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ABSTRACT

Vertical federated learning (VFL) is a distributed learning paradigm, where com-
puting clients collectively train a model based on the partial features of the same
set of samples they possess. Current research on VFL focuses on the case when
samples are independent, but it rarely addresses an emerging scenario when sam-
ples are interrelated through a graph. For graph-structured data, graph neural net-
works (GNNs) are competitive machine learning models, but a naive implementa-
tion in the VFL setting causes a significant communication overhead. Moreover,
the analysis of the training is faced with a challenge caused by the biased stochas-
tic gradients. In this paper, we propose a model splitting method that splits a back-
bone GNN across the clients and the server and a communication-efficient algo-
rithm, GLASU, to train such a model. GLASU adopts lazy aggregation and stale
updates to skip aggregation when evaluating the model and skip feature exchanges
during training, greatly reducing communication. We offer a theoretical analy-
sis and conduct extensive numerical experiments on real-world datasets, showing
that the proposed algorithm effectively trains a GNN model, whose performance
matches that of the backbone GNN when trained in a centralized manner.

1 INTRODUCTION

Vertical federated learning (VFL) is a newly developed machine learning scenario in distributed
optimization, where clients share data with the same sample identity but each client possesses only
a subset of the features for each sample. The goal is for the clients to collaboratively learn a model
based on all features. Such a scenario appears in many applications, including healthcare, finance,
and recommendation systems (Chen et al., 2020b; Liu et al., 2022). For example, in healthcare, each
hospital may collect partial clinical data of a patient such that their conditions and treatments are
best predicted through learning from the data collectively; in finance, banks or e-commerce providers
may jointly analyze a customer’s credit with their trade histories and personal information; and in
recommendation systems, online social/review platforms may collect a user’s comments and reviews
left at different websites to predict suitable products for the user.

Most of the current VFL solutions (Chen et al., 2020b; Liu et al., 2022) treat the case where sam-
ples are independent, but omit their relational structure. However, the pairwise relationship between
samples emerges in many occasions and it can be crucial in several learning scenarios, includ-
ing the low-labeling-rate scenario in semi-supervised learning and the no-labeling scenario in self-
supervised learning. Take the financial application as an example: customers and institutions are
related through transactions. Such relations can be used to trace finance crimes such as money laun-
dering, to assess the credit risk of a customer, and even to recommend products to them. Each bank
and e-commerce provider can infer the relations of the financial individuals registered to them and
create a relational graph, in addition to the individual customer information they possess.

One of the most effective machine learning models to handle relational data is graph neural networks
(GNNs) (Kipf & Welling, 2016; Hamilton et al., 2017; Chen et al., 2018; Velickovic et al., 2018;
Chen et al., 2020a). This model performs neighborhood aggregation in every feature transformation
layer, such that the prediction of a graph node is based on not only the information of this node
but also that of its neighbors. Although GNNs have been used in federated learning, a majority

1



Under review as a conference paper at ICLR 2023

Figure 1: Data isolation of vertically distributed graph-structured data over three clients.

of the cases therein are horizontal: each client possesses a local dataset of graphs and all clients
collaborate to train a unified model to predict graph properties, rather than node properties (He
et al., 2021; Bayram & Rekik, 2021; Xie et al., 2021). Our case is different. We are concerned with
subgraph level, vertical federated learning (Zhou et al., 2020; Ni et al., 2021): each client holds a
subgraph of the global graph, part of the features for nodes in this subgraph, and part of the whole
model; all clients collaboratively predict node properties. Our vertical setting is exemplified by not
only the partitioning of node features, but also the (sub)graphs among the nodes.

The setting under our consideration is fundamentally challenging, because fully leveraging features
within neighborhoods causes an enormous amount of communication. One method to design and
train a GNN is that each client uses a local GNN to extract node representations from its own
subgraph and the server aggregates these representations to make predictions (Zhou et al., 2020).
The drawback of this method is that the partial features of a node outside one client’s neighborhood
are not used, even if this node appears in another client’s neighborhood. Another method to train
a GNN is to simulate centralized training: transformed features of each node are aggregated by the
server, from where neighborhood aggregation is performed (Ni et al., 2021). This method suffers
the communication overhead incurred in each layer computation.

In this work, we propose a federated GNN model and a communication-efficient training algorithm,
named GLASU, for federated learning with vertically distributed graph data. The model is split
across the clients and the server, such that the clients can use a majority of existing GNNs as the
backbone, while the server contains no model parameters. The server only aggregates and dissem-
inates computed data with the clients. The communication frequency between the clients and the
server is mitigated through lazy aggregation and stale updates (hence the name of the method), with
convergence guarantees. Moreover, GLASU can be considered as a framework that encompasses
many well-known models and algorithms as special cases, including the work of Liu et al. (2022)
when the subgraphs are absent, the work of Zhou et al. (2020) when all aggregations but the final
one are skipped, the work of Ni et al. (2021) when no aggregations are skipped, and centralized
training when only a single client exists.

We summarize the main contributions of this work below:

• Model design: We propose a flexible, federated GNN architecture that is compatible with a ma-
jority of existing GNN models.

• Algorithm design: We propose the communication-efficient GLASU algorithm to train the model.
Therein, lazy aggregation saves communication for each joint inference round, through skipping
some aggregation layers in the GNN; while stale updates further save communication by allowing
the clients to use stale global information for multiple local model updates.

• Theoretical analysis: We provide theoretical convergence analysis for GLASU by addressing the
challenges of biased stochastic gradient estimation caused by neighborhood sampling and corre-
lated update steps caused by using stale global information.

• Numerical results: We conduct extensive experiments, together with ablation studies, to demon-
strate that GLASU can achieve a comparable performance as the centralized model on multiple
datasets and multiple GNN backbones, and that GLASU effectively saves communication.
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1.1 PROBLEM SETUP

Consider M clients, indexed by m = 1, . . . ,M , each of which holds a part of a graph with the
node feature matrix X ∈ RN×d and the edge set E . Here, N is the number of nodes in the graph
and d is the feature dimension. We assume that each client has the same node set and the same set
of training labels, y, but a different private edge set Em and a non-overlapping node feature matrix
Xm ∈ RN×dm , such that E =

⋃M
m=1 Em, X = [X1, . . . ,XM ], and d =

∑M
m=1 dm. We denote

the client dataset as Dm = {Xm, Em,y} and the full dataset as D = {X, E ,y}. The task is for the
clients to collaboratively infer the labels of nodes in the test set. See Figure 1 for an illustration.

1.2 GRAPH CONVOLUTIONAL NETWORK

The graph convolution network (GCN) (Kipf & Welling, 2016) is a typical example of the family of
GNNs. Inside GCN, a graph convolution layer reads

H[l + 1] = σ
(
A(E) ·H[l] ·W[l]

)
, (1)

where σ(·) denotes the point-wise nonlinear activation function, A(E) ∈ RN×N denotes the adja-
cency matrix defined by the edge set E with proper normalization, H[l] ∈ RN×d[l] denotes the node
representation matrix at layer l, and W[l] ∈ Rd[l]×d[l+1] denotes the weight matrix at the same layer.
The initial node representation matrix H[0] = X. The classifier is denoted as ŷ = f(H[L],W[L])
with weight matrix W[L] and the loss function is denoted as ℓ(y, ŷ). Therefore, the overall model
parameter is W = {W[0], . . . ,W[L− 1],W[L]}.

Mini-batch training of GCN (and GNNs in general) faces a scalability challenge, because to compute
one or a few rows of H[L] (i.e., the representations of a mini-batch), it requires more and more rows
of H[L− 1], H[L− 2], . . . recursively, in light of the multiplication with A(E) in (1). This is known
as the explosive neighborhood problem unique to graph-structured data. Several sampling strategies
were proposed in the past to mitigate the explosion; in this work we adopt the layer-wise sampling
proposed by FastGCN (Chen et al., 2018). Starting from the output layer L, which is associated
with a mini-batch of training nodes, S[L], we iterate over the layers backward such that at layer l,
we sample a subset of neighbors for S[l + 1], namely S[l]. In doing so, at each layer we form a
bipartite graph with edge set E(S[l + 1],S[l]) = {(i, j)|i ∈ S[l + 1], j ∈ S[l]}. Then, each graph
convolution layer becomes

H[l + 1][S[l + 1]] = σ
(
A(E(S[l + 1],S[l])) ·H[l][S[l]] ·W[l]

)
, (2)

where A(E(S[l + 1],S[l])) ∈ R|S[l+1]|×|S[l]| is a properly scaled submatrix of A(E) and H[l][S[l]]
denotes the rows of H[l] corresponding to S[l]. Such a mini-batch sampling and training procedure
fundamentally differs from the usual mini-batch training for non-graph data in VFL.

1.3 RELATED WORKS

Federated learning on graph data generally fall under two categories, horizontal and vertical. The
horizontal case can be considered graph-level, where each client possesses a collection of graphs
and all clients collaborate to train a unified model to predict graph properties (Zhang et al., 2021; He
et al., 2021; Bayram & Rekik, 2021; Xie et al., 2021). Applications include predicting molecular
properties (Xie et al., 2021) and learning connectional brain templates (Bayram & Rekik, 2021).
On the other hand, the vertical case can be considered subgraph-level, where each client holds a
subgraph of the global graph, a part of the node features, and a part of the whole model (Zhou
et al., 2020; Ni et al., 2021). The clients aim to collaboratively train a global model with the partial
features and subgraphs to predict node properties (see Figure 1). Existing methods either fail to fully
leverage the neighborhood information (Zhou et al., 2020) or incur expensive communication (Ni
et al., 2021). Our approach addresses these shortcomings.

An additional scenario that does not fit into the above common categories is a node-level federated
learning: the clients are connected by a graph and thus each of them is treated as a node. In other
words, the clients, rather than the data, are graph-structured. For example, in Lalitha et al. (2019)
and Meng et al. (2021), each client performs learning with its own data and they exchange data
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through the communication graph; whereas in Caldarola et al. (2021) and Rizk & Sayed (2021),
the server maintains the graph structure and uses a GNN to aggregate information (either models or
data) collected from the clients.

2 PROPOSED APPROACH

In this section, we present the proposed model and the training algorithm GLASU for federated
learning on vertically distributed graph data. The neighborhood aggregation in GNNs poses com-
munication challenges distinct from conventional VFL. To mitigate this challenge, we propose lazy
aggregation and stale updates to effectively reduce the communication between the clients and the
server, while maintaining comparable prediction performance as centralized models. For notational
simplicity, we present the approach by using the full-graph notation (1) but note that the implemen-
tation involves neighborhood sampling, where a more precise notation should follow (2), and that
one can easily change the backbone from GCN to other GNN architectures.

2.1 GNN MODEL SPLITTING

We split the GNN model among the clients and the server, approximating a centralized model.
Specifically, each GNN layer contains two sub-layers: the client GNN sub-layer and the server
aggregation sub-layer. At the l-th layer, each client computes the local feature matrix

H+
m[l] = σ

(
A(Em) ·Hm[l] ·Wm[l]

)
with the local weight matrix Wm[l] and the local graph Em, where we use the superscript + to denote
local representations before aggregation. Then, the server aggregates the clients’ representations and
outputs H[l + 1] as

H[l + 1] = Agg(H+
1 [l], . . . ,H

+
M [l]),

where Agg(·) is an aggregation function. In this paper, we only consider parameter-free aggrega-
tions, examples of which include averaging Avg(H+

1 [l], . . . ,H
+
M [l]) = 1

M

∑M
m=1 H

+
m[l] and con-

catenation Cat(H+
1 [l], . . . ,H

+
M [l]) = [H+

1 [l], . . . ,H
+
M [l]]. The server broadcasts the aggregated

H[l + 1] to the clients so that computation proceeds to the next layer. In the final layer, each client
computes a prediction. This layer is the same among clients because they receive the same H[L].

The two aggregation operations of our choice have a few advantages.

• Parameter-free: Since the operations do not contain any learnable parameters, the server does not
need to perform gradient computations.

• Memory-less: In the backward pass, these operations do not require data from the forward pass
to back-propagate the gradients. For averaging, the server back-propagates 1

M ∂H[l + 1] to each
client, while for concatenation, the server back-propagates the corresponding block of ∂H[l+ 1].

• Easy-to-implement: The server implementation is obviously easy because of the parameter-free
and memory-less nature. Moreover, they enable parallelization and pipelining.

We illustrate in Figure 2 the split of one GNN layer among the clients and the server. Although our
approach resembles federated split learning (SplitFed) (Thapa et al., 2022), there is a fine distinc-
tion. In SplitFed, each client can collaborate with the server to perform inference or model updates
without accessing information from other clients; while in our case, all clients collectively perform
the job. Our approach also differs from conventional VFL that splits the local feature processing
and the final classifier among the clients and the server respectively, such that each model update re-
quires a single U-shape communication (Chen et al., 2020b). In our case, due to the graph structure,
each GNN layer contains one client-server interaction and the number of interactions is equal to the
number of GNN layers (we will relax this in the following subsection).

Note that there are two types of aggregations in our model. One is the neighborhood aggregation
(multiplying with matrix A(Em)), as a signature of GNNs, that occurs in each client locally and
incurs no communication between the clients and the server. The other one relates to the communi-
cation that happens when the server gathers the clients’ partial representations and broadcasts back
the aggregated representation.
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Figure 2: Illustration of the split model on M = 3 clients with lazy aggregation. In the model, the
second server aggregation layer is skipped due to lazy aggregation, and the graph size used by each
layer gradually decreases due to neighborhood sampling.

2.2 LAZY AGGREGATION

The development in the preceding subsection approximates a centralized model, but it is not com-
munication friendly because each layer requires one round of client-server communication. We
propose two communication-saving strategies in this subsection and the next. We first consider lazy
aggregation, which skips aggregation in certain layers.

Instead of performing server aggregation at each layer, we specify a subset of K indices, I =
{l1, . . . , lK} ⊂ [L], such that aggregation is performed only at these layers. That is, at a layer l ∈ I,
the server performs aggregation and broadcasts the aggregated representations to the clients, serving
as the input to the next layer:

Hm[l + 1] = H[l + 1];

while at a layer l /∈ I, each client uses the local representations as the input to the next layer:

Hm[l + 1] = H+
m[l].

By doing so, the model skips the server aggregation sub-layer between lk and lk+1, such that the
amount of communication is reduced from O(L) to O(K).

There is a subtlety caused by neighborhood sampling: it requires additional rounds of commu-
nication. Neighborhood sampling is done similarly to FastGCN (see Section 1.2), but note that
whenever server aggregation is performed, it must be done on the same set of sampled nodes
across clients. Hence, the server takes the union of the clients’ index sets Sm[lk] and broadcasts
S[lk] =

⋃M
m=1 Sm[lk] to the clients. On the other hand, when server aggregation is skipped at an

layer l /∈ I, each client can use its own set of sampled nodes, Sm[l], that may differ across clients.
Such a procedure is more flexible than conventional VFL, where strict sample synchronization is
enforced. The sampling procedure is summarized in Algorithm 2 in the appendix.

2.3 STALE UPDATES

To further reduce communication, we consider stale updates, which skip aggregation in certain
iterations and use stale node representations to perform model updates. The key idea is to fix the
mini-batch, including the sampled neighbors at each layer, for training Q iterations. In every other
Q iterations, the clients store the aggregated representations at the server aggregation layers. Then,
in the subsequent iterations, every server aggregation is replaced by a local aggregation between a
client’s up-to-date node representations and other clients’ stale node representations. By doing so,
the clients and the server only need to communicate once in every Q iterations.

Specifically, let a round of training contain Q iterations and use t to index the rounds. At the
beginning of each round, the clients and the server jointly decide the set of nodes used for training
at each layer. Then, they perform a joint inference on the representations Ht,+

m [l] at every layer
l ∈ I. Each client m will store the “all but m” representation Ht

−m[l + 1] through extracting such
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Algorithm 1 Training Procedure. All referenced algorithms are detailed in the appendix.
1: for t = 0, . . . , T − 1 do
2: Server/Client: Sample {St

m[l]}Ll=0 with Algorithm 2.

3: Client: Wt,0
m =

{
Wt−1,Q

m , t > 0

W0
m, t = 0

.

4: Server/Client: {Ht
−m[l + 1]}l∈I = JointInference(Wt,0

m ,Dm, {St
m[l]}Ll=0). (Algorithm 3)

5: for q = 0, . . . , Q− 1 do
6: for clients in parallel do
7: Wt,q+1

m = LocalUpdate(Wt,q
m ,Dm, {St

m[l]}Ll=0, {Ht
−m[l + 1]}l∈I). (Algorithm 4)

8: end for
9: end for

10: end for
11: Output: {Wt,q

m }Mm=1

information from the aggregated representations Ht
m[l + 1]:

Ht
−m[l + 1] = Extract(Ht

m[l + 1],Ht,+
m [l]).

For example, when the server aggregation is averaging, the extraction is

Extract(Ht
m[l + 1],Ht,+

m [l]) = Ht
m[l + 1]− 1

M
Ht,+

m [l].

Afterward, the clients perform Q iterations of model updates, indexed by q = 0, . . . , Q − 1, on the
local parameters Wt,q

m in parallel, using the stored aggregated information Ht
−m[l + 1] whenever

a server aggregation is supposed to happen. In other words, the server aggregation is replaced by
computation done locally, thus reducing a significant amount of communication. Because Ht

−m[l+

1] is computed by using stale model parameters {Wt,0
m′}m′ ̸=m at all iterations q ̸= 0, this approach

is called “stale updates.”

The details are summarized in Algorithm 1, with subroutines given in Appendix A.

2.4 SPECIAL CASES

It is interesting to note that our model and the training algorithm encompass several well-known
models and algorithms as special cases.

Conventional VFL. VFL algorithms can be viewed as a special case of the proposed algorithm,
where A(Em) = I for all m. In this case, no neighborhood sampling is needed and GLASU reduces
to Liu et al. (2022).

Existing VFL algorithms for graphs. The model of Zhou et al. (2020) is a special case of our
model, with K = 1; i.e., no communication is performed between the server and the clients except
the final prediction layer. In this case, the clients omit the connections absent in the self subgraph
but present in other clients’ subgraphs. The model of Ni et al. (2021) is also a special case of our
model, with K = L. This case requires communication at all layers and is less efficient.

Centralized GNNs. When there is a single client (M = 1), our setting is the same as centralized
GNN training. Specifically, by letting K = L and properly choosing the server aggregation function
Agg(·), our split model can achieve the same performance as a centralized GNN model. Of course,
using lazy aggregation (K ̸= L) and choosing the server aggregation function as concatenation or
averaging will make the split model different from a centralized GNN.

2.5 PRIVACY

Our training algorithm GLASU enables privacy protection because it is compatible with existing
privacy preserving approaches, including secure aggregation (SA) and differential privacy (DP).

SA (Bonawitz et al., 2017; Hardy et al., 2017) is a form of secure multi-party computation approach
used for aggregating information from a group of clients, without revealing the information of any
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individual. This can be achieved by homomorphic encryption (Li et al., 2010; Hardy et al., 2017). In
our case, when the server aggregation is averaging, homomorphic encryption can be directly applied.

DP (Wei et al., 2020) is a probabilistic protection approach. By injecting stochasticity to the local
outputs, this approach guarantees that any attacker cannot distinguish the sample from the dataset up
to a certain probability. DP can be applied either solely or in combination with SA to our algorithm
in the server-client communication, to offer privacy protection on the client data.

3 CONVERGENCE ANALYSIS

With lazy aggregation and stale updates, GLASU is guaranteed to converge. To start the analysis,
denote by St = {St

m[l]}L,M
l=1,m=1 the samples used at round t (which include all sampled nodes at

different layers and clients); by S = |St
m[L]| the batch size; and by L(W;S) the training objective,

which is evaluated at the overall set of model parameters across clients, W = {Wm}Mm=1, and a
batch of samples, S.

A few assumptions are needed (see Appendix B.1 for formal statements). A1: The loss function ℓ
is Gℓ-smooth with Lℓ-Lipschitz gradient; and a client’s prediction function fm is Gf -smooth with
Lf -Lipschitz gradient. A2: The training objective L(W;D) is bounded below by a finite constant
L⋆. A3: The samples St are sampled from D following Algorithm 2 in Appendix A.

For any round t and iteration q in the round, GLASU admits the following convergence guarantee.
Theorem 1. Under assumptions A1–A3, by running Algorithm 1 with η ≤ 1

C0·(1+2Q2M) , with
probability at least p = 1− δ, the averaged gradient norm is bounded by:

1

TQ

T−1∑
t=0

Q−1∑
Q=0

E
∥∥∇L(Wt,q;D)

∥∥2 ≤ 2(L(W0,0)− L⋆)

ηTQ
+

28ηM ·
(
C0 +

√
M + 1Q

)
3

σ, (3)

where C0 = GℓLf + LℓG
2
f is constant and σ > 0 is a function of log(TQ/δ), Lf , Lg, Gf and Gg .

The detailed proofs are presented in Appendix B. Two key challenges in the analysis are: 1) the
stochastic gradient estimation of the network is biased (i.e., ES ∇L(W;S) ̸= ∇L(W;D)), even in
centralized models; and 2) the stale updates in one communication round are correlated, as they are
updated with the same samples. Hence, the general unbiasedness and independence assumptions
on the stochastic gradients in the analysis of SGD-type algorithms do not apply. Instead, we follow
the analysis in Ramezani et al. (2020) to bound the variance of the stochastic gradient in centralized
GCN training, and extend the analysis in Liu et al. (2022) for VFL with correlated updates to our
case with biased gradients.

4 NUMERICAL EXPERIMENTS

In this section, we conduct numerical experiments on a variety of datasets and demonstrate the
effectiveness of GLASU in training with distributed graph data. We first compare the performance
of GLASU with those tackling related settings under different assumptions on data distribution
and communication. Then, we conduct ablation studies to show the equal criticality of the three
components (GNN backbone, lazy aggregation, and stale updates) of GLASU. The experiments are
conducted on a distributed cluster with three Tesla V100 GPUs communicated through Ethernet.

4.1 DATASETS

We use seven datasets (in three groups) with varying sizes and data distributions: the Planetoid col-
lection (Yang et al., 2016), the HeriGraph collection (Bai et al., 2022), and the Reddit dataset (Hamil-
ton et al., 2017). Each dataset in the HeriGraph collection (Suzhou, Venice, and Amsterdam) con-
tains data readily distributed: three subgraphs and more than three feature blocks for each node.
Hence, we use three clients, each of which handles one subgraph and one feature block. For the
other four datasets (Cora, PubMed and CiteSeer in the Planetoid collection; and Reddit), each con-
tains one single graph and thus we manually construct subgraphs through randomly sampling the
edges and splitting the input features into non-overlapping blocks, so that each client handles one
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Dataset # (Sub)graphs # Nodes # Edges # Features # Classes
Cora 1 2, 708 10, 556 1, 433 7

PubMed 1 19, 717 88, 648 500 3
CiteSeer 1 3, 327 9, 104 3, 703 6
Suzhou 3 3, 137 916, 496 979 9
Venice 3 2, 951 534, 513 979 9

Amsterdam 3 3, 727 1, 271, 171 979 9
Reddit 1 232, 965 114, 615, 892 602 41

Table 1: Dataset summary. For a dataset that contains a single graph, each of the M clients holds a
sampled subgraph from it. For the HeriGraph datasets, there are M = 3 clients, each of which holds
a given subgraph.

Dataset Cent. (%) StAl. (%) Sim. (%) GLASU-1 (%) GLASU-4 (%)
Cora 80.9± 0.6 74.6± 0.5 80.1± 1.2 81.0± 1.3 80.3± 1.2

PubMed 84.9± 0.6 77.2± 0.5 82.7± 1.2 82.3± 1.6 83.8± 1.8
CiteSeer 70.2± 0.8 64.4± 0.5 70.0± 1.2 70.0± 1.7 68.8± 3.3
Suzhou 94.3± 0.3 51.6± 0.9 93.5± 0.6 92.7± 1.4 90.4± 0.8
Venice 95.7± 0.5 33.5± 2.1 93.1± 1.3 92.2± 0.6 91.0± 1.6

Amsterdam 94.6± 0.1 59.8± 1.0 95.5± 0.8 93.1± 0.8 94.9± 0.4
Reddit 95.6± 0.1 87.3± 0.3 95.3± 0.7 95.7± 0.6 94.7± 1.1

Table 2: Test accuracy (%) on different datasets. The compared algorithms are Centralized training
(Cent.), Standalone training (StAl.), Simulated centralized training (Sim.), GLASU with no stale
updates, i.e., Q = 1 (GLASU-1), and GLASU with stale updates Q = 4 (GLASU-4).

subgraph and one feature block. The dataset statistics are summarized in Table 1 and more details
are given in Appendix C.1.

4.2 RESULTS

We compare GLASU with three training methods: a) centralized training, where there is only a
single client (M = 1), which holds the whole dataset without any data distribution and communi-
cation; b) standalone training, where each client trains a model with its local data only and they do
not communicate; c) simulated centralized training (Ni et al., 2021), where each client possesses
the full graph but only the partial features, so that it simulates centralized training through server
aggregation in each GNN layer. None of these compared methods fits VFL but they offer good refer-
ences for understanding the performance of VFL on graph data. Except for centralized training, the
number of clients M = 3. The number of training rounds, T , and the learning rate η are optimized
through grid search. See Appendix C.2 for details.

We use GCNII (Chen et al., 2020a) as the backbone GNN. One layer of GCNII reads

H[l + 1] = σ
(
((1− α[l])A(E)H[l] + α[l]H[0]

)(
(1− β[l])I + β[l]W[l])

)
,

which effectively includes two residual connections. This backbone reduces over-smoothing and
results in better prediction accuracy than GCN. We set the number of layers L = 4 and the mini-
batch size S = 16. For neighborhood sampling, we sample three neighbors per node in S[l+1] and
take the union of the sampled neighbors to form S[l]. For lazy aggregation, we set K = 2.

Table 2 reports the classification accuracy of GLASU and the compared training methods, after five
runs. As expected, standalone training produces the worst results, because each client uses only local
information and misses edges and node features present in other clients. The centralized training and
its simulated version lead to similar performance, also as expected. Our method GLASU is quite
comparable with these two methods. Using stale updates (Q = 4) is generally outperformed by no
stale updates, but occasionally it is better (see PubMed and Amsterdam). The gain in using stale
updates occurs in timing, as will be demonstrated in the ablation study next.
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4.3 ABLATION STUDY

To further investigate how each component of the proposed approach affects the performance, we
conduct an ablation study on a) the backbone GNN model, b) the lazy aggregation parameter K,
and c) the stale update parameter Q. The experiments use PubMed and Planetoid for illustration.

Backbone model: We compare the performance of GLASU on three backbone models: GCN,
GAT (Velickovic et al., 2018), and GCNII. The learning rate for each backbonoe is tuned to their
best performance. The test accuracy on PubMed is shown in Figure 3. We see that GLASU can take
different GNNs as the backbone and reach a similar prediction performance.

Lazy aggregation: We investigate the performance of GLASU with different numbers of aggre-
gation layers. We use a 4-layer GCNII as the backbone and set K = 1, 2, 4. The test accuracy
and the runtime are listed in Table 3. We observe that the runtime decreases drastically when using
fewer and fewer aggregation layers; from K = 4 to K = 1, the reduction in runtime is 37.4%
for PubMed and 58.2% for Amsterdam. Meanwhile, there appears to be a sweet spot in terms of
accuracy: K = 2 performs the best.

Figure 3: Test accuracy with different
backbone GNNs on PubMed.

PubMed
# Layer K = 4 K = 2 K = 1
Accuracy (%) 82.5± 1.0 83.8± 1.8 82.2± 0.7
Runtime (s) 130± 12 96.6± 9.9 81.3± 6.5

Amsterdam
# Layer K = 4 K = 2 K = 1
Accuracy (%) 93.6± 0.7 94.9± 0.4 92.0± 1.7
Runtime (s) 913± 76 544± 44 382± 35

Table 3: Test accuracy and runtime of GLASU with dif-
ferent number of lazy aggregation layers K = 4, 2, 1 on
PubMed and Amsterdam.

Stale updates: To investigate the time saving due to the use of stale updates, we experiment with
a few choices of Q: 2, 4, 8, and 16. We report the time to reach the same test accuracy in Table 4.
We see that stale updates help speed up training by using fewer communication rounds; this trend
occurs on the Amsterdam dataset even when taking Q as large as 16. The trend is also noticeable on
PubMed, but at some point (Q = 8) it is reverted, likely because it gets harder and harder to reach
the desired prediction accuracy. We speculate that the target 82% can never be achieved at Q = 16.

# Stale Update Q = 2 Q = 4 Q = 8 Q = 16

PubMed Accuracy (%) 82.5± 1.6 82.0± 2.4 82.1± 0.3 N/A
Runtime (s) 66.1± 5.0 43.8± 4.0 88.9± 7.4 > 128

Amsterdam Accuracy (%) 89.2± 0.4 89.3± 0.7 90.7± 0.5 90.3± 1.1
Runtime (s) 1323± 44 521± 44 324± 31 250± 24

Table 4: Runtime of GLASU with different number of stale updates Q = 2, 4, 6, 16, when reaching
82% test accuracy on PubMed and 89% on Amsterdam.

5 CONCLUSION

We have presented a flexible model splitting approach for VFL with vertically distributed graph
data and proposed a communication-efficient algorithm, GLASU, to train the resulting GNN. Due
to the graph structure among the samples, VFL on GNNs incurs heavy communication and poses an
extra challenge in the convergence analysis, as the stochastic gradients are no longer unbiased. To
overcome these challenges, our approach uses lazy aggregation to skip server-client communication
and stale global information to update local models, leading to significant communication reduc-
tion. Moreover, our analysis makes no assumptions on unbiased gradients. We provide extensive
experiments to show the flexibility of the model and the communication saving in the training.
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A SUBROUTINES IN ALGORITHM 1

Algorithm 2 Sampling Procedure
Client:
for k = K, . . . , 2 do

Receive(S[lk]).
Set Sm[lk] = S[lk].
for l = lk − 1, . . . , lk−1 do

Uniformly randomly sample indices Sm[l]
from neighbors of Sm[l + 1].

end for
Send(Sm[lk−1]) if k > 2.

end for
Output: {Sm[l]}Ll=0

Server:
Uniformly and independently sample

indices S[L] from training set.
Broadcast(S[L]).
for k = K − 1, . . . , 2 do

Aggregate(Sm[lk]).
Compute S[lk] =

⋃M
m=1 Sm[lk].

Broadcast(S[lk]).
end for

Algorithm 3 JointInference
Client:
Input: Wm,Dm, {Sm[l]}Ll=0
Set Hm[0] = Xm[Sm[0]]
for l = 0, . . . , L− 1 do
H+

m[l] = σ(A(E(S[l + 1],S[l]))Hm[l]Wm[l])
if l ∈ I then

Send H+
m[l] to server

Receive Hm[l + 1]
H−m[l + 1] = Extract(Hm[l + 1],H+

m[l])
else

Set Hm[l + 1] = H+
m[l]

end if
end for
Output: {H−m[l + 1]}l∈I

Server:
for l ∈ I do
H[l + 1] = Agg(H+

1 [l], . . . ,H
+
M [l]).

Broadcast H[l + 1].
end for

Algorithm 4 LocalUpdate
Input: Wt,q

m ,Dm, {St
m[l]}Ll=0, {Ht

−m[l + 1]}l∈I
Set Ht,q

m [0] = Xm[St
m[0]]

for l = 0, . . . , L− 1 do
Ht,q,+

m [l] = σ(A(E(St
m[l + 1],St

m[l]))Ht,q
m [l]Wt,q

m [l])
if l ∈ I then

Set Ht,q
m [l + 1] = Agg(Ht

−m[l + 1],Ht,q,+
m [l])

else
Set Ht,q

m [l + 1] = Ht,q,+
m [l]

end if
end for
Compute loss Lt,q

m = ℓ (y[St
m[L]], fm(Ht,q

m [L],Wm[L]))
Output: Wt,q+1

m = Wt,q
m − ηt,q∇Wt,q

m
Lt,q
m

B PROOFS FOR SECTION 3

B.1 ASSUMPTIONS

Assumption 1 (Smooth function and Lipschitz gradient). The loss function ℓ is Gℓ-smooth with
Lℓ-Lipschitz gradient, i.e.,

∥ℓ(y,S,W)− ℓ(y,S,W′)∥ ≤ Gℓ ∥W −W′∥
∥∇Wℓ(y,S,W)−∇W′ℓ(y,S,W′)∥ ≤ Lℓ ∥W −W′∥ , ∀W,W′
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and each client’s prediction function fm is Gf -smooth with Lf -Lipschitz gradient, i.e.,
∥fm(S,Wm)− fm(S,W′

m)∥ ≤ Gf ∥Wm −W′
m∥∥∥∇Wm

fm(S,Wm)−∇W′
m
fm(S,Wm)

∥∥ ≤ Lf ∥Wm −W′
m∥ , ∀Wm,W′

m,∀ m.

Assumption 2 (Lower-bounded function). The training objective is bounded below; that is, there
exists a constant L⋆ > −∞ such that for all {Wm}, it satisfies that

L({Wm}) ≥ L⋆.

Assumption 3 (Uniform sampling). At each iteration t, the server and the clients uniformly sample
nodes {Sm[l]}Ll=0, with |S[L]| = S, according to Algorithm 2.

B.2 PROOF OF THEOREM 1

We first note the following useful relation:

∥a+ b∥2 = ∥a− c+ c− b∥2 ≤ (1 + α) ∥a− c∥2 + (1 +
1

α
) ∥c− b∥2 , ∀α > 0. (4)

For notation simplicity, let us denote the expectation conditioned on all the information before iter-
ation t as

Et[ · ] = ESt [ · |Wt−1,Q, . . . ,W0,0,St−1, . . . ,S0];
denote the “all-but-m” vector as (·)−m, (e.g., the collection of all client parameters except for client
m is W−m = {Wm′}m′ ̸=m); denote the client model updated with data S as Wm(S); denote
the gradient evaluated with data S on parameter Wm as ∇L(Wm(S),S); and denote the stacked
gradient of all clients as G = [∇L(W1(S),S), . . . ,∇L(WM (S),S)]. Then, the update rule can
be rewritten as:

Wt,q+1(St) = Wt,q(St)− ηGt,q. (5)
In addition, let us define a virtual model sequence updated with full data as W(D), i.e.,

Wt,q+1(D) = Wt,q(D)− η∇L(Wt,q(D),D). (6)

We can bound the variance of the stochastic gradient at any round t and iteration q = 0 with the
following lemma:
Lemma 1 (Bounded variance). Under Assumptions 1–3, with probability at least p = 1 − δ, the
variance of the stochastic gradient is bounded by:

Et
[∥∥∇L(W;St)−∇L(W;D)

∥∥2] ≤ σ, ∀W independent of St,

where σ = 64G2
ℓL

2
f log

(
2d

δ

)
+ 128L2

ℓ

(
G4

f +
1

S

)(
log

(
2d

δ

)
+

1

4

)
.

(7)

The main technique for proving this lemma is to use the matrix Bernstein inequality (Tropp, 2015)
to bound the variance of the stochastic gradients and the variance of the expectation for each client.
The proof steps of Lemma 1 follows the same steps in the proofs for Lemmas 5 and 6 of Ramezani
et al. (2020), so we omit them here.

Further, we bound the Lipschitz constant of the total loss function in the following lemma:
Lemma 2 (Lipschitz gradient). Under Assumptions 1–3, the full gradient and each partial gradient
of the objective L(W,S) are Lipschitz continuous with uniform constant C0 = GℓLf +G2

fLℓ,

∥∇WL(W,S)−∇W′L(W′,S)∥ ≤ C0 ∥W −W′∥ , ∀W,W′∥∥∇Wm
L(W,S)−∇W′

m
L(W′,S)

∥∥ ≤ C0 ∥W −W′∥ , ∀W,W′,∀m.

The proof of Lemma 2 is given below in Section B.3.

With the above results, we begin our proof for Theorem 1. First, applying Lemma 2, we have:

L(Wt,q+1,D)− L(Wt,q,D) ≤
〈
∇L(Wt,q,D),Wt,q+1 −Wt,q〉+ C0

2

∥∥Wt,q+1 −Wt,q
∥∥2

(a)
= −η

〈
∇L(Wt,q,D),Gt,q〉+ C0η

2

2

∥∥Gt,q
∥∥2

(b)
= −η

2

(∥∥∇L(Wt,q,D)
∥∥2

+
∥∥Gt,q

∥∥2 −
∥∥∇L(Wt,q,D)−Gt,q

∥∥2
)
+

C0η
2

2

∥∥Gt,q
∥∥2

= −η

2

∥∥∇L(Wt,q,D)
∥∥2 − η

2
(1− ηC0)

∥∥Gt,q
∥∥2

+
η

2

∥∥∇L(Wt,q,D)−Gt,q
∥∥2

,

(8)
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where step (a) applies the update rule of Algorithm 4 and step (b) uses the fact that ⟨a, b⟩ =
1
2

(
∥a∥2 + ∥b∥2 − ∥a− b∥2

)
. Taking expectation, we have:

Et[L(Wt,q+1,D)− L(Wt,q,D)] ≤ −η

2
Et

∥∥∇L(Wt,q,D)
∥∥2

− η

2
(1− ηC0)Et

∥∥Gt,q
∥∥2 + η

2
Et

∥∥∇L(Wt,q,D)−Gt,q
∥∥2

(a)
= −η

2
Et

∥∥∇L(Wt,q,D)
∥∥2 + η

2
Et

∥∥∇L(Wt,q,D)−Gt,q
∥∥2

− η

2
(1− ηC0)(

∥∥Et Gt,q
∥∥2 + Et

∥∥Gt,q − Et Gt,q
∥∥2)

(b)

≤ −η

2
Et

∥∥∇L(Wt,q,D)
∥∥2 − η

2
(1− ηC0)(

∥∥Et Gt,q
∥∥2 + Et

∥∥Gt,q − Et Gt,q
∥∥2)

+
η

2

(
(1 +

1

ηC0
)Et

∥∥∇L(Wt,q,D)− Et Gt,q
∥∥2 + (1 + ηC0)Et

∥∥Et Gt,q −Gt,q
∥∥2)

= −η

2
Et

∥∥∇L(Wt,q,D)
∥∥2 − η

2
(1− ηC0)

∥∥Et Gt,q
∥∥2 + η2C0 Et

∥∥Gt,q − Et Gt,q
∥∥2︸ ︷︷ ︸

Term 1

+
1 + ηC0

2C0
Et

∥∥∇L(Wt,q,D)− Et Gt,q
∥∥2︸ ︷︷ ︸

Term 2

, (9)

where step (a) uses the fact that E(X)2 = E(X2) + E(X − E(X))2 and step (b) uses (4) with
α = ηC0. Next, we bound Term 1 and Term 2 in the above inequality separately.

B.2.1 BOUND OF TERM 1

First, we can rewrite Et[
∥∥Gt,q − Et Gt,q

∥∥2] as:

Et[
∥∥Gt,q − Et Gt,q

∥∥2] = M∑
m=1

Et
[∥∥∇L(Wt,q

m (St),St)− ES ∇L(Wt,q
m (S),S)

∥∥2]
(a)

≤
M∑

m=1

Et
[∥∥∇L(Wt,q

m (St),St)−∇L(Wt,q
m (D),D)

∥∥2]︸ ︷︷ ︸
≜At,q

m

,
(10)

where step (a) uses the fact that E(X − E(X))2 ≤ E(X − Y )2 for all constant Y . Then, we can
bound At,q

m as follows. When q = 0, by Lemma 1, we obtain that At,0
m ≤ σ holds with probability

1− δ. In general, when q ≥ 1, we have:

At,q
m

(4)
≤ 2Et

[∥∥∇L(Wt,q
m (St),St)−∇L(Wt,q

m (D),St)
∥∥2

]
+ 2Et

[∥∥∇L(Wt,q
m (D),St)−∇L(Wt,q

m (D),D)
∥∥2

]
(a)

≤ 2C2
0 Et

[∥∥Wt,q
m (St)−Wt,q

m (D)
∥∥2

]
+ 2Et

[∥∥∇L(Wt,q
m (D),St)−∇L(Wt,q

m (D),D)
∥∥2

]
(b)

≤ 2C2
0 Et

[∥∥Wt,q
m (St)−Wt,q

m (D)
∥∥2

]
+ 2σ,

(11)

which holds with probability 1 − δ. Here, step (a) applies Lemma 2 to the first term and step (b)

applies Lemma 1 to the second term. Then, we bound Et
[
∥Wt,q

m (St)−Wt,q
m (D)∥2

]
in the above

equation as:

Et
[∥∥Wt,q

m (St)−Wt,q
m (D)

∥∥2]
(a)
= Et


∥∥∥∥∥∥Wt,0

m − η

q−1∑
q′=0

∇L(Wt,q′

m (St),St)−

Wt,0
m − η

q−1∑
q′=0

∇L(Wt,q′

m (D),D)

∥∥∥∥∥∥
2

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(b)
= η2 Et


∥∥∥∥∥∥
q−1∑
q′=0

(
∇L(Wt,q′

m (St),St)−∇L(Wt,q′

m (D),D)
)∥∥∥∥∥∥

2


(c)

≤ η2Q

q−1∑
q′=0

Et

[∥∥∥∇L(Wt,q′

m (St),St)−∇L(Wt,q′

m (D),D)
∥∥∥2]

= η2q

q−1∑
q′=0

At,q′

m , (12)

where in step (a) we expand the updates to Wt,0
m with (5) and (6); step (b) cancels Wt,0

m and
rearrange the terms; and step (c) applies the Cauchy–Schwarz inequality. At this point, we have the
following relations:

Et[
∥∥Gt,q − Et Gt,q

∥∥2] ≤ M∑
m=1

At,q
m , At,0

0 ≤ σ, At,q
m ≤ 2C2

0η
2q

q−1∑
q′=0

At,q′

m + 2σ, ∀ q ≥ 1.

Note that q ≤ Q. By choosing 2η2C2
0Q

2 ≤ 1, which implies that η ≤ 1√
2QC0

, and by recursively
substituting the terms, we have the following bounds:

At,q
m ≤

[
2 + 4q2η2C2

0 +
8

3
q3η4C4

0

]
· σ ≤ 14

3
σ,

Et[
∥∥Gt,q − Et Gt,q

∥∥2 ≤ M ·
[
2 + 4q2η2C2

0 +
8

3
q3η4C4

0

]
· σ ≤ 14Mσ

3
.

(13)

This completes bounding the term E[
∥∥Gt,q − Et Gt,q

∥∥2].
B.2.2 BOUND OF TERM 2

We have the following series of relations:

Et
∥∥∇L(Wt,q,D)− Et Gt,q

∥∥2 =

M∑
m=1

Et
∥∥∇Wm

L(Wt,q(St),D)− ES ∇L(Wt,q
m (S),S)

∥∥2
(a)

≤
M∑

m=1

Et ES
∥∥∇WmL(Wt,q(St),S)− ES ∇L(Wt,q

m (S),S)
∥∥2

(b)

≤
M∑

m=1

C2
0 E

t ES

∥∥∥Wt,q(St)− [Wt,q
m (S),Wt,0

−m]
∥∥∥2

=

M∑
m=1

C2
0 E

t ES

∥∥Wt,q
m (St)−Wt,q

m (S)
∥∥2 + ∑

m′ ̸=m

∥∥∥Wt,q
m′(St)−Wt,0

m′

∥∥∥2


(c)
= η2

M∑
m=1

C2
0 E

t ES


∥∥∥∥∥∥
q−1∑
q′=0

(
∇L(Wt,q′

m (St),St)−∇L(Wt,q′

m (S),S)
)∥∥∥∥∥∥

2

+
∑

m′ ̸=m

∥∥∥∥∥∥
q−1∑
q′=0

∇L(Wt,q′

m (S);S)

∥∥∥∥∥∥
2


(d)

≤ η2C2
0q

M∑
m=1

q−1∑
q′=0

Et ES

[∥∥∥∇L(Wt,q′

m (St),St)−∇L(Wt,q′

m (S),S)
∥∥∥2

+
∑

m′ ̸=m

∥∥∥∇L(Wt,q′

m (S);S)
∥∥∥2


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(e)
= η2(M + 1)C2

0q

M∑
m=1

q−1∑
q′=0

Et ES

∥∥∥∇L(Wt,q′

m (St),St)
∥∥∥2

(f)
= η2(M + 1)C2

0q

q−1∑
q′=0

Et
∥∥∥Gt,q′

∥∥∥2
= η2(M + 1)C2

0q

q−1∑
q′=0

Et

[∥∥∥Gt,q′ − Et Gt,q′
∥∥∥2 + ∥∥∥Et Gt,q′

∥∥∥2] , (14)

where step (a) uses Assumption 3, which states that S is uniformly sampled from D, and applies
Jensen’s inequality, that is∥∥ES ∇Wm

L(Wt,q(St);S)− ES ∇L(Wt,q
m (S);S)

∥∥2
≤ ES

∥∥∇WmL(Wt,q(St);S)−∇L(Wt,q
m (S);S)

∥∥2 ;
step (b) applies Lemma 2 and uses the fact that ∇L(Wt,q

m (St),St) is evaluated on Wt,q
m (St) and

Wt,0
−m; in step (c) we expand the update steps until t, 0 with (5); step (d) applies Cauchy-Schwarz

inequality; in step (e) we reorder the sum and apply the i.i.d. Assumption 3 to S,St; and in step (g)

we plug in the definition of G. This completes bounding the term Et
∥∥∇L(Wt,q,D)− Et Gt,q

∥∥2.

B.2.3 PROOF OF THE MAIN RESULT

Substituting the last term in (9) with (14), we obtain that the following holds with probability (1 −
δ)Q:

Et[L(Wt,q+1,D)− L(Wt,q,D)] ≤ −η

2
Et

∥∥∇L(Wt,q,D)
∥∥2 − η

2
(1− ηC0)

∥∥Et Gt,q
∥∥2

+ η2C0 Et
∥∥Gt,q − Et Gt,q

∥∥2
+

1 + ηC0

2C0
η2(M + 1)C2

0q

q−1∑
q′=0

Et

[∥∥∥Gt,q′ − Et Gt,q′
∥∥∥2 + ∥∥∥Et Gt,q′

∥∥∥2]
≤ −η

2
Et

∥∥∇L(Wt,q)
∥∥2 − η

2
(1− ηL)

∥∥Et Gt,q
∥∥2

+
1 + ηC0

2C0
η2(M + 1)C2

0q

q−1∑
q′=0

Et
∥∥∥Et Gt,q′

∥∥∥2
+ η2C0 ·

(
1 +

(1 + ηC0) · (M + 1) · ηQ2

2

)
· 14Mσ

3
,

where in the second inequality, we set η ≤ 1√
2QC0

, plug in (13), and use the fact that q ≤ Q.
Averaging over t = 0, . . . , T − 1 and q = 0, . . . , Q− 1 and reorganizing the terms, we obtain:

1

TQ

T−1∑
t=0

Q−1∑
Q=0

E
∥∥∇L(Wt,q;D)

∥∥2 ≤ 2

ηTQ
E[L(W0)− L(WT,Q)]

−
1− ηC0

(
1 + (1 + ηC0) · (M + 1) ·Q2

)
TQ

T−1∑
t=0

Q−1∑
q=0

E
∥∥Et Gt,q

∥∥2
+ 2ηC0 ·

(
1 +

(1 + ηC0) · (M + 1) · ηQ2

2

)
· 14Mσ

3
,

which holds with probability at least (1− δ)TQ. Let δ = δ′/TQ ∈ (0, 1); then, the above equation
holds with probability at least

(1− δ′/TQ)TQ ≥ 1− δ′/TQ× TQ = 1− δ′.

Let
1− ηC0

(
1 + (1 + ηC0) · (M + 1) ·Q2

)
≥ 0,
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(η ≤ 1√
M+1C0Q

) and apply Assumption 2. Then, we have

1

TQ

T−1∑
t=0

Q−1∑
Q=0

E
∥∥∇L(Wt,q;D)

∥∥2 ≤ 2(L(W0)− L⋆)

ηTQ
+

28ηM ·
(
C0 +

√
M + 1Q

)
3

σ, (15)

which holds with probability at least 1− δ, where

σ = 64G2
ℓL

2
f log

(
2dTQ

δ

)
+ 128L2

ℓ

(
G4

f +
1

S

)(
log

(
2dTQ

δ

)
+

1

4

)
.

This completes the proof of Theorem 1.

B.3 PROOF FOR LEMMA 2

In this subsection, we prove

∥∇WL(W)−∇W′L(W′)∥ ≤ C0 ∥W −W′∥

and ∥∥∇Wm
L(W)−∇W′

m
L(W′)

∥∥ ≤ C0 ∥W −W′∥ .

Note that ∇Wm
L(W) is a sub-vector of ∇L(W′), so

∥∥∇Wm
L(W)−∇W′

m
L(W′)

∥∥ ≤
∥∇WL(W)−∇W′L(W′)∥ . Therefore, we only need to prove the first inequality.

The gradient ∇L(W) can be expanded as

∇L(W) = ∇ℓ(y, fm(S,W))

= ∇ℓ(fm(S,W)) · ∇Wfm(S,W) = ∇ℓ(fm) · ∇fm(W),
(16)

where in the last equation we omit the irrelevant variables. Then, we have

∥∇L(W)−∇L(W′)∥ = ∥∇ℓ(fm) · ∇fm(W)−∇ℓ(f ′
m) · ∇fm(W′)∥

= ∥∇ℓ(fm) · (∇fm(W)−∇fm(W′)) + (∇ℓ(fm)−∇ℓ(f ′
m)) · ∇fm(W′)∥

(a)

≤ ∥∇ℓ(fm) · (∇fm(W)−∇fm(W′))∥+ ∥(∇ℓ(fm)−∇ℓ(f ′
m)) · ∇fm(W′)∥

(b)

≤ ∥∇ℓ(fm)∥ ∥∇fm(W)−∇fm(W′)∥+ ∥∇ℓ(fm)−∇ℓ(f ′
m)∥ ∥∇fm(W′)∥

(c)

≤ GℓLf ∥W −W′∥+ Lℓ ∥fm(W)− fm(W′)∥ ·Gf

A1
≤ (GℓLf + LℓG

2
f ) · ∥W −W′∥ ,

(17)

where step (a) uses the fact that ∥a+ b∥ ≤ ∥a∥ + ∥b∥, step (b) uses the fact that ∥ab∥ ≤ ∥a∥ ∥b∥;
and in step (c) we apply Lemma 2 (that is, for any G-smooth function g, its gradient is bounded as
∥∇g∥ ≤ G) to the first and the fourth terms and Lipschitz gradient to the second and the third terms.
This completes the proof of Lemma 2.

C EXPERIMENT DETAILS

C.1 DETAILS OF THE DATASETS

Planetoid (Yang et al., 2016): This collection contains three citation datasets: Cora, PubMed, and
CiteSeer. Each dataset contains one citation graph, where the nodes represent papers and edges
represent citations. The node features are a bag of words and the classification target is the pa-
per category. In the experiment, each client holds a non-overlapping block of node features and a
subgraph that results from uniformly sampling 80% of the edges.

HeriGraph (Bai et al., 2022): This collection contains three multi-modal graph datasets, each of
which is constructed from heritage data posted on social media for a particular city (Suzhou, Ams-
terdam, and Venice). Each post contains user information, timestamp, geolocation, image, and text
annotation. The posts are connected to form three subgraphs: a social subgraph, a spatial subgraph,
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and a temporal subgraph. The social subgraph is formed based on friendship and common-interest
relations of the users. The spatial subgraph is formed based on the spatial proximity of the geolo-
cations. The temporal subgraph is formed based on the temporal proximity of the posts. Each post
has three blocks of image features and possibly text features; for classification, it belongs to one of
nine heritage attributes. In the experiment, each client holds one of the three subgraphs and one of
the three image feature blocks.

Reddit (Hamilton et al., 2017): Reddit is a large online community where users post and comment
on different topics. Each node represents a post and the features are the text of the post. Two
posts are connected if the same user comments on both. The classification target is the community
(subreddit) that a post belongs to. Similar to Planetoid, in the experiment, each client holds a non-
overlapping block of node features and a subgraph that results from uniformly sampling 80% of the
edges.

C.2 DETAILS OF THE HYPERPARAMETERS

Here we provide a list of hyperparameters for grid search in Table 5. The optimal set of hyperpa-
rameters for each setting is tuned according to the range listed in the table.

Hyperparameter Grid search range
Hidden dimension of H[l] {128, 192, 256, 384}

Batch size S {16, 32}
Neighborhood sample size {2, 3, 4, 6, 8}

Training rounds T {512, 640, 1024, 1152, 3200}
Learning rate η {1, 2, 3.5, 5, 7, 8} × {10−1, 10−2, 10−3}

Table 5: Hyperparameter grid search range for the numerical experiments.
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