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ABSTRACT

Deep learning approaches have shown great promise in accelerating magnetic
resonance imaging (MRI) by reconstructing high quality images from highly under-
sampled data. While previous sampling methods relied on heuristics, recent work
has improved the state-of-the-art (SotA) with deep reinforcement learning (RL)
sampling policies, which offer the possibility of long term planning and of adapting
to the observations at test time. In this work, we perform a careful reproduction and
comparison of SotA RL sampling methods. Surprisingly, we find that i) a greedily
trained fixed policy can match or outperform deep RL methods and ii) find and
resolve subtle variations in the preprocessing and reporting which previously made
results incomparable across different works. Our results cast doubt on the added
value of current RL approaches over fixed masks in MRI sampling and highlight
the importance of leveraging strong fixed baselines, standardized reporting as well
as isolating the source of improvement in a given work via ablations. We conclude
with recommendations for the training and evaluation of deep reconstruction and
sampling systems for adaptive MRI based on our findings.

1 INTRODUCTION
Magnetic resonance imaging (MRI) is a non-invasive, non-ionizing medical imaging method which
has been widely adopted in clinical settings due to its with unmatched quality in soft tissue contrast.
However, MRI suffers from long scanning times, which limits patient comfort, imaging quality as
well as throughput (Zbontar et al., 2019). These issues have been a longstanding research direction in
the community, and one prominent way to shorten scanning times is acquiring less measurements
and use a reconstruction method to recover the full image, a setting known as accelerated MRI.

Spurred by the great gains in reconstruction quality (Muckley et al., 2020), recent works have moved
away from using generic, non-learning based heuristics, such as variable-density sampling (VDS)
(Lustig et al., 2007) to select the measurements to acquire. Instead, there has been a growing interest
in strong, learning-based methods that tailor sampling policies to the reconstruction method and
achieve even greater accelerations, and as a result, further speeding up imaging.

The state-of-the-art approaches rely mostly on the idea of pairing a reconstruction model with a patient-
adaptive sampling model, where the former estimates a clean image from partial measurements, and
the latter selects measurements that it predicts as likely to improve the reconstruction quality. The
selection policy can be trained relying on techniques from reinforcement-learning (Jin et al., 2019;
Pineda et al., 2020; Bakker et al., 2020), heuristics such as a model trying to estimate the Fourier
space error of the locations to be acquired (Zhang et al., 2019) or end to end via the straight-through
estimator (Van Gorp et al., 2021; Yin et al., 2021). Other approaches choose to directly parameterize
a fixed mask and do not learn a policy via neural networks (Bahadir et al., 2019; Huijben et al., 2020b;
Weiss et al., 2019).

In this work, we focus our investigation on the benefits of the policies trained using reinforcement
learning, namely the contributions of Pineda et al. (2020) and Bakker et al. (2020). We reproduce
their results and extend their evaluation with additional baselines and experimental settings, i.e.
change of hyperparameters and preprocessing. Deep RL approaches have drawn attention because
the policies can in principle offer two important benefits: i) long term planning and ii) adapting to the
currently acquired image at test time. The work of Pineda et al. (2020) however seems to indicate
that long term planning could be the most important component in deep RL, as their results show
that a non-adaptive, long term planning policy model trained on the dataset can perform as well as
an adaptive, long-term planning policy. On the contrary, the contribution of Bakker et al. (2020)
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Sampling Method Learning-based Adaptive Long horizon
VDS (Lustig et al., 2007) 7 7 7
LBCS (Gözcü et al., 2018) 3 7 7
Jin et al. (2019) 3 3 3
Bakker et al. (2020) 3 3 3/7
Pineda et al. (2020) 3 3/7 3

Table 1: Methods that will be considered in the paper. Bakker et al. (2020) considered fixed vs. adaptive
and greedy vs. non-greedy, Pineda et al. (2020) considered data specific vs. subject specific policies and also
compared against greedy methods. VDS stands for Variable-Density Sampling (Lustig et al., 2007) a common
heuristic which is not learning-based.

highlights the importance of adaptivity, as a greedy policy, that does not do long-term planning is
found to closely match policies that do long term planning. This means that at time of writing there
are two peer reviewed SotA papers in apparent conflict with another.

Our results synthesize this apparent conflict: We observe that a simple, easy-to-train method that
does not rely on deep RL, does not attempt long term planning and is by definition not adaptive can
perform as well as the state-of-the-art approaches of Pineda et al. (2020); Bakker et al. (2020). The
fixed sampling policies are obtained by optimizing a fixed policy greedily optimization on a training
set, following the Learning-based Compressed Sensing (LBCS) approach of (Gözcü et al., 2018;
Sanchez et al., 2019).

This trend can be consistently observed on the fastMRI single-coil knee dataset (Zbontar et al., 2019),
where we carry out evaluations across a variety of settings, whether full scale images, cropping the
field of view, various mask designs used for training and various architectures. We observe that such
small changes in the experimental pipeline can easily lead to reversals in the performance or in the
conclusions, by having the RL approach matched or outperformed by LBCS. It is possible then to
choose an experimental setting and performance metrics to support one’s desired conclusion: that RL
outperforms LBCS, that LBCS outperforms RL or that their difference is not significant.

Together with the observation that current SotA RL methods only add marginal value over the simple
baselines at best, we hope that this work will highlight the urgent need for further discussions in the
community about standardized metrics, strong baselines, and careful design of experimental pipelines
to evaluate MRI sampling policies fairly.

To ensure reproducibility and facilitate the use of strong baselines in future work we will release our
code upon acceptance of this paper.

2 BACKGROUND
This work focuses on the following inverse problem, where we seek to recover a signal x ∈ CP
from partial observations y ∈ CN , N � P obtained by subsampling a unitary transform matrix
A ∈ CP×P :

yω = PωAx+ η, (1)
where η ∈ CN is a noise vector, ω ⊆ [P ] := {1, . . . , P} is an index set of allowable sampling
locations with cardinality N , Pω is a diagonal matrix such that (Pω)ii = 1 if i ∈ ω, 0 otherwise.
Pω and ω are referred to as the (sampling) mask, as they control what locations are acquired in the
original signal. This problem is inherently ill-posed, due to N � P , and our first goal will be to
construct an estimate x̂ω;θ = fθ(yω, ω) of the original signal x, where fθ is a reconstruction method
parameterized by θ.

2.1 MRI FUNDAMENTALS

In MRI, observations are obtained in the Fourier space, also referred to as k-space. The acquisition of
data happens sequentially, but the physical constraints of an MRI acquisition make it more efficient
to observe entire columns or rows at once, a setting known as Cartesian sampling (Zbontar et al.,
2019). Non-Cartesian sampling is also possible (see for instance Weiss et al. (2019); Lazarus et al.
(2019) for recent references), but some sampling methods like e.g. the pixel level sampling in Bahadir
et al. (2019); Yin et al. (2021) are not practical for 2D MRI, as they do not allow for a reduction of
scanning time compared sampling full trajectories.

The acquisition of a column or row is known as a readout, and the complete procedure consists in
acquiring N readouts sequentially. A full acquisition would require P readouts, and acquiring only
N of P lines accelerates the scan by a factor P/N , adequately named acceleration factor, the inverse
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Figure 1: Overview of the accelerated MRI pipeline. Acquisition happens sequentially in Fourier space, where a
policy decides on the next location to acquire. Dashed lines indicate optional relations: not all policies rely on
training data, and not all policies are data adaptive, as shown in Table 1.

of which is known as the sampling rate, and the spectrum obtained with N out of P readouts is
referred to as undersampled. The observations obtained by taking an inverse Fourier transform lead
to an aliased image, and require processing through a reconstruction method.

In MRI, the Fourier space is typically structured, containing the bulk of energy in the low-frequencies
located around the center of the space, and less around the high ones. While Compressed Sensing
(CS) prescribes uniform sampling Donoho (2006); Candès et al. (2006), the structure of Fourier space
made it necessary to leverage heuristics that assign more probability to low-frequencies in order to
reflect the energy distribution. This approach is known as variable density-sampling (VDS) (Lustig
et al., 2007).

2.2 SAMPLING OPTIMIZATION

The success of deep-learning approaches to MRI have led the broader medical imaging community
to re-think the problem of optimizing the undersampling patterns in a data-driven fashion as well
(Gözcü et al., 2018; Sanchez et al., 2019; Zhang et al., 2019; Jin et al., 2019; Pineda et al., 2020;
Huijben et al., 2020a), instead of relying on heuristics such as variable density sampling (Lustig et al.,
2007). The ideal sampling algorithm would tailor the mask to each instance of x ∼ p(x) solving

minω:|ω|≤N `(x, x̂θ(yω = PωAx)), (2)

which is not realizable since this requires using the unknown ground truth signal x at testing time and
is computationally intractable due to the combinatorial nature of the problem. Two main approaches
have been explored to circumvent this problem.

Fixed (open-loop) sampling. A majority of data-driven mask design approaches use fixed masks
(Ravishankar & Bresler, 2011; Gözcü et al., 2018; Sanchez et al., 2019; Bahadir et al., 2019; Wu
et al., 2019; Huijben et al., 2020b). The subsampling mask is constructed ahead of time - either via
a heuristic or by using training data - and kept fixed at inference time. Formally, the problem of
choosing the subsampling pattern corresponds to finding a subset ω that satisfies

arg minω:|ω|≤N Ex∼p(x) [`(x, x̂θ(yω = PωAx))] , (3)

where we are constrained with a maximal sampling budget N and want to find a mask that minimizes
a given loss function `. The true risk is substituted with the empirical one, estimated from training
samples, and x̂θ(yω = PωAx) is an approximation of the ground truth obtained by reconstruction.

Adaptive (closed-loop) sampling. In contrast to Equation 3, adaptive sampling generates a dynamic
sampling mask using a heuristic Hφ evaluated at test time. For a fixed, unknown data sample x,
we use information of the previously obtained measurements yωt−1 to determine which candidate
v ⊂ [P ], v 6∈ ωt−1 should be acquired at time t. These methods solve at test time, for each individual
target x, the following sequence of problems:

vt ∈ arg minv:v∈[P ]Hφ(v, x̂ωt−1;θ, ωt−1) for t = 1, . . . , N (4)

where ωt = {ωt−1, vt} is defined in a nested fashion at each step. The heuristic score can be
specifically trained for sampling leveraging reinforcement-learning framework (Bakker et al., 2020;
Pineda et al., 2020; Jin et al., 2019), trained to directly estimate the current error and simply acquiring
measurements where the error is estimated to be currently largest (Zhang et al., 2019), or be derived
from available heuristics like posterior variance as in (Ji et al., 2008; Haupt et al., 2009; Sanchez
et al., 2020).
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3 THE MRI DATA PROCESSING PIPELINE

Section 2 outlined the mathematical setting underlying accelerated MRI, but does not capture practical
considerations that can greatly affect the performance of methods as well as their applicability in the
real world. In this section, we will step through the stages of the MRI data processing pipeline as
shown in Figure 2. Note that this pipeline is independent of the sampling method and simply operates
on a given mask.

Figure 2: Illustration of the the data processing pipeline of MRI subsampling. Diamonds represent data in
Fourier domain (k-space) and circles represent data in image domain. The postprocessed observation and ground
truth are the data that are subsequently used for training the reconstruction and policy models. The pipeline
features three main blocks, namely preprocessing, subsampling and postprocessing.

As we will show in Section 4.1, seemingly trivial changes at even a single of these stages can affect
the results of the evaluation and lead to changes in the ordering of the performance of different
policies, an observation that we will refer to as reversal. We mark sections where we observed
changes leading to reversals with ∗ and sections here they only shifted the results but do not lead to
reversals with italics. We also discuss some caveats at these different steps in Appendix B

Data sources and storage. In all cases, the ground truth signal x is initially acquired as a complex
signal in k-space, generally using multiple coils. The fastMRI dataset (Zbontar et al., 2019) provides
this raw multicoil data, as well as a simulated single-coil k-space which we use throughout this work.

Preprocessing∗. Due to computational constraints, it is common to resize the images by cropping
and/or resizing or use magnitude images over the raw data. Cropping and resizing changes the ground
truth distribution, which as seen in Table 3 can also lead to reversals in the final results.

Sampling. While in the real world the data is actually acquired by sampling k-space (prospective
sampling), in practice, the acquisition is generally simulated by retrospectively undersampling fully
sampled Cartesian data following Equation 1.

When training reconstructor and sampling method separately, training data are generally constructed
with random masks that sample a certain fraction of center frequencies, and then the rest from
a random distribution. There has been considerable variation in defining the parameters of these
distributions, but to this day, no systematic study of their effect on the reconstruction quality have
been carried out.

Post processing and reconstruction. After sampling, the observation will be processed according to
the implementation details of the reconstruction algorithm (e.g., normalized or standardized) and the
reconstruction is computed. We discuss the impact of postprocessing in Appendices B and C.2.

Evaluation metrics ∗. Finally to judge the results, the most common metrics are peak signal-to-noise
ratio (PSNR), mean squared error (MSE), normalized mean squared error (NMSE) and structural
similarity index metric (SSIM).

All metrics tend to promote smooth images when used as a training loss (Muckley et al., 2020) but it
is widely known that MSE, NMSE and PSNR focus on low-frequencies/high-energy components,
which was also noted by Bakker et al. (2020). However, while MSE, NMSE and PSNR only operate
on image differences and treats every pixel independently, SSIM is computed from local averages
(Wang et al., 2004; Zbontar et al., 2019).

The metric is then reported as a curve plotted against sampling rate (Zhang et al., 2019), its reciprocal,
the acceleration rate (Pineda et al., 2020) or aggregated by computing the average performance, the
performance at end of sampling, or the area under curve (AUC). Details on the AUC computation are
provided in Appendix A.4. As discussed throughout the experiments, the choice of metric and its
aggregation can greatly impact the conclusions drawn from results.
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4 RE-EXAMINING DEEP RL FOR MRI SAMPLING

Our initial impetus is the observation that the non-adaptive oracle used in Bakker et al. (2020) is
highly reminiscent of the LBCS method (Gözcü et al., 2018), which has been used as a strong baseline
in the literature (Jin et al., 2019; Sanchez et al., 2020). To our surprise, evaluating this methods
against the greedy RL method in the data processing pipeline used in Zhang et al. (2019) resulted in
the fixed method not only coming close to the non-adaptive oracle, but actually closely matching the
RL method (see Table 3). Wanting to perform a fair comparison as well as to asses the impact of
the variability in the pipelines used across the literature, we closely replicated the pipeline of Bakker
et al. (2020)1 as well as an extensive ablation study to understand this reversal and identify its source.

In the sequel, the term setting then refers to a particular choice of preprocessing, subsampling and
postprocessing of the data, independently of the data source (we always use the same dataset) and
the model or sampling policy used. Preprocessing and postprocessing are relevant throughout the
training of the reconstruction and the policy models, whereas changes in the sampling masks only
directly affect the pretraining of the reconstructor, as the training the policy is done by successive
rollouts using the policy model itself.

Dataset and preprocessing. Like the original paper of Bakker et al. (2020), we used the fastMRI
(Zbontar et al., 2019) single-coil knee dataset for the experiments. We slightly modify follow their
preprocessing (using complex data instead of magnitude data, different data normalization) that
do not affect the relative ordering of the different methods. We provide ablations and a detailed
discussion of these changes in Appendix C.2.

Specifically, they crop the data to 128× 128, which we refer to as (c)). Zhang et al. (2019) instead
resizes the data to 128 × 128 which we replicate by first cropping to 256 × 256 and then resizing
them to 128× 128. This preprocessing results in images with different fields of view. We refer to this
preprocessing as (c+r) and integrate it to our ablations. We also evaluate horizontal (h) sampling
masks, used in Gözcü et al. (2018); Jin et al. (2019) in addition to the vertical (v) sampling masks
used by Bakker et al. (2020); Zhang et al. (2019) and Pineda et al. (2020).

The deep reconstructors used in Pineda et al. (2020); Bakker et al. (2020) pre-trained by randomly
sampling a mask from a set of distributions with different parameters. We ablated over two pretraining
regimes which we abbreviate as b and z, respectively. We describe them in more detail in Appendix A

Reconstruction models. We ablate over the two reconstruction models used in the RL SotA (Pineda
et al., 2020) and (Bakker et al., 2020), namely the cResNet architecture from Zhang et al. (2019),
used in Pineda et al. (2020) and the U-Net baseline provided in the fastMRI dataset, used in Bakker
et al. (2020). Hyperparameters and training details are discussed in Appendix A.3.

Sampling methods In each ablation setting we compared Bakker et al. (2020) to the following
baselines and oracles (citations in squared brackets here refer to prior works that also evaluate them):

• Random sampling (Random): Acquire a fixed proportion of low-frequency lines in Fourier and
then randomly sample the remaining lines [Jin et al., 2019; Pineda et al., 2020; Bakker et al., 2020].

• Low-to-high frequencies (LtH): select k-space lines from low-to-high frequencies lines [Zhang
et al., 2019; Pineda et al., 2020; Jin et al., 2019].

• (Stochastic) Learning-based Compressive Sampling (LBCS) (Gözcü et al., 2018; Sanchez et al.,
2019): This method trains a non-adaptive, greedy sampling policy that selects as a measurement
candidate in each acquisition step the column that leads to the greatest average improvement over a
sample from the training dataset. We use the stochastic version that scales better to large dataset
and images [Jin et al., 2019].

• Non-adaptive Oracle (NA Oracle) (Bakker et al., 2020): This oracle is computed by training and
evaluating LBCS directly on the test set, and illustrates the benefit of adaptivity in greedy methods.
This is the instance of a non-adaptive, greedy sampling method [Bakker et al., 2020].

For the training of the policy models of Bakker et al. (2020), we use the parameters of the greedy
model in their paper, which we refer to simply as RL in the sequel. We excluded the non-greedy
version, as Bakker et al. (2020) notice that the performance of the non-greedy model with discount
factor γ = 0.9 is always close to within one standard deviation of the greedy model, but significantly

1We thank the authors for providing the original checkpoints and general help and responsiveness during this
replication
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more computationally demanding. We studied both the short and long horizon sampling regimes
but only report on the long horizon for conciseness, with the short horizon results summarized in
Appendix C.1.

Except for the deterministic LtH and NA Oracle, we report the performance of each method averaged
on three runs/separately trained RL policies, along with the standard deviation.

Summarizing, we start in the setting of Bakker et al. (2020) except for using complex data and not
magnitude data and then ablate over: i) cropped (c) vs cropped+resized (c+r), ii) vertical (v) vs
horizontal (h) Cartesian sampling, iii) reconstruction with a pretrained UNet (Ronneberger et al., 2015;
Bakker et al., 2020) or a cResNet (Zhang et al., 2019) and iv) the training regime for the reconstructor
proposed in Bakker et al. (2020) (b) or in Zhang et al. (2019) (z). The base setting is referred to as
cvb, for cropped (preprocessing) + vertical (mask) + Bakker et al. (sampling parameters) using a
both a UNet and a cResNet reconstructor. Our main results will compare the difference between cvb
and c+rhz to illustrate the impact of largely different data processing. A more complete ablation,
using the setting cvz to ablate over the impact of different mask parameters, c+rvz to study the
impact of different field of views and mask orientation is carried out in Appendix C.3.

4.1 RESULTS ON BAKKER ET AL. (2020)

Comparing Table 2 and Table 3, that display respectively the performance at the end of the acquisition
trajectory (25% sampling rate, as used in Bakker et al. (2020)) and the AUC over the whole trajectory,
a reversal can clearly be seen on the c+rhz setting: on the first table, LBCS dominates in both the
UNet and cResNet, but on the second, it matches RL for the UNet and is outperformed by RL for the
cResNet. Conclusions drawn from the results are reversed or invalidated by using a different way
to aggregate the results. Reversals also occur on both tables when comparing the cvb and c+rhz
settings for each reconstruction method.

A consistent trend from Tables 2 and 3, as well as the ablations in Appendix C.3, is that the return on
investment (ROI) of adopting RL over LBCS is generally marginal compared to what changes in the
modeling pipeline can bring. Improving the reconstruction architecture or using masking regimes
adapted to the sampling horizon yield much more significant gains, e.g., moving from a UNet to a
cResNet brings an order of magnitude more improvement (around 0.01 SSIM difference) than what
RL brings over LBCS (around 0.0015 at best).

We also observe that the performance of LBCS always remains close to the NA Oracle, testifying to
the generalization ability of the fixed LBCS masks as indicated by theory. Other reversals can be
observed in both cases when changing the data processing for both the SSIM at 25% and the AUC
evaluations.

Finally, note that the large gap in performance between the cvb and the c+rhz settings is not due
to a significant difference in performance of the reconstruction methods, but rather originates from
the difference in field of view. This can be seen by comparing the SSIM value of the observations
(before reconstruction) using the deterministic LtH policy in both cases: in the cvb setting, one gets
an AUC of 0.4989 for the observation SSIM, whereas in the c+rhz setting, the AUC is 0.6534.

Policy cropped, vert., Bakker cropped+resized, horiz., Zhang

UNet cResNet UNet cResNet

Random 0.5249± 0.0001 0.5432± 0.0004 0.6567± 0.0003 0.6725± 0.0006
LtH 0.5832 0.6197 0.7325 0.7714
LBCS 0.6294± 0.0009 0.6417± 0.0011 0.7768± 0.0000 0.7941± 0.0000
RL 0.6298± 0.0002 0.6415± 0.0002 0.7761± 0.0000 0.7935± 0.0001

NA Oracle 0.6301 0.6428 0.7771 0.7942

Table 2: SSIM at 25% on the test set, on knee data comparing two models in the long horizon setting of Bakker
et al. (2020), for the cvb (cropped, vertical, Bakker-type of masks) and c+rhz (cropped+resized, horizontal,
Zhang-like masks) settings. This is an alternate aggregation as the one done on Table 3.

4.2 EXAMINING LONG RANGE ADAPTIVITY WITH PINEDA ET AL. (2020)
Given these results, we can observe that if there is indeed a benefit to adaptive but still greedy policies,
it is highly sensitive to the parameters used, and the improvement over the fixed greedy baseline is
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Policy cropped, vert., Bakker cropped+resized, horiz., Zhang

UNet cResNet UNet cResNet

Random 0.4348± 0.0001 0.4432± 0.0002 0.5860± 0.0002 0.5885± 0.0002
LtH 0.4849 0.5107 0.6678 0.6902
LBCS 0.5134± 0.0004 0.5243± 0.0003 0.7035± 0.0001 0.7096± 0.0001
RL 0.5142± 0.0001 0.5242± 0.0002 0.7035± 0.0002 0.7111± 0.0009

NA Oracle 0.5140 0.5247 0.7038 0.7099

Table 3: AUC on the test set using SSIM, on knee data comparing two models in the long horizon setting
of Bakker et al. (2020), for the cvb (cropped, vertical, Bakker-type of masks) and c+rhz (cropped+resized,
horizontal, Zhang-like masks) settings. This is an alternate aggregation as the one done on Table 2.

marginal. One might wonder whether there will be a significant gain from adaptive RL policies if
they are trained to perform long term planning on a longer horizon? To investigate this, we replicated
the second SotA RL method described in Pineda et al. (2020), using the pretrained checkpoints due
to computational constraints. This work uses a discount factor of γ = 0.5 and operates on the full
fastMRI image of size 640 × 368, meaning it is both trained for a longer time horizon as well as
having a lot more leeway for decision making. We replicated the extreme setting which starts with 2
center frequencies (0.6% sampling rate or 166× acceleration) and is evaluated up to 100 frequencies
(30.1% sampling rate or 3.32× acceleration)2. As can be seen in Table 4, the LBCS mask is very
close to the performance of both the data and sample specific DDQN policies provided by Pineda
et al. (2020).

Interestingly, as seen in Figure 3 and Table 4, this is another example of a simple change in metric
leading to a possible reversal of interpretation: visually in Figure 3a and when considering the
AUC over sampling rate, LBCS seems competitive with the DDQN policies. In Figure 3b and the
next column, we simply adopt the convention of Pineda et al. (2020) of using the acceleration rate
(reciprocal of sampling rate) and we observe another reversal.

This puts more emphasis on the sub 5% range (i.e. below 17 lines) where LBCS has not yet caught
up on DDQN (see Figure 7 in Appendix F for a more expensive large-scale version of LBCS trained
on MSE which does catch up). Finally, if we report only the final sampling rate as is the convention
in Bakker et al. (2020), the presentation gives the win to LBCS again as can be seen in the rightmost
column. We also performed a more detailed comparison of the masks given by the policies, using a
subset of the first 200 test set images, keeping the order fixed in across methods. The results can be
found in Appendix D.1 but can be summarized as i) the adaptivity of SS-DDQN mainly affects the
ordering of frequencies, a large section of acquired frequencies being shared across samples and in
similar regions to the LBCS mask at the final sampling rate ii) it confirms that the adaptive masks
have a small edge only until about a sampling rate of 5%, after which LBCS catches up and overtakes
the RL policy.

Policy SSIM PSNR
Samp. rate Acc. factor Final rate Samp. rate Acc. factor Final rate

Random 0.5801 0.4497 0.6723 26.489 22.327 28.962
LtH 0.5636 0.4506 0.6686 27.169 23.133 29.360
LBCS 0.6079 0.4787 0.6886 28.491 23.799 30.211
DS-DDQN 0.6101 0.4797 0.6855 28.240 23.978 29.652
SS-DDQN 0.6139 0.4797 0.6882 28.424 23.918 29.929

Adaptive Oracle 0.6341 0.4910 0.7131 29.013 24.498 30.683

Table 4: AUC on the test set when calculated against sampling rate and acceleration factor (1/sampling rate),
as well as performance at the final sampling rate (100 lines acquired out of 332) on the knee dataset, using the
processing of Pineda et al. (2020).

2We thank the authors for providing us with the original scores and general responsiveness and helpfulness
during this replication.
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Figure 3: PSNR performance plot on the test set, using the knee dataset with the processing from Pineda et al.
(2020). The plots feature two ways to report the same result, which are also displayed in Table 4. The SSIM
performance plot can be found in Figure 6 in the Appendix.

4.3 DISCUSSION

As we have seen in Section 4 and Section 4.2, the fixed mask of LBCS is competitive with or
outperforms both the greedy policy gradient methods of Bakker et al. (2020) and the non-greedy
DDQN methods of Pineda et al. (2020). Our ablations in Section 4 and Appendices C.3 and F, as well
as the example of Figure 3 highlight that the benefit of current RL methods over the fixed baseline, if
it exists at all, is so small that a change of field of view, architecture or mask distribution (cf. Tables 3
and 6) can lead to a reversal in the relative performance ordering.

Table 4 confirms the expectation that methods trained on SSIM can underperform with respect to
PSNR and vice versa. In general agreement with the literature, we see that using several metrics is im-
portant to capture these tradeoffs, as reporting only one particular metric might hide underperformance
in the other.

There have been various ways of reporting the metrics, ranging from showing sampling curves as
in Figure 6a, reporting the area under curve (AUC) tables or simply reporting the metric at the final
sampling rate. We see that reporting only the summarizing statistic can be deceitful and give relatively
little information on the overall performance of the method. For instance, using only the last sampling
rate, one could not distinguish between a method that performs well at all sampling rates leading to
the final one, and one that has overall mediocre results and quickly improves on the performance at
the end.

For this reason we consider sampling curves the gold standard for assessing the quality of accelerated
MRI sampling methods, as a good performance at all sampling rates coupled with some stopping
criterion could mean that MRI scans could be stopped when sufficient information has been acquired,
further increasing their efficiency. If one wishes to report a single number, we recommend using
AUC unless only the final performance is of interest.

There is also the question of reporting acceleration factors or sampling rates, which put focus on
very different regimes of sampling: acceleration factors, as shown in (Pineda et al., 2020) focus on
extreme undersampling rates. For instance, in the 2L scenario of Pineda et al. (2020), almost 90% of
the plot and of the corresponding AUC consists of 20 lines out of the 100 acquired. While it is true
that the high acceleration regimes are where it is most desirable to make improvements, results on
sampling rates have the advantage of uniformly distributing the performance throughout a range of
interest instead of a single acquisition determining a third of the metric as in fig. 3b.

Alternatives to using acceleration factors could consist in displaying sampling rates over a region of
interest or computing the AUC by explicitly assigning more weight to low sampling rates instead of
doing it implicitly and nonlinearly through acceleration factors.

Finally, a close study of the masks given by the SS-DDQN in Figure 5, the edge of the SS-DDQN
over the LBCS mask in Figure 4a and the comparison of the LBCS and SSDQN edge over a fixed
heuristic in Figures 4b and 4c reveals that the frequencies selected by the adaptive policy are very
similar to those selected by the LBCS mask and that the variability between samples is concentrated
at very early sampling rates.
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4.4 RELATION TO OTHER WORKS

While we focused strictly on RL trained sampling policies leveraging pre-trained reconstructors, there
are other paradigms for accelerated MRI sampling present in the literature.

The first line is that of using end-to-end training of masks using stochastic relaxations of the sampling
mask to be able to differentiate it and optimize the reconstructor and sampling method jointly. Bahadir
et al. (2019); Huijben et al. (2020) directly optimize for a single sampling rate and sampling mask.
More recent work extend this technique for jointly training an adaptive policy, doing away with the
pretraining and making more efficient use of the reconstructor’s capacity (Yin et al., 2021; Van Gorp
et al., 2021). Another line of joint training relies on self-supervised learning using Monte-Carlo Tree
Search, as was done in Deepmind’s AlphaGo Silver et al. (2017); Jin et al. (2019)

An open question regarding this line of research is whether the joint training enables to achieve a
better sampling policy or simply serves as a curriculum and a way to specialize the sampling policy
and reconstructor onto each other. To our knowledge, neither Van Gorp et al. (2021) nor Yin et al.
(2021) investigated this. An interesting experiment could be to train a LBCS sampling mask on the
co-trained reconstructor to see whether it can recover the sampling performance of the co-trained
sampling network.

More similar to the spirit of our work, the recent study of Shimron et al. (2021) tackles subtle biases
induced by the use of stored data and improper processing, Edupuganti et al. (2020) investigated
specifically uncertainty methods for MRI reconstruction.

For works focusing on RL, Henderson et al. (2018) performed extensive ablation studies showing the
sensitivity of RL methods to even minute variations in parameters. Engstrom et al. (2020); Gronauer
et al. (2021) showed that the improvements of SotA RL methods can be traced to the exploitation of
a subset of implementation details and algorithmic improvements and that even simple algorithms
leveraging this subset can achieve SotA performance, similar to our work. This showcases that
adapting to the data distribution seems to be sufficient to reach SotA in accelerated MRI sampling.

5 CONCLUSION
Taken together, our observations lead us to conclude the apparent conflict between the works of
Bakker et al. (2020) and Pineda et al. (2020) is simply becasue at least in their current state, neither
of the RL SotA methods do not offer significant benefits over fixed, greedily trained masks. Since
greedy algorithms tend to perform near optimal in settings with submodularity (Krause & Golovin,
2014), we conjecture a similar structure might be present in problems like the MRI sampling problem.
Determining whether this conjecture holds or whether the lack of added value originates from specific
RL algorithm and their training remains to be determined and should be the focus for any researcher
set on applying RL to such a problem.

Our results also enable us to provide practical advice, summarized below. We provide a more
extensive discussion of these statements in Appendix E.

• Focus on improvements in the reconstructor architecture, mask distribution and algorithms
used for training the reconstructor.

• Compare against strong baselines, such as LBCS.
• Show sampling curves and use AUC to aggregate your results instead of performance at the

final sampling rate.
• Be mindful about preprocessing settings when evaluating a policy model. We recommend

using the cropped+vertical setting with the data normalization implemented by Zbontar et al.
(2019).

We also want to emphasize that conducting the experiments in this paper would have been impossible
if the RL methods had not been exemplary in terms of openness and reproducibility. Without access
to the checkpoints and code, and without the authors’ responsiveness we would not have been able to
reproduce both works and add the missing baseline. Despite the theoretical guarantees of LBCS, we
were surprised that it matched and sometimes simply outperformed more sophisticated methods. We
therefore do not view our work as criticism of these works but rather as an extension and a synthesis,
and urge any future work to follow their lead in publishing codes, checkpoints and data.
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A IMPLEMENTATION DETAILS

A.1 PRETRAINING REGIMES

The deep reconstructors used in Pineda et al. (2020); Bakker et al. (2020) are pre-trained by randomly
sampling a mask from a set of distributions with different parameters. Bakker et al. (2020) uses a
discrete set of sampling rates at (25%,25%,25%, 16.7%,16.7%, and 12.5%) with (25%,16.7%,12.5%,
16.7%,12.5%,12.5%) of the total selected frequencies being allocated to center frequencies and the
rest sampled uniformly,while Zhang et al. (2019) uses a distribution where 10 center frequencies are
always acquired, and between 0 and 38 additional frequency lines are acquired following a uniform
distribution (as a reminder, the total number of possible sampling locations is 128 lines or columns).

A.2 COMPUTATIONAL HARDWARE

We performed all of your experiments on a DGX-2 server using A100 GPUs. On this machine the
reconstrction model of Pineda et al. (2020) fits into GPU memory with an effective batchsize of 50
(we use subbatching to enable arbitrary batch sizes) and it took≈ 3 hours to train each of the reported
LBCS masks. Meanwhile masks for the comparisons of Bakker et al. (2020) could be trained in ≈ 20
minutes, while training the RL policy took on the order of days as reported in the authors original
paper. While one might be able to obtain a certain speedup using a more optimised or parallel RL
algorithm, a key bottleneck is the sequential nature of the optimization.

A.3 RECONSTRUCTOR ARCHITECTURES

We experiment on two main generator architectures, a UNet (Ronneberger et al., 2015) as used in
Zbontar et al. (2019) and Bakker et al. (2020) and the cascade of residual networks, called cResNet
introduced by Zhang et al. (2019).

For the cResNet in the comparison with Pineda et al. (2020) we used the checkpoint
provided at https://facebookresearch.github.io/active-mri-acquisition/
misc.html by the authors. All UNet models of the ablations of the Bakker et al. (2020) setting
were trained following the hyperparameters described in the paper, i.e. using Adam Kingma & Ba
(2014) and training to 50 epochs, otherwise using the hyperparameters from Zbontar et al. (2019)
(except for the 10× learning rate drop 40 epochs, we instead kept the initial 10−3 rate throughout).
We used a batchs ize of 32.

For the cResNet models used in the ablations we used Adam as an optimizer with learning rate 10−3,
betas of (0.9, 999), trained for 50 epochs and a batch size of 32. The architecture is the same as in
Zhang et al. (2019) except only outputting the mean of the image (no uncertainty channel), and using
72 channels for the 3 residual blocks, with 18, 36, 72 channels in the encoder and 72, 36, 18 channels
in the decoder.

The images for both were undersampled using masks according to the settings described in ap-
pendix A.1. For the UNet, like Bakker et al. (2020) we take a single channel for magnitude only data
as input, while for the cResNet we take the 2 complex channels as inputs. All models are trained using
`1 loss and directly output the reconstruction without a final nonlinearity. The UNet has 837′635
parameters in total, while the c-ResNet is larger with 1′093′479 parameters.

A.4 AREA UNDER CURVE (AUC) COMPUTATION

We detail here the computation used to summarize performance curves with the AUC, used in Tables
3 and 4 in the body of the paper.

The area under curve is a numerical integration of the performance curve of the form
{rt, `(xi, x̂θ(yωt,i))}Tt=t0 that relates the sampling rate or acceleration factor at the t-th step to
its performance. We used the sklearn implementation, that implements it using a trapezoidal rule.
We compute an individual AUC for each test sample and then aggregate the resulting set {AUCi}ntest

i=1
by computing its empirical mean and variance.

This measure is susceptible to changes in reparation of the area under the curve, and this is the reason
that the result changes when moving from sampling rate to acceleration factor (1/sampling rate).
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Indeed, when representing acceleration factors, in the case of Pineda et al. (2020) (cf. Table 4) 20
sampling locations cover 90% of the acceleration factor plot, biasing the AUC towards attributing
most of its weight the high acceleration factors.

B EXTENDED DISCUSSION ON THE MRI DATA PROCESSING PIPELINE

We extend the discussion of Section 4, focusing on some caveats and common pitfalls to avoid.

Caveat #1 (Preprocessing). Converting the raw ground truth to or starting from a magnitude induces
a conjugate symmetry in Fourier space that is not present in real data, a distortion that makes our
modeling less faithful to the physical model.

Postprocessing details. Typical normalization, as used for instance in Pineda et al. (2020), consist of
dividing every input by a fixed value equal to the average energy of the dataset. Bakker et al. (2020)
standardized their data and then clamped them to have standardized data in the range [−6, 6].

We found that standardization used by Bakker et al. (2020) was necessary only when paired with
non-residual models, which tracks with observations in the literature that residual networks can work
without normalization, although usually this is studied for network internal normalization which we
also leverage (see e.g. (Zhang et al., 2018) which removes normalization entirely by using a proper
initialization).

Caveat #2 (Postprocessing). Normalization should occur in a consistent fashion between ground
truth and observation data, as failing to do this can lead to inconsistent values in the reconstruction,
especially in parts where data consistency occurs. In (Bakker et al., 2020), the authors normalize
observations and ground truth using their respective statistics and denormalize the reconstructed
image using the ground truth statistics, which is not compatible with the use of data consistency in
the reconstructor. If one wishes to get a realistic estimate of the performance at deployment, it’s
also advisable to use only statistics available at test time (i.e. observation statistics, not ground truth
statistics).

C FURTHER EXPERIMENTS ON BAKKER’S SETTING

C.1 DATA PROCESSING DIFFERENCES

In section 4, we mentioned that we slightly deviated from the setting of Bakker et al. (2020). We
now detail these changes and show that they do not change the relative performance of the different
methods.

1. Train-test split: we used a different train-test split than Bakker et al. (2020), as we randomly
splitted 10% of the training set as a test set, and used the fastMRI validation set for test. We
used the 50% more central slices, resulting in 15599 training slices, 1743 validation slices
and 3564 test slices.

2. Complex data undersampling: , Bakker et al. (2020) use magnitude ground truth images
as the reference that is undersampled. We discussed in Appendix B the issue with this
approach. We chose to use complex preprocessing of data, followed by taking magnitude of
the observation obtained after undersampling.

3. Data range: PSNR and SSIM need to be provided with a maximal data range in their
computation: Bakker et al. (2020) used the maximal intensity in the ground truth volume,
while we used the maximal intensity of each ground truth slice or image.

4. Data standardization: Bakker et al. (2020) used a unique data standardization, where
observations and ground truth data are standardized using their respective statistics, but
denormalized, after reconstruction, using only the ground truth statistics. While this ensures
a more closely matching data range, this introduces a mismatching data range that biases
models leveraging data consistency, used in most state-of-the-art models. We performed
matched data normalization and denormalization using the observation statistics for the
observation, and the ground truth ones for the ground truth.
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Policy Bakker’s Individual Matched Mismatched Complex preprocessing
setting data range standardization setting (matched - ours)

Random (SH) 0.6251 0.5964 0.5798 0.5595 0.5608
LtH (SH) 0.6073 0.5762 0.5650 0.5617 0.5719
LBCS (SH) 0.6375 0.6099 0.5928 0.5684 0.5732
RL (SH) 0.6388 0.6112 0.5941 0.5698 0.5738
NA Oracle (SH) 0.6383 0.6107 0.5937 0.5717 0.5738

Table 5: AUC on the test set, using SSIM, on various data processing on Bakker’s knee setting. The ablation is
carried out over The mismatched setting refers to the evaluation of the model trained in the setting of Bakker
et al. (2020), but evaluated complex data preprocessing instead of magnitude data preprocessing. This makes the
reconstruction and policy models to be out of the distribution. A model trained on the complex preprocessing is
reported in the complex preprocessing (matched - ours) column.

The third and fourth changes are related to postprocessing, and do not require retraining a model.
We see on the three first columns of Table 5 that these changes do not alter the relative ordering
of the methods. However, in absolute numbers, the worse performing method in the initial setting
outperforms the best method the best performing one after these changes (highlighted in italic on
Table 5). While comparing these numbers would be a mistake, this highlights the impact of subtle
postprocessing changes and the need for care in comparing methods, especially across different
papers.

C.2 ABLATION OVER MAGNITUDE VS COMPLEX DATA

We first illustrate the impact of doing the appropriate preprocessing by evaluating the model of Bakker
et al. (2020) using their data processing pipeline against a pipeline with complex preprocessing. The
SSIM performance AUC is reported in Table 5.

This would correspond to a simulation of what would happen if the model of Bakker et al. (2020)
was to be used in deployment, as one would receive undersampled complex observations that are
only then transformed to magnitude images. While this does not induce any reversal in this case,
we see that in the matched setting, the gap between LBCS and RL shrinks. We see also again that
training and evaluating on the matched setting leads to larger performance improvements than the
ones obtained by training sophisticated policies.

C.3 FURTHER RESULTS IN THE BAKKER EXPERIMENT

We provide the results of our full ablation study on the components described in section 4. We report
observations on the cvb, cvz, c+rvz and c+rhz settings. The summary of the full trajectory with
an AUC is presented on Table 6 and the performance at the end of sampling is shown in Table 7.

It is difficult to consistently establish a trend for when reversals will happen, but several important
observations can be made from the results.

First of all, by comparing Tables 6 and Table 7, we see that reversals can happen by considering one
way of reporting over another (see c+rvz cResNet in both tables). This highlights again the impact
of the way results are reported.

The effect of the masks used for pretraining the reconstructor is also interesting. Comparing the cvb
and cvz results, once can consistently see the following trend. In the short horizon setting (LHS
of the tables), using cvb leads to consistent improvements over cvz. In the long horizon setting,
the opposite is true. Recall that the b masks are discretely distributed from sampling rates 12.5%
to 25%, which matches the short horizon experiment range. The z masks span a continuous range,
from roughly 7% to 37.5%, whereas the long horizon experiment spans a range from 3% to 25%
sampling rate. These results suggest that matching the pretraining regime to the regime on which
evaluation will be carried out has a significant influence on the performance of the sampling policy,
an observation which has, to our knowledge, never been quantified before.

PSNR evaluation. We also provide a PSNR evaluation for the models trained on SSIM in Tables 8
and 9. There does not seem a clear trend or correlation between the policy’s performance on SSIM

15



Under review as a conference paper at ICLR 2022

Policy
Short Horizon Long Horizon

cvb c+rhz cvb c+rhz

UNet CResNet UNet CResNet UNet CResNet UNet CResNet
Random 0.5608 0.5659 0.7292 0.7338 0.4348 0.4432 0.5860 0.5885
LtH 0.5719 0.5764 0.7309 0.7412 0.4849 0.5107 0.6678 0.6902
LBCS 0.5732 0.5828 0.7430 0.7526 0.5134 0.5243 0.7035 0.7096
RL 0.5738 0.5830 0.7430 0.7524 0.5142 0.5242 0.7035 0.7111
NA Oracle 0.5738 0.5832 0.7430 0.7527 0.5140 0.5247 0.7038 0.7099

Policy
Short Horizon Long Horizon

cvz c+rvz cvz c+rvz

UNet CResNet UNet CResNet UNet CResNet UNet CResNet
Random 0.5580 0.5661 0.6851 0.6984 0.4483 0.4621 0.5252 0.5276
LtH 0.5663 0.5759 0.6739 0.7028 0.5122 0.5218 0.6292 0.6444
LBCS 0.5712 0.5822 0.7034 0.7235 0.5174 0.5328 0.6568 0.6712
RL 0.5717 0.5829 0.7042 0.7239 0.5183 0.5334 0.6582 0.6733
NA Oracle 0.5718 0.5835 0.7038 0.7236 0.5180 0.5336 0.6568 0.6717

Table 6: AUC on the test set, using SSIM, for the full ablation study using the model of Bakker et al. (2020). The
short and long horizon results are not comparable with each other, as AUCs are integrated on the whole range
of sampling rates. The top right part of the table (long horizon) replicated the results of table 3, excluding the
standard deviation for legibility. The rest of the ablation were not averaged on several seeds for computational
reasons. Recall that cvb stands for cropped, vertical lines, Bakker-like mask distribution, c+rhz stands
for cropped then resized, horizontal lines and Zhang-like masks, cvz stands for cropped, vertical lines and
Zhang-like masks and c+rvz stands for cropped then resized, vertical lines and Zhang-like masks.

Policy
Short Horizon Long Horizon

cvb c+rhz cvb c+rhz

UNet CResNet UNet CResNet UNet CResNet UNet CResNet
Random 0.607 0.6141 0.7565 0.7667 0.5249 0.5432 0.6567 0.6567
LtH 0.6267 0.6313 0.7602 0.7786 0.5832 0.6197 0.7325 0.7714
LBCS 0.6288 0.6413 0.7751 0.7923 0.6294 0.6417 0.7768 0.7941
RL 0.6298 0.6417 0.7745 0.7921 0.6298 0.6415 0.7761 0.7935

NA Oracle 0.6301 0.6421 0.7751 0.7926 0.6301 0.6428 0.7771 0.7942

Policy
Short Horizon Long Horizon

cvz c+rvz cvz c+rvz

UNet CResNet UNet CResNet UNet CResNet UNet CResNet
Random 0.6053 0.6148 0.7201 0.7401 0.5502 0.5693 0.6191 0.6359
LtH 0.619 0.6309 0.7052 0.7487 0.6190 0.6309 0.7052 0.7487
LBCS 0.6282 0.6413 0.7411 0.7710 0.6293 0.6451 0.7453 0.7746
RL 0.6288 0.6416 0.7417 0.7714 0.6304 0.6452 0.7470 0.7738

NA Oracle 0.6292 0.643 0.741 0.7717 0.6304 0.6464 0.7457 0.7755

Table 7: SSIM at 25% sampling rate, using SSIM, with the model of Bakker et al. (2020). This is the counterpart
of the results shown in Table 6, where the acronyms used are explicited. Here, the results across short and long
horizon are comparable.

and PSNR. We observe however the same kind of dynamics in the settings, where cropped + resized
data naturally have a higher PSNR than cropped ones, and cResNet improves the reconstruction
quality of UNet.
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Policy
Short Horizon Long Horizon

cvb c+rhz cvb c+rhz

UNet CResNet UNet CResNet UNet CResNet UNet CResNet
Random 24.206 24.180 27.641 28.365 20.802 20.836 22.375 22.371
LtH 24.486 24.420 27.628 28.640 23.570 23.578 26.607 27.317
LBCS 24.493 24.517 28.254 29.154 23.574 23.635 27.220 27.802
RL 24.466 24.506 28.247 29.147 23.585 23.646 27.210 27.757

NA Oracle 24.510 24.521 28.257 29.152 23.591 23.639 27.222 27.757

Policy
Short Horizon Long Horizon

cvz c+rvz cvz c+rvz

UNet CResNet UNet CResNet UNet CResNet UNet CResNet
Random 23.978 24.184 25.845 26.949 20.967 21.437 20.428 20.625
LtH 24.108 24.396 25.641 27.048 23.441 23.703 24.487 25.510
LBCS 24.269 24.490 26.515 27.870 23.600 23.846 25.307 26.316
RL 24.226 24.498 26.530 27.861 23.581 23.858 25.240 26.246

NA Oracle 24.271 24.513 26.528 27.856 23.603 23.848 25.309 26.250

Table 8: AUC on the test set, using PSNR, for the full ablation study using the model of Bakker et al. (2020). The
short and long horizon results are not comparable with each other, as AUCs are integrated on the whole range
of sampling rates. The rest ablation were not averaged on several seeds for computational reasons. Recall that
cvb stands for cropped, vertical lines, Bakker-like mask distribution, c+rhz stands for cropped then resized,
horizontal lines and Zhang-like masks, cvz stands for cropped, vertical lines and Zhang-like masks and c+rvz
stands for cropped then resized, vertical lines and Zhang-like masks.

Policy
Short Horizon Long Horizon

cvb c+rhz cvb c+rhz

UNet CResNet UNet CResNet UNet CResNet UNet CResNet
Random 24.583 24.604 28.241 29.113 21.520 21.684 23.547 23.843
LtH 25.056 24.984 28.176 29.567 25.056 24.984 28.176 29.567
LBCS 25.068 25.117 29.088 30.214 25.043 25.077 29.226 30.234
RL 25.032 25.108 29.050 30.218 25.071 25.101 29.194 30.188

NA Oracle 25.095 25.120 29.090 30.233 25.111 25.111 29.211 30.229

Policy
Short Horizon Long Horizon

cvz c+rvz cvz c+rvz

UNet CResNet UNet CResNet UNet CResNet UNet CResNet
Random 24.369 24.623 26.657 27.957 21.791 22.497 21.854 22.506
LtH 24.551 24.961 26.223 28.143 24.551 24.961 26.223 28.143
LBCS 24.817 25.089 27.439 29.069 24.850 25.084 27.518 29.145
RL 24.765 25.102 27.451 29.069 25.102 24.807 27.583 29.041

NA Oracle 24.813 25.123 27.429 29.043 24.837 25.101 27.446 29.072

Table 9: PSNR at 25% sampling rate, using PSNR, with the model of Bakker et al. (2020). This is the counterpart
of the results shown in Table 8, where the acronyms used are explicited. Here, the results across short and long
horizon are comparable.
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D DIGGING INTO LONG RANGE ADAPTIVITY

Since we had to update the codebase to the current Pytorch FFT API we used the Low-To-High
baseline as confirmation that we indeed replicate their setting exactly and then compare their method
against the Low-To-High and random sampling baselines. We also use the fact that the code provided
by the authors reports the images used for evaluation to evaluate LBCS on exactly the same subset of
the validation set as the original codebase (we always train on the training set only). Similar Pineda
et al. (2020), we train a separate LBCS mask for the reporting of SSIM and PSNR/MSE/NMSE (we
found the latter 3 to be highly correlated in performance).

D.1 ADAPTIVITY

As can be seen in fig. 5a., d. and e, LBCS puts more emphasis on the center frequencies, but acquires
similar sections of k-space as the SSDDQN. It also creates a more symmetric masks, which is in line
with Pineda et al. (2020) observations that SSIM creates more asymmetric masks. More interestingly,
as can be seen in fig. 5c., most of the variation is concentrated at the early sampling rates (left of
the plot) with the std and especially the coefficient of variation (σµ ) decaying towards zero in most
locations. This implies that while SSDDQN is indeed adapting to each image individually, this mainly
affects ordering early on and after 20 -40 samples (6− 12% sampling rate) LBCS starts to catch up.
This is also supported by two observations:

1. LBCS underperforms SSDQN by a larger margin than on the full evaluation, which we
interpret as the mask being good on average and with a smaller sample there is a higher
chance of individual suboptimality

2. the per-image difference between LBCS and SSDQN grows in favor of SSDDQN until
about 40 samples where LBCS starts to slowly recover. The distribution of the difference
however becomes much wider, implying there are images where LBCS performs wildly
different from SSDDQN

(a) LBCS-SSDDQN (b) LBCS-LtH (c) SSDDQN-LtH

Figure 4: Per Image distribution of SSIM differences between sampling methods across the sampling process.
Each shade corresponds to a 10 percent region, with the lightest shade indicating max and min regions.

a. SSDDQN mean b. SSDDQN std c. SSDDQN CoV (std/mean) d. LBCS e. SSDDQN_avg -LBCS
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here.
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Figure 6: Two ways to report the same result, SSIM version of fig. 3
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E DETAIL ON THE PRACTICAL RECOMMENDATIONS

In this appendix, we discuss the recommendations issued in the conclusion, and provide the supporting
evidence from our results.

E.1 FOCUS ON IMPROVEMENTS IN THE RECONSTRUCTOR ARCHITECTURE, MASK
DISTRIBUTION AND ALGORITHMS USED FOR TRAINING THE RECONSTRUCTOR

Our results and ablations on the setting of (Bakker et al., 2020) consistently show that the improve-
ments obtained by changing the reconstructor architecture or the mask distribution are orders of
magnitude more impactful than moving from LBCS to RL. This is supported the results of both
Section 4.1 and Appendix C.3, where we see that moving from a UNet to a cResNet typically brings
a significantly larger improvement (typically 0.01 SSIM) than what RL brings over LBCS in the best
case (at most 0.0015 SSIM).This trend is also seen in Appendix C.3 when moving from cvb in the
short horizon setting to cvz in the long horizon setting. We refer the reader to this section for more
details.

E.2 COMPARE AGAINST STRONG BASELINES, SUCH AS LBCS

This point is established throughout our paper, where all results illustrate that, at best, RL methods
bring moderate improvement over LBCS. This improvement often comes at the cost of prohibitive
computational expense, even on higher end DGX-2 servers3, while training LBCS required at most a
couple of hours (cf. Appendix A.2).

E.3 SHOW SAMPLING CURVES AND USE AUC TO AGGREGATE YOUR RESULTS INSTEAD OF
PERFORMANCE AT THE FINAL SAMPLING RATE

There is no consensus on how results should be aggregated from sampling curves. Bakker et al.
(2020); Van Gorp et al. (2021) reported performance at the end of the acquisition, and Pineda et al.
(2020) reported AUC curves computed on the acceleration factor. Gözcü et al. (2018); Yin et al.
(2021) reported performance at selected sampling rates, and for other works such as Jin et al. (2019),
it is not clear how results were aggregated.

We believe that reporting the AUC on sampling rates, computed on the whole range of acquisition
steps allows to most meaningfully quantify the performance of a policy on its whole trajectory. It
does not require to select a sampling rate at which the result should be evaluated, and using sampling
rates as opposed to acceleration factor allows to equally weight the contribution of each acquired line.

Table 4 and Figure 3 compellingly illustrate that reporting the policy at a given sampling rate is not
representative of its performance throughout the acquisition procedure.

E.4 BE MINDFUL ABOUT PREPROCESSING SETTINGS WHEN EVALUATING A POLICY MODEL.
WE RECOMMEND USING THE CROPPED+VERTICAL SETTING WITH THE DATA
NORMALIZATION IMPLEMENTED BY ZBONTAR ET AL. (2019)

We discussed in Appendix B that Bakker et al. (2020) used a data normalization that is, among other
things, incompatible with data consistency, a commonly used building block for cascading networks
(Schlemper et al., 2018; Zhang et al., 2019). This can be prevented by using a normalization based
on observation rather than ground truth statistics, as implemented in Zbontar et al. (2019).

Regarding the experimental setting, vertical masks have ubiquitously used on the fastMRI dataset
Zbontar et al. (2019); Huijben et al. (2020); Bakker et al. (2020); Pineda et al. (2020) and cropping
has been the most common preprocessing to alleviate the computational burden of the large images
(640×368) used in the dataset (Bakker et al., 2020; Huijben et al., 2020b; Yin et al., 2021). Evaluating
models on cropped data with vertical masks will then facilitate reproducibility among different works.
We would additionally recommend to researchers to evaluate their models on the cropped+resized in
addition to the cropped only setting, as the images display a significantly different field of view (cf.
Figures 8 and 10).

3The authors of (Pineda et al., 2020) confirmed to us that it took more than 20 days to train their model.
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F DETAILS ON LBCS USED FOR THE FIXED MASK DESIGN

Algorithm 1 shows the pseudocode of the algorithm we used for designing the fixed masks used for
the comparisons throughout the paper, while Table 11 summarizes the hyper parameters used and
Table 10 gives an overview of the computational complexity. Note that LBCS is almost completely
parallelizable, which leads to the stark runtime differences noted in Appendix A. As can be seen
when comparing Figure 3 and Figure 7, once a certain data batch size l and sampling candidate set
cardinality k is reached, LBCS performance saturates although it continues to benefit especially in
the low sampling regime. This means that one could very feasibly reduce l for the comparison with
Bakker et al. (2020), we simply went with a larger batchsize because we could.

Algorithm 1 Stochastic LBCS mask design
(G) refers to the greedy algorithm Gözcü et al. (2018)
(SG) refers to the stochastic greedy algorithm of Sanchez et al. (2019)

Input: Training data {x}mi=1, reconstructor fθ, sampling set S , max. cardinality N , samp. batch size
k, train. batch size l, performance metric η(·, ·)
Output: Sampling pattern ω

1:
2: while |ω| ≤ N do

3: (G)
{

Pick Siter = S
Pick L = {1, . . . ,m}

4: (SG)
{

Pick Siter ⊆ S at random, with |Siter| = k
Pick L ⊆ {1, . . . ,m}, with |L| = l

5: for S ∈ Siter such that |ω ∪ S| ≤ Γ do
6: ω′ = ω ∪ S
7: For each ` ∈ L set x̂` ← fθ(Pω′Ax`, ω

′)
8: η(ω′)← 1

|L|
∑
`∈L η(x`, x̂`)

9: ω ← ω ∪ S∗, where S∗ = arg max
S:|ω∪S|≤N

η(ω ∪ S)

10: return ω

Method Forward Backward Total

(Bakker et al., 2020) q(8)E(50)B(16)H(nr + np) = 6′400H(nr + np) 6400Hnp 6′400H(nr + 2np)
LBCS for Bakker et al. (2020) n(H)k(128)l(256)nr = 32′768Hnr 0 32′768Hnr

(Pineda et al., 2020) 5e6(nr + np) 5e6(np) 5e6(nr + 2np)
LBCS for Pineda et al. (2020) n(100)k(64)l(20)nr = 128e3nr 0 128e3nr

Table 10: Approximate computational cost of the compared methods. Note that at test time, LBCS is basically
free while the RL policies will still need to be deployed. nr, np are the parameter counts of the reconstruction
and sampling policies respectively

Setting Num. lines Max. cardinality Candidate Data batch
|S| N set size k size l

Short horizon(Bakker et al., 2020) 128 16 128 256
Long horizon (Bakker et al., 2020) 128 28 128 256
(Pineda et al., 2020) 332 100 64 20
(Pineda et al., 2020) "big" 332 48 200 256

Table 11: The hyperparameters used for the stochastic LBCS masks throughout comparisons
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Figure 7: PSNR and SSIM of LBCS with larger batch size (LBCS - big) trained on MSE, zoomed to the region
where the smaller batch size LBCS underperformed. Note that it fully matches or outperforms both versions of
DDQN on PSNR.
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G VISUAL COMPARISONS

In this section, we present a visual comparison over a selected set of models, policies, settings and
images. We present a visual evaluation of the models and policies at sampling rates 25% and 12.5%
on Figures 8 and 9. In addition, we present a more exhaustive set of reconstruction, at various
sampling rates, on Figure 10, where we display both types of sequences that were used to generate
the data, namely proton density (PD) and proton density, fat saturated (PDFS) of images (Zbontar
et al., 2019).
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Figure 8: Visualization of masks, observations, reconstructions and ground truths and error maps
(|reconstruction − ground truth|) at 25% sampling rate, for different policies (Random, LtH, LBCS, RL).
The data are processed according to the c+rhz setting, i.e. cropped then resized images, horizontal undersam-
pling and Zhang-type distribution of masks. The SSIM and PSNR values are given on the right, and here, zf
refers to zero-filled, and is the SSIM/PSNR taken between the observation and the ground truth.

Focusing first on Figures 8 and 9, we can observe that random and low-to-high sampling lie signif-
icantly behind the performance of LBCS and RL. This is the reason why they are not included in
the rest of the figures. We can see on the observation that random sampling tends to miss important
structures, and results in a severely aliased observation. On the contrary LtH, that focuses on low
frequencies, obtains a good quality observation, but fails to yield an improvement after reconstruction,
and generally loses out on higher frequency details, yielding a poorer performance especially on
edges. In the rest of the comparison, it is hard to notice any significant visual difference between the
images obtained by LBCS and the RL method of Bakker et al. (2020). It is however clear that in the
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c+rhz setting, the cResNet yields a significantly better and sharper reconstruction at 25% sampling,
compared to the UNet. This is also confirmed by the results in Table 7. On this particular image, this
trend is also observed at 12.5% sampling rate on Figure 9, but this is not a consistent trend, as this is
not highlighted by the AUC computation of Table 6.
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Figure 9: Additional visualization for the image displayed in Figure 8. The results feature 12.5% sampling rate.
Turning now to Figure 10, it is interesting first to discuss the policies obtained by LBCS and RL
respectively. The LBCS policy is fixed for the reconstruction algorithm, so the first and third rows of
Figures 10a and 10b will each feature the same policy. The adaptive RL policy, on the second and
fourth rows seems to have central backbone of common frequency, but varies more around higher
frequencies, as observed in the Figure 5 of the appendix of Bakker et al. (2020). However, in both
cases, these differences have very little quantitative impact, and the same is true visually: there is no
clear visual difference between the reconstructed images at either stage.

While this is not an exhaustive visual investigation, and does not directly assess the suitability of
the different policies for various downstream tasks, this lack of visual difference could suggest that
RL might not bring a significant improvement over simpler techniques such as LBCS in such cases.
However, the question remains open in the case where the sampling policy would be tailored directly
for the downstream task, rather than optimized for reconstruction quality, but this falls beyond the
scope of the current work.
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Figure 10: Visualization of reconstructed images at different sampling rates (6%, 12.5%, 19% and 25%) for
two sampling policies (LBCS and RL) and two reconstruction algorithms (UNet and cResNet). The data are
processed according to the cvb setting, i.e. cropped images, vertical undersampling and Bakker-type distribution
of masks. The last row shows the ground truth (repeated), and each reconstruction has the corresponding SSIM
displayed at the bottom right of the image. The rightmost column display the columns acquired during sampling
(in white) as as a function of the acquisition steps: starting on top with only center frequencies and progressively
adding more and more lines to the sampling mask. The top plot (a) displays a proton density, fat saturated
(PDFS) image, and the bottom plot displays a proton density (PD) image (Zbontar et al., 2019).
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H INITIAL EXPERIMENTAL RESULTS ON PINEDA ET AL. (2020) TRAINED ON
THE SETTING OF BAKKER ET AL. (2020)

This appendix contains initial results on training the policy model of Pineda et al. (2020) on the data
processing setting of Bakker et al. (2020), in order to provide a clearer comparison between both
methods. This experiment was started during the rebuttal period, and could not be carried out entirely,
due to the duration of training required for the RL policy model to converge4. This comparison is
then not fully representative of the performance of the model. However, this highlights again an
advantage of LBCS over RL methods in its simplicity and quick training.

We train the model on the cropped field of view, with vertical masks. The images are of size 128×128,
and the acquisition ranges from 4 to 32 columns, which corresponds to the long horizon setting. The
normalization used throughout training is the image normalization of Zbontar et al. (2019), instead of
a constant scaling, as descried in Pineda et al. (2020). Using a smaller field of view enabled to carry
out some parameter changes, namely using larger DQN batch size (64 instead of original 2, ×32)
with a correspondingly larger replay buffer (100k instead of original 20k, ×5) and run 100 episodes
in parallel instead of 2 (in order to refresh the replay buffer in accordance with the larger batch size
and size, ×50). With the larger batch size, we allow a larger learning rate of 0.004 instead of 0.001
(to account for the batch size and less updates, ×4). We originally planned to use 160k updates
(with our batch size of 32x that of the original, which would correspond to the order of magnitude of
transitions used in Pineda et al. (2020)), but this did not suffice for the model convergence, and have
the model run till 1.6 million transitions. We set the epsilon greedy exploration to decay to the final
value within 32k updates (2e6 samples with our batch size).

We observed convergence to an average episode reward in around 775k updates, (roughly 50e6
samples) but it continued to slightly improve. We think that using a longer epsilon decay time and
more DQN steps between collection rounds might improve performance in a data efficient way,
similar to the observations of van Hasselt et al. (2019).

The SSIM and PSNR AUCs against the sampling rate are shown below. The SSIM-AUC (0.4342)
and PSNR-AUC (20.705) are below that of the random sampling run in Tables 6 and 8 respectively,
so it is clear that the training did not succeed.
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Figure 11: Performance plots for the SS-DDQN. This was done in the cropped, vertical and Bakker-type mask
setting (cvb).

4The authors noted training times ranging from 7 to 20 days until convergence
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Figure 12: Visual comparison between observation, reconstruction and ground truth of the SS-DDQN in the
cropped, vertical, Bakker-like mask setting (cvb). The images evaluated are the same as in Figure 10.
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