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Abstract

The No Unmeasured Confounding Assumption is widely used to identify causal
effects in observational studies. Recent work on proximal inference has provided al-
ternative identification results that succeed even in the presence of unobserved con-
founders, provided that one has measured a sufficiently rich set of proxy variables,
satisfying specific structural conditions. However, proximal inference requires
solving an ill-posed integral equation. Previous approaches have used a variety
of machine learning techniques to estimate a solution to this integral equation,
commonly referred to as the bridge function. However, prior work has often been
limited by relying on pre-specified kernel functions, which are not data adaptive and
struggle to scale to large datasets. In this work, we introduce a flexible and scalable
method based on a deep neural network to estimate causal effects in the presence
of unmeasured confounding using proximal inference. Our method achieves state
of the art performance on two well-established proximal inference benchmarks.
Finally, we provide theoretical consistency guarantees for our method.

1 Introduction

Causal inference is concerned with estimating the effect of a treatment A on an outcome Y from
either observational data or the results of a randomized experiment. An estimand of primary
importance is the average causal effect (ACE), which is the expected difference in Y caused by
changing the treatment from value a to a0 for each unit in the study population, and is defined as
a contrast between the expected value of the potential outcomes at the two levels of the treatment:
E[Y a0

] � E[Y a]. However, in observational settings, the ACE is rarely equal to the observed
difference in conditional means, E[Y |A = a0] � E[Y |A = a] due to confounding. In an attempt
to eliminate the influence of confounding, investigators measure putative confounders X and
subsequently make adjustments for X in their analyses.

⇤Denotes equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



Given X , common approaches, such as standardization and inverse probability weighting (Hernán
and Robins [1]), obtain valid estimates of the ACE given that the following assumptions hold: i)
Positivity: Pr[A = a|X = x] > 0 for all x in the population, ii) Consistency: Y a = Y for all
individuals with A = a, iii) No unmeasured confounding which results in conditional exchangeability:
Y a

?? A|X ., and iv) No model misspecification.

The assumptions are typically unverifiable for continuous data. While model misspecification is
likely in all real-world scenarios, flexible models and doubly robust estimators have been developed
to mitigate the effect of this assumption[2]. Therefore, the assumption of conditional exchangeability,
or equivalently, the No Unmeasured Confounding Assumption (NUCA), is the defining characteristic
of this broad set of approaches to causal effect estimation (Hernán and Robins [3]). However, in
many settings, it is unrealistic to assume that we are able to measure a sufficient set of confounders
for A and Y such that conditional exchangeability holds.

Proximal inference is a recently introduced framework that allows for the identification of causal ef-
fects even in the presence of unmeasured confounders [4, 5]. Proximal inference requires categorizing
the measured covariates into three groups: treatment-inducing proxy variables Z, outcome-inducing
proxy variables W , and “backdoor” variables X that affect both A and Y (i.e. typical confounders).
See Figure 1 for an example of a directed acyclic graph (DAG) that admits identification under the
assumptions of proximal inference. The proxy sets W and Z must contain sufficient information
about the remaining unobserved confounders U , a condition that can be formalized by completeness
assumptions. Under these and several other conditions, one can estimate average potential outcomes
from data even in the presence of unmeasured confounding. Proximal inference has potential applica-
tions in medical settings, where a natural question is the effect of a treatment on an outcome in the
presence of unmeasured confounding. Before applying proximal inference to real world problems,
more validation is required before they can be used safely to inform medical decision-making.

Existing methods for proximal inference can be divided into two categories: two-stage regression
procedures and methods that impose a maximum moment restriction (MMR). In two-stage regression
procedures, the first stage aims to predict outcome-inducing proxy variables W as a function of A,
X , and Z. Then, the second stage regression estimates outcomes Y as a function of the predicted
Ŵ and the treatment A, and measured confounders X . Tchetgen Tchetgen et al. [5] introduced the
first estimation technique for proximal inference which was a two-stage procedure that used a model
based on ordinary least squares regression. Mastouri et al. [6] extended this framework by replacing
simple linear regression with kernel ridge regression. Xu et al. [7] increased feature flexibility further
by incorporating neural networks as feature maps instead of kernels.

In contrast, MMR methods are single-stage procedures to estimate average potential outcomes. Muan-
det et al. [8] introduced MMR for reproducing kernel Hilbert spaces (RKHS). MMR critically relies
on the optimization of a V-statistic or U-statistic for learning a function needed to calculate the ACE.
Zhang et al. [9] used an MMR method to obtain point identification of the ACE in the instrumental
variable (IV) setting and incorporated neural networks into their method trained with the V-statistic as
a loss function and optimized using stochastic gradient descent. Mastouri et al. [6] demonstrated that
the MMR framework with kernel functions can be used for proximal inference as well as IV regression.

In this work, we introduce a new method, Neural Maximum Moment Restriction (NMMR) which is
a flexible neural network approach that is trained to minimize a loss function derived from either a
U-statistic or V-statistic to satisfy MMR in the proximal setting. The method introduced in this work
makes several novel contributions to the proximal inference literature:

• We introduce a new, single stage method based on neural networks for estimating potential
outcomes and the ACE in the presence of unmeasured confounding.

• We provide new theoretical consistency guarantees for our method.
• We demonstrate state-of-the-art (SOTA) performance on two well-established proximal

inference benchmark tasks.
• We show for the first time how to incorporate domain-specific inductive biases using a

convolutional model on a proximal inference task that uses images.
• We provide the first unbiased estimate of the MMR risk function using the U-statistic rather

than V-statistic in the proximal setting.
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Figure 1: A summary of NMMR. Our method estimates the bridge function h, which can be used
to compute the average potential outcome E[Y a]. We rely on structural assumptions for the causal
DAG generating the data. NMMR uses a U or V statistic to train a neural network that solves a risk
function that reflects a maximum moment restriction function.

2 Background: Proximal Inference

In this manuscript, capital, caligraphic, and lowercase letters (e.g. A, A, and a) denote random
variables and their corresponding ranges and realizations, respectively. Estimates of random variables
and functions will be indicated by hats, e.g. Ŷ and ĥ are estimates of Y and h, respectively.

Our goal is to estimate, for each level of treatment, a, the expected potential outcome E[Y a]. Without
loss of generality, we refer to A as a treatment, though it could refer to any (possibly continuous)
intervention. Proximal inference allows us to do this, in the presence of unobserved confounders,
U , provided that we have a sufficiently rich set of proxies, (W,Z), that obey certain structural
assumptions. We may also include observed confounders, X . We also require the following:
Assumption 1. Given (A,U,W,X, Y, Z), Y ?? Z|A,U,X and W ?? (A,Z)|U,X .

Figure 1 provides an example of a DAG that satisfies these assumptions. The following completeness
conditions formalize the notion that the proxies are “sufficiently rich”:
Assumption 2. For all f 2 L2

and all a 2 A, x 2 X , E[f(U)|A = a,X = x, Z = z] = 0 for all

z 2 Z if and only if f(U) = 0 almost surely.

Assumption 3. For all f 2 L2
and all a 2 A, x 2 X , E[f(Z)|A = a,W = w,X = x] = 0 for all

w 2 W if and only if f(Z) = 0 almost surely.

We will use two other assumptions at various points in the paper. The first guarantees the uniqueness
of the bridge function, while the second ensures the risk function does not have false zeros.
Assumption 4. E [f (A,W,X)|A,X,Z] = 0 PA,X,Z-almost surely if and only if f (A,W,X) = 0
PA,W,X -almost surely.

Assumption 5. k : (A⇥ X ⇥ Z)2 ! R is continuous, bounded, and Integrally Strictly Positive

Definite (ISPD), so that
R
f (⇠) k (⇠, ⇠0) f (⇠0) d⇠d⇠0 > 0 if and only if f 6= 0 PA,Z,X -almost surely.

Assumptions 1-3 together with several regularity assumptions (see assumptions (v)-(vii) in [4]) ensure
that there exists a function h such that:

E[Y |A = a,X = x, Z = z] =

Z

W

h(a,w, x)p(w|a, x, z)dw (1)

Equation 1 is a Fredholm integral equation of the first kind; its solution, h, is often called the “bridge
function.” Theorem 1 of Miao et al. [4] shows that the expected potential outcomes are given by:

E[Y a] =

Z

W,X
h(a,w, x)p(w, x)dwdx = EW,X [h(a,W,X)] (2)

We can obtain unbiased estimates of the expected potential outcomes, E[Y a], by splitting the
sample, using the first part of the data to estimate the bridge function h, by some ĥ, and using the
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second part of the data to compute the empirical mean of ĥ with a fixed to the value of interest,
Ê[Y a] = 1

M

PM
i=1 ĥ(a,wi, xi). From these, we can obtain other quantities of interest, like the ACE.

In what follows, all norms will be L2 with respect to the relevant probability measure, unless
otherwise noted. If necessary, we will explicitly denote the norm of f with respect to a probability
measure PU,V,... by kfkPU,V,... or kfk2,PU,V,... .

3 Related Work

Kuroki and Pearl [10] first established identification of a causal effect in the setting of unobserved
confounders by leveraging noisy proxy variables, W , to “recover” the distribution of U , potentially
using external datasets to estimate p(w|u). Tchetgen-Tchetgen and colleagues extended these results
to allow for identification without recovery of U in Miao et al. [4] and Tchetgen Tchetgen et al.
[5], also providing a 2-Stage Least Squares (2SLS) method to identify and estimate causal effects
under the assumption that the bridge function is linear. Cui et al. [11] introduced a bridge function
for Inverse Probability Weighting (IPW), which enabled IPW and Doubly Robust (DR) proximal
estimators, for which they presented influence functions under binary treatment. This was extended in
Ghassami et al. [12] and further explored by Kallus et al. [13], who provided alternative identification
assumptions as well as results for general treatments. The latter two works also consider the use of
adversarial methods for estimation, which were previously utilized by Lewis and Syrgkanis [14] and
Bennett et al. [15] in the Instrumental Variable (IV) setting and Dikkala et al. [16] in conditional
moment models.

Other early investigators include Deaner [17], who developed machine learning techniques for
proximal inference introducing a method based on a two-stage penalized sieve distance minimization.
Several later works similarly employed two-stage regressions with increasingly flexible basis functions
to estimate potential outcomes. Mastouri et al. [6] developed a two-stage kernel ridge regression
(Kernel Proxy Variables “KPV”) to estimate the bridge function h, allowing more flexibility than
the linear basis of Tchetgen Tchetgen et al. [5]. Xu et al. [7] further improved upon this with an
adaptive basis derived from neural networks. Their two stage regression method, Deep Feature Proxy
Variables (DFPV), established the previous SOTA performance on the proximal benchmark tasks that
we consider in our work. Singh and colleagues also considered two stage kernel models in the IV
setting [18] and RKHS techniques for proximal inference [19].

An alternative approach based on maximum moment restriction (MMR) uses single-stage estimators
of the bridge function. MMR-based methods were established in Muandet et al. [8] as a way to
enforce conditional moment restrictions [20]. Zhang et al. [9] introduced the MMR framework to
the IV setting, which can be considered a subset of proximal inference without outcome-inducing
proxies W and with additional exclusion restrictions [5]. There are now several machine learning
methods that can be applied in the IV setting [21, 14, 18, 16, 22]

Of note, Zhang et al. [9] introduced MMR-IV, which is related to work by Lewis and Syrgkanis
[14] and Dikkala et al. [16]. MMR-IV involves optimizing a family of risk functions based on U or
V-statistics [23]. However, Zhang et al. [9] only considered IV, rather than proximal, inference and
only optimized neural networks by a loss that corresponds to the V-statistic. The V-statistic provides
a biased estimate [23] of its corresponding risk function, such as R(h) in Equation 3.

Finally, Mastouri et al. [6] introduced an MMR-based method for proximal inference called Proximal
Maximum Moment Restriction (PMMR). PMMR extends the MMR framework to the proximal
setting through the use of kernel functions and also optimizes Equation 3 via a V-statistic. For a
comparison of our model to PMMR and MMR-IV, see Table 1.

4 Our Method: Neural Maximum Moment Restriction (NMMR)

In this work we propose Neural Maximum Moment Restriction (NMMR): a method to estimate
expected potential outcomes E[Y a] in the presence of unmeasured confounding. We use deep
neural networks due to their flexibility, scalability, and adaptability to diverse data types (e.g. using
convolutions for images). By rewriting maximum moment restrictions [8] as U and V-statistics [6, 9],
we show how a single-stage neural network procedure can be used to estimate the bridge function.
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Following Muandet et al. [8] and Zhang et al. [9], we rewrite the integral equation (1) as a conditional

moment restriction: E[Y �h(A,W,X)|A,X,Z] = 0. Then, for any measurable g : A⇥X⇥Z ! R,
E[(Y � h(A,W,X))g(A,X,Z)|A,X,Z] = 0 , and, thus, E[(Y � h(A,W,X))g(A,X,Z)] = 0,
so we can use unconditional expectations instead of conditional ones. This is the basis of the MMR
framework of Muandet et al. [8]. Since this yields an infinite number of moment restrictions we
employ a minimax strategy to estimate h by minimizing the risk R(h) for the worst-case value of g:

R(h) = sup
kgk1

(E[(Y � h(A,W,X))g(A,X,Z)])2 (3)

Following Zhang et al. [9]’s work in the IV setting, Mastouri et al. [6] (Lemma 2) showed that, if g is
an element of an RKHS, R(h) can be rewritten in the form

Rk(h) = E[(Y � h(A,W,X))(Y 0
� h(A0,W 0, X 0))k((A,X,Z), (A0, X 0, Z 0))]

where (A0,W 0, X 0, Y 0, Z 0) are independent copies of the random variables (A,W,X, Y, Z) and
k : (A⇥ Z ⇥ X )2 ! R is a continuous, bounded, and Integrally Strictly Positive Definite (ISPD)
kernel. Then, if h satisfies Rk(h) = 0, E[Y �h(A,W,X)|A,X,Z] = 0 PA,X,Z -almost surely. Thus,
if we can find a neural network h that satisfies Rk(h) = 0, we will have obtained a PA,X,Z-almost
sure solution to Equation 1 and can compute any expected potential outcome by using Equation 2.

The empirical risk R̂k,n given data D = {(ai, wi, xi, yi, zi)}Ni=1 can be written as either a U or
V-statistic, respectively [23]:

R̂k,U,n(h) =
1

n(n� 1)

nX

i,j=1,i 6=j

(yi � hi) (yj � hj) kij

R̂k,V,n(h) =
1

n2

nX

i,j=1

(yi � hi) (yj � hj) kij

where hi = h (ai, wi, xi) and kij = k ((ai, zi, xi) , (aj , zj , xj)). R̂k,U,n(h) is the minimum variance
unbiased estimator of Rk(h) [23], while R̂k,V,n(h) is a biased estimator of Rk(h). In order to prevent
overfitting, we add an additional penalty to our risk function ⇤ : H⇥⇥H ! R+, which is a function
of h as well as, possibly, its parameters, ✓h (e.g. network weights). Specifically, we take ⇤ to be
an L2 penalty on the weights so ⇤ [h, ✓h] =

P
i ✓

2
h,i. We then denote the penalized risk functions

by R̂k,U,�,n(h) = R̂k,U,n(h) + �⇤ [h, ✓h] and R̂k,V,�,n(h) = R̂k,V,n(h) + �⇤ [h, ✓h], respectively.
In practice, R̂k,U,�,n(h) is slightly biased, but, in simulations, is much less biased than even the
unpenalized R̂k,V,n(h). Previous work either did not consider the U-statistic [6], or did not utilize
the U-statistic [9]. In our work, we introduce two variants of our method, NMMR-U and NMMR-V,
where the former is optimized with a U-statistic and the latter a V-statistic. We train the neural
networks in both variants with the regularized loss function:

L = (Y � h(A,W,X))tK(Y � h(A,W,X)) + �⇤ [h, ✓h]

where (Y � h(A,W,X)) is a vector of residuals from the neural network’s predictions and K is a
kernel matrix with entries kij . We choose k to be an RBF kernel (see Appendix B). If L represents a
V-statistic, we include the main diagonal elements of K, while if L represents a U-statistic, we set
the main diagonal to be 0. Once we’ve obtained an optimal neural network ĥ, we can compute an
estimate of the expected potential outcome with data from a held-out dataset with M data points

DW,X = {(wi, xi)}
M
i=1,

ˆE[Y a] =
1

M

MX

i=1

ĥ(a,wi, xi)

In contrast to PMMR [6], which uses kernels as feature maps for proxy and treatment variables,
NMMR uses adaptive feature maps from neural networks. NMMR is similar to MMR-IV [9], but
MMR-IV is restricted to the instrumental variable (IV) setting rather than the proximal inference set-
ting. Table 1 places NMMR in context with existing methods for proximal inference and IV regression.
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Table 1: Comparison of the most related methods to NMMR.
Method Setting # of Stages Hypothesis Class Optimization Objective

KPV [6] Proximal 2 Kernels 2-stage least squares
DFPV [7] Proximal 2 Neural Networks 2-stage least squares
MMR-IV [9] IV 1 Neural Networks V-statistic
PMMR [6] Proximal 1 Kernels V-statistic
NMMR-V (ours) Proximal 1 Neural Networks V-statistic
NMMR-U (ours) Proximal 1 Neural Networks U-statistic

5 Consistency of NMMR

In this section we provide a probabilistic bound on the distance of the estimated bridge function,
ĥk,�,n, from the true bridge function, h⇤, in terms of the Radamacher complexity Rn(F) of a class
of functions F derived from elements of the hypothesis space H and the fixed kernel, k. Note that
R̂k,�,n(h) = R̂k,n(h) + �⇤ [h, ✓h] (see Section 4). We use this bound to demonstrate that, under
mild conditions, ĥk,�,n converges in probability to h⇤, and that, under an additional completeness
assumption, h⇤ is unique PA,W,X -almost surely. This provides a consistent estimate of E[Y a].

Theorem 1. Let h̃k minimize Rk(h) and ĥk,U,�,n minimize R̂k,U,�,n(h) for h 2 H, k : (A ⇥

X ⇥ Z)2 ! [�Mk,Mk], ⇤ : H ⇥ ⇥h ! [0,M�], and let h⇤ : A ⇥ W ⇥ X ! R satisfy

E [Y � h⇤(A,W,X)|A,X,Z] = 0 PA,X,Z-almost surely, where

Rk(h) = E [(Y � h (A,W,X)) (Y 0
� h (A0,W 0, X 0)) k ((A,X,Z) , (A0, X 0, Z 0))]

R̂k,U,�,n(h) =
1

n(n� 1)

nX

i,j=1,i 6=j

[(yi � h (ai, wi, xi)) (yj � h (aj , wj , xj))

⇥ k ((ai, xi, zi) , (aj , xj , zj))] + �⇤[h, ✓h]

Also let,

d2k (h, h
0) = E [(h (A,W,X)� h0 (A,W,X)) (h (A0,W 0, X 0)� h0 (A0,W 0, X 0))

⇥ k ((A,X,Z) , (A0, X 0, Z 0))]

Then, d2k (h
⇤, h) = Rk(h) and, with probability at least 1� �,

d2k

⇣
h⇤, ĥk,U,�,n

⌘
 d2k

⇣
h⇤, h̃k

⌘
+ �M� + 8MEA,X,Z

�
Rn�1

�
F

0

A,X,Z

�
+Rn

�
F

0

A,X,Z

��

+ 16M2Mk

✓
2

n
log

2

�

◆ 1
2

+ 10 (2 log 2)
1
2 M2Mkn

�
1
2

 d2k

⇣
h⇤, h̃k

⌘
+ �M� + 8M (Rn�1 (F

0) +Rn (F
0))

+ 16M2Mk

✓
2

n
log

2

�

◆ 1
2

+ 10 (2 log 2)
1
2 M2Mkn

�
1
2

Further, if Assumption 5 holds, so k is ISPD, then dk is a metric on L2
AXZ

and, if the right hand side

of the inequality goes to zero as n goes to infinity,

dk
⇣
E [h⇤

|A,X,Z]� E
h
ĥk,�,n

���A,X,Z
i⌘

P
�! 0 so E

h
ĥk,�,n

���A,X,Z
i

P
�! E [h⇤

|A,X,Z]

in dk. Also,

���E [h⇤
|A,X,Z]� E

h
ĥk,�,n

���A,X,Z
i���

PA,X,Z

P
�! 0 so E

h
ĥk,�,n

���A,X,Z
i

P
�!

E [h⇤
|A,X,Z] in L2 (PA,X ,Z)� norm.

F 0

a,x,z =
�
fa,x,z

�� 9h2H8a02A,x02X ,z02Zfa,x,z
�
a0, w0, x0, z0

�
= h

�
a0, w0, x0

�
k
��
a0, x0, z0

�
, (a, x, z)

� 

F 0 =
�
f
�� 9h2H,a2A,x2X ,z2Z8a02A,x02X ,z02Zf

�
a0, w0, x0, z0

�
= h

�
a0, w0, x0

�
k
��
a0, x0, z0

�
, (a, x, z)

� 

Corollary 8 provides a similar result for V-statistic estimators of R(h), meaning we can choose to use
either U or V-Statistics and have similar guarantees. In Theorem 1 if the quadratic form converges at
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a particular rate, say n�
1
2 , E

h
ĥ
���A,X,Z

i
P
�! E [h⇤

|A,X,Z], under the metric induced by the kernel,

dk, at half the rate, in this case n�
1
4 . This is similar to Kallus et al. [13]’s findings in the unstabilized

case.
Theorem 2. Under Assumption 4, h⇤

is the unique solution to the integral equation PA,W,X -almost

surely. Further, if E
h
ĥk,�,n

���A,X,Z
i

P
�! E [h⇤

|A,X,Z], ĥn
P
�! h⇤

.

See Appendix A for proofs of Theorems 1 and 2. Taken together, these results tell us that, as long as
our optimization algorithm is successful in estimating ĥk,�,n, it will asymptotically approach the true
bridge function, h⇤. In order for this to occur, the right hand side of the inequalities in Theorem 1
must go to zero, which requires not only that the Rademacher terms vanish, but also that h̃k must
approach h⇤ arbitrarily closely as n increases. In practice, this means increasing the complexity of
the neural network, but doing so slowly enough the Rademacher complexity terms still decrease
with sample size. Following Xu et al. [7], we note that recent results from Neyshabur et al. [24]
suggest that the Rademacher complexity of a fixed network scales like n�

1
2 (similar to many other

popular hypothesis classes) and that, although we cannot compute the scaling of the Rademacher
terms directly due to the presence of the kernel function, we expect that they will decline with sample
size and that, as the neural network becomes more complex, their scaling will more closely resemble
terms derived from a pure neural network. Finally, we require that the regularization parameter
decrease as sample size grows, which will, again, depend on the balance between increasing sample
size, which tends to decrease the need for regularization, and increasing complexity, which tends to
increase its importance. Thus, by choosing an appropriate growth rate for the network complexity,
we expect the aforementioned terms to vanish as n increases to infinity, and, with them, the entire
right hand side, making ĥk,�,n a consistent (likely

p
n) estimator of h⇤.

We can also compare the convergence of the estimated bridge function to that of its projection
onto L2

AXZ
. Prior literature has focused on a measure of “ill-posedness” ⌧ = suph2H

kh �

h⇤
k2 kE [h� h⇤

|A,Z,X]k�1
2 . If ⌧ is finite, then the rate of convergence of the estimated bridge

function will be at worst ⌧ times that of its projection (it will be slower by a factor of ⌧ ). This will be
the case whether we measure convergence using kE [h� h⇤

|A,Z,X]k2 or the metric induced by k.

6 Experiments

6.1 Overview of Baseline Models

We compare the performance of NMMR-U and NMMR-V to that of several previous approaches,
which we describe briefly here. The baselines can be divided into two categories: structural and naive.
Structural approaches leverage causal information about the data generating process. They include
Kernel Proxy Variables (KPV) [6], Proximal Maximum Moment Restriction (PMMR) [6], Deep
Feature Proxy Variables (DFPV) [25], Causal Effect Variational Autoencoder[26] (CEVAE), and the
two-stage least squares model (2SLS) from Miao et al. [4]. For a review of KPV, PMMR, and DFPV,
see Section 3. CEVAE is an autoencoder approach derived by Xu et al. [7] from Louizos et al. [26].
2SLS is a two-stage least squares method which assumes that the bridge function h is linear [5].

The naive approaches serve as baselines and do not use causal information, instead directly regressing
A and W on the outcome Y . These methods include a naive neural network (Naive net), ordinary
least squares regression (LS), and ordinary least squares with quadratic features (LS-QF). Naive
Net is a neural network that has undergone the same architecture search as NMMR (described further
in Appendix B) that is trained to predict Y directly from A and W by minimizing observational
MSE, 1

n

Pn
i=1(y � ŷ)2. Least Squares (LS) is the standard linear regression model that predicts

Y using a linear combination of A and W . Least Squares with Quadratic Features (LS-QF) is the
same as LS but with additional quadratic terms A2,W 2, AW .

We evaluate NMMR-U, NMMR-V and baseline methods on two synthetic benchmark tasks from Xu
et al. [7]. The first is a simulation of how ticket prices affect the number of tickets sold in the presence
of a latent confounder: demand for travel (the Demand experiment). The second is an experiment
where the goal is to recover a property of an image that is influenced by an unobserved confounder
(the dSprite experiment). The Demand experiment is a low-dimensional estimation problem, whereas
dSprite is high-dimensional as A and W are 64x64=4096-dimensional. dSprite leverages image-
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specific models, which are rarely used in the causal inference literature. Neither task uses X . For the
Demand experiment we evaluate all the methods mentioned above, whereas for the dSprite experiment,
we omit 2SLS, LS, and LS-QF because of their lack of scalability to high-dimensional settings.

Experiments were conducted in PyTorch 1.9.0 (Python 3.9.7), using an A100 40GB or TitanX 12GB
GPU and CUDA version 11.2. They can be run in minutes for simpler models (LS, LS-QF, 2SLS)
and in several hours for the larger experiments and more complex models (DFPV, NMMR). The
code to reproduce our experiments can be accessed on GitHub.2

6.2 Demand Experiment

Figure 2: NMMR-U and NMMR-V achieve state of the art performance across all sample sizes.
Causal MSE (c-MSE) of NMMR and baseline methods in the Demand experiment. Each method was
replicated 20 times and evaluated on the same 10 test values of E[Y a] each replicate. Each individual
box plot represents 20 values of c-MSE. See Table S4 for the statistics of each boxplots

Hartford et al. [21] introduced a data generating process for studying instrumental variable regression,
and Xu et al. [7] adapted it to the proximal setting. The goal is to estimate the effect of airline
ticket price A on sales Y , which is confounded by demand U (e.g. seasonal fluctuations). We
use the cost of fuel, Z = (Z1, Z2), as a treatment-inducing proxy and number of views at a ticket
reservation website, W , as an outcome-inducing proxy (Figure S1). Additional simulation details
and the structural equations underlying the causal DAG can be found in Appendix C.1.

Each method was trained on simulated datasets with sample sizes of 1000, 5000, 10,000, and
50,000. To assess the performance of each method, we evaluated a at 10 equally-spaced intervals
between 10 and 30. We compared each method’s estimated potential outcomes, Ê[Y a], against
estimates of the truth, E[Y a], obtained from Monte Carlo simulations (10,000 replicates) of the
data generating process for each a. The evaluation metric is the causal mean squared error (c-
MSE) across the 10 evaluation points of a: 1

10

P10
i=1(E[Y ai ]� Ê[Y ai ])2. For MMR-based methods,

predictions are computed using a heldout dataset, DW with 1,000 draws from W so Ê[Y ai ] =

|DW |
�1

P
|DW |

j ĥ(ai, wj), i.e. a sample average of the estimated bridge function over W . We
performed 20 replicates for each method on each sample size, where a single replicate yields one
c-MSE value. Figure 2 summarizes the c-MSE distribution for each method across the four sample
sizes. NMMR-U has the lowest c-MSE across all sample sizes, with NMMR-V a close second.
DFPV encounters difficulties with the larger sample sizes of 10,000 and 50,000, potentially due to
convergence issues with its feature maps. Similarly, PMMR and KPV could not scale to n = 50, 000.

For a more in-depth view of the potential outcome curve estimated by each method, we provide
replicate-wise potential outcome prediction curves for each of the 4 sample sizes in Figures S3-S6.
Least Squares estimates relatively unbiased prediction curves due to the nature of the data generating
process and has very low variance. LS-QF matches some of the curvature, although its c-MSE

2https://github.com/beamlab-hsph/Neural-Moment-Matching-Regression
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distribution (not shown) is not better than LS. Kernel-based methods, KPV and PMMR, are highly
biased. DFPV is less biased, but still suffers from a lack of flexibility. Both NMMR variants
demonstrate the benefit of added flexibility and have lower variance, resulting in a lower c-MSE.

Finally, we also varied the variance of the Gaussian noise terms in the structural equations for Z and
W , in order to examine how each method performs with varying quality proxies for U (see Appendix
E). Figure S10, shows that NMMR-V is more robust to proxy noise than NMMR-U. This could be
because U-statistics yield unbiased, but higher variance, estimators than V-statistics, so, when proxies
are less reliable, the estimated risk function Rk(h) is less stable. Kernel-based methods (KPV and
PMMR) perform increasingly well with noisier proxies, which is likely related to the fact that they
are less data-adaptive. Figures S11 through S18 show replication-wise prediction curves across all 72
noise levels, with one grid plot per method.

6.3 dSprite Experiment

Figure 3: Causal MSE (c-MSE) of NMMR and baseline methods in the dSprite experiment. Each
method was replicated 20 times and evaluated on the same 588 test images A each replicate. Each
individual box plot represents 20 values of c-MSE. See Table S5 for the statistics of each boxplots

The second benchmark uses the dSprite dataset from Matthey et al. [27], which was initially adapted
to instrumental variable regression in Xu et al. [25], and repurposed for proximal inference in Xu et al.
[7]. This image dataset consists of 2D shapes procedurally generated from 6 independent parameters:
color, shape, scale, rotation, posX, and posY. All possible combinations of these parameters are
present exactly once, generating 737,280 total images. In this experiment, we fix shape = heart,
color = white, resulting in 245,760 images, each of which contains 64x64=4096 pixels. The causal
DAG for this problem is shown in Figure S7. The structural equations and detailed data generating
mechanism underlying the causal DAG can be found in Appendix C.6.

In the DAG, Fig(·) represents the act of retrieving the image from the dSprite dataset with the given
arguments. A and W are vectors representing noised images of a heart shape, where the heart has
a size (scale), orientation (rotation), horizontal position (posX), and vertical position (posY). For
an exemplar image A and W , see Figure S8. The benchmark computes

E[Y a] =
1
10 kvec(a)

tBk
2
2 � 5000

1000
where B is a 4096 ⇥ 10 matrix of U(0, 1) weights from Xu et al. [7]. The observed outcome is
computed as

Y =
1
10 kvec(A)tBk

2
2 � 5000

1000
⇥

(31⇥ U � 15.5)2

85.25
+ ✏, ✏ ⇠ N (0, 0.5)

U is a discrete uniform random variable with

E

(31⇥ U � 15.5)2

85.25

�
= 1
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that dictates the vertical position of the shape in A, as well as the value of Y , making U a confounder
of A, Y . We hypothesized that a convolutional neural network would be exceptionally strong at
recovering this information about U from the images A and W .

Similar to the Demand experiment, we trained each method on simulated datasets with sizes 1,000,
5,000, and 7,500, followed by an evaluation on the same test set as Xu et al. [7]. This test set contains
588 images A that span the range of scale, rotation, posX and posY values (see Appendix C.9) and
the 588 corresponding values of E[Y a]. The evaluation metric is again c-MSE:

1

588

588X

i=1

⇣
E[Y ai ]� Ê[Y ai ]

⌘2

We performed 20 replicates for each method on each sample size. Figure 3 shows that NMMR-U
or NMMR-V is consistently lowest in c-MSE, with NMMR-V showing substantial improvement
with increasing sample size. Due to the high dimensionality of the images A and W , we could not
evaluate Least Squares, LS-QF or 2SLS on this experiment. KPV and PMMR do not improve much
with increasing sample size. The Naive net, which uses the same underlying convolutional neural
network architecture as NMMR but is trained using observational MSE, performs second-to-worst,
with a much larger c-MSE than NMMR-U or NMMR-V. This reinforces the need to use causal
knowledge in scenarios where it is available.

7 Conclusion

In this work we have presented a novel method to estimate potential outcomes in the presence of
unmeasured confounding using deep neural networks. Though our method is promising, it has several
limitations. For very high dimensional data, calculating the kernel matrix K in the loss function
can be computationally intensive (see Appendix D). Additionally, mapping real world scenarios
to DAGs that satisfy Assumption 1 is non-trivial and technically unverifiable (e.g. we cannot be truly
sure that W has no impact on A), though unverifiable assumptions are inherent to causal inference.

Further, the present work focuses on methods that estimate only the outcome bridge function, rather
than also estimating the IPW bridge function, which would permit us to construct a doubly robust
estimator, as is done in Cui et al. [11] and Kallus et al. [13]. However, our method extends naturally
to this setting and we expect to explore such estimators in future work.

In summary, we provide a new single stage estimator and show how it can be trained on a U-statistic
based loss in addition to existing approaches based on V-statistics. We further prove theoretical
convergence properties of our method. On established proximal inference benchmarks, our method
achieves state of the art performance in estimating causal quantities. Finally, since our approach
is a single-stage neural network, it potentially unlocks new domains for causal inference where deep
learning has had success, such as imaging.
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