LLMs balance retrieved evidence against their own parametric knowledge during generation.
Experimental results on common benchmarks across four LLMs demonstrate that LUMINA has a
consistently high performance on hallucination detection for RAG-based generations, outperforming
prior attempts of quantifying external context and internal knowledge utilization, and being com-
petitive with supervised hallucination detection models. Analyses also show that LUMINA is robust
against noise in retrieved documents and can be generalized to the proxy LLM setting, demonstrating
its usability in real-world scenarios.
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comprehensive reports will help future studies easily reproduce our experiments.
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A Broader Impacts

Beyond hallucination detection, LUMINA has broader impacts in interpretability and LLM under-
standing. Specifically, our proposed score validation framework in Sec. 3.3 suggests a novel way to
empirically validate the finding of mechanistic interpretability, which can be used to highlight the
soundness of proposed hypotheses. In addition, our proposed information processing rate in Sec. 3.2
presents a new lens for examining the internal states of LLMs. Deeper investigation of this measure
could help the community better characterize how LLMs reason and leverage internal knowledge,
potentially leading to more reliable training and inference processes. While our experiments focus on
using LUMINA for hallucination detection, its utility extends further. For instance, it could inform
the design of new training objectives or decoding algorithms aimed at mitigating hallucinations,
ultimately making LLMs more reliable and trustworthy.

B Details of Baselines

(1) Token-level uncertainty:

• Perplexity: This approach measured the perplexity of the generated response as uncertainty
and to detect hallucinations.

• LN-Entropy: This approach measured sequence-level uncertainty with entropy normalized
by sequence length. A higher entropy indicates greater uncertainty and a higher likelihood
of hallucinations.

• Focus: This approach used entropy and token probability as a based score, and calibrated
it by focusing only on key informative tokens and propagating the score according to the
attention weight.

(2) Cross-sample consistency:

• SelfCKGPT: This approach sampled multiple responses and used an NLI model to check the
logistic consistency between the target generation and additional samples. In our experiment,
we follow the setting of Manakul et al. [28] to set the sample size as 20.
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• EigenScore: Similar to SelfCKGPT, this approach sampled multiple responses and checked
the semantic consistency between the additional samples and the target generation through
measuring the eigenvalues of responses’ covariance matrix. In our experiment, we set the
sample size as 20.

(3) Verbalization:

• P(True): This approach prompted an LLM with the generated answer and asked whether
the LLM think the answer is true. The approach then estimated the probability of the “Yes”
generated by the LLM.

• RefChecker: This approach prompted an LLM to extract claims from generation, and
prompted another LLM to verify the logical consistency between each claim and reference
documents. In our experiment, we use dongyru/Mistral-7B-Claim-Extractor,
the model finetuned by Hu et al. [31], to extract claims.

(4) Utilization of external context and internal knowledge:

• ReDeEP: For external context utilization, ReDeEP measured the cosine similarity between
the generated token and topK attended tokens in retrieved documents. For internal knowledge
utilization, it measured the JS divergence of the vocabulary distributions between logit lens
outputs before and after FFN layers in a Transformer. At the end, it weighted summed the
two scores to obtain a hallucination score.

C Details of Datasets

RAGTruth. The RAGTruth dataset is a human annotated hallucination detection dataset, containing
15,090 training data and 2,700 testing data. Each data point consists of a query, retrieved documents,
LLM-generated answer, and span-level hallucination annotation. The dataset covers three tasks,
including summarization, data to text generation, and question answering. For each query-and-
documents pair, RAGTruth provides answers generated by six different LLMs, including Llama2-7B,
Llama2-13B, Llama2-70B, Mistral-7B, GPT-3.5, and GPT-4. In our experiment, we also utilize
the extended test set provided by Sun et al. [14], who curated and annotated Llama3-8B generated
responses.

HalluRAG. HalluRAG is an LLM annotated hallucination detection dataset for question answering.
Ridder and Schilling [8] prompted GPT-4o to generate question given sentences from Wikipedia, then
used Llama2-7B, Llama2-13B, and Mistral-7B to generate answer for each question given the relevant
Wikipedia article. The hallucination labels were assigned by GPT-4o with a Chain-of-Thought (CoT)
prompt and verified by human. HalluRAG contains both answerable and unanswerable questions,
while we only use the answerable instances for evaluation.

D Implementation Details of LUMINA

For external context utilization, we measure MMD with Eq. (6), which requires summing over the
combinations of the entire vocabulary. In practice we approximate it with the top 100 tokens to
reduce the computational cost. To obtain pctx′ , in our experiment we treat the retrieved documents of
another data point as the d′ of the target data point. In a real-world RAG system, d′ can be obtained
by selecting random documents from the data store or retrieving less relevant documents of the query
with a retrieval model.

For internal knowledge utilization, Eq. (10) computes the first information process rate of generating
at based on the next token with the highest probability. However, due to the sampling process of
generation, the generated token at is not always the highest probability token. Thus, the internal
knowledge used during the generation process may not fully apply to at. To take this factor into
account, we calibrate the internal knowledge score by the ratio of probability between the generated
token and the highest probability token. In the end, the calibrated internal knowledge score of at is
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Table 3: LUMINA consistently achieves a balanced precision-recall trade-off and high F1 score
across datasets and LLMs. We report the score of PrecOpt, RecallOpt, and F1Opt for LUMINA and
baselines on each dataset.

RAGTruth HalluRAG

LLM Approach PrecOpt ↑ RecallOpt ↑ F1Opt ↑ PrecOpt ↑ RecallOpt ↑ F1Opt ↑

Llama2-7B

Perplexity 0.5080 0.9867 0.6707 0.2531 1.0000 0.4040
LN-Entropy 0.6303 0.7920 0.7020 0.7143 0.7500 0.7317
Focus 0.5276 0.9292 0.6731 0.3077 1.0000 0.4706
SelfCKGPT 0.5125 1.0000 0.6777 0.2631 1.0000 0.4167
EigenScore 0.5201 0.9735 0.6780 0.4333 0.6500 0.5200
P(True) 0.5079 0.9956 0.6726 0.3065 0.9500 0.4634
RefChecker 0.5022 1.0000 0.6686 0.2532 1.0000 0.4040
ReDeEP 0.6898 0.7478 0.7176 0.4167 0.7500 0.5357
LUMINA 0.7131 0.7699 0.7404 0.7826 0.9000 0.8372

Llama2-13B

Perplexity 0.4926 0.9662 0.6525 0.1519 1.0000 0.2637
LN-Entropy 0.6602 0.8164 0.7300 0.5385 0.5833 0.5600
Focus 0.4938 0.9565 0.6513 0.5556 0.4167 0.4762
SelfCKGPT 0.4801 0.9903 0.6467 0.3056 0.9167 0.4583
EigenScore 0.5389 0.9034 0.6751 0.5833 0.5833 0.5833
P(True) 0.6890 0.6957 0.6923 0.2449 1.0000 0.3934
RefChecker 0.4600 1.0000 0.6301 0.2727 0.2500 0.2609
ReDeEP 0.7772 0.7246 0.7500 0.4706 0.6667 0.5517
LUMINA 0.7816 0.7778 0.7797 1.0000 0.7500 0.8571

Llama3-8B

Perplexity 0.6369 0.8519 0.7289 - - -
LN-Entropy 0.5852 0.9465 0.7233 - - -
Focus 0.5571 0.9630 0.7059 - - -
SelfCKGPT 0.5657 0.9918 0.7205 - - -
EigenScore 0.5907 0.9383 0.7250 - - -
P(True) 0.5718 0.9342 0.7094 - - -
RefChecker 0.5400 1.0000 0.7013 - - -
ReDeEP 0.6621 0.7901 0.7205 - - -
LUMINA 0.6988 0.7449 0.7211 - - -

Mistral-7B

Perplexity 0.6187 0.9243 0.7412 0.1702 0.8000 0.2807
LN-Entropy 0.6890 0.9040 0.7820 0.8571 0.6000 0.7059
Focus 0.7175 0.9004 0.7986 0.7143 0.5000 0.5882
SelfCKGPT 0.5914 0.9920 0.7411 0.5385 0.7000 0.6087
EigenScore 0.5931 0.9522 0.7309 1.0000 0.5000 0.6667
P(True) 0.7030 0.8486 0.7690 0.3333 0.3000 0.3158
RefChecker 0.5578 1.0000 0.7161 0.1266 1.0000 0.2247
ReDeEP 0.6506 0.8640 0.7423 0.6250 0.5000 0.5556
LUMINA 0.6600 0.9320 0.7728 0.9000 0.9000 0.9000

defined as

Ipθ
(at|q, d, a<t) :=

pθ(at|q, d, a<t)

pθ(at,1|q, d, a<t)
· R1

pθ
(q, d, a<t). (11)

E Additional Experimental Results

E.1 Evaluation with Other Metrics

Table 3 shows the scores of PrecOpt, RecallOpt, and F1Opt on each dataset. The results show that LU-
MINA consistently has a balanced precision-recall trade-off, where the differences between PrecOpt

and RecallOpt are smaller than other baselines. Specifically, it achieves (PrecOpt,RecallOpt) =
(0.9, 0.9) on HalluRAG with Mistral-7B. This suggests that LUMINA does not over-predict hallucina-
tions to achieve a high F1Opt score.
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Table 4: LUMINA achieves a competitive performance against supervised approaches. We report
the score of AUROC (ROC), Pearson’s correlation coefficient (PCC), and AUPRC (PRC) for LUMINA
and baselines on each dataset. The highest scores are set in bold.

RAGTruth HalluRAG

LLM Approach ROC ↑ PCC ↑ PRC ↑ ROC ↑ PCC ↑ PRC ↑

Llama2-7B SAPLMA 0.6508 0.2530 0.6446 0.8813 0.6710 0.8023
LUMINA 0.7646 0.4546 0.7491 0.9153 0.6554 0.7572

Llama2-13B SAPLMA 0.8337 0.5623 0.8466 0.8925 0.8249 0.8647
LUMINA 0.8569 0.6041 0.8436 0.9166 0.6044 0.8497

Mistral-7B SAPLMA 0.8073 0.5027 0.8164 0.9667 0.7920 0.9088
LUMINA 0.7685 0.4623 0.7942 0.9899 0.7529 0.9431
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Figure 6: A good performance of LUMINA happens with a medium λ value. We alter λ in Eq. (1)
to control the weight of internal knowledge score and external context score and evaluate the resulted
hallucination detection performance. We conduct the experiment on the RAGTruth dataset and report
the AUPRC score.

E.2 Compare with supervised baselines

We further compare LUMINA with SAPLMA [32], a supervised approach that trained a MLP model
over the internal hidden states of the last generated token to classify whether the generation is
hallucination or not. Following the original paper, we use hidden states at the 20th layer as input
features of SAPLMA. Result in Table 4 shows that LUMINA has a competitive performance against
SAPLMA and even sometimes outperforms it. Note that Table 4 doesn’t show the result of Llama3-8B
as the training set doesn’t contain responses generated by Llama3-8B.

E.3 Performance with Hyperparameter Tuning

We evaluate the hallucination detection performance with λ ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8,
0.9}. Figure 6 shows the AUPRC of different λ on the RAGTruth dataset. The results show that
the LUMINA achieves the optimal performance with varies λ across LLMs. For Llama2-13B and
Mistral-7B, setting λ = 0.5, i.e., the default setting, is the optimal. While for Llama2-7B and
Llama3-8B, the optimal λ is 0.2. However, for these two models, their performance only drops less
than 0.025 when setting λ = 0.5, suggesting that weighting internal knowledge and external context
utilization equally is still a good practice.
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F Error Analysis

To analyze the failure of LUMINA, we sample 20 cases from the RAGTruth dataset that are (1)
hallucinated with high-external context and low-internal knowledge scores (i.e., false negative) or (2)
non-hallucinated with low-external context and high-internal knowledge scores (i.e., false positive).
We qualitatively analyze these cases and categorize them into three groups:

(1) Incorrect labels. Sometimes LLMs generate fabricated content that is not sourced from the
retrieved document (e.g., a detailed menu of a restaurant). However, these fabricated contents are
sometimes not identified by human annotators. Also, human annotators sometimes misclassify
semantically equivalent content as hallucination. In these cases, the provided labels are incorrect, and
LUMINA indeed correctly detects hallucination.

(2) Generally low hallucination score for the summarization task. We observe that many false
negative samples come from the summarization task. In these cases, the LLM does generate content
that contradicts the retrieved documents and has a relatively high internal knowledge score. However,
since most of the generated content is still grounded in the retrieved documents, they usually have a
high external score as well, resulting in a relatively low hallucination score. This observation suggests
that different tasks might have different distributions of hallucination scores. A better practice is to
independently evaluate the hallucination detection performance on each task.

(3) Low quality of retrieved documents. For the false positive cases, we observe that many of
them are due to the quality issue of the retrieved documents. These documents often contain only
irrelevant information or are too vague to concretely answer the query. Thus, the LLM has to reason
over them and respond with “unable to answer” or use its internal knowledge to generate answers with
details and examples. This results in a relatively high internal knowledge score and a low external
context score. To address this, a future direction can focus on assessing whether the utilization of
internal knowledge is necessary and correct, and using that to calibrate the hallucination score.

G Computational Resources

LUMINA is a lightweight and efficient approach, which requires only two forward passes to obtain the
necessary information to compute external context and internal knowledge scores. As LUMINA does
not require generating multiple samples nor training, it is easy to scale up to a large amount of data.
All the experiments of LUMINA are conducted on a single Nvidia H100 GPU. The execution time of
computing both external context and internal knowledge scores varies depending on the length of the
response. For responses around 150 tokens, the average computational time is less than 1 second.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The claims in Abstract and Introduction are aligned with the content in
Section 3 and 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [No]
Justification:
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification:
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide detailed experimental settings in Section 4 and Appendix D, G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
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Justification: We provide the link to our released code in the Reproducibility Statement.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide detailed experimental settings in Appendix D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [NA]
Justification: No randomness in our approach.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.
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• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provide details on computing resources in Appendix G.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We reviewed the NeurIPS Code of Ethics, and confirmed that our work does
not deviate from it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss broader impacts in Appendix A
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.
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• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite relevant works in Section 4 and Appendix B, C.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The link to the released code is presented in the Reproducibility Statement.
Guidelines:
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• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLM for core method development.

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
LLM) for what should or should not be described.
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