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Abstract—We study a variation of the stochastic, realizable
batch learning problem where there is a training set of N symbols
and the prediction is then tested over L symbols. We prove
an equivalent of the Redundancy-Capacity Theorem, find the
leading term of the regret for the multinomial case and also
discuss, informally, a general parametric hypothesis class. We
implement a variant of the Arimoto-Blahut algorithm to calculate
the optimal minimax redundancy and show, for the binary case,
the resulting regret and the approximated capacity-achieving
prior.

I. INTRODUCTION

Universal prediction is a well-established and researched
problem; see, e.g., [1] for a survey paper. In the information
theory approach, prediction is done by providing a probability
distribution for the predicted outcome, and the incurring loss
is the information loss or the log loss. There are several
variations for this problem, which are now outlined.

First, there is a hypothesis class, which in the information-
theoretic approach is a class of models or probability distri-
butions {Pθ(·), θ ∈ Θ} used to explain the data. The various
settings differ on the assumption of how the data is generated.
In the stochastic setting, it is assumed that the data comes from
some unknown distribution. In the stochastic realizable case,
the unknown distribution is one of the models in the hypothesis
class, whereas in the mis-matched, or unrealizable case, the
data distribution is not necessarily in the class but may belong
to a larger set of distributions. In the individual setting, on
the other hand, nothing is assumed of the data, and it is an
arbitrary individual sequence. In the stochastic setting, the goal
of the universal predictor is to attain the same performance as
a predictor that knows the true distribution. In the individual
setting, the goal is to attain the performance of a predictor that
knows the sequence but must use a model from the class.

Another variation comes from the distinction between batch
and online. The classical work on universal prediction assumes
online prediction, which, in the case of prediction with log-
loss, is equivalent to assigning a probability and accumulating
the loss over the entire sequence. On the other hand, in batch
prediction, there is a training sequence, and prediction is
performed and tested on a single new symbol. Batch prediction
is the common situation in machine learning, but it did
not receive much attention in information-theoretic universal
prediction until recently, [2]. The goal of this paper is to
consider a case between online and batch: there is a training
sequence of size N , and then the predictor continues online to

predict L symbols, or equivalently in prediction with log-loss,
to allocate a probability for L test symbols.

This combination of training and test, between batch and
online, can be analyzed in both the stochastic and individual
settings. Furthermore, universal prediction can be extended to
universal supervised learning where the sequence is composed
not only of “labels” to be predicted, denoted y, but there is
also a feature sequence x from which the labels are learned in
the training and the test. In this paper we consider the simplest
case of a realizable stochastic setting with no feature data, only
label symbols to predict. Clearly, the additional variations can
be defined and analyzed in future work.

The paper is organized as follows: Following a brief review
of previous work, we present the formal problem statement.
Then, we show a min-max theorem for our problem, present
the asymptotic min-max regret for the multinomial case,
and discuss a general parametric hypothesis class. The min-
max regret is given as a supremum over a prior on the
hypothesis class of a conditional mutual information. Thus,
we then present an Arimoto-Blahut algorithm that evaluates
that “capacity-achieving” prior and shows some of its results
for the binary case. Last, we conclude and present directions
for future work.

II. PREVIOUS WORKS

A. Online Prediction

Perhaps the more established case to this date is the one
where there is no training set. In this case, the probability
assignment for a whole sequence of size L, yL = y1, . . . , yL
can be decomposed into a sequential probability assignment:

q(yL) =

L∏
t=1

q(yt|yt−1).

One can define the following min-max problem:

R∗
online = min

q(·)
max

θ

1

L

∑
yL

pθ(y
L) log

(
pθ(y

L)

q(yL)

)
. (1)

Arguably, the most fundamental result in this setting is the
celebrated Capacity-Redundancy theorem due to [3], [4] and
[5]. According to this Theorem, the min-max optimal regret
is equal to the capacity of a channel from Θ to yL:

R∗
online = max

w(θ)

1

L
I(Y L; Θ). (2)



where the maximization is over all valid distributions over
Θ, which defines the hypothesis class

{
Pθ(y

L), θ ∈ Θ
}

.
We also get that the optimal probability assignment is
a mixture q(yL) =

∫
θ
w∗

online(θ)pθ(y
L)dθ of the mod-

els in the class, where the mixture weight w∗
online(θ) =

argmaxw(θ) I(Y
L; Θ) is the capacity-achieving prior.

Following this result, it was shown in [6] that under some
mild regularity conditions, if θ ∈ Rk then R∗

online =
k log(L)

2L +

o
(

log(L)
L

)
. Interestingly, this leading term is achieved for

all smooth prior distributions over θ, and thus, the capacity
achieving prior usually maximizes the second term.

There are many results regarding the capacity-achieving
prior. First, if we only consider “smooth” priors, it was shown
in [7] - again, under some rather mild regularity conditions -
that Jefferys’ prior achieves the maximal mutual information.
However, for any finite L, it was shown in [8] that the capacity
achieving prior is, in fact, discrete and takes non-zero values
at a finite number of points θ0, θ1, ..., θK .

The problem of theoretically identifying the capacity-
achieving prior might prove to be challenging for many chan-
nels. Nevertheless, there are numerical methods of evaluating
this prior and the resulting capacity. Notably, [9] and [10]
proposed a method for computing the capacity achieving prior
for discrete channels using alternating maximization. This
concept has been further developed in many papers, including
[11], where a variation of the Arimoto-Blahut algorithm that
achieves faster convergence rates using a one-step iteration has
been proposed.

The Arimoto-Blahut algorithm and its variations have also
been used specifically to study the capacity-achieving prior of
I(Y L; Θ), see, for example, [12] and [13].

B. Batch Learning

The problem of batch learning, common in machine learn-
ing, is perhaps less studied in the information-theoretic ap-
proach than online learning. In batch learning, there are N
training symbols yN , and the goal is to predict an unknown
test symbol, yN+1. In the realizable, stochastic setting of batch
prediction, the problem can be formulated as follows:

R∗
batch =

min
q(·|·)

max
θ

∑
yN

pθ(y
N )
∑
yN+1

pθ(yN+1|yN ) log

(
pθ(yN+1|yN )

q(yN+1|yN )

)

= min
q(·|·)

max
θ

∑
yN+1

pθ(y
N+1) log

(
pθ(yN+1|yN )

q(yN+1|yN )

)
.

Let us first consider the multinomial case where y ∈
{0, ...,m−1} and Θ is the simplex over an alphabet of size m,
i.e. Θ = {θ ∈ Rm :

∑m−1
j=0 θ[j] = 1, 0 ≤ θ[j] ≤ 1}. Perhaps

the earliest work in this case is due to [14], who considered
“add-β” rules of the form q(yN+1 = j|yN ) =

nj+β
N+m·β , where

nj is the number of appearances of the j-th letter in the
training set yN . In this case, [14]

.concluded that the min-max optimal β leads to a regret
of order 0.509(m−1)

N + o
(

1
N

)
, and showed a lower bound

of m−1
2N + o

(
1
N

)
using a uniform prior over Θ. The gap

between the lower and the upper bound was closed in [15],
who deviated from the “add-β” rule and used a predictor that
is essentially a “add- 34” probability assignment but with some
modifications at the edges when nj ∈ {0, 1}. Interestingly, in
[16] it was shown that when the edges are excluded from Θ,
an “add-1+

√
1
6” rule is both min-max and max-min optimal,

leading to 1
2N − 2.06...

N2 + o
(

1
N2

)
regret. A numerical analysis

of the capacity-achieving prior for the batch learning case,
for a variety of test set sizes, has been conducted in [17],
with a relatively small number of values of θ allowed. A
more elaborated numerical analysis, including a variation of
the Arimoto-Blahut algorithm, has recently been conducted in
[18]. In addition, a min-max theorem for this batch learning
case, as well as cases where there is also a feature sequence
x, is presented in [2]. Recently, [19] have considered the case
of batch learning with more than one test sample, analyzing
“add-β” learners for the multinomial case and for first-order
Markov chains.

III. FORMAL PROBLEM STATEMENT

Consider the stochastic batch learning problem where in-
stead of a single test, the test set contains L samples:

R (θ, q(·|·)) = 1

L

∑
yN+L

pθ(y
N+L) log

pθ(y
L|yN )

q(yL|yN )
. (3)

Naturally, we will be interested in the min-max optimal
regret and the probability assignment that achieves it:

R∗ = min
q(·|·)

max
θ

R (θ, q(·|·)) . (4)

In this paper, we will deal with hypothesis classes where
given the true hypothesis, the past does not contribute any
more information regarding future results, i.e., ∀L,N :
pθ(y

L|yN ) = pθ(y
L). We will limit ourselves to the case

where the outcomes space Y is finite. Following previous
works in batch learning, we will use the natural logarithm.

IV. THEORETICAL RESULTS

Our first result, unsurprisingly, is a minimax theorem for the
stochastic batch-learning problem with varying test set sizes:

Theorem 1: Assume that Θ is bounded. The min-max
optimal regret is equal to the max-min regret where the
maximum is over all priors over θ, and the regret (redundancy)
equals the capacity of a channel between Y L and Θ given Y N :

R∗ = max
w(θ)

min
q(·|·)

∫
θ

w(θ)R (θ, q(·|·)) dθ

= max
w(θ)

1

L
I(Y L; Θ|Y N ).

where the maximum is over all valid distributions over Θ.



Furthermore, if we denote by w∗(θ) the prior that achieves
the max-min optimal regret, then the max-min and min-max
optimal probability assignment is given by a Bayesian mixture
using w∗(θ):

q∗(yL|yN ) =

∫
θ
w∗(θ)pθ(y

N+L)∫
θ
w∗(θ)pθ(yN )

Proof of Theorem 1: First, define the regret with respect
to w(θ)

R (w(θ), q(·|·)) =
∫
θ

w(θ)R (θ.q(·|·)) dθ (5)

It is easy to verify that:

R∗ = min
q(·|·)

max
w(θ)

R (w(θ), q(·|·)) .

This is due to the fact that one can always center all mass
of w(θ) at any specific θ, and on the other hand for every
w(θ), the average regret over θ ∈ Θ cannot be larger than the
maximal value.

Now, we know that R (w(θ), q(·|·)) is convex and lower
semi-continuous with respect to q(·|·) and linear with respect
to w(θ). Since the set of all possible conditional probabilities
q(·|·) is a compact Hausdorff space, we can invoke Theorem
2 in [20] and get that:

min
q(·|·)

max
w(θ)

R (w(θ), q(·|·)) = max
w(θ)

min
q(·|·)

R (w(θ), q(·|·)) .

Next, incorporating the constraint that for all training yN ,∑
yL q(yL|yN ) = 1, and solving the corresponding con-

strained minimization over q(·|·) we get the following optimal
probability assignment for every w(θ):

q(yL|yN ) =

∫
θ
w(θ)pθ(y

N+L)∫
θ
w(θ)pθ(yN )

,

and so we get:

R∗ = max
w(θ)

I(Y L; Θ|Y N ).

Now, if we denote by w∗(θ) the capacity-achieving prior,
than we know from KKT conditions that for every θ, q∗(·|·)
achieves a divergence of at most maxw(θ) I(Y

L; Θ|Y N ) at
every point θ, and thus q(·|·) achieves the min-max optimal
regret R∗.

V. MULTINOMIAL DISTRIBUTION

Consider now the multinomial case, where y ∈ {0, ...,m−
1} and Θ is the simplex over an alphabet of size m. Note that
for this case, when N = 0 we have R∗ = (m−1) log(L)

2L +o( 1
L ),

while for L = 1 we have R∗ = (m−1)
2N +o

(
1
N

)
. The following

result is a generalization that allows us to interpolate between
the two scenarios:

Theorem 2: For the multinomial case, the min-max optimal
value of:

R∗ = min
q(·|·)

max
θ∈Θ

1

L

∑
yN+L

pθ(y
N+L) log

(
pθ(y

L)

q(yL|yN )

)
. (6)

is equal to

1

L

[
L−1∑
k=0

m− 1

2(N + k)
+ o

(
1

N + k

)]
. (7)

Proof of Theorem 2: First, we will show that this regret
is achievable. To this end, consider a learner who, given
every training set yN and partial set of results yt−1, t ∈
{1, ..., L}, uses the probability assignment suggested in [15]
for the next yt. We will denote this probability assignment by
qSB(yt|yN , yt−1). Since pθ(y

L) =
∏L

t=1 pθ(yt), we get:

R (θ, qSB(·|·)) =
1

L

L∑
t=1

∑
yN ,yt

pθ(y
N+t) log

(
pθ(yt)

qSB(yt|yN , yt−1)

)
.

Now, from [15] we know that:

max
θ

R (θ, qSB(·|·)) =
1

L

L−1∑
t=0

[
m− 1

2(N + t)
+ o

(
1

N + t

)]
.

To show that one cannot get a better regret, we will consider
an adversary that chooses some prior distribution w(θ) over
the models. It is quite clear that for all w(θ):

R∗ ≥ max
q(·|·)

1

L

∫
θ)

w(θ)

∑
yN+l

pθ(y
N+L) log

(
pθ(y

L)

q(yL|yN )

)
(8)

where now the learner knows w(·), but not the specific θ
according to which the data is generated. Using Lagrange
multipliers, we get that the optimal probability assignment is
a simple Bayesian mixture:

q∗w(θ)(y
L|yN ) =

∫
θ
w(θ)pθ(y

N+L)∫
θ
w(θ)pθ(yN )

(9)

which can be written as a product of Bayesian sequential
probability assignments:

q∗w(θ)(y
L|yN ) =

L∏
t=1

∫
θ
w(θ)pθ(y

N+t)∫
θ
w(θ)pθ(yN+t−1)

=

L∏
t=1

q∗w(θ)(yt|y
N+t−1).

Now, by [14], we know that by choosing a uniform prior,
w1(θ), for the multinomial case, we have for every N, t:∫

θ

w1(θ)pθ(y
N+t+1) log

(
pθ(yN+t+1)

q∗w1
(yN+t+1|yN+t)

)
=

m− 1

2(N + t)
+ o

(
1

N + t

)
.

(10)



and thus:

R ≥ 1

L

L−1∑
t=0

[
m− 1

2(N + t)
+ o

(
1

N + t

)]
(11)

Now, when L,N ≫ 1 the regret can be approximated by
R∗ ≃ (m−1) log(N+L)−log(N)

2L , which can be further simplified
for three different cases:

• When L ≪ N we get:

R∗ ≃ (m− 1)
log(1 + L

N )

2L
≃ m− 1

2N
(12)

which is exactly what we get when L = 1. This is not
surprising since when L ≪ N , the information derived
from the additional test samples is negligible.

• when L ≫ N we get:

R∗ ≃ (m− 1)
log(L)− log(1 + N

L )− log(N)

2L

≃ (m− 1)

2L
log(L) +O

(
log(N)

L

)
.

(13)

The leading term here coincides with what we get in
online prediction, which makes sense because the data
that the training set adds is negligible.

• when L
N = α we get:

R∗ ≃ (m− 1)
log(1 + α)

2L
= (m− 1)

log(1 + α)

2N · α
(14)

we get an expression that is more similar to the L = 1
case, with a multiplicative factor of log(1+α)

α .
We note that for the batch learning case, where L = 1

and the edges are excluded, the second term of the regret is
proportional to 1

N2 , a result due to [16]. Thus, we conjecture
that the second term of the regret, in our case, will be
proportional to

∑L−1
l=0

1
(N+l)2 .

VI. LAPLACE’S APPROXIMATION APPROACH

In this section, we will present an informal derivation that
might lead to a more general result than the one presented
in the multinomial case if formalized correctly. We will do
so by utilizing Laplace’s method of integration; see [21] for
a translation of the original work. Assume some continuous,
bounded away from zero prior w(θ) and an hypothesis classes
Θ ∈ Rd such that Laplace’s approximation holds:

p(yN ) =

∫
θ∈Θ

w(θ)pθ(y
N )dθ

≃

(
2π

NJθ̂(yN )

) d
2

w
(
θ̂(yN )

)
pθ̂(yN )(y

N )

where θ̂(yN ) = argmaxθ∈Θ pθ(y
N ) and Jθ is the Fisher’s

information evaluated at θ.
Now, note that I(Y N+L; Θ|Y N ) = H(Y N+L)−H(Y N )−

H(Y L|θ). Using Laplace’s approximation above, we get that
when N ≫ 1, d

H(Y N ) =
k log(N)

2
−E

[
log
(
pθ̂(yN (yN )

)]
+O(d)

and thus:

I(Y N+L; Θ|Y N ) =
k

2
(log(N + L)− log(N))

−E

[
log

(
pθ̂(yN+L)(y

N+L)

pθ̂(yN )(y
N )pθ(yL)

)]
+O(d)

In other words, we get that the normalized mutual informa-
tion behaves as k log(1+ L

N )

2L = k
2N

log(1+α)
α if we can show that

E

[
log

(
pθ̂(yN+L)(y

N+L)

pθ̂(yN )(y
N )pθ(yL)

)]
is negligible.

This expression, derived for the general parametric case,
coincides with the result we got for the multinomial case
where we have m − 1 parameters. Nevertheless, note that
for the multinomial case, we also dealt with the edges where
Fisher’s information is undefined. Thus, this derivation cannot
be used directly for the “close” multinomial case (including
the edges).

VII. CAPACITY ACHIEVING PRIOR

A. Arimoto-Blahut Algorithm for Batch Learning

In order to verify our theoretical results regarding the
leading term of the regret and to understand the behavior
of the capacity achieving prior and the second term of the
regret, we have implemented a variation of the Arimoto-
Blahut algorithm, [9] [10], for the batch-learning problem with
varying test set sizes. Our variation is based on the accelerated
Arimoto-Blahut algorithm proposed in [11]. For simplicity, we
will present results for the binary case, where y ∈ {0, 1}.

The most simplified form of the algorithm is presented as
Algorithm 1: Naturally, the algorithm receives as input both
N and L. In addition, The algorithm receives a discrete set of
possible θ, which we denote by θ⃗ = [θ0, θ1, ..., θM ], and an
initial guess for the prior, w0(θ⃗).

Note that for the classical case, where N = 0, the actual
capacity-achieving prior is indeed discrete, see [8]. Here,
however, this is not guaranteed, and indeed, we will show
that for some values of N,L, we get an optimal w(θ⃗) which
is non-zero for most of the values θj even when M ≫ N,L.

The basic step of the algorithm is as follows: Given some
wi(θ), we can calculate for each θj the divergence between
pθj (y

L) and p(Y L|yN ):

Dθj

(
pθ(y

L)||p(yL|yN )
)
=
∑
yN+L

pθj (y
N+L) log

(
pθj (y

L)

p(yL|yN )

)

where the conditional probability is based upon wi(θ⃗):

p(yL|yN ) =

∑
j w(θj)pθj (y

N+L)∑
j w(θj)pθj (y

N )
(15)



Then, given a design parameter λ, each w(θj) is multiplied
by exp

(
λDθj

(
pθ(y

L)||p(yL|yN )
))

. A normalization of the
new wj+1(θ) is performed to get a valid distribution function.

It should be noted that for every θ⃗ and every guess w(θ⃗) for
w(θ), we can get a bound over the min-max optimal regret.
This observation was made in the past for similar cases, for
example, [22], but we will give the proof here as well:

Corollary 1: For every θ⃗, w(θ⃗), the following holds:

1

L
I(Y L; Θ|Y N ) ≤ R∗ ≤ max

θ∈Θ

1

L
Dθ

(
pθ(y

L)||p(yL|yN )
)
.

(16)

Proof: Since R∗ = maxw(θ)
1
LI(Y

L; Θ|Y N ), any spe-
cific θ⃗, w(θ⃗) is a trivial lower bound over the min-max optimal
regret. As for the second inequality, note that every θ⃗, w(θ⃗)
defines a probability assignment qw(θ⃗)(·|·), and trivially:

R∗ = min
q(·|·)

max
θ

R (θ, q(·|·)) ≤ max
θ

R
(
θ, qw(θ⃗)(·|·)

)
(17)

This observation allows us to derive both lower and upper
bounds over R∗ from every w(θ⃗) we get from the algorithm.

Algorithm 1 Arimoto-Blahut algorithm for Batch Learning

Input: N,L, θ⃗ = [θ0, θ1, ..., θM ] , λ, w0(θ⃗)
Output: w(θ⃗)

LOOP Process
for i = 0 to I − 2 do

w̃i+1(θj) = wi(θj) · exp
(
λDθj

(
pθ(y

L)||p(yL|yN )
))

wi+1(θj) =
w̃i+1(θj)∑M

j′=0 w̃i+1(θj′)

end for
return w(θ⃗)

VIII. NUMERICAL RESULTS

Our first results are presented in Figure 1, where we
compare the theoretical leading term with the lower and
upper bounds derived from the Arimoto-Blahut algorithm as
a function of the total number of observations L+N and for
various values of α = L

N .
In most cases, the difference between the lower and upper

bound in Figure 1 is so small that it can barely be seen,
indicating that the numerical calculations coincide with the
theoretical ones. Also note that, as expected, the regret for
large test sets with fixed training is larger than that for large
training sets with fixed test set size.

The full version of this paper presents additional results,
including the resulting prior for various combinations of L,N .

Fig. 1. Theoretical Leading Term with Numerical Upper and Lower bounds

IX. CONCLUSIONS AND FUTURE WORK

In this paper, we have studied the generalization of the
batch learning problem where the size of the test set is
not necessarily a single sample. We have proven a minimax
theorem for a general case and provided a characterization of
the min-max optimal regret for the multinomial case. Utilizing
the Arimoto-Blahut algorithm, we have also implemented a
numerical calculation of the capacity-achieving prior for the
binary case and showed both the min-max optimal regret and
the capacity-achieving prior for various regimes of the test size
L and the training set size N .

There are several directions for future work. First, it will be
interesting to see if we can theoretically calculate the capacity
achieving prior or at least some properties of it for various
values of L and N , and see if it interpolates between the
known results for the special cases of N = 0 (online) and
L = 1 (batch with single test).

In addition, it would also be interesting to consider other
hypothesis classes, for example, Markov models or hypothesis
classes that utilize data features x. Also, it seems plausible to
extend the results to the mismatched, unrealizable, stochastic
case.

Another interesting line of work will be to improve the
Arimoto-Blahut algorithm we have implemented. One possible
direction might be to update θ⃗ as in [23] for example.

Finally, it would be interesting to extend the results for indi-
vidual batch learning, such as [24], to the case of arbitrary test
set sizes. This might provide the link for the individual setting
from the online case, which is well-defined and understood,
to the batch case, which seems to be hard to define in the
individual case.
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