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Abstract001

Large Reasoning Models (LRMs) have002
achieved notable progress in both information003
retrieval and complex reasoning tasks. How-004
ever, LRMs often suffer from reasoning hal-005
lucinations, which compromise the accuracy006
and interpretability of their outputs. Although007
the "LLM-as-a-Judge" paradigm shows poten-008
tial in evaluating factual hallucinations, it still009
lacks systematic exploration and standardized010
benchmarks for identifying thinking process011
hallucinations. To address this, we construct a012
new benchmark dataset ThinkHalu, covering013
cognitive hallucinations (miscomprehension of014
the question) and logical hallucinations (logi-015
cal errors in reasoning steps). Our benchmark016
uses GSM8K and MathQA as base datasets017
and generates hallucinated thinking processes018
with eight open-source LRMs. We select high-019
quality data by analyzing the semantic simi-020
larity and natural language inference (NLI) re-021
lationships between hallucinated thinking and022
correct solution processes. Then, we identify023
and analyze hallucination types using an LLM-024
based voting mechanism. We conduct experi-025
ments on 20 open-source LLMs and observe026
that they tend to misclassify cognitive hallu-027
cinations as logical hallucinations, indicating028
limitations in their ability to detect hallucina-029
tions in thinking processes.030

1 Introduction031

Large Language Models (LLMs) represent a sig-032

nificant milestone in the advancement of artificial033

intelligence, demonstrating impressive capabilities034

across a range of tasks, including information re-035

trieval (Zhu et al., 2024) and recommendation sys-036

tems (Wu et al., 2024). In particular, Large Rea-037

soning Models (LRMs), which are further refined038

through supervised fine-tuning and reinforcement039

learning, exhibit advanced reasoning capabilities in040

complex scenarios such as mathematical problem041

solving (Gehring et al., 2025), question answering042

Figure 1: ThinkHalu benchmark defines logical halluci-
nations and cognitive hallucinations in the hallucination
thinking process.

(Webb et al., 2023), and strategic planning (Xu 043

et al., 2025). 044

Before producing an answer, LRMs typically 045

generate a complete thinking process, including 046

question comprehension, information analysis, and 047

conclusion derivation (Xu et al., 2025). This pro- 048

cess reflects the model’s logical trajectory when 049

constructing conclusions. The thinking process 050

of LRMs significantly optimizes the quality of re- 051

sponses by improving reasoning accuracy and stan- 052

dardizing structured outputs (DeepSeek-AI, 2025). 053
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Despite the impressive reasoning capabilities of054

current LRMs, their thinking processes still often055

suffer from severe hallucinations, and such unreli-056

able reasoning can compromise both the accuracy057

and interpretability of the final output (Li et al.,058

2025). This phenomenon, termed thinking process059

hallucination, reveals a limitation in LRMs’ ability060

to perform complex reasoning tasks, thereby neces-061

sitating systematic detection and comprehensive062

analysis.063

In recent years, the "LLM-as-a-Judge" paradigm064

(Miao et al., 2023; Hu et al., 2024) has emerged,065

using the language understanding and reasoning066

capabilities of LLMs to evaluate generated content067

(Chen et al., 2025). This paradigm demonstrates068

strong potential for semantic structure analysis and069

the assessment of logical consistency under given070

conditions. However, detecting hallucinations in071

the thinking process remains underexplored, with072

a lack of standardized evaluation benchmarks.073

In this paper, we propose a novel benchmark074

dataset for detecting thinking process hallucina-075

tions, comprising 6,046 hallucinated and non-076

hallucinated reasoning samples. As shown in Fig-077

ure 1, these samples are categorized into two types:078

(1) cognitive hallucinations (Banerjee et al., 2024)079

focus on deviations in problem understanding and080

semantic interpretation—cases in which the model081

"thinks" it understands correctly but makes cog-082

nitive errors. (2) logical hallucinations (Orgad083

et al., 2024) refer to logical errors or inconsis-084

tencies occurring during multistep reasoning pro-085

cesses, which cause the reasoning outcomes to de-086

viate from the true conclusions.087

The construction of this dataset involves three088

key steps. First, we select the representative mathe-089

matical reasoning datasets GSM8K (Cobbe et al.,090

2021) and MathQA (Amini et al., 2019) as the091

original data, perform inference using eight open-092

source LRMs (DeepSeek-AI, 2025; Zhao et al.,093

2024; He et al., 2025; Yang et al., 2024b) to gen-094

erate thinking process. Then, for each question095

with multiple sampled outputs, we analyze the se-096

mantic similarity and natural language inference097

(NLI) relationships between hallucinated thinking098

and correct solution processes respectively, and use099

the weighted average of the entailment probability100

from the NLI model and the semantic similarity101

score to filter high-quality hallucination data. Fi-102

nally, we design an LLM-based voting mechanism103

(Yang et al., 2025b) to identify hallucination types104

and the first step where hallucination occurs.105

We use the ThinkHalu benchmark to evaluate 106

open-source models’ hallucination detection capa- 107

bilities comprehensively. Additionally, we analyze 108

the discrepancies between LLMs’ performance in 109

detecting hallucinations in their own outputs (self- 110

detection) versus in the outputs of other models 111

(cross-detection). Furthermore, we investigate their 112

abilities to identify fine-grained logical and cog- 113

nitive hallucinations, providing insights into the 114

models’ strengths and limitations in hallucination 115

detection. 116

In summary, our contributions are summarized 117

as follows. 118

• We construct ThinkHalu, the first benchmark 119

with fine-grained annotations specifically for 120

hallucinated thinking processes in LRMs. 121

• Based on the constructed benchmark dataset, 122

we evaluate the capability of 20 open-source 123

LLMs to detect hallucinations in the thinking 124

process. 125

• Experiments reveal that existing open-source 126

LLMs tend to misclassify cognitive hallucina- 127

tions as logical hallucinations. 128

2 Related Work 129

2.1 Hallucination Detection 130

In the study of LLMs, hallucination detection has 131

emerged as a critical task for improving model re- 132

liability and practical applicability. Researchers 133

have recently proposed various detection meth- 134

ods from different granular perspectives to identify 135

and mitigate factual errors in generated outputs. 136

Based on the granularity of hallucination detection, 137

these methods can be categorized into four levels: 138

token-level(Liu et al., 2022), entity-level (Yeh et al., 139

2025), claim-level (Hu et al., 2024), and response- 140

level (Miao et al., 2023) hallucination detection. 141

Token-level detection identifies inaccuracies at 142

the word level. HaDes (Liu et al., 2022) introduces 143

a reference-free, annotated dataset for this task. 144

HaMI (Niu et al., 2025) frames it as a Multiple 145

Instance Learning problem to jointly optimize to- 146

ken selection and detection. Entity-level detection 147

focuses on the correctness of specific entities. Hal- 148

luEntity (Yeh et al., 2025) systematically studies 149

this level, evaluating uncertainty-based methods 150

for identifying hallucinated entities. Claim-level 151

detection verifies the factual correctness of individ- 152

ual statements. FACTSCORE (Wang et al., 2023) 153
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decomposes text into atomic facts and checks them154

against reliable sources. Pelican (Sahu et al., 2024)155

and RefChecker (Hu et al., 2024) further refine de-156

tection by breaking down visual or textual claims.157

Response-level detection assesses hallucinations158

across entire outputs. SelfCheckGPT (Manakul159

et al., 2023) and CoVe (Dhuliawala et al., 2023)160

use self-verification strategies. MetaQA (Yang161

et al., 2025a) leverages prompt variations, while162

FG-PRM (Li et al., 2024) targets hallucinations in163

reasoning steps for math tasks.164

2.2 Hallucination Detection Benchmark165

In recent years, researchers have proposed a variety166

of benchmark datasets for hallucination detection167

to systematically evaluate the performance of de-168

tection methods across different tasks and scenar-169

ios. Aligned with the detection approaches, these170

datasets can be classified into four levels according171

to their granularity.172

At the token-level, HaDes (Liu et al., 2022)173

constructs a fine-grained annotated dataset with-174

out relying on reference texts, labeling each to-175

ken as either "factual" or "hallucinated" through176

manual or automated methods. HaMI (Niu et al.,177

2025) introduces adaptive token selection and for-178

mulates the task as a Multiple Instance Learning179

(MIL) problem to improve detection efficiency and180

accuracy. At the entity-level, HalluEntity (Yeh181

et al., 2025) focuses on hallucinated named enti-182

ties in biographical texts generated by ChatGPT,183

employing both automated and manual annotations184

to evaluate uncertainty-based detection methods.185

Factcheck-Bench (Wang et al., 2023) selects fac-186

tually incorrect responses from social media and187

the Dolly-15k dataset, constructing a benchmark188

with 94 fine-grained annotated instances. At the189

claim-level, RefChecker (Hu et al., 2024) builds an190

annotated dataset from multiple sources, including191

300 questions, 2,100 responses, and over 11,000192

triplets for fine-grained evaluation of hallucinated193

claims. Poly-FEVER (Zhang et al., 2025) extends194

the FEVER dataset by incorporating multilingual195

hallucinated samples, supporting cross-lingual fact196

verification tasks. At the response-level, Truth-197

fulQA (Lin et al., 2021) evaluates model truthful-198

ness through human annotations of responses to199

questions designed to elicit common misconcep-200

tions. HaluEval (Li et al., 2023) creates a large-201

scale benchmark with 35,000 positive and negative202

examples. DiaHalu (Chen et al., 2024) designs203

multi-turn dialogue scenarios and manually injects204

different types of hallucinations, resulting in 1,103 205

annotated dialogue samples to evaluate hallucina- 206

tion detection in interactive settings. 207

Existing response-level datasets primarily detect 208

hallucinations in final answers, which inadequately 209

capture models’ reasoning abilities. The thinking 210

process, however, more precisely reveals perfor- 211

mance and errors during reasoning. Accordingly, 212

this paper constructs a benchmark dataset for de- 213

tecting hallucinations in the thinking process. 214

3 ThinkHalu benchmark 215

3.1 Principles 216

This paper constructs a benchmark to detect think- 217

ing process hallucinations and evaluates open- 218

source LLMs’ detection capabilities. Existing work 219

(Li et al., 2024) classifies mathematical reasoning 220

hallucinations as intrinsic or extrinsic based on con- 221

tent verifiability but lacks granularity in distinguish- 222

ing hallucination types and causes. We propose a 223

classification system dividing hallucinations into 224

logical and cognitive categories, better suited for 225

mathematical reasoning and enabling more precise 226

identification. 227

(1) Cognitive Hallucinations These arise 228

mainly from the model’s misinterpretation of the 229

task or question, often due to ambiguous instruc- 230

tions, insufficient contextual understanding, or bi- 231

ases in the training corpus. Such hallucinations 232

typically result in reasoning based on incorrect 233

premises, leading to outputs that significantly devi- 234

ate from the intended task objectives. 235

(2) Logical Hallucinations Even when the 236

model correctly understands the task semantics, 237

it may still produce logical inconsistencies, flawed 238

intermediate inferences, or invalid conclusions in 239

a multistep reasoning chain, reflecting limitations 240

in its logical deduction abilities. Logical halluci- 241

nations involve systematic errors during reasoning, 242

like contradictions or invalid steps. 243

3.2 Hallucination Data Generation 244

The construction process of the ThinkHalu bench- 245

mark is illustrated in Figure 2. During the hallu- 246

cination data generation phase, we use GSM8K 247

and MathQA as the original dataset, aiming to sys- 248

tematically collect instances of hallucinations in 249

the thinking process generated by LRMs during 250

mathematical reasoning tasks. For each original 251

problem, independent reasoning is performed us- 252

ing eight representative LRMs, and their complete 253
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Figure 2: The construction process of the ThinkHalu benchmark.

thinking processes are recorded. The selected mod-254

els include Marco-o1 (Zhao et al., 2024), five mod-255

els of the DeepSeek-R1-Distill series: DeepSeek-256

1.5B/7B/8B/14B/32B (DeepSeek-AI, 2025) as well257

as QwQ-32B (Yang et al., 2024b) and Skywork-258

OR1-7B-Preview (He et al., 2025).259

By comparing the model-generated answers with260

the correct answers, we preliminarily identify hal-261

lucination instances corresponding to incorrect out-262

puts. To ensure the comprehensiveness and diver-263

sity of the dataset, we adopt stochastic decoding264

strategies during the inference process. In addi-265

tion, we incorporate Top-k and Top-p sampling as266

static strategies to further increase the diversity and267

coverage of both logical and cognitive hallucina-268

tions in the dataset. The reasoning instructions are269

provided in Appendix A.270

3.3 Hallucination Data Filtering271

This study combines Natural Language Inference272

(NLI) and semantic similarity methods to select273

the most representative hallucinated reasoning pro-274

cesses in mathematical problems. High-quality275

hallucinated data should exhibit a high surface-276

level semantic similarity to the correct solution277

process while containing logical flaws in deeper278

reasoning, making the hallucinations appear plau-279

sible yet fundamentally incorrect. To achieve this,280

we employ NLI models (Lewis et al., 2019) and281

BERT-based models (Devlin et al., 2018) to com-282

pute entailment scores and semantic similarity. We283

propose a weighted scoring framework that inte- 284

grates both semantic and logical perspectives. As 285

shown in Equation 1, the semantic similarity score 286

is computed as the cosine similarity between the 287

embedding vectors of the reference solution pro- 288

cess and the hallucinated thinking process: 289

sim =
er · eg

∥er∥ · ∥eg∥
, (1) 290

where ∥·∥ denotes the Euclidean norm, and the 291

embeddings er and eg represent the semantic rep- 292

resentations of the reference and generated thinking 293

process, respectively. As shown in Equation 2, to 294

capture logical coherence beyond surface-level se- 295

mantics, we use the NLI model to calculate the 296

entailment score (ent), which measures the degree 297

to which the reference logically entails the halluci- 298

nated thinking: 299

ent = NLI(er, eg). (2) 300

Finally, As shown in Equation 3, we define the 301

overall hallucination score (halluc) as a weighted 302

combination of semantic similarity and logical en- 303

tailment: 304

halluc = λ · ent + (1− λ) · sim, (3) 305

where λ ∈ [0, 1] is a weighting coefficient that 306

controls the relative contribution of entailment and 307

similarity. We empirically set λ = 0.5 in our ex- 308

periments to balance both aspects. 309
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For each question, we compute hallucination310

scores for the sampled hallucinated thinking pro-311

cesses and select the one with the highest score as312

the representative hallucination sample.313

3.4 Hallucination Analysis314

After filtering, representative hallucination samples315

are analyzed using an LLM voting mechanism to316

determine the location and type of the initial hal-317

lucination. Existing benchmark construct meth-318

ods (Li et al., 2023; Tan et al., 2025) typically319

rely on human annotation when no reference an-320

swer is available, and use LLMs for labeling when321

a standard answer exists. Based on the GPT-4o322

model (OpenAI et al., 2024) and following the cor-323

rect problem-solving procedure, we conduct three324

rounds of hallucination reasoning analysis and fi-325

nalize the location and type of the first hallucination326

through majority voting, minimizing potential er-327

rors. Detailed hallucination analysis instructions328

are provided in Appendix A.329

To ensure a balanced distribution of different330

hallucination types and maintain consistency in331

the number of samples generated by each model,332

we perform stratified random sampling based on333

the number of logical and cognitive hallucination334

samples produced by each model, in accordance335

with the principle of category balance.336

4 Benchmark Analysis337

4.1 Benchmark Dataset Overview338

As shown in Table 1, the ThinkHalu dataset con-339

sists of 6,046 samples, each capturing a complete340

thinking process generated by one of eight LRMs.341

Hallucinations within these chains were automati-342

cally identified as either Logical or Cognitive. The343

dataset covers five subdomains: Geometry, Physics,344

Probability, Gain–Loss, and General, with reason-345

ing chains ranging from 1 to 598 steps in length.346

4.2 Analysis of Hallucination Rates in LRMs347

We analyze the hallucination rates of eight LRMs348

during the data collection phase. As shown in Ta-349

ble 2, on average, hallucination rates are 13.58%350

for GSM8K and 24.27% for MathQA, indicating351

that MathQA presents greater challenges due to352

its higher complexity and multistep reasoning de-353

mands.354

The Qwen3-32B model achieves the lowest355

hallucination rates on both datasets (3.42% on356

GSM8K; 7.03% on MathQA), suggesting strong357

Attribute Attribute Value

Benchmark Name ThinkHalu

Hallucination scenario Mathematical logical reasoning

Number of Generation
Models

8

Hallucination
Subtypes

2

Sample Form thinking process of LRM

Sample Numbers 6046

Question domain 5

Max Reasoning step 598

Min Reasoning step 1

Table 1: The statistical information of the ThinkHalu
Benchmark.

Model GSM8K MathQA

Marco-o1 0.1083 0.2339
Sky-7B 0.1051 0.2416
DeepSeek-1.5B 0.2608 0.2595
DeepSeek-7B 0.1321 0.2557
DeepSeek-8B 0.3044 0.4254
DeepSeek-14B 0.0810 0.2370
DeepSeek-32B 0.0604 0.2181
QwQ-32B 0.0342 0.0703

Average 0.1357 0.2430

Table 2: Hallucination Rates of Data Generation LRMs
on GSM8K and MathQA

reasoning stability. In contrast, Deepseek-8B ex- 358

hibits the highest rates (30.44% and 42.54%, re- 359

spectively), indicating weaker reasoning capabil- 360

ities. Overall, hallucination rates tend to de- 361

crease with the increase of model parameter 362

scale; however, task difficulty remains a key 363

factor that influences the reliability of model 364

reasoning. 365

4.3 Reasoning Step Length Distribution 366

We equalize the hallucinated samples across seven 367

LRMs to ensure data balance. Due to Qwen3-32B’s 368

low hallucination rate, its sample size remains un- 369

changed. However, all models contribute equal 370

samples for both Logical and Cognitive hallucina- 371

tions. Based on this strategy, we randomly sample 372

hallucinated responses to construct the final dataset, 373

preserving the thinking process step distribution ob- 374

served during the third-stage filtering process. 375

As shown in Figure 3, most hallucinated samples 376

involve short reasoning chains, primarily within the 377
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Figure 3: Statistical analysis of the reasoning step
lengths in hallucinated data within the ThinkHalu
Benchmark.

0–10 step range, with peaks at 4–6 and 6–8 steps.378

This indicates that LLMs are susceptible to hal-379

lucinations even in relatively simple reasoning380

scenarios. The overall distribution exhibits a long-381

tail pattern, reflecting occasional hallucinations in382

longer chains.383

5 Model Evaluation384

5.1 Experiment settings385

Datasets. GSM8K and MathQA are widely386

adopted benchmarks for evaluating the per-387

formance of LLMs in multistep mathematical388

reasoning. GSM8K primarily measures the stabil-389

ity and consistency of model reasoning, whereas390

MathQA, which comprises problems spanning391

from elementary to high school levels, requires392

more advanced logical reasoning and symbolic393

computation skills. Conducting experiments on394

these datasets enables a comprehensive analysis of395

hallucinated reasoning chains within mathematical396

problem-solving tasks.397

398

Models. We employ general purpose (non-399

reasoning) and reasoning-focused LLMs to evalu-400

ate hallucinations.401

The non-reasoning models include: GLM-4-9B-402

Chat (GLM-Chat) (GLM et al., 2024), LLaMA-403

3-8B-Instruct (LLaMA3-8B-It)1, Gemma-2-9B- 404

it2, Qwen2.5-7B/14B/32B/72B-Instruct (Qwen-*B- 405

It)(Yang et al., 2024a) and Qwen3-8B/14B/32B 3. 406

The reasoning models used for hallucination 407

detection include: LLaMA-3.1-Nemotron-Nano- 408

8B (LLaMA3.1-8B)(Bercovich et al., 2025), 409

Skywork-OR1-7B/32B-Preview (Sky-7B/32B), 410

DeepSeek-7B/14B/32B/70B, QwQ-32B, GLM-Z1- 411

9B/32B (GLM-9B/32B)(GLM et al., 2024). 412

413

Metrics. We use the following evaluation metrics 414

to assess the hallucination detection performance 415

of models: 416

Accuracy Measures the model’s ability to 417

correctly distinguish hallucinated from non- 418

hallucinated instances. 419

Precision The proportion of predicted hallucina- 420

tions that are correct, reflecting positive detection 421

accuracy. 422

Recall The proportion of true hallucinations cor- 423

rectly identified, reflecting detection completeness. 424

F1 Score The harmonic mean of precision and 425

recall, providing a balanced evaluation when false 426

positives and false negatives matter equally. 427

5.2 Evaluation of Hallucination Detection 428

Evaluation of Non-Reasoning Models. We as- 429

sess the hallucination detection capabilities of sev- 430

eral non-reasoning LLMs, with results summarized 431

in Table 3. Among all models, the Qwen3 se- 432

ries consistently outperforms others of compara- 433

ble scale. In particular, Qwen3-32B achieves the 434

highest overall performance, with an accuracy of 435

82.48%, precision of 83.34%, recall of 78.16%, 436

and F1-score of 80.67%. By contrast, although 437

GLM-4-9B-Chat exhibits high precision (80.08%), 438

its recall is markedly low (14.76%), resulting in 439

a significantly reduced F1 Score of 24.93%. This 440

pattern indicates that the model adopts a conserva- 441

tive detection strategy—it is highly precise when 442

it predicts a hallucination but often fails to identify 443

many actual hallucinations. Such behavior may be 444

attributed to a high internal decision threshold or 445

limited exposure to hallucination patterns during 446

training, leading to high precision at the cost of 447

coverage. The results reveal a clear trend: larger 448

1https://www.modelscope.cn/models/
LLM-Research/Meta-Llama-3-8B-Instruct

2https://www.modelscope.cn/models/
LLM-Research/gemma-2-9b-it

3https://www.modelscope.cn/models/Qwen/
Qwen3-32B
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Model Accuracy Precision Recall F1

GLM-chat 0.5837 0.8008 0.1476 0.2493
LLaMA3-8B-It 0.6274 0.6128 0.5652 0.5834
Gemma-9B-It 0.6379 0.6549 0.4699 0.5471
Qwen-7B-It 0.7480 0.7596 0.6767 0.7158
Qwen-14B-It 0.7391 0.8317 0.5551 0.6658
Qwen-32B-It 0.7604 0.8173 0.6289 0.7108
Qwen-72B-It 0.7564 0.8667 0.5671 0.6856
Qwen3-8B 0.8224 0.8440 0.7577 0.7985
Qwen3-14B 0.8246 0.8324 0.7718 0.8063
Qwen3-32B 0.8248 0.8334 0.7816 0.8067

Table 3: Performance of Non-Reasoning Models on the
ThinkHalu Benchmark

Model Accuracy Precision Recall F1

LLaMA3.1-8B 0.6583 0.7936 0.4368 0.5635
Sky-7B 0.6288 0.7729 0.2738 0.4044
Sky-32B 0.8073 0.7824 0.7756 0.7790
DeepSeek-7B 0.6151 0.7672 0.2370 0.3621
DeepSeek-14B 0.7668 0.8590 0.5992 0.7060
DeepSeek-32B 0.7986 0.8493 0.6909 0.7620
DeepSeek-70B 0.8008 0.8705 0.7048 0.7790
QwQ-32B 0.8293 0.8361 0.7814 0.8078
GLM-9B 0.8095 0.8534 0.7163 0.7788
GLM-32B 0.8352 0.8349 0.8074 0.8209

Table 4: Performance of Reasoning Models on the
ThinkHalu Benchmark

model sizes correlate with improved performance,449

particularly in recall and F1-score. Furthermore,450

the Qwen3 family shows consistently strong and451

stable performance, indicating superior capability452

in identifying hallucinations in reasoning chains.453

The hallucination detection instructions are pro-454

vided in the Appendix A.455

Evaluation of Reasoning Models. We assess456

several LLMs with explicit reasoning capabilities457

on the hallucination detection task, as summarized458

in Table 4. The results show that models with459

enhanced reasoning abilities better detect halluci-460

nations, especially regarding Recall and F1-score.461

Among the evaluated models, GLM-Z1-32B462

achieves the best performance across all metrics,463

with an accuracy of 83.52% and an F1-score of464

82.09%, indicating high stability and detection abil-465

ity. The QwQ-32B model also performs well, at-466

taining an F1-score of 80.78%, with a balanced Re-467

call (78.14%) and Precision (83.61%), demonstrat-468

ing its capacity to accurately identify hallucinated469

samples while maintaining a low false positive rate.470

In contrast, models like Skywork-OR1-7B-471

Preview and DeepSeek-7B, despite having rela-472

tively high Precision (77.29% and 76.72%, respec-473

tively), exhibit low Recall scores (27.38% and474

23.70%), resulting in low F1-scores (40.44% and475

36.21%). This suggests that these models are 476

overly conservative in hallucination detection and 477

lack sensitivity to borderline cases. 478

Notably, increasing model size leads to sub- 479

stantial improvements across all metrics. For in- 480

stance, the DeepSeek series’ F1 score increases 481

from 36.21% at 7B to 77.90% at 70B. This indi- 482

cates that LLMs have significantly improved capa- 483

bilities in detecting hallucinations within complex 484

reasoning chains. 485

In conclusion, LLMs with reasoning capabil- 486

ities outperform non-reasoning models in hal- 487

lucination detection, particularly in Recall and 488

F1-score, highlighting their superior ability to 489

capture hallucination features in thinking pro- 490

cesses. 491

5.3 Self-Detection vs Cross-Detection 492

We examine the performance of six LRMs in de- 493

tecting hallucinations, particularly comparing their 494

capabilities in self-detection versus cross-detection 495

externally. Specifically, self-detection refers to a 496

model’s ability to recognize hallucinations within 497

its own thinking processes. In contrast, cross- 498

detection pertains to identifying hallucinations in 499

the thinking processes generated by other models. 500

As illustrated in Figure 4, most models exhibit a 501

noticeable performance drop when detecting their 502

own hallucinations, particularly regarding Recall 503

and overall F1 score. 504

For instance, Deepseek-32B achieves a Recall 505

of 53.28% and an F1 score of 65.61% in self- 506

detection, which increases to 70.05% and 76.43%, 507

respectively, in cross-detection. Similarly, QwQ- 508

32B shows a Recall improvement from 22.39% to 509

79.76% and an F1 score increase from 33.71% to 510

81.77%. These results reveal a strong asymme- 511

try, indicating that models are significantly more 512

effective at detecting hallucinations generated 513

by others than those they produce themselves. 514

This asymmetry may stem from two key fac- 515

tors: Cognitive Bias: LLMs tend to over-trust 516

their own outputs, lacking mechanisms for criti- 517

cal self-detection. Expression Similarity Interfer- 518

ence: Models may struggle to detect hallucina- 519

tions embedded in their own generation patterns, 520

which can obscure flaws. Notably, the Marco- 521

o1 model demonstrates relatively consistent per- 522

formance across both settings, with Recall val- 523

ues of 87.12% (self-detection) and 82.49% (cross- 524

detection). This suggests broad hallucination cov- 525

erage, albeit at the expense of lower Precision 526
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Figure 4: Comparison of models’ ability to detect self-
generated versus other-generated hallucinations.

(64.37% vs. 62.91%), indicating a higher rate527

of false positives. These findings underscore the528

importance of improving models’ self-reflection529

capabilities to enhance hallucination detection in530

real-world applications.531

5.4 Recognition of Hallucination Types532

We assess the ability of four LLMs—Qwen3-32B,533

GLM-Z1-32B, Deepseek-32B, and QwQ-32B—to534

distinguish between cognitive and logical hallucina-535

tions. As shown in Figure 5, all models exhibit a536

consistent bias: cognitive hallucinations are fre-537

quently misclassified as logical ones. This pattern538

suggests a systemic limitation in current LLMs’539

capacity to accurately recognize and differentiate540

the nature of hallucination types.541

Cognitive hallucinations originate from failures542

in understanding the input, typically presented as543

semantic misinterpretations or inconsistencies. In544

contrast, logical hallucinations arise from reason-545

ing errors, such as contradictions or breakdowns546

Figure 5: Confusion matrix of the LLMs on logical and
cognitive hallucination detection

within the inference process. Thus, these two types 547

are distinct in both the source and the manifesta- 548

tion—comprehension versus reasoning. 549

Despite this distinction, the evaluated models 550

systematically conflate cognitive problems with 551

logical errors. A likely cause is that most existing 552

reasoning frameworks emphasize logical validity, 553

leading models to default to logical interpretations 554

even when the root cause lies in miscomprehen- 555

sion. As a result, semantic-level deficiencies are 556

mistakenly attributed to inference failures, masking 557

cognitive limitations. 558

6 Conclusion 559

This paper presents ThinkHalu, a novel benchmark 560

specifically designed to evaluate hallucinations in 561

the thinking processes of LRMs. Unlike existing 562

benchmarks that focus on hallucinations in final 563

answers, ThinkHalu emphasizes hallucinations oc- 564

curring during the thinking process, providing a 565

more fine-grained hallucination classification. By 566

distinguishing between logical and cognitive hal- 567

lucinations, this benchmark facilitates a deeper un- 568

derstanding of the types and causes of reasoning 569

errors. Experimental results show that, compared 570

to non-reasoning models, reasoning models demon- 571

strate stronger hallucination detection capabilities 572

during the thinking process. Additionally, models 573

exhibit weaker self-detection abilities compared 574

to cross-detection. Further fine-grained analysis 575

reveals that models tend to misclassify cognitive 576

hallucinations as logical hallucinations. 577
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Limitations578

Although ThinkHalu provides a valuable bench-579

mark for evaluating hallucinations in thinking pro-580

cesses, it still has limitations. The benchmark581

is mainly built from math-focused datasets (e.g.,582

GSM8K and MathQA), which emphasize numer-583

ical computation and formulaic reasoning. As a584

result, it may lack representativeness and applica-585

bility in commonsense reasoning tasks. This bias586

could limit the benchmark’s ability to comprehen-587

sively assess hallucination detection across diverse588

reasoning types, restricting its broader applicability.589

Future work will incorporate datasets covering var-590

ious reasoning forms to enhance the benchmark’s591

diversity and generalization, enabling more com-592

prehensive evaluation of hallucinations in complex593

reasoning scenarios.594

Ethics Statement595

All data used in this study are derived from pub-596

licly available benchmark datasets (GSM8K and597

MathQA), which are intended solely for research598

purposes. The hallucinated thinking processes are599

generated using open-source LRMs, and no per-600

sonal, sensitive, or private information is involved601

at any stage of data construction.602

References603

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-604
Kedziorski, Yejin Choi, and Hannaneh Hajishirzi.605
2019. Mathqa: Towards interpretable math word606
problem solving with operation-based formalisms.607
Preprint, arXiv:1905.13319.608

Sourav Banerjee, Ayushi Agarwal, and Saloni Singla.609
2024. Llms will always hallucinate, and we need to610
live with this. Preprint, arXiv:2409.05746.611

Akhiad Bercovich, Itay Levy, Izik Golan, Mohammad612
Dabbah, Ran El-Yaniv, Omri Puny, Ido Galil, Zach613
Moshe, Tomer Ronen, Najeeb Nabwani, Ido Sha-614
haf, Oren Tropp, Ehud Karpas, Ran Zilberstein, Jiaqi615
Zeng, Soumye Singhal, Alexander Bukharin, Yian616
Zhang, Tugrul Konuk, and 114 others. 2025. Llama-617
nemotron: Efficient reasoning models. Preprint,618
arXiv:2505.00949.619

Kedi Chen, Qin Chen, Jie Zhou, Yishen He, and Liang620
He. 2024. Diahalu: A dialogue-level hallucination621
evaluation benchmark for large language models.622
arXiv preprint arXiv:2403.00896.623

Nuo Chen, Zhiyuan Hu, Qingyun Zou, Jiaying Wu,624
Qian Wang, Bryan Hooi, and Bingsheng He. 2025.625
Judgelrm: Large reasoning models as a judge.626
Preprint, arXiv:2504.00050.627

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, 628
Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias 629
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro 630
Nakano, Christopher Hesse, and John Schulman. 631
2021. Training verifiers to solve math word prob- 632
lems. Preprint, arXiv:2110.14168. 633

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea- 634
soning capability in llms via reinforcement learning. 635
Preprint, arXiv:2501.12948. 636

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 637
Kristina Toutanova. 2018. BERT: pre-training of 638
deep bidirectional transformers for language under- 639
standing. CoRR, abs/1810.04805. 640

Shehzaad Dhuliawala, Mojtaba Komeili, Jing Xu, 641
Roberta Raileanu, Xian Li, Asli Celikyilmaz, and Ja- 642
son Weston. 2023. Chain-of-verification reduces hal- 643
lucination in large language models. arXiv preprint 644
arXiv:2309.11495. 645

Jonas Gehring, Kunhao Zheng, Jade Copet, Vegard 646
Mella, Quentin Carbonneaux, Taco Cohen, and 647
Gabriel Synnaeve. 2025. Rlef: Grounding code llms 648
in execution feedback with reinforcement learning. 649
Preprint, arXiv:2410.02089. 650

Team GLM, Aohan Zeng, Bin Xu, Bowen Wang, Chen- 651
hui Zhang, Da Yin, Diego Rojas, Guanyu Feng, Han- 652
lin Zhao, Hanyu Lai, Hao Yu, Hongning Wang, Jiadai 653
Sun, Jiajie Zhang, Jiale Cheng, Jiayi Gui, Jie Tang, 654
Jing Zhang, Juanzi Li, and 37 others. 2024. Chatglm: 655
A family of large language models from glm-130b to 656
glm-4 all tools. Preprint, arXiv:2406.12793. 657

Jujie He, Jiacai Liu, Chris Yuhao Liu, Rui Yan, 658
Chaojie Wang, Peng Cheng, Xiaoyu Zhang, Fuxiang 659
Zhang, Jiacheng Xu, Wei Shen, Siyuan Li, Liang 660
Zeng, Tianwen Wei, Cheng Cheng, Yang Liu, and 661
Yahui Zhou. 2025. Skywork open reasoner series. 662
https://capricious-hydrogen-41c.notion. 663
site/Skywork-Open-Reaonser. Notion Blog. 664

Xiangkun Hu, Dongyu Ru, Lin Qiu, Qipeng Guo, 665
Tianhang Zhang, Yang Xu, Yun Luo, Pengfei Liu, 666
Yue Zhang, and Zheng Zhang. 2024. Refchecker: 667
Reference-based fine-grained hallucination checker 668
and benchmark for large language models. Preprint, 669
arXiv:2405.14486. 670

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 671
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 672
Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: De- 673
noising sequence-to-sequence pre-training for natural 674
language generation, translation, and comprehension. 675
Preprint, arXiv:1910.13461. 676

Junyi Li, Xiaoxue Cheng, Wayne Xin Zhao, Jian-Yun 677
Nie, and Ji-Rong Wen. 2023. Halueval: A large- 678
scale hallucination evaluation benchmark for large 679
language models. arXiv preprint arXiv:2305.11747. 680

Ruosen Li, Ziming Luo, and Xinya Du. 2024. Fine- 681
grained hallucination detection and mitigation in lan- 682
guage model mathematical reasoning. arXiv preprint 683
arXiv:2410.06304. 684

9

https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/1905.13319
https://arxiv.org/abs/2409.05746
https://arxiv.org/abs/2409.05746
https://arxiv.org/abs/2409.05746
https://arxiv.org/abs/2505.00949
https://arxiv.org/abs/2505.00949
https://arxiv.org/abs/2505.00949
https://arxiv.org/abs/2504.00050
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/1810.04805
https://arxiv.org/abs/2410.02089
https://arxiv.org/abs/2410.02089
https://arxiv.org/abs/2410.02089
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://arxiv.org/abs/2406.12793
https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser
https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser
https://capricious-hydrogen-41c.notion.site/Skywork-Open-Reaonser
https://arxiv.org/abs/2405.14486
https://arxiv.org/abs/2405.14486
https://arxiv.org/abs/2405.14486
https://arxiv.org/abs/2405.14486
https://arxiv.org/abs/2405.14486
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461
https://arxiv.org/abs/1910.13461


Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang,685
Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng686
Dou. 2025. Search-o1: Agentic search-enhanced687
large reasoning models. Preprint, arXiv:2501.05366.688

Stephanie Lin, Jacob Hilton, and Owain Evans.689
2021. Truthfulqa: Measuring how models mimic690
human falsehoods, 2022. URL https://arxiv.691
org/abs/2109.07958.692

Tianyu Liu, Yizhe Zhang, Chris Brockett, Yi Mao,693
Zhifang Sui, Weizhu Chen, and Bill Dolan. 2022.694
A token-level reference-free hallucination detection695
benchmark for free-form text generation. Preprint,696
arXiv:2104.08704.697

Potsawee Manakul, Adian Liusie, and Mark JF Gales.698
2023. Selfcheckgpt: Zero-resource black-box hal-699
lucination detection for generative large language700
models. arXiv preprint arXiv:2303.08896.701

Ning Miao, Yee Whye Teh, and Tom Rainforth. 2023.702
Selfcheck: Using llms to zero-shot check their own703
step-by-step reasoning. Preprint, arXiv:2308.00436.704

Mengjia Niu, Hamed Haddadi, and Guansong705
Pang. 2025. Robust hallucination detection in706
llms via adaptive token selection. Preprint,707
arXiv:2504.07863.708

OpenAI, :, Aaron Hurst, Adam Lerer, Adam P. Goucher,709
Adam Perelman, Aditya Ramesh, Aidan Clark,710
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec711
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A Prompt796

Supplementary prompt information for the bench-797

mark is provided in the appendix to ensure repro-798

ducibility and transparency, including reasoning799

prompts for LRMs’ mathematical tasks (Table 5),800

MathQA answer evaluation prompts (Table 6), hal-801

lucination analysis prompts (Table 7), and halluci-802

nation detection prompts (Tables 8 and 9).803
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Please deliberate through the problem step-by-step. Show your reasoning clearly, and present the final
answer in \boxed{} format.
Question: [question description]
#Answer#:

Table 5: Instruction for generating the thought process using a large reasoning models

Evaluate whether the inference answer is correct based on available options and the gold answer.
Note: Ignore case sensitivity when comparing answers. If the inference answer does not exactly match
one of the options, or if it does not match the gold answer, it is considered incorrect.
Question: [question description]
Gold Answer: [gold answer]
Inference Answer: [inference answer]
Note: If the inference answer does not match any of the options, it is considered incorrect.
Output format: [True/False]

Table 6: Since the MathQA dataset adopts a multiple-choice format, and the reasoning model’s generated answers
may not always align with the correct options, it is necessary to leverage a LLM to assess the correctness of the
generated responses.

Based on the question and the correct solution steps, identify the first hallucination in the thinking
process and analyze whether it is Cognitive hallucination or Logical hallucination.

Categories:

1. Cognitive hallucination: refers to a phenomenon in natural language processing systems where the
model, due to biases or shortcomings in its understanding or interpretation of the user’s input, generates
reasoning processes or conclusions that deviate from the expected or intended meaning. This type of
hallucination arises from the model’s inability to correctly grasp the semantics or context of the input,
often manifesting as a misinterpretation of the question or the omission of key information.

2. Logical hallucination: refers to instances where, during reasoning or generation, the model’s inter-
nal reasoning process becomes self-contradictory or contains computational errors, leading to conclu-
sions that are logically inconsistent or erroneous. This type of hallucination originates from flaws in
the model’s reasoning mechanism or errors in the computation process, often manifesting as breaks in
logical relationships or outputs that contradict known facts.

Please focus only on identifying hallucinations in the reasoning process. Do not provide any answer to
the original question. Strictly follow the format and do not add any extra content.
Question: [question description]
Correct solution steps: [gold solution]
Thought process: [model think process]
Output format: step: [first hallucination step]; type: [Cognitive hallucination/Logical hallucination];
reason: [Reason]

Table 7: Instruction for identifying the location and type of hallucination.
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Carefully examine the following thinking process for potential hallucinations. Do not answer the origi-
nal question or provide a direct response. Focus solely on identifying any hallucinations in the thinking
process.

Categories:

1. Hallucination: Cognitive hallucination refers to a phenomenon in natural language processing sys-
tems where the model, due to biases or shortcomings in its understanding or interpretation of the user’s
input, generates reasoning processes or conclusions that deviate from the expected or intended meaning.
This type of hallucination arises from the model’s inability to correctly grasp the semantics or context of
the input, often manifesting as a misinterpretation of the question or the omission of key information.
Logical hallucination refers to instances where, during reasoning or generation, the model’s internal rea-
soning process becomes self-contradictory or contains computational errors, leading to conclusions that
are logically inconsistent or erroneous. This type of hallucination originates from flaws in the model’s
reasoning mechanism or errors in the computation process, often manifesting as breaks in logical rela-
tionships or outputs that contradict known facts.

2. No Hallucination: The reasoning is correct, without any hallucinations.
Please focus only on identifying hallucinations in the reasoning process. Do not provide any answer to
the original question. Strictly follow the format and do not add any extra content.
Question: [question description]
Thought process:[model think process]
Output format: [Hallucination / No Hallucination]

Table 8: Instruction for comparing the hallucination detection capabilities between reasoning-based and non-
reasoning models.

Carefully examine the following thinking process for potential hallucinations. Do not answer the origi-
nal question or provide a direct response. Focus solely on identifying any hallucinations in the thinking
process.

Categories:

1. Cognitive hallucination refers to a phenomenon in natural language processing systems where the
model, due to biases or shortcomings in its understanding or interpretation of the user’s input, generates
reasoning processes or conclusions that deviate from the expected or intended meaning. This type of
hallucination arises from the model’s inability to correctly grasp the semantics or context of the input,
often manifesting as a misinterpretation of the question or the omission of key information.

2. Logical hallucination refers to instances where, during reasoning or generation, the model’s inter-
nal reasoning process becomes self-contradictory or contains computational errors, leading to conclu-
sions that are logically inconsistent or erroneous. This type of hallucination originates from flaws in
the model’s reasoning mechanism or errors in the computation process, often manifesting as breaks in
logical relationships or outputs that contradict known facts.

3. No Hallucination: The reasoning is correct, without any hallucinations.

Please focus only on identifying hallucinations in the reasoning process. Do not provide any answer to
the original question. Strictly follow the format and do not add any extra content.
Question: [question description]
Thought process:[model think process]
Output format: [Cognitive Hallucination / Logical Hallucination / No Hallucination]

Table 9: Instruction for fine-grained identification of hallucinations in the thought process
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