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Abstract

Large Reasoning Models (LRMs) have
achieved notable progress in both information
retrieval and complex reasoning tasks. How-
ever, LRMs often suffer from reasoning hal-
lucinations, which compromise the accuracy
and interpretability of their outputs. Although
the "LLM-as-a-Judge" paradigm shows poten-
tial in evaluating factual hallucinations, it still
lacks systematic exploration and standardized
benchmarks for identifying thinking process
hallucinations. To address this, we construct a
new benchmark dataset ThinkHalu, covering
cognitive hallucinations (miscomprehension of
the question) and logical hallucinations (logi-
cal errors in reasoning steps). Our benchmark
uses GSM8K and MathQA as base datasets
and generates hallucinated thinking processes
with eight open-source LRMs. We select high-
quality data by analyzing the semantic simi-
larity and natural language inference (NLI) re-
lationships between hallucinated thinking and
correct solution processes. Then, we identify
and analyze hallucination types using an LLM-
based voting mechanism. We conduct experi-
ments on 20 open-source LLMs and observe
that they tend to misclassify cognitive hallu-
cinations as logical hallucinations, indicating
limitations in their ability to detect hallucina-
tions in thinking processes.

1 Introduction

Large Language Models (LLMs) represent a sig-
nificant milestone in the advancement of artificial
intelligence, demonstrating impressive capabilities
across a range of tasks, including information re-
trieval (Zhu et al., 2024) and recommendation sys-
tems (Wu et al., 2024). In particular, Large Rea-
soning Models (LRMs), which are further refined
through supervised fine-tuning and reinforcement
learning, exhibit advanced reasoning capabilities in
complex scenarios such as mathematical problem
solving (Gehring et al., 2025), question answering

= if x / 4 years ago roger was 14 years old and x / 4
years from now he will be 4 x years old , how old will
he be 3 x years from now ?
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<think> >~
[stepl]: First, I'll define the variable R to : n)o
represent Roger's current age. ==
[step2]: According to the problem, four years ago,

Roger was 14 years old.

[step3]: This gives me the equation R - 4 = 14.

</think>

<answer>D</answer> (X)

Cognitive Hallucinations: The thought process incorrectly
interprets "x / 4 years ago" as "four years ago," leading o an
incorrect setup of the equations based on the given
information.

Jenny goes to the florist to buy some flowers. Roses
cost $2 each and $15 for a dozen. If she bought 15
[ roses and arrived with five 5 dollars bills and they
only have quarters for change, how many quarters
does she leave with?

<think>

[stepl]: First, I calculate the total cost of buying
15 roses.

[step2]: Since roses are priced at $2 each and $15
for a dozen, I consider the most economical option.
[step3]: A dozen roses cost $15, and buying one.
additional rose at $2 would total $17 for 15 roses
[step4]: Next, Jenny pays with five 5-dollar bills,
which amounts to $25.

~
S8,

</think>
<answer>32</answer> (x)

Logical Hallucinations: The error lies in the calculation of
the total cost for 15 roses. Instead of calculating the cost as
$17 (a dozen for $15 and one additional rose for $2), the
correct cost should be $21 (a dozen for $15 and three
additional roses at $2 each).

Figure 1: ThinkHalu benchmark defines logical halluci-
nations and cognitive hallucinations in the hallucination
thinking process.

(Webb et al., 2023), and strategic planning (Xu
et al., 2025).

Before producing an answer, LRMs typically
generate a complete thinking process, including
question comprehension, information analysis, and
conclusion derivation (Xu et al., 2025). This pro-
cess reflects the model’s logical trajectory when
constructing conclusions. The thinking process
of LRMs significantly optimizes the quality of re-
sponses by improving reasoning accuracy and stan-
dardizing structured outputs (DeepSeek-Al, 2025).



Despite the impressive reasoning capabilities of
current LRMs, their thinking processes still often
suffer from severe hallucinations, and such unreli-
able reasoning can compromise both the accuracy
and interpretability of the final output (Li et al.,
2025). This phenomenon, termed thinking process
hallucination, reveals a limitation in LRMs’ ability
to perform complex reasoning tasks, thereby neces-
sitating systematic detection and comprehensive
analysis.

In recent years, the "LLM-as-a-Judge" paradigm
(Miao et al., 2023; Hu et al., 2024) has emerged,
using the language understanding and reasoning
capabilities of LLMs to evaluate generated content
(Chen et al., 2025). This paradigm demonstrates
strong potential for semantic structure analysis and
the assessment of logical consistency under given
conditions. However, detecting hallucinations in
the thinking process remains underexplored, with
a lack of standardized evaluation benchmarks.

In this paper, we propose a novel benchmark
dataset for detecting thinking process hallucina-
tions, comprising 6,046 hallucinated and non-
hallucinated reasoning samples. As shown in Fig-
ure 1, these samples are categorized into two types:
(1) cognitive hallucinations (Banerjee et al., 2024)
focus on deviations in problem understanding and
semantic interpretation—cases in which the model
"thinks" it understands correctly but makes cog-
nitive errors. (2) logical hallucinations (Orgad
et al., 2024) refer to logical errors or inconsis-
tencies occurring during multistep reasoning pro-
cesses, which cause the reasoning outcomes to de-
viate from the true conclusions.

The construction of this dataset involves three
key steps. First, we select the representative mathe-
matical reasoning datasets GSM8K (Cobbe et al.,
2021) and MathQA (Amini et al., 2019) as the
original data, perform inference using eight open-
source LRMs (DeepSeek-Al, 2025; Zhao et al.,
2024; He et al., 2025; Yang et al., 2024b) to gen-
erate thinking process. Then, for each question
with multiple sampled outputs, we analyze the se-
mantic similarity and natural language inference
(NLI) relationships between hallucinated thinking
and correct solution processes respectively, and use
the weighted average of the entailment probability
from the NLI model and the semantic similarity
score to filter high-quality hallucination data. Fi-
nally, we design an LLM-based voting mechanism
(Yang et al., 2025b) to identify hallucination types
and the first step where hallucination occurs.

We use the ThinkHalu benchmark to evaluate
open-source models’ hallucination detection capa-
bilities comprehensively. Additionally, we analyze
the discrepancies between LLMs’ performance in
detecting hallucinations in their own outputs (self-
detection) versus in the outputs of other models
(cross-detection). Furthermore, we investigate their
abilities to identify fine-grained logical and cog-
nitive hallucinations, providing insights into the
models’ strengths and limitations in hallucination
detection.

In summary, our contributions are summarized
as follows.

¢ We construct ThinkHalu, the first benchmark
with fine-grained annotations specifically for
hallucinated thinking processes in LRMs.

e Based on the constructed benchmark dataset,
we evaluate the capability of 20 open-source
LLMs to detect hallucinations in the thinking
process.

* Experiments reveal that existing open-source
LLMs tend to misclassify cognitive hallucina-
tions as logical hallucinations.

2 Related Work

2.1 Hallucination Detection

In the study of LLMs, hallucination detection has
emerged as a critical task for improving model re-
liability and practical applicability. Researchers
have recently proposed various detection meth-
ods from different granular perspectives to identify
and mitigate factual errors in generated outputs.
Based on the granularity of hallucination detection,
these methods can be categorized into four levels:
token-level(Liu et al., 2022), entity-level (Yeh et al.,
2025), claim-level (Hu et al., 2024), and response-
level (Miao et al., 2023) hallucination detection.
Token-level detection identifies inaccuracies at
the word level. HaDes (Liu et al., 2022) introduces
a reference-free, annotated dataset for this task.
HaMI (Niu et al., 2025) frames it as a Multiple
Instance Learning problem to jointly optimize to-
ken selection and detection. Entity-level detection
focuses on the correctness of specific entities. Hal-
luEntity (Yeh et al., 2025) systematically studies
this level, evaluating uncertainty-based methods
for identifying hallucinated entities. Claim-level
detection verifies the factual correctness of individ-
ual statements. FACTSCORE (Wang et al., 2023)



decomposes text into atomic facts and checks them
against reliable sources. Pelican (Sahu et al., 2024)
and RefChecker (Hu et al., 2024) further refine de-
tection by breaking down visual or textual claims.
Response-level detection assesses hallucinations
across entire outputs. SelfCheckGPT (Manakul
et al., 2023) and CoVe (Dhuliawala et al., 2023)
use self-verification strategies. MetaQA (Yang
et al., 2025a) leverages prompt variations, while
FG-PRM (Li et al., 2024) targets hallucinations in
reasoning steps for math tasks.

2.2 Hallucination Detection Benchmark

In recent years, researchers have proposed a variety
of benchmark datasets for hallucination detection
to systematically evaluate the performance of de-
tection methods across different tasks and scenar-
ios. Aligned with the detection approaches, these
datasets can be classified into four levels according
to their granularity.

At the token-level, HaDes (Liu et al., 2022)
constructs a fine-grained annotated dataset with-
out relying on reference texts, labeling each to-
ken as either "factual" or "hallucinated" through
manual or automated methods. HaMI (Niu et al.,
2025) introduces adaptive token selection and for-
mulates the task as a Multiple Instance Learning
(MIL) problem to improve detection efficiency and
accuracy. At the entity-level, HalluEntity (Yeh
et al., 2025) focuses on hallucinated named enti-
ties in biographical texts generated by ChatGPT,
employing both automated and manual annotations
to evaluate uncertainty-based detection methods.
Factcheck-Bench (Wang et al., 2023) selects fac-
tually incorrect responses from social media and
the Dolly-15k dataset, constructing a benchmark
with 94 fine-grained annotated instances. At the
claim-level, RefChecker (Hu et al., 2024) builds an
annotated dataset from multiple sources, including
300 questions, 2,100 responses, and over 11,000
triplets for fine-grained evaluation of hallucinated
claims. Poly-FEVER (Zhang et al., 2025) extends
the FEVER dataset by incorporating multilingual
hallucinated samples, supporting cross-lingual fact
verification tasks. At the response-level, Truth-
fulQA (Lin et al., 2021) evaluates model truthful-
ness through human annotations of responses to
questions designed to elicit common misconcep-
tions. HaluEval (Li et al., 2023) creates a large-
scale benchmark with 35,000 positive and negative
examples. DiaHalu (Chen et al., 2024) designs
multi-turn dialogue scenarios and manually injects

different types of hallucinations, resulting in 1,103
annotated dialogue samples to evaluate hallucina-
tion detection in interactive settings.

Existing response-level datasets primarily detect
hallucinations in final answers, which inadequately
capture models’ reasoning abilities. The thinking
process, however, more precisely reveals perfor-
mance and errors during reasoning. Accordingly,
this paper constructs a benchmark dataset for de-
tecting hallucinations in the thinking process.

3 ThinkHalu benchmark

3.1 Principles

This paper constructs a benchmark to detect think-
ing process hallucinations and evaluates open-
source LLMs’ detection capabilities. Existing work
(Li et al., 2024) classifies mathematical reasoning
hallucinations as intrinsic or extrinsic based on con-
tent verifiability but lacks granularity in distinguish-
ing hallucination types and causes. We propose a
classification system dividing hallucinations into
logical and cognitive categories, better suited for
mathematical reasoning and enabling more precise
identification.

(1) Cognitive Hallucinations These arise
mainly from the model’s misinterpretation of the
task or question, often due to ambiguous instruc-
tions, insufficient contextual understanding, or bi-
ases in the training corpus. Such hallucinations
typically result in reasoning based on incorrect
premises, leading to outputs that significantly devi-
ate from the intended task objectives.

(2) Logical Hallucinations Even when the
model correctly understands the task semantics,
it may still produce logical inconsistencies, flawed
intermediate inferences, or invalid conclusions in
a multistep reasoning chain, reflecting limitations
in its logical deduction abilities. Logical halluci-
nations involve systematic errors during reasoning,
like contradictions or invalid steps.

3.2 Hallucination Data Generation

The construction process of the ThinkHalu bench-
mark is illustrated in Figure 2. During the hallu-
cination data generation phase, we use GSM8K
and MathQA as the original dataset, aiming to sys-
tematically collect instances of hallucinations in
the thinking process generated by LRMs during
mathematical reasoning tasks. For each original
problem, independent reasoning is performed us-
ing eight representative LRMs, and their complete



Question: if x / 4 years ago roger was 14 years |
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[stepl): First, I'll define the variable R to!
represent Roger's current age |
[step2]: According to the problem, four year‘si
ago, Roger was 14 years old !
[step3]: This gives me the equationR-4=14 |

Gold solution : assume the current age =aa- x/
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the value of a from (ii)in(i)15x/4-x/4=14
or 14 x / 4 = 14 therefore x = 4 and a = 15 3 x years
from now , age will be 15 + 3 * 4 = 27 ,option E

<think>
[stepl]: First, I'll define the variable R to
represent Roger's current age

Roger was 14 years old

| [step3]: This gives me the equationR - 4 = 14
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[stepl]: First, I'll define the variable R to
represent Roger's current age i
[step2]: According to the problem, four years ago, |
Roger was 14 years old !
[step3]: This gives me the equationR -4 =14 ... |
</think> i
<answer> i

i NLI model analyzes
| logical relationships

/<fhink>

\_ </think>

Hallucination Data Generation

[step1]: First, T'll define the variable R to p
represent Roger's current age. ‘;
[step2]: According to the problem, four years

ago, Roger was 14 years old. "
[step3]: This gives me the equationR -4 =14 . LI

Hallucination Data Filtering

$ [step2]: According to the problem, four years ago,

¥ . " «/think>
'éj. { Semantic ! N
P !
L i similarity analysis ! 3
Bart Model T

¥ hallucination_step: [step2]
Jo, hallucination_type: Cognitive Hallucination

hallucination_step: [step4]
hallucination_type: Logical Hallucination

;, J hallucination_step: [step2]
#* = hallucination_type: Cognitive Hallucination

LLMs voting

hallucination_step: [step2]
hallucination_type: Cognitive Hallucination

Hallucination Data Analysis

Figure 2: The construction process of the ThinkHalu benchmark.

thinking processes are recorded. The selected mod-
els include Marco-ol (Zhao et al., 2024), five mod-
els of the DeepSeek-R1-Distill series: DeepSeek-
1.5B/7B/8B/14B/32B (DeepSeek-Al, 2025) as well
as QwQ-32B (Yang et al., 2024b) and Skywork-
OR1-7B-Preview (He et al., 2025).

By comparing the model-generated answers with
the correct answers, we preliminarily identify hal-
lucination instances corresponding to incorrect out-
puts. To ensure the comprehensiveness and diver-
sity of the dataset, we adopt stochastic decoding
strategies during the inference process. In addi-
tion, we incorporate Top-k and Top-p sampling as
static strategies to further increase the diversity and
coverage of both logical and cognitive hallucina-
tions in the dataset. The reasoning instructions are
provided in Appendix A.

3.3 Hallucination Data Filtering

This study combines Natural Language Inference
(NLI) and semantic similarity methods to select
the most representative hallucinated reasoning pro-
cesses in mathematical problems. High-quality
hallucinated data should exhibit a high surface-
level semantic similarity to the correct solution
process while containing logical flaws in deeper
reasoning, making the hallucinations appear plau-
sible yet fundamentally incorrect. To achieve this,
we employ NLI models (Lewis et al., 2019) and
BERT-based models (Devlin et al., 2018) to com-
pute entailment scores and semantic similarity. We

propose a weighted scoring framework that inte-
grates both semantic and logical perspectives. As
shown in Equation 1, the semantic similarity score
is computed as the cosine similarity between the
embedding vectors of the reference solution pro-
cess and the hallucinated thinking process:

sim = ﬂ, (1)
ler(l - llegll
where |[-|| denotes the Euclidean norm, and the

embeddings e, and e, represent the semantic rep-
resentations of the reference and generated thinking
process, respectively. As shown in Equation 2, to
capture logical coherence beyond surface-level se-
mantics, we use the NLI model to calculate the
entailment score (ent), which measures the degree
to which the reference logically entails the halluci-
nated thinking:

ent = NLI(e,, e,). 2)

Finally, As shown in Equation 3, we define the
overall hallucination score (halluc) as a weighted
combination of semantic similarity and logical en-
tailment:

halluc = X\ -ent + (1 — \) - sim, 3)

where A € [0,1] is a weighting coefficient that
controls the relative contribution of entailment and
similarity. We empirically set A = 0.5 in our ex-
periments to balance both aspects.



For each question, we compute hallucination
scores for the sampled hallucinated thinking pro-
cesses and select the one with the highest score as
the representative hallucination sample.

3.4 Hallucination Analysis

After filtering, representative hallucination samples
are analyzed using an LLM voting mechanism to
determine the location and type of the initial hal-
lucination. Existing benchmark construct meth-
ods (Li et al., 2023; Tan et al., 2025) typically
rely on human annotation when no reference an-
swer is available, and use LLMs for labeling when
a standard answer exists. Based on the GPT-40
model (OpenAl et al., 2024) and following the cor-
rect problem-solving procedure, we conduct three
rounds of hallucination reasoning analysis and fi-
nalize the location and type of the first hallucination
through majority voting, minimizing potential er-
rors. Detailed hallucination analysis instructions
are provided in Appendix A.

To ensure a balanced distribution of different
hallucination types and maintain consistency in
the number of samples generated by each model,
we perform stratified random sampling based on
the number of logical and cognitive hallucination
samples produced by each model, in accordance
with the principle of category balance.

4 Benchmark Analysis

4.1 Benchmark Dataset Overview

As shown in Table 1, the ThinkHalu dataset con-
sists of 6,046 samples, each capturing a complete
thinking process generated by one of eight LRMs.
Hallucinations within these chains were automati-
cally identified as either Logical or Cognitive. The
dataset covers five subdomains: Geometry, Physics,
Probability, Gain—Loss, and General, with reason-
ing chains ranging from 1 to 598 steps in length.

4.2 Analysis of Hallucination Rates in LRMs

We analyze the hallucination rates of eight LRMs
during the data collection phase. As shown in Ta-
ble 2, on average, hallucination rates are 13.58%
for GSMS8K and 24.27% for MathQA, indicating
that MathQA presents greater challenges due to
its higher complexity and multistep reasoning de-
mands.

The Qwen3-32B model achieves the lowest
hallucination rates on both datasets (3.42% on
GSMSK; 7.03% on MathQA), suggesting strong

Attribute Attribute Value

Benchmark Name ThinkHalu

Hallucination scenario =~ Mathematical logical reasoning

Number of Generation 8
Models
Hallucination 2
Subtypes
Sample Form thinking process of LRM
Sample Numbers 6046
Question domain 5
Max Reasoning step 598
Min Reasoning step 1

Table 1: The statistical information of the ThinkHalu
Benchmark.

Model GSMSK MathQA
Marco-ol 0.1083 0.2339
Sky-7B 0.1051 0.2416
DeepSeek-1.5B 0.2608 0.2595
DeepSeek-7B 0.1321 0.2557
DeepSeck-8B 0.3044 0.4254
DeepSeek-14B 0.0810 0.2370
DeepSeek-32B 0.0604 0.2181
QwQ-32B 0.0342 0.0703
Average 0.1357 0.2430

Table 2: Hallucination Rates of Data Generation LRMs
on GSMS8K and MathQA

reasoning stability. In contrast, Deepseek-8B ex-
hibits the highest rates (30.44% and 42.54%, re-
spectively), indicating weaker reasoning capabil-
ities. Overall, hallucination rates tend to de-
crease with the increase of model parameter
scale; however, task difficulty remains a key
factor that influences the reliability of model
reasoning.

4.3 Reasoning Step Length Distribution

We equalize the hallucinated samples across seven
LRMs to ensure data balance. Due to Qwen3-32B’s
low hallucination rate, its sample size remains un-
changed. However, all models contribute equal
samples for both Logical and Cognitive hallucina-
tions. Based on this strategy, we randomly sample
hallucinated responses to construct the final dataset,
preserving the thinking process step distribution ob-
served during the third-stage filtering process.

As shown in Figure 3, most hallucinated samples
involve short reasoning chains, primarily within the



Data Distribution

Reasoning step length
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Counts

Figure 3: Statistical analysis of the reasoning step
lengths in hallucinated data within the ThinkHalu
Benchmark.

0-10 step range, with peaks at 4-6 and 6-8 steps.
This indicates that LLMs are susceptible to hal-
lucinations even in relatively simple reasoning
scenarios. The overall distribution exhibits a long-
tail pattern, reflecting occasional hallucinations in
longer chains.

5 Model Evaluation

5.1 Experiment settings

Datasets. GSMS8K and MathQA are widely
adopted benchmarks for evaluating the per-
formance of LLMs in multistep mathematical
reasoning. GSM8K primarily measures the stabil-
ity and consistency of model reasoning, whereas
MathQA, which comprises problems spanning
from elementary to high school levels, requires
more advanced logical reasoning and symbolic
computation skills. Conducting experiments on
these datasets enables a comprehensive analysis of
hallucinated reasoning chains within mathematical
problem-solving tasks.

Models. We employ general purpose (non-
reasoning) and reasoning-focused LLMs to evalu-
ate hallucinations.

The non-reasoning models include: GLM-4-9B-
Chat (GLM-Chat) (GLM et al., 2024), LLaMA-

3-8B-Instruct (LLaMA3-8B-It)!, Gemma-2-9B-
it?, Qwen2.5-7B/14B/32B/72B-Instruct (Qwen-*B-
It)(Yang et al., 2024a) and Qwen3-8B/14B/32B 3,
The reasoning models used for hallucination
detection include: LLaMA-3.1-Nemotron-Nano-
8B (LLaMA3.1-8B)(Bercovich et al., 2025),
Skywork-OR1-7B/32B-Preview (Sky-7B/32B),
DeepSeek-7B/14B/32B/70B, QwQ-32B, GLM-Z1-
9B/32B (GLM-9B/32B)(GLM et al., 2024).

Metrics. We use the following evaluation metrics
to assess the hallucination detection performance
of models:

Accuracy Measures the model’s ability to
correctly distinguish hallucinated from non-
hallucinated instances.

Precision The proportion of predicted hallucina-
tions that are correct, reflecting positive detection
accuracy.

Recall The proportion of true hallucinations cor-
rectly identified, reflecting detection completeness.

F1 Score The harmonic mean of precision and
recall, providing a balanced evaluation when false
positives and false negatives matter equally.

5.2 Evaluation of Hallucination Detection

Evaluation of Non-Reasoning Models. We as-
sess the hallucination detection capabilities of sev-
eral non-reasoning LLMs, with results summarized
in Table 3. Among all models, the Qwen3 se-
ries consistently outperforms others of compara-
ble scale. In particular, Qwen3-32B achieves the
highest overall performance, with an accuracy of
82.48%, precision of 83.34%, recall of 78.16%,
and Fl-score of 80.67%. By contrast, although
GLM-4-9B-Chat exhibits high precision (80.08%),
its recall is markedly low (14.76%), resulting in
a significantly reduced F1 Score of 24.93%. This
pattern indicates that the model adopts a conserva-
tive detection strategy—it is highly precise when
it predicts a hallucination but often fails to identify
many actual hallucinations. Such behavior may be
attributed to a high internal decision threshold or
limited exposure to hallucination patterns during
training, leading to high precision at the cost of
coverage. The results reveal a clear trend: larger

"https://www.modelscope.cn/models/
LLM-Research/Meta-Llama-3-8B-Instruct

2https://www.modelscope.cn/models/
LLM-Research/gemma-2-9b-it

3https://www.modelscope.cn/models/Qwen/
Qwen3-32B
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Model Accuracy Precision Recall F1

GLM-chat 0.5837 0.8008  0.1476 0.2493
LLaMA3-8B-It  0.6274 0.6128  0.5652 0.5834
Gemma-9B-It 0.6379 0.6549  0.4699 0.5471
Qwen-7B-It 0.7480 0.7596  0.6767 0.7158
Qwen-14B-It 0.7391 0.8317  0.5551 0.6658
Qwen-32B-It 0.7604 0.8173  0.6289 0.7108
Qwen-72B-It 0.7564 0.8667 0.5671 0.6856
Qwen3-8B 0.8224 0.8440  0.7577 0.7985
Qwen3-14B 0.8246 0.8324  0.7718 0.8063
Qwen3-32B 0.8248 0.8334  0.7816 0.8067

Table 3: Performance of Non-Reasoning Models on the
ThinkHalu Benchmark

Model Accuracy Precision Recall F1

LLaMA3.1-8B  0.6583 0.7936  0.4368 0.5635
Sky-7B 0.6288 0.7729  0.2738 0.4044
Sky-32B 0.8073 0.7824  0.7756 0.7790
DeepSeek-7B 0.6151 0.7672  0.2370 0.3621
DeepSeek-14B  0.7668 0.8590  0.5992 0.7060
DeepSeek-32B  0.7986 0.8493  0.6909 0.7620
DeepSeek-70B  0.8008 0.8705  0.7048 0.7790
QwQ-32B 0.8293 0.8361 0.7814 0.8078
GLM-9B 0.8095 0.8534 0.7163 0.7788
GLM-32B 0.8352 0.8349  0.8074 0.8209

Table 4: Performance of Reasoning Models on the
ThinkHalu Benchmark

model sizes correlate with improved performance,
particularly in recall and F1-score. Furthermore,
the Qwen3 family shows consistently strong and
stable performance, indicating superior capability
in identifying hallucinations in reasoning chains.
The hallucination detection instructions are pro-
vided in the Appendix A.

Evaluation of Reasoning Models. We assess
several LLMs with explicit reasoning capabilities
on the hallucination detection task, as summarized
in Table 4. The results show that models with
enhanced reasoning abilities better detect halluci-
nations, especially regarding Recall and F1-score.

Among the evaluated models, GLM-Z1-32B
achieves the best performance across all metrics,
with an accuracy of 83.52% and an F1-score of
82.09%, indicating high stability and detection abil-
ity. The QwQ-32B model also performs well, at-
taining an F1-score of 80.78%, with a balanced Re-
call (78.14%) and Precision (83.61%), demonstrat-
ing its capacity to accurately identify hallucinated
samples while maintaining a low false positive rate.

In contrast, models like Skywork-OR1-7B-
Preview and DeepSeek-7B, despite having rela-
tively high Precision (77.29% and 76.72%, respec-
tively), exhibit low Recall scores (27.38% and
23.70%), resulting in low F1-scores (40.44% and

36.21%). This suggests that these models are
overly conservative in hallucination detection and
lack sensitivity to borderline cases.

Notably, increasing model size leads to sub-
stantial improvements across all metrics. For in-
stance, the DeepSeek series’ F1 score increases
from 36.21% at 7B to 77.90% at 70B. This indi-
cates that LLMs have significantly improved capa-
bilities in detecting hallucinations within complex
reasoning chains.

In conclusion, LLLMs with reasoning capabil-
ities outperform non-reasoning models in hal-
lucination detection, particularly in Recall and
F1-score, highlighting their superior ability to
capture hallucination features in thinking pro-
cesses.

5.3 Self-Detection vs Cross-Detection

We examine the performance of six LRMs in de-
tecting hallucinations, particularly comparing their
capabilities in self-detection versus cross-detection
externally. Specifically, self-detection refers to a
model’s ability to recognize hallucinations within
its own thinking processes. In contrast, cross-
detection pertains to identifying hallucinations in
the thinking processes generated by other models.
As illustrated in Figure 4, most models exhibit a
noticeable performance drop when detecting their
own hallucinations, particularly regarding Recall
and overall F1 score.

For instance, Deepseek-32B achieves a Recall
of 53.28% and an F1 score of 65.61% in self-
detection, which increases to 70.05% and 76.43%,
respectively, in cross-detection. Similarly, QwQ-
32B shows a Recall improvement from 22.39% to
79.76% and an F1 score increase from 33.71% to
81.77%. These results reveal a strong asymme-
try, indicating that models are significantly more
effective at detecting hallucinations generated
by others than those they produce themselves.

This asymmetry may stem from two key fac-
tors: Cognitive Bias: LLMs tend to over-trust
their own outputs, lacking mechanisms for criti-
cal self-detection. Expression Similarity Interfer-
ence: Models may struggle to detect hallucina-
tions embedded in their own generation patterns,
which can obscure flaws. Notably, the Marco-
ol model demonstrates relatively consistent per-
formance across both settings, with Recall val-
ues of 87.12% (self-detection) and 82.49% (cross-
detection). This suggests broad hallucination cov-
erage, albeit at the expense of lower Precision
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Figure 4: Comparison of models’ ability to detect self-
generated versus other-generated hallucinations.

(64.37% vs. 62.91%), indicating a higher rate
of false positives. These findings underscore the
importance of improving models’ self-reflection
capabilities to enhance hallucination detection in
real-world applications.

5.4 Recognition of Hallucination Types

We assess the ability of four LLMs—Qwen3-32B,
GLM-Z1-32B, Deepseek-32B, and QwQ-32B—to
distinguish between cognitive and logical hallucina-
tions. As shown in Figure 5, all models exhibit a
consistent bias: cognitive hallucinations are fre-
quently misclassified as logical ones. This pattern
suggests a systemic limitation in current LLMs’
capacity to accurately recognize and differentiate
the nature of hallucination types.

Cognitive hallucinations originate from failures
in understanding the input, typically presented as
semantic misinterpretations or inconsistencies. In
contrast, logical hallucinations arise from reason-
ing errors, such as contradictions or breakdowns
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Figure 5: Confusion matrix of the LLMs on logical and
cognitive hallucination detection

within the inference process. Thus, these two types
are distinct in both the source and the manifesta-
tion—comprehension versus reasoning.

Despite this distinction, the evaluated models
systematically conflate cognitive problems with
logical errors. A likely cause is that most existing
reasoning frameworks emphasize logical validity,
leading models to default to logical interpretations
even when the root cause lies in miscomprehen-
sion. As a result, semantic-level deficiencies are
mistakenly attributed to inference failures, masking
cognitive limitations.

6 Conclusion

This paper presents ThinkHalu, a novel benchmark
specifically designed to evaluate hallucinations in
the thinking processes of LRMs. Unlike existing
benchmarks that focus on hallucinations in final
answers, ThinkHalu emphasizes hallucinations oc-
curring during the thinking process, providing a
more fine-grained hallucination classification. By
distinguishing between logical and cognitive hal-
lucinations, this benchmark facilitates a deeper un-
derstanding of the types and causes of reasoning
errors. Experimental results show that, compared
to non-reasoning models, reasoning models demon-
strate stronger hallucination detection capabilities
during the thinking process. Additionally, models
exhibit weaker self-detection abilities compared
to cross-detection. Further fine-grained analysis
reveals that models tend to misclassify cognitive
hallucinations as logical hallucinations.



Limitations

Although ThinkHalu provides a valuable bench-
mark for evaluating hallucinations in thinking pro-
cesses, it still has limitations. The benchmark
is mainly built from math-focused datasets (e.g.,
GSMS8K and MathQA), which emphasize numer-
ical computation and formulaic reasoning. As a
result, it may lack representativeness and applica-
bility in commonsense reasoning tasks. This bias
could limit the benchmark’s ability to comprehen-
sively assess hallucination detection across diverse
reasoning types, restricting its broader applicability.
Future work will incorporate datasets covering var-
ious reasoning forms to enhance the benchmark’s
diversity and generalization, enabling more com-
prehensive evaluation of hallucinations in complex
reasoning scenarios.

Ethics Statement

All data used in this study are derived from pub-
licly available benchmark datasets (GSM8K and
MathQA), which are intended solely for research
purposes. The hallucinated thinking processes are
generated using open-source LRMs, and no per-
sonal, sensitive, or private information is involved
at any stage of data construction.
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A Prompt

Supplementary prompt information for the bench-
mark is provided in the appendix to ensure repro-
ducibility and transparency, including reasoning
prompts for LRMs’ mathematical tasks (Table 5),
MathQA answer evaluation prompts (Table 6), hal-
lucination analysis prompts (Table 7), and halluci-
nation detection prompts (Tables 8 and 9).
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Please deliberate through the problem step-by-step. Show your reasoning clearly, and present the final
answer in \boxed{} format.

Question: [question description]

#Answer#:

Table 5: Instruction for generating the thought process using a large reasoning models

Evaluate whether the inference answer is correct based on available options and the gold answer.

Note: Ignore case sensitivity when comparing answers. If the inference answer does not exactly match
one of the options, or if it does not match the gold answer, it is considered incorrect.

Question: [question description]

Gold Answer: [gold answer]

Inference Answer: [inference answer]

Note: If the inference answer does not match any of the options, it is considered incorrect.

Output format: [True/False]

Table 6: Since the MathQA dataset adopts a multiple-choice format, and the reasoning model’s generated answers
may not always align with the correct options, it is necessary to leverage a LLM to assess the correctness of the
generated responses.

Based on the question and the correct solution steps, identify the first hallucination in the thinking
process and analyze whether it is Cognitive hallucination or Logical hallucination.

Categories:

1. Cognitive hallucination: refers to a phenomenon in natural language processing systems where the
model, due to biases or shortcomings in its understanding or interpretation of the user’s input, generates
reasoning processes or conclusions that deviate from the expected or intended meaning. This type of
hallucination arises from the model’s inability to correctly grasp the semantics or context of the input,
often manifesting as a misinterpretation of the question or the omission of key information.

2. Logical hallucination: refers to instances where, during reasoning or generation, the model’s inter-
nal reasoning process becomes self-contradictory or contains computational errors, leading to conclu-
sions that are logically inconsistent or erroneous. This type of hallucination originates from flaws in
the model’s reasoning mechanism or errors in the computation process, often manifesting as breaks in
logical relationships or outputs that contradict known facts.

Please focus only on identifying hallucinations in the reasoning process. Do not provide any answer to
the original question. Strictly follow the format and do not add any extra content.

Question: [question description]

Correct solution steps: [gold solution]

Thought process: [model think process]

Output format: step: [first hallucination step]; type: [Cognitive hallucination/Logical hallucination];
reason: [Reason]

Table 7: Instruction for identifying the location and type of hallucination.
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Carefully examine the following thinking process for potential hallucinations. Do not answer the origi-
nal question or provide a direct response. Focus solely on identifying any hallucinations in the thinking
process.

Categories:

1. Hallucination: Cognitive hallucination refers to a phenomenon in natural language processing sys-
tems where the model, due to biases or shortcomings in its understanding or interpretation of the user’s
input, generates reasoning processes or conclusions that deviate from the expected or intended meaning.
This type of hallucination arises from the model’s inability to correctly grasp the semantics or context of
the input, often manifesting as a misinterpretation of the question or the omission of key information.
Logical hallucination refers to instances where, during reasoning or generation, the model’s internal rea-
soning process becomes self-contradictory or contains computational errors, leading to conclusions that
are logically inconsistent or erroneous. This type of hallucination originates from flaws in the model’s
reasoning mechanism or errors in the computation process, often manifesting as breaks in logical rela-
tionships or outputs that contradict known facts.

2. No Hallucination: The reasoning is correct, without any hallucinations.

Please focus only on identifying hallucinations in the reasoning process. Do not provide any answer to
the original question. Strictly follow the format and do not add any extra content.

Question: [question description]

Thought process:[model think process]

Output format: [Hallucination / No Hallucination]

Table 8: Instruction for comparing the hallucination detection capabilities between reasoning-based and non-
reasoning models.

Carefully examine the following thinking process for potential hallucinations. Do not answer the origi-
nal question or provide a direct response. Focus solely on identifying any hallucinations in the thinking
process.

Categories:

1. Cognitive hallucination refers to a phenomenon in natural language processing systems where the
model, due to biases or shortcomings in its understanding or interpretation of the user’s input, generates
reasoning processes or conclusions that deviate from the expected or intended meaning. This type of
hallucination arises from the model’s inability to correctly grasp the semantics or context of the input,
often manifesting as a misinterpretation of the question or the omission of key information.

2. Logical hallucination refers to instances where, during reasoning or generation, the model’s inter-
nal reasoning process becomes self-contradictory or contains computational errors, leading to conclu-
sions that are logically inconsistent or erroneous. This type of hallucination originates from flaws in
the model’s reasoning mechanism or errors in the computation process, often manifesting as breaks in
logical relationships or outputs that contradict known facts.

3. No Hallucination: The reasoning is correct, without any hallucinations.
Please focus only on identifying hallucinations in the reasoning process. Do not provide any answer to
the original question. Strictly follow the format and do not add any extra content.

Question: [question description]
Thought process:[model think process]
Output format: [Cognitive Hallucination / Logical Hallucination / No Hallucination]

Table 9: Instruction for fine-grained identification of hallucinations in the thought process
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