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Abstract

Recent advancements in Generative AI, particularly in Large Language Models
(LLMs) and Large Vision-Language Models (LVLMs), offer new possibilities for
integrating cognitive planning into robotic systems. In this work, we present a
novel framework for solving the object goal navigation problem that generates
efficient exploration strategies. Our approach enables a robot to navigate unfamiliar
environments by leveraging LLMs and LVLMs to understand the semantic structure
of the scene. To address the challenge of representing complex environments
without overwhelming the system, we propose a 3D modular scene representation,
enriched with semantic descriptions. This representation is dynamically pruned
using an LLM-based mechanism, which filters irrelevant information and focuses
on task-specific data. By combining these elements, our system generates high-level
sub-goals that guide the robot’s exploration toward the target object. We validate
our approach in simulated environments, demonstrating its ability to enhance object
search efficiency while maintaining scalability in complex settings.
Visualization : https://youtu.be/pvr1uaObL9M

1 INTRODUCTION

Navigation in an unfamiliar environment to search for an object described in natural language is
one of the most challenging problem in robotics. Even though these kind of task comes as second
nature for us humans, the underlying process is really complex as it involves cognitive processing,
using long term memory and experiences, and integrating the current sensory information with these
processes. Achieving this with robots involve designing a language conditioned high-level planner
that understands the semantic priors of this world and is able to devise intelligent sequential plans to
efficiently explore the scene in search of the object. This is the core of an object goal navigation task.
The agent, similar to a human being, must also have a cognitive high level-planner that can understand
the semantic cues of our world, a low-level planner that can leverage on long term memory and
experiences to act on the environment and an episodic memory to save critical information related to
the current task.

Large Language Models (LLMs) and Large Vision Language Models (LVLMs) have shown the
capability to comprehend the semantic priors of the world and reason about them from this under-
standing. This makes them an ideal candidate for a high level planner, that can take an action by
reasoning about the scene. To plan efficiently in an environment by taking into account the underlying
details of the scene, the agent should be provided with an efficient representation of the scene which
is rich in semantic information but yet not overwhelmed with a mass of indistinguishable stimuli.
Human beings, when exploring an unknown environment to find an object without a comprehensive
map of the environment, follows a goal oriented approach in storing data. This process involves a
combination of Perception which process the incoming information, Attention which directs our focus
to specific cues in the scene and memory which selectively encodes information that is perceived as
important for achieving a specific goal. This aids in efficient use of cognitive resources and effective
retrieval of this information when needed. This goal oriented approach enhances the chances of us
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Figure 1: Overview of our framework with Homerobot Strech in Habitat simulation environment.
The Robot in this episode is tasked to find a pillow. The agent, after considering all the objects in the
scene (3D scene modular representation), decides to explore near the couch to find the pillow.

finding the target object. We mimic this goal oriented approach with robots by using a combination
of an Large language model for attending to relevant aspects, an large vision language model and an
open-vocabulary image segmentation module for perceiving and processing the incoming information,
and a 3D scene modular representation and a short term memory module for saving the processed
information to memory.

The agent when exploring the scene, procedurally builds a modular 3D scene representation, by
using the processed information from the perception module. The 3D scene representation has
nodes corresponding to objects of relevance in the scene, the relevancy of which is decided by a
Large Language Model. The 3D scene representation generated is generally sparse, but becomes
denser in the vicinity of the detected target object. This sparse to dense structure in encoding
information mirrors the human cognition in strategically encoding information in a goal oriented task.
The perception module involves an open vocabulary segmentation module which is responsible for
identifying and segmenting all the objects in the scene and a Large Vision Language model used for
describing the identified objects in natural language. This natural language description have details
like the appearance of the object, the objects near it and the possible room this object is in. This
information helps the high level planner to plan more effectively. The short term memory module
temporarily holds and manipulate information needed for generating inferences about the target
object.

The main contributions of our work involve:

• A framework inspired from human cognition to attend, perceive and store information, to
find an object in an unknown environment, that leverages the reasoning capability of Large
Language Models (LLMs) and Large Vision Language models (LVLMs), to deduce efficient
plans by procedurally building a 3D scene modular representation.

• In-context learning based approach with LLMs to find the pertinent objects in the scene, to
build a goal oriented, streamlined and scalable 3D scene representation on the fly, which
aids in effective reasoning and efficient exploration in an unfamiliar environment.

• An inference strategy that uses an LVLM to identify whether a detected segment is the target
object or not, on all the frames in the short term memory, in which this detected segment
was visible.

2 Related works

2.1 LLM as a planner

Large language models (LLMs) with billions of parameters, trained on massive scale datasets have
shown impressive generative capabilities with a generalized semantic understanding of the world.
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Many works like (14; 8; 30; 17; 13; 1) focused on grounding LLMs for high-level task planning
with natural language task representation. (13) worked on grounding high-level tasks expressed in
natural language and decomposing them into low level plans and admissible actions. (1) focused on
grounding an LLM that provides high-level procedures for task completion, with value functions
associated with these tasks. Many approaches like (29) and (12) used LLMs to follow natural
language navigation instructions.

2.2 Open Vocabulary Image Segmentation

Open vocabulary image segmentation refers to the recognition and delineation of an open category of
objects in a frame. The flexibility of such a system to identify and segment objects forms a critical
part in building an efficient representation of the scene. With the advent of powerful object detection
and segmentation models like (15; 32; 11; 40; 39; 26; 20), the agent can detect and segment the
objects in the scene. Many open vocabulary segmentation modules like (40; 26; 15) require the labels
of the objects to perform instance segmentation. Image tagging models like (37) can recognize the
objects in a scene and return their labels, which can be used as text prompt to these models.

2.3 Representating the environment for task planning

Prior works like (10; 6; 12; 5; 36; 7) focused on building efficient representations of the environment
to facilitate downstream task planning. The representations generated can be used for understanding
the semantics of the scene, thus allowing the agent to query the environment for an object using
natural language (10; 6) and generate task level plans (25; 6) or low-level actions (7). Even though
many scene representations like (5; 7) have created a scalable and efficient representation that can
be used for navigation, it lacks contextual information about the scene, which is invaluable when
exploring a scene. Scene representations like (10; 6) have a really dense representation, which is
often not required when exploring an unfamiliar environment in search of a target object Go. Our
present research is inspired by the human way of cognition with an affordance based memory that
attends and stores only those information which are relevant to the task at hand. We leverage on the
ability of In-context learning in LLMs to prune out irrelevant information and then using an LVLM
to reason about the relevant pruned list of objects, thus creating a sparse as well as information rich
representation of the environment. The scene representation near the target object Go is made denser
so as to facilitate further downstream task planning like manipulation of the object.

2.4 Object goal navigation

Object goal navigation task involves finding a target object Go in an unfamiliar environment. Efficient
exploration through the environment requires deep understanding of semantic priors of the world.
Prior works like (5; 2; 22; 4; 16; 34) tried to learn these semantic cues from egocentric RGB and
depth images (2; 22), semantic map (5) and even from YouTube videos (4). These learned semantic
cues might not generalize well to new unseen environments. (2) focused on using a modular transfer
learning model to generalize the learned policy for a particular task to multiple tasks and (33) used
meta learning to generalize to unfamiliar environments. LLMs on the other hand exhibit extraordinary
contextual awareness and ability to understand the semantic cues of our world. We leverage on this
capability to efficiently explore unseen environments for the target object Go.

Recent works like (24; 9; 28) have leveraged the capability of LLMs to understand the semantic
priors for object goal navigation tasks. (24) leveraged the planning capabilities of LLMs to devise a
sequential plan that includes point goals and target state information for executing multiple object
goal navigation tasks in parallel. These point goals generated by an LLM is fulfilled through a low
level(execution level) controller. (28) focused on using the semantic predictions from LLMs as a
heuristic for a frontier based exploration strategy to find the target object Go. (9) focused on solving
language-driven zero-shot object goal navigation problem (21) by using an LLM to navigate to the
target object Go, given a natural language description of it.

Most of these approaches either focuses on building a semantically rich map by exploring the
environment first, and then utilizes a policy to navigate on top of this representation or have a
procedurally built semantic map which lacks rich semantic information but is built on the fly and a
policy trained on top of this, which learns the semantic priors of the world. Such policies, especially
those trained on simulators lack generalization capabilities. We utilize the generalization capabilities
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Figure 2: Architecture of the proposed pipeline.The agent explores the environment and collects
observations (RGBD image and Pose). An open-vocabulary segmentation module is used to identify
the objects in the current frame. Pruner takes in these detected segments and prunes out unwanted
segments. The pruned segments are either initialized as a new node in the 3D scene representation or
merged with an existing one, based on a similarity criteria. All new nodes are captioned with LLaVA,
to provide semantic information to the LLM based planner. The agent then chooses a node to explore
closer, to find the target object Go. While doing so, the agent stores frame wise information in the
short term memory module. If the agent decides that no objects in the 3D scene representation has a
good chance of finding the target object Go closer to it, it continues to explore the scene and build the
3D scene representation.

of foundational models to understand and reason about the context through natural language, to
procedurally build a 3D modular representation which encodes rich semantic data, and generate plans
for an object goal navigation task.

3 METHOD

Our work aims to design a planner for object goal navigation task in an unfamiliar environment by
building a semantic 3D scene representation of the environment and utilizing an LLM to generate
plans on top of this representation. The goal of the agent is to find a target object Go in the environment
and to create a rich representation of the scene around the object for downstream planning. We
leverage the reasoning capability of Large Language Models(LLMs) to understand the semantic
priors of the environment and thus to guide the robot to those regions which have a higher chance
of finding the target object Go. The agent constructs a semantic 3D scene modular representation
which is a sparse version of (10), pruned with LLMs using the in-context learning paradigm (3; 38).
The immediate relevant environment of the target object Go will have a dense and rich representation
while the rest will have a sparse representation. The overview of our approach is given in figure 2.

The agent receives RGB image, depth image, base and camera pose as inputs in every timestep. An
open vocabulary semantic segmentation module identifies objects in the RGB image and generates
mask for the same. LLM acting as a pruner identifies the most important objects in the scene
in regards to their utility in understanding the semantic priors of the environment and prunes the
remaining detections. These detected segments are then converted into a 3D scene representation,
where each object is signified by a node. An object node stores information regarding the position
of the object, pointcloud, frame in which this object was detected, mask and label of this object in
that frame, and a semantic description of the object in the scene. LLM, grounded for an object goal
navigation task, uses the 3D scene modular representation to decide whether to continue exploring the
environment or to move closer to an already detected object in the scene that has a high probability of
finding the target object Go. The agent triggers its short term memory module and stores information
for every frame if it decides to explore closer to an object. Upon reaching the object, the agent utilize
the detections from the short term memory, to construct hypotheses regarding the target object.
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3.1 Open vocabulary image segmentation

The open vocabulary segmentation module segments the RGB frame It at the current timestep t,
given the natural language description of the object. Given an RGB image It of the scene, we use a
combination of Recognize anything model(RAM) (37), Grounding Dino and FastSAM (26) for open
vocabulary semantic segmentation. RAM is a strong foundational model used for image tagging,
it is tasked with finding the object tags cit in the scene. The set of object tags Ct = (c1t , c

2
t , ..., c

m
t )

is then passed as a text prompt Tt (= Ct) to Grounding-Dino (20), which detects the presence of
classes Ct in the scene. Grounding-Dino returns the class labels (l1t , l

2
t , ..., l

m
t ) of objects in the scene,

confidence of the predictions (p1t , p
2
t , ..., p

m
t ) and their bounding boxes (b1t , b

2
t , ..., b

m
t ). The detected

classes in the scene (l1t , l
2
t , ..., l

m
t ) are then passed as box prompt (b1t , b

2
t , ..., b

m
t ) through FastSAM

(39) to get their corresponding masks (m1
t ,m

2
t , ...,m

m
t ).

3.2 LLM as a pruner

We leverage the In-context learning abilities of an LLM to prune the detected class labels
(l1t , l

2
t , ..., l

m
t ) generated by the open vocabulary segmentation module for the timestep t. In-context

learning is a paradigm that empowers pre-trained LLMs to ground to a particular task without fine-
tuning the model, by providing the LLM with task level demonstrations along with the prompt. The
language model here is provided with task-specific examples containing a pair of input Pi and output
Po object sets. The input set Pi contains class labels (l1, l2, ..., lm) and the output set Po(⊆ Pi),
contains those objects that have a higher utility when it comes to understanding the semantic priors
of the scene. The text prompt provided to the LLM to achieve this behaviour is given in fig ??.

3.3 3D scene modular representation

The pruned semantic masks (m1
t ,m

2
t , ...,m

m
t ) and labels (l1t , l

2
t , ..., l

m
t ) from the open vocabulary

segmentation module, along with the depth image IDt and camera pose Pt in the current time step t
are used to generate 3D object nodes (Nc1, Nc2, ..., Nck) for each object Oi in that frame (It, I

D
t )

using a modified concept graphs pipeline (10). In concept graphs, the 3D object nodes Nci in the
scene representation are fused from multiple views considering their spatial overlap, using an object
association strategy that compares the semantic and visual similarity of these objects. Merging objects
from different frames often creates conflicts in class labels, as the object segment can be associated
with different class labels in different frames. We propose to use a Large Vision Language Model
(LVLM) to resolve this conflict. The LVLM is tasked to find the class label that best suits the object
detected, by giving it a cropped image of the detected object and the conflicting class labels.

Considering an object goal navigation task, where the agent is tasked to find a target object Go in
the scene, further pruning of the concept graphs representation considering the utility of objects,
in the regions not in the immediate relevant environment of the target object Go, so as to generate
a really sparse representation will improve scalability, which enables the system to handle larger
and more complex environments without a proportional increases in computational or memory
requirements. But having a sparse representation around the target object, constrains the agent in
generating downstream plans for manipulating this object. To resolve this, the agent is conditioned to
generate a really dense and semantically rich representation around the target object Go which will
enable the agent to execute downstream planning and manipulation tasks.

The object nodes generated are captioned using an LVLM in order to extract more information
regarding the semantics of the object. Node captioning system in concept graphs is done while
generating the scene graph, after construction of the entire 3D scene representation. This restricts
the robots in fully utilizing the information while generating plans to explore the environment. But
generating captions on the fly utilizes a lot of compute power, thus slowing down the robot by a
considerable factor. To resolve this, the agent is tasked to caption nodes only when the action at the
current timestep is < explore_scene >, i.e. the agent captions the node in every timestep, until it
selects an object to explore further. In the phase where the agent explores towards a selected object
(action =< explore_obj >), it saves all the relevant information regarding objects. The agent
processes this information and generates captions for the object nodes at the end of this phase which
is indicated when the robot reaches the selected object node.
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(a) Prompt to LLM for pruning the detections (b) Prompt to LLM for planning.

3.4 LLM as a planner

LLM, grounded in the current task using task level description of the scene is used to generate a high
level plan for the agent. Given the current objects in the environment (objects in the constructed
3D scene representation (Nc1, Nc2, ..., Nck)) and the generated descriptions for these object nodes,
the LLM is tasked to identify whether to continue exploring the environment randomly and build
up the 3D scene representation, or to explore the regions closer to an object node Ncj . If the LLM
decides to explore the scene more, then action is set to < explore_scene > and if it believes that
there is a high chance of finding the target object Go near any of the detected objects, then action is
set to < explore_obj >. This ability of an LLM to extract semantic relationships between the target
object Go and objects in the scene (Nc1, Nc2, ..., Nck) helps the agent to explore efficiently in the
environment. The text prompt provided to the LLM to achieve this behaviour is given in fig ??.

3.5 Short term memory(STM) and reasoning

Short term memory(STM) is a temporary storage module for holding and manipulating informa-
tion amidst task execution. This working memory module is triggered when the action is set to
< explore_obj >. The agent stores processed information (inference by the open vocabulary seg-
mentation module and segment in that frame which contributed to object nodes in the 3D scene
representation) for all the frames and holds it, until it has completely explored near an object. Hav-
ing a short term memory (temporary) oven an long term or permanent memory reduces memory
constraints and increases the scalability of the architecture.

Upon reaching the target object, the agent pans around its axis to collect information regarding the
scene, which is processed by the segmentation module primed with the target object. This generates
all the possible segments that can be regarded as the target object. The agent then retrieves all the
frames in the short term memory, from which these segments are visible, thus generating different
views for the same detected segment. This is done by finding the spatial overlap of pointclouds
between the segment of interest and the objects from frames stored in the short term memory.

The agent then tasks an LVLM (LLaVA (19; 18)) to verify whether the detected segment in all the
views is the target object or not. The determination of whether the detected segment represents the
target object Go relies on the percentage of frames (different views) in which the LVLM (LLaVA)
confirms the presence of the target object, serving as the decisive criterion for the final decision.
If none of the detected segments are regarded as the target object then the current object selected
for exploring is set to explored, the short term memory is cleared and the agent’s action is set to
< explore_scene >.
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3.6 Execution level planner

We make use of a goal oriented and episodic semantic mapping module (5), to build an episodic 2D
scene obstacle map, frontier map and a goal map. In the phase where action is < explore_scene >,
the goal map is same as that of the frontier map and when the action is < explore_obj >, the goal
map is constructed in such a way that the robot can navigate to a region close to the object selected
by the LLM. The goal map and the obstacle map is then parsed to a fast marching method planner,
which plans execution level actionable sub-goals to reach the goal.

4 EXPERIMENT AND RESULTS

We evaluate our stack to explore for a target object by building a 3D scene representation of the
environment on the HomeRobot: Open Vocabulary Mobile Manipulation (35) simulation benchmark.
This simulation benchmark have multi-room realistic environments, with a diverse and complex
set of receptacles (eg: chair, table, couch, bed, toilet etc.) and articles (eg: pen, book, cellphone,
tray, apple etc.) that can be manipulated.The environments, designed in Habitat (23; 31; 27) provide
a cluttered and navigable scene having multiple rooms with manipulable objects placed on top of
receptacles, to test various benchmarks related to navigation and manipulation of objects in unfamiliar
environments. We chose this dataset over conventional object-nav datasets and benchmarks, because
of the availability of a wide range of small objects, that are manipulable. The main focus of our
work is to explore for these manipulable objects. However, the dataset provided by this benchmark
does not consider the general semantics of the world while spawning objects on top of receptacles.
For example, there is an episode in this dataset that spawns in an apple on top of a toilet. We went
through the dataset and curated custom episodes that follow these semantics to test the stack.

We test our stack for exploration by spawning the robot in a random location in the scene and asking
it to find the target object within 500 steps. We evaluate the agents performance in navigating to the
target object by considering success rate (SR) and success rate weighted by path length (SPL) which
indicates the efficiency of the planner. The focus of our approach is in creating a planning pipeline
that mimics human cognition in the way we perceive, store, express and regulate information. To test
the efficacy of the approach compared to human level cognition, we tasked a set of random human
volunteers to find the target object, for the same set of episodes that were given to the LLM based
planner and measured the success rate (SR) and the success rate weighted by path length (SPL). The
results of the experiments involving human and LLM agent is given in table 1.

Table 1: Experimental results
AGENT SR SPL
Human 0.9375 0.7588813781
GPT-4 0.4375 0.2721472463

GPT-3.5 Turbo 0.0 0.0

Table 2: Ablation analysis
AGENT SR SPL

GPT-4 with STM and pruner 0.4375 0.2721472463
GPT-4 without STM 0.125 0.089943
GPT-4 withot pruner 0.182 0.1131

GPT-4 withot object captions 0.36363 0.2254

5 DISCUSSION

5.1 Comparison with human cognition

Experimental results from table 1, shows the comparison between human agent and LLM agent in
completing an object goal navigation task. Although GPT-4 based agent’s performance is far from
human level performance, it has exhibited a similar thought process in exploring near certain objects
in the scene, for finding the target object Go. GPT-3.5 on the other hand failed to reason in most of
the episodes, leading to an inefficient and meaningless exploration of the scene. Most of the failure
scenarios with GPT-3.5 was when it failed to find the target object within the 500 step limit.
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5.2 Ablation studies

To signify the importance of having a short term memory based inference module, object captioning
module and a detection pruner, we performed ablation analysis with these, the results of which are
presented in table 2.

GPT-4 with the short term memory(STM) based inference module, more effectively identified the
target object Go, when compared to the agent without this module. The strategy of finding the
same detected segment from multiple views, already encountered while exploring and constructing
a hypothesis from these views, improved the agents performance in identifying the target object.
Comparing with an agent with STM, Most of the failure scenario for the agent without STM was due
to false positive detection of target object Go, leading to premature termination.

LLM based pruner is tasked to prune out smaller objects in an environment like pen, book, pillow etc,
and keep object like chair, kitchen table, bed etc, which are important in understanding the semantics
of the scene. By not doing so, the agent is flooded with a lot of redundant information, which can
lead to inefficient plans. Table 2 shows the performance of the agent without the pruner. The agent
without a pruning module engages in a lot of inefficient exploration, which can be seen with the
reduced SPL, when compared to an agent with pruner.

Captioning nodes can capture a lot of semantic information, which can increase the efficiency of the
planner. GPT-4 based agent, provided with captions performed better at reasoning about the target
object Go being near certain objects in the scene, leading to a more optimal path when compared to
the case when the agent was only provided with the object names. Object captions can capture the
semantic differences between objects of the same label. For example, the chance of finding an apple
is more near a table in the kitchen than in the bedroom. Compared to the agent that had access to
object captions, most of the failure scenarios transpired when the agent was not able to find the object
within the 500 step limit. This can be attributed to the inefficient exploration due a lack of semantic
understanding of the scene.

5.3 Limitations

Regardless of its capabilities, this framework possesses certain limitations, with object detection and
segmentation being the most critical among them, creating false positive detection of objects. Another
limitation was with the object captioning system, which often lead to exploration of unwanted objects.
This can be attributed to the current limitations of LVLMs like LLaVA. Using a proprietary LLM like
GPT-4 has a lot of challenges associated with it like the economic cost and slower control loop as its
a cloud hosted model.

6 CONCLUSION

In this paper we introduced a framework to tackle the object goal navigation problem, by leveraging
the generalization and semantic reasoning capabilities of Large Language Models and Large Vision
Language Models to generate intelligent plans, by utilizing an efficient 3D scene representation of
the environment. The agent embodied with this framework, was able to reason about its surrounding
environment in a similar way to that of humans. Ablations studies shows the importance of having a
short term memory (STM) based inference module, a pruner and semantic captions, which is in line
with our architectural design inspired from human cognition. Future works may also explore the use
of a more efficient representation, which the agent can use to reason about the environment.
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7 SUPPLEMENTARY MATERIAL

7.1 SHORT TERM MEMORY

When the agent chooses a node in the 3D scene representation to explore, It starts storing frame-wise
data (RGBD image and processed segments from the open vocabulary object detector). If the agent
detects the presence of the target object in a frame, then it finds all other views stored in the memory,
from which this segment of the target object was visible. This is done by computing the spatial
similarity (overlap between the pointcloud of detected object and all the segments in the memory). A
LVLM is then tasked to reason the presence of the target object in all the retrieved frames. We use
this reasoning to decide whether it is true or false detection. When the agent chooses a new node to
explore, the current data stored in the short term memory is cleared.

Figure 4: Examples of frames retrieved from the short term memory module, in which the target
object is detected. The top 8 frames corresponds to those in which the target object orange was visible
and the bottom 8 frames have the target object soda can visible in them.

7.2 PRUNING

The pruner decides the abstraction level in which the planning occurs. For example, suppose we need
to find an apple in an unseen environment. We can choose to represent the environment around us in
different levels of abstraction, from room name to small objects like book. This representation will
affect the quality of plans that we make to find apple. The task of the pruner is to provide an object
level abstraction for the LLM based agent to plan a task. The pruner retains objects like computer
table, chair, kitchen table, bed, cabinet and so on. To find an object like apple, the agent can choose to
explore closer to one of these objects, in this case the kitchen table. Pruning is done with the help of
incontext learning in LLMs. We provide a series of examples to LLM, that has a list of input objects
and pruned objects and tasks LLM to do the same with a new list of input objects.
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Figure 5: Input object list to LLM and the corresponding pruned list. The pruner here uses GPT-3.5
Turbo

7.3 LLM BASED PLANNER

The table below represents the plan executed by the agent (GPT-4 based agent) in an unseen envi-
ronment to find an orange. Column 1 represents the object list along with the captions generated
by LLaVA. Column two displays the frame when the agent identified a potential object (marked
with a bounding box) to explore, for finding the target object. Column 3 has the frame at the end of
exploring and Column 4 shows the agent’s decision regarding the target object’s presence.
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