
LEMON: Label Error Detection using Multimodal Neighbors

Haoran Zhang * 1 Aparna Balagopalan * 1 Nassim Oufattole 1 Hyewon Jeong 1 Yan Wu 1 Jiacheng Zhu 1

Marzyeh Ghassemi 1

Abstract
Large repositories of image-caption pairs are es-
sential for the development of vision-language
models. However, these datasets are often ex-
tracted from noisy data scraped from the web, and
contain many mislabeled instances. In order to
improve the reliability of downstream models, it
is important to identify and filter images with in-
correct captions. However, beyond filtering based
on image-caption embedding similarity, no prior
works have proposed other methods to filter noisy
multimodal data, or concretely assessed the im-
pact of noisy captioning data on downstream train-
ing. In this work, we propose, theoretically jus-
tify, and empirically validate LEMON, a method
to identify label errors in image-caption datasets.
Our method leverages the multimodal neighbor-
hood of image-caption pairs in the latent space of
contrastively pretrained multimodal models to au-
tomatically identify label errors. Through empir-
ical evaluations across eight datasets and twelve
baselines, we find that LEMON outperforms the
baselines by over 3% in label error detection, and
that training on datasets filtered using our method
improves downstream captioning performance by
more than 2 BLEU points over noisy training.

1. Introduction
Machine learning datasets used to train and finetune large
vision, language, and vision-language models frequently
contain millions of labeled instances (Schuhmann et al.,
2021; Li et al., 2022; Wang et al., 2022a; Changpinyo et al.,
2021). Prior work highlights that some instances in such
datasets may be mislabeled (Northcutt et al., 2021b; Luc-
cioni & Rolnick, 2023; Liao et al., 2021; Beyer et al., 2020;
Plummer et al., 2015), as seen in Figure 1. This is especially

*Equal contribution 1Massachusetts Institute of Technology.
Correspondence to: Haoran Zhang <haoranz@mit.edu>, Aparna
Balagopalan <aparnab@mit.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

This is a plane
from the front

view

MSCOCO Flickr30k

A boy in red
shirt playing

ball.

CIFAR100CIFAR10

LeopardAutomobile

Figure 1: Samples from classification and captioning
datasets discovered to be mislabeled by our method.

problematic in settings such as healthcare, where the relia-
bility of downstream models may depend on the quality of
data used for pretraining (Chen et al., 2024; Liu et al., 2023;
Longpre et al., 2023).

Identifying and correcting label errors in existing datasets at
scale would lead to more reliable and accurate models in the
real world (Zhu et al., 2022; Vasudevan et al., 2022; Liao
et al., 2021; Beyer et al., 2020). However, given the large
size of such datasets, manual detection of errors is practi-
cally infeasible. This is evidenced by the growth of models
trained on noisy data with the web (Li et al., 2022; Wang
et al., 2022a; Liu et al., 2024), or with model generated
pseudo-labels (Menghini et al., 2023; Lai et al., 2023).

Machine learning (ML) based approaches to automatically
identifying label errors have also been proposed in prior
work (Pleiss et al., 2020; Swayamdipta et al., 2020; Liang
et al., 2023; Bahri et al., 2020; Zhu et al., 2022; Northcutt
et al., 2021a). However, we identify two critical limitations:
(1) the majority of such works are unimodal: i.e., they only
utilize image-based representations in detection strategies,
and (2) many of the best-performing approaches depend
on having access to a model already trained on the down-
stream tasks of interest (Pleiss et al., 2020; Swayamdipta
et al., 2020). We hypothesize that applying a neighborhood-
based approach to multimodal representations in the form of
image-text pairs can improve label error detection without
requiring task-specific training, which may be costly and/or
domain specific for some datasets.

Additionally, a common assumption made in prior works is
that each label is one-of-k classes (Bahri et al., 2020; Zhu
et al., 2022). The vast majority of label error detection meth-

1

LEMON: Label Error Detection using Multimodal Neighbors

ods proposed in prior works are hence for classification
datasets. In contrast, datasets used to train large vision-
language models contain natural language labels such as
image captions (Li et al., 2022; 2023; Wang et al., 2022a).
Methods to filter out instances with noisy labels — e.g.,
based on the similarity of image and caption representations
— have been utilized in prior work with some success (Li
et al., 2022; Kang et al., 2023) for such datasets. However,
to the best of our knowledge, no prior works have pro-
posed or rigorously compared methods to identify errors in
datasets with natural language labels, or assessed the impact
of detection on downstream tasks like image captioning.

In this work, we propose LEMON – Label Error detec-
tion using Multimodal Neighbors, a method for multi-
modal label error detection which can be applied to image-
text pairs in datasets such as MSCOCO (Lin et al., 2014).
While prior techniques utilize unimodal neighbors for la-
bel error detection, LEMON leverages multi-modal neigh-
borhoods derived using contrastively pretrained vision-
language models such as Contrastive Language-Image Pre-
training (CLIP) (Radford et al., 2021). Specifically, in addi-
tion to considering pairwise image-text distances, we also
retrieve nearest neighbors in the image and text space as
illustrated in Figure 2. This is motivated by the rich neigh-
borhood geometry in the joint embedding space of mul-
timodal models (Liang et al., 2022; Schrodi et al., 2024).
We then compute distance scores with neighbors in each
modality and combine these into a single score measuring
the likelihood of a label error, with the intuition that higher
discordance (or higher distance) with neighbors indicates a
higher chance of label error. We validate the utility of these
scores across eight datasets, including one in a healthcare
setting, and compare to over ten baselines.

Our key contributions and findings are as follows1:

• We propose LEMON, a novel, theoretically justified
multimodal method capable of detecting label errors in
large image-caption datasets (Section 3).

• We show that LEMON outperforms all training-free
baselines for label error detection in three out of four
classification datasets by up to 3.4% AUROC, and in
three out of four captioning datasets by up to 6.3%
AUROC (Section 6.1).

• We demonstrate that LEMON improves performance
on downstream classification and captioning models
by filtering out data predicted to be label errors. (Sec-
tion 6.2).

• Finally, we verify that the predictions generated by
LEMON are meaningful through a real world analysis
of LEMON on existing datasets without known label
errors (Section 6.5).

1Code: https://github.com/MLforHealth/LEMoN

2. Related Works
Label Noise Detection Noisy and incorrect labels (Beyer
et al., 2020) in training data may lead to decreased or “desta-
bilized” (Northcutt et al., 2021a; Luccioni & Rolnick, 2023)
performance on downstream tasks (Chen et al., 2023; North-
cutt et al., 2021b). Two orthogonal approaches can be taken
to reduce the adverse effects of such labels: developing
methods to learn in the presence of label errors (Cui et al.,
2020; Natarajan et al., 2013; Huang et al., 2023) referred
to as “noise robust” training, and/or detecting and filtering
out instances with label errors (Zhu et al., 2024). In this
work, we focus on the latter direction. This approach may
be preferable, as identifying mislabeled samples is more
flexible, with applications beyond just removing these sam-
ples for downstream model training. For example, accurate
label error detection can uncover systematic errors or biases
in datasets (Rottmann & Reese, 2023), and these insights
can then be used to guide higher-quality data collection
practices (Bernhardt et al., 2022). This is especially impor-
tant for practitioners releasing datasets intended for model
evaluation (Northcutt et al., 2021b; Schubert et al., 2024).

Prior approaches (Swayamdipta et al., 2020; Bahri et al.,
2020; Pleiss et al., 2020; Northcutt et al., 2021a; Liang et al.,
2023; Wu et al., 2020; Kim et al., 2021) for automatic label
error detection include relying on the training dynamics
of task-specific downstream models (Swayamdipta et al.,
2020) and neighborhood-based strategies (Bahri et al., 2020;
Grivas et al., 2020). Some of these techniques are fully
supervised (Northcutt et al., 2021a; Chen et al., 2023) or
unsupervised (Pleiss et al., 2020; Swayamdipta et al., 2020;
Grivas et al., 2020; Bahri et al., 2020), use pre-trained gen-
erative models (Gertz et al., 2024) or are fully training-free
approaches (Zhu et al., 2022; Liang et al., 2023). Previous
approaches for label error detection closest to this work in-
cludes deep k-nearest neighbor (deep k-NN) methods using
k-NN entropy on vector space embeddings (Bahri et al.,
2020; Grivas et al., 2020) and SimiFeat (Zhu et al., 2022)
which employs a local neighborhood-based voting or rank-
ing for noise identification. In contrast to these methods,
our work enhances label noise detection by harnessing in-
formation across multiple data modalities, such as image
and text.

Contrastive Learning Contrastive learning is a repre-
sentation learning method, relying on positive and nega-
tive pairs of data instances (Chen et al., 2020; Misra &
Maaten, 2020; Balestriero et al., 2023) to learn an embed-
ding space. The core idea is to embed similar data points
(positive pairs) closer together than dissimilar data points
(negative pairs) (Schroff et al., 2015; Sohn, 2016; Oord et al.,
2018). In this work, we primarily utilize pre-trained models
that use the CLIP loss (where the pre-training objective is
to predict which text caption is paired with which image)

2

https://github.com/MLforHealth/LEMoN

LEMON: Label Error Detection using Multimodal Neighbors

Image Manifold

Text Manifoldx
xn1

yn1
y

dmmxn2

yn2 sn This is a plane
from the front view

a white and blue bullet
train on its track

Two commuter trains passing each
other by on rail road tracks.

(a)

Image Manifold

Text Manifold

x
xm2

y
dmm

xm1

ym1

ym2

This is a plane
from the front view

The front of a
plane facing the

viewer

A plane that is
about to take offsm

(b)

Figure 2: Outline of LEMON, our proposed method for multimodal label error detection. We demonstrate LEMON on a
real sample from the MSCOCO dataset, where an image of a train (x) is mislabeled as y = “This is a plane from
the front view”. (a) We compute the simple CLIP similarity dmm(x,y). We then find the nearest neighbors of x in
the image space (xnj

) and compute the distance between the corresponding texts and y to compute the score component
sn. (b) To compute the score component sm, we find the nearest neighbors of y in the text space (ymk

), and compute the
distance between the corresponding images and x.

for jointly embedding image and text data (Radford et al.,
2021).

Image Captioning The goal of image captioning is to
describe a given image (Fu et al., 2024) in natural language.
Prior approaches for caption generation have included su-
pervised training of end-to-end models from scratch (Wang
et al., 2022b; Lin et al., 2022; Hu et al., 2023; Xu et al.,
2015; Fu et al., 2024). More recently, vision-language mod-
els pretrained on large datasets of noisy image-caption pairs
extracted from the web (Li et al., 2022; 2023; Wang et al.,
2022a) – such as CC12M (Changpinyo et al., 2021) – have
been utilized for captioning. Some of the pretraining tasks
include image-text contrastive learning, image-text match-
ing, and/or retrieval (Li et al., 2022), as well as general pur-
pose text generation conditioned on an input image (Wang
et al., 2022a). Given that datasets for training such large
models are noisy (Kang et al., 2023), several steps have
been utilized in prior work to filter out noisy captions during
training. The most common strategy involves computing
the similarity between representations of the image and
caption text using another pretrained model (e.g., CLIP)
prior to training (Kang et al., 2023). Another approach in
training the BLIP (Li et al., 2022) model is to synthetically
generate noisy captions and train a classifier to distinguish
between high quality captions and noisy captions with a
cross-entropy loss (Li et al., 2022). To the best of our knowl-
edge, no previous work has conducted a comprehensive
comparison of various strategies for label error detection in
captioning datasets.

Multimodal Neighborhood Methods Previous stud-
ies (Li et al., 2021; Thomas & Kovashka, 2020; Huang
et al., 2024; Liang et al., 2022; Cai et al., 2023) have
examined the geometry of neighborhood spaces in mul-

timodal models, often with the goal of improving repre-
sentation learning (Huang et al., 2024; Li et al., 2021) or
retrieval (Thomas & Kovashka, 2020; 2022). The closest
related work is Thomas & Kovashka (2022), where the au-
thors use the semantic neighborhood of multimodal models
to identify samples with high semantic diversity using text-
based neighbors of neighbors. Importantly, the objective of
their work is different from ours, which leads their proposed
discrepancy and diversity scores to lack signal for label error
in our setting. We further clarify this in Appendix B, and
empirically compare against their discrepancy score as a
baseline. We believe our work is the first to use multimodal
neighbors for label error detection.

3. LEMON: Label Error Detection using
Multimodal Neighbors

We are given a dataset D = {(x,y)Ni=1} consisting of two
modalities x ∈ X and y ∈ Y . For example, X may rep-
resent the set of all natural images, and Y may represent
the set of all English text, or a restricted subset such as
{cat,dog, ...}. We assume the existence of, but not ac-
cess to, an oracle f∗ : X × Y → {0, 1}, which is able to
assign a binary mislabel indicator zi = f∗(xi,yi) to each
sample in D. Here, zi = 1 indicates that the sample is
mislabeled, and zi = 0 indicates that the sample is correctly
labeled. Our goal is to output a score s ∈ R with some
model s := f(x,y) such that:

AUROC = E(x,y)∼P(·|z=1),(x′,y′)∼P(·|z=0)[1f(x,y)≥f(x′,y′)]

is maximized. Prior works have alternatively aimed to max-
imize the F1 score, optimizing over a threshold t:

F1 = max
t∈R

2 · P(z = 1|s ≥ t) · P(s ≥ t|z = 1)

P(z = 1|s ≥ t) + P(s ≥ t|z = 1)

3

LEMON: Label Error Detection using Multimodal Neighbors

Here, we build on prior work for label error detection in
unimodal data (Bahri et al., 2020; Zhu et al., 2022) and
propose a method for f based on nearest neighbors, sum-
marized in Figure 2. Suppose we have a query sample
(x,y)2. Define B(x, r) := {x′ ∈ X : dX (x,x′) ≤ r},
the ball of radius r around x, and B(y, r) similarly. Let
rk(x) := inf{r : |B(x, r) ∩ D| ≥ k}, the minimum ra-
dius required to encompass at least k neighbors. Then,
we define {xn1 ,xn2 , ...,xnk

} := B(x, rk(x)) ∩ D the
top k nearest neighbors of x, and {ym1

,ym2
, ...,ymk

} :=
B(y, rk(y)) ∩ D the top k nearest neighbors of y3. We
assume that the neighbors are sorted in order of ascending
distance, e.g. dX (x,xn2

) ≥ dX (x,xn1
).

If Y is a small discrete set, we could choose d(y,y′) =
1y=y′ . If X or Y are unstructured or high dimensional,
we assume access to multimodal encoders hθ = (hX

θ , hY
θ),

where hX
θ : X → Rd and hY

θ : Y → Rd. Here, hθ may
be a CLIP model (Radford et al., 2021) trained on a large
internet corpus, or, as we show later, it may be sufficient to
train hθ from scratch only on D. Then, we could naturally
use simple distance metrics in the embedding space, such
as the cosine distance dX (x,x′) = dcos(h

X
θ (x), hX

θ (x′)) =

1 − hX
θ (x)ThX

θ (x′)

||hX
θ (x)||2·||hX

θ (x′)||2
. Our proposed score is the linear

combination of three terms:

s = f(x,y) = dmm(x,y)+βsn(x,y,D)+γsm(x,y,D),
(1)

where β, γ ≥ 0 are hyperparameters. Here, dmm(x,y) :=
dcos(h

X
θ (x), hY

θ (y)) is the multimodal distance, which has
been shown empirically to provide a meaningful signal in
prior label error detection work (Liang et al., 2023; Kang
et al., 2023). We thus use this distance as the basis, and
augment it with two additional terms based on nearest neigh-
bors:

sn(x,y,D) = 1
k

k∑
j=1

dY(y,ynj
)e−τ1,ndX (x,xnj

)e−τ2,ndmm(xnj
,ynj

),

(2)
where (xnj

,ynj
) ∈ D, and τ1,n, τ2,n ≥ 0 are hyperparam-

eters. This corresponds to finding the nearest neighbors of
x in X space, then averaging the distance between their
corresponding modality in Y and y. We weight this average
with two additional terms. The τ1,n term corresponds to
downweighting neighbors which are far from x. Intuitively,
this is useful when k is too large for x and not all neighbors
are relevant, and can be thought of as an adaptive k. The
τ2,n term corresponds to downweighting neighbors which
are themselves likely to be mislabeled. If (xnj

,ynj
) is itself

mislabeled, then dY(y,ynj
) would contribute an erroneous

signal to whether (x,y) is mislabeled, and we thus want to

2One could take, for any i, (x,y) := (x,y)i, D
′ := D \

{(x,y)i}
3We will use a subscript nj to index nearest neighbors in X ,

and subscript mj for neighbors in Y .

downweight those instances.

The third term is analogous to sn, but uses neighbors of y:

sm(x,y,D) = 1
k

k∑
j=1

dX (x,xmj
)e−τ1,mdY(y,ymj

)e−τ2,mdmm(xmj
,ymj

) ,

(3)
where (xmj ,ymj) ∈ D, and τ1,m, τ2,m ≥ 0 are hyperpa-
rameters. Crucially, note that notationally, xnj

̸= xmj
,

and ynj
̸= ymj

. Specifically, ynj
corresponds to the Y

modality of nearest neighbors taken in X space, and ymj

corresponds to the nearest neighbors of y taken in Y space.

We note that our method is a generalization of several prior
methods. When β = γ = 0, the method is equivalent
to CLIP similarity (Liang et al., 2023). When β is large,
τ1,n = τ2,n = γ = 0, and d(y,ynj) = 1y=ynj

, the method
is equivalent to Deep kNN (Bahri et al., 2020). An algorithm
outline and high-level description of the method can be
found in Appendix C.

Our method contains several hyperparameters:
k, β, γ, τ1,n, τ2,n, τ1.m, and τ2,m. When there is a
validation set with known mislabel flags, we perform
a grid search over k, and use numerical optimization
methods to search for an optimal value of the remaining
hyperparameters which maximize label error detection
performance on this set, which we describe further in
Section 5.2. We refer to our method in this setting as
LEMONOPT. We will empirically show that only a few
hundred labeled validation samples may be sufficient to
achieve optimal performance in this setting.

When there is no labeled validation set available, we will
show that our method is fairly robust to these hyperparam-
eter choices, and that choosing a set of reasonable fixed
values for these hyperparameters yields nearly comparable
results. We refer to our method in this setting as LEMONFIX.

4. Theoretical Analysis
We show that our multimodal kNN scores (Equations (2)
and (3)) provide a signal for label error. Suppose there exists
a “paraphrase function” H : Y → P(Y), where P denotes
the powerset, such that for a particular sample (x, y) with
H(y) = (ȳ1, ȳ2...,), (x, ȳi) is considered correctly labeled
for all ȳi ∈ H(y). Informally, H outputs the set of all
possible captions which correctly describe x. Similarly
define J (x), which outputs the set of images with identical
semantics as x.

Assumption 1 (Structure of H, J):

• Let (x′, y′) be an arbitrary sample. If y′ ̸∈ H(y), then
x′ ̸∈ J (x).

• Let (x′, y′) be an arbitrary mislabeled sample. Then,
∀y′′ ∈ H(y′), x′′ ̸∈ J (x′).

4

LEMON: Label Error Detection using Multimodal Neighbors

Assumption 2 (Distribution of Distances): Let (X,Y) be a
randomly drawn sample.

• ∀ X ′ ̸∈ J (X) : dX (X,X ′)
iid∼N (µ1, σ

2
1) .

• ∀ X̄ ∈ J (X) : dX (X, X̄)
iid∼N (µ2, σ

2
2) .

We empirically validate this assumption in Appendix A.2.

Let Nk(Y) = {Ym1 , ..., Ymk
} denote the nearest

neighbors of Y in the text space. Let 1
k |H(Y) ∩

Nk(Y)| = ζY , a random variable. Suppose that 1
k |{i :

(Xmi
, Ymi

) is mislabeled}| = p is constant for all samples
in the support of (X,Y).

Let Sm(X,Y) = 1
k

∑
Ymi

∈Nk(Y) dX (X,Xmi
), which is

identical to the proposed Equation (3) with τ1 = τ2 = 0.

Theorem 4.1 (AUROC of kNN Score). Let (X,Y) be a
randomly selected correctly labeled sample, and (X ′, Y ′)
a randomly selected incorrectly labeled sample. Under
Assumptions 1 and 2:

P(Sm(X ′, Y ′) > Sm(X,Y)) = 1− Φ(
−µ

σ
)

where µ = E[ζY](1 − p)(µ1 − µ2), σ =(
E[ζY](1−p)σ2

2+(2−E[ζY](1−p))σ2
1

k +Var(ζY)(1− p)2(µ2 − µ1)
2
)1/2

,
and Φ is the Gaussian CDF.

This provides an expression for the detection AUROC of
the score Sm. The same expression can be derived for Sn

by symmetry.

Lemma 4.2 (Non-random Signal of kNN Score). If the
following three conditions hold: (1) p < 1, (2) E[ζY] > 0,
(3) µ1 > µ2. Then, P(Sm(X ′, Y ′) > Sm(X,Y)) > 0.5.

Under these mild conditions, Sm, our proposed multimodal
neighborhood score, provides a better than random signal at
detecting mislabeled samples. The proof can be found in Ap-
pendix A.1. We additionally provide a theorem showing that
embedding models trained via the contrastive multimodal
objective are natural noisy label detectors in Appendix A.3.

5. Experiments
5.1. Datasets

We evaluate our method using eight datasets, as shown
in Table 1. Four datasets (cifar10, cifar100,
stanfordCars, miniImageNet) are label error detec-
tion datasets from the classification setting. The four remain-
ing datasets are image captioning datasets. For mscoco
and flickr30k, we use the Karpathy split (Karpathy &
Fei-Fei, 2015). The remaining datasets were randomly split
into: training or reference set for the label detection method
(80%), validation set for hyperparameter selection (10%),
and test set for performance evaluation (10%).

5.1.1. NOISE TYPES

In cifar10 and cifar100, we utilize a dataset collected
in prior work (Wei et al., 2021) with human mislabels (hu-
man). We also follow prior work (Zhu et al., 2022) in
experimenting with class symmetric (sym.) and class asym-
metric (asym.) synthetic noise. For stanfordCars and
miniimagenet, we use datasets from Jiang et al. (2020),
which contain noise from real-world (real) web annotators .

For the four captioning datasets, we devise several ways to
inject synthetic noise of prevalence p. The simplest way
is to randomly select p fraction (random) of the samples
and assign their text modality to be that of another random
caption. In datasets where additional metadata is avail-
able (mscoco: object category, mmimdb: genre of movie,
mimiccxr: disease label), we can randomly swap the cap-
tion with that of another sample from the same category
(cat). Finally, in all captioning datasets except mimiccxr,
we tag each token of each caption with its part-of-speech us-
ing SpaCy (Honnibal & Montani, 2017), and then randomly
assign a selected sample’s text modality to be from another
sample with at least one noun in common (noun). Dataset
processing details are in Appendix D.

These noise types are intended to simulate an array of realis-
tic label corruptions in the real world. As such, the resulting
synthetic dataset may not have an exact noise level p, as e.g.
a randomly selected caption may actually be correct for the
image, as well as due to noise in the base datasets, which
we explore in Section 6.5. Unless otherwise stated, results
shown in the main paper are for the bolded noise type in
Table 1, with 40% synthetic noise. Additional results for
other noise types can be found in Appendix I.

5.2. Model Selection and Evaluation

We run LEMON on each dataset, using the training split of
each dataset to compute nearest neighbors. In classification
datasets, we use the discrete metric dY(y,y

′) = 1y=y′ . In
all other cases and for dX , we utilize cosine or euclidean
distance computed in the embedding space of a pretrained
CLIP model, selecting the best distance metric on the vali-
dation set for LEMONOPT, and keeping the distance as the
cosine distance for LEMONFIX. In mimiccxr, we use
BiomedCLIP (ViT-B/16) (Zhang et al., 2023b), and we use
OpenAI CLIP ViT-B/32 (Radford et al., 2021) for all other
datasets. A full list of hyperparameters for our method and
the baselines are in Appendix G.

For LEMONOPT, we select the hyperparameter combina-
tion that maximizes F1 on a labeled validation set. We
report the AUROC, macro-averaged AUPRC, and F1 for
this model. For LEMONFIX, we fix the hyperparameters
at the following reasonable values: k = 30, β = γ = 5,
τ1,n = τ1,m = 0.1, and τ2,n = τ2,m = 5. We report AU-

5

LEMON: Label Error Detection using Multimodal Neighbors

Table 1: Classification and captioning datasets. n is the number of samples. In the main paper, results shown are for the
bolded noise type with 40% noise level for synthetic noise. Results for remaining settings can be found in the appendices.

Dataset n Domain Noise Types

Train Validation Test Image Text

cifar10 40,000 5,000 5,000 Natural images Object labels {human (Wei et al., 2021), sym., asym.}
cifar100 40,000 5,000 5,000 Natural images Object labels {human (Wei et al., 2021), sym., asym.}
miniImageNet (Jiang et al., 2020) 49,419 24,710 24,710 Natural images Object labels {real}
stanfordCars (Jiang et al., 2020) 13,501 6,751 6,752 Car images Car year and model {real}
mscoco (Lin et al., 2014) 82,783 5,000 5,000 Natural images Captions {cat., noun, random}
flickr30k (Young et al., 2014) 29,000 1,014 1,000 Natural images Captions {noun, random}
mmimdb (Arevalo et al., 2017) 15,552 2,608 7,799 Movie Posters Plot summaries {cat., noun, random}
mimiccxr (Johnson et al., 2019) 368,909 2,991 5,159 Chest X-rays Radiology reports {cat., random}

ROC and AUPRC, as the F1 requires additional information
to compute a threshold for the score. We recognize that
access to such a validation set as in LEMONOPT may be un-
realistic, but we will empirically show that (1) our method
is fairly robust to selection of these hyperparameters, (2)
only a few hundred labeled samples may be sufficient to
select these hyperparameters, (3) using LEMONFIX with
the fixed hyperparameter setting described above achieves
nearly comparable results, and (4) hyperparameters opti-
mized on a dataset with synthetic noise may transfer well to
real datasets.

We repeat each experiment three times, using a different ran-
dom seed for the noise sampling (for human and real noise,
we use a different random data split). Performance metrics
shown are test-set results averaged over these three runs,
with error bounds corresponding to one standard deviation.

Baselines We compare our method versus previous state-
of-the-art in both the classification and captioning settings.
We additionally adapt several baselines from the classifi-
cation setting to the captioning setting. We briefly list the
baselines here, and a detailed description is in Appendix E.

In the classification setting, we experiment with the
following baselines which require training a classifier
on the particular dataset: AUM (Pleiss et al., 2020),
Datamap (Swayamdipta et al., 2020), and Confident
Learning (Northcutt et al., 2021a), and the following base-
lines which do not require classifier training: Deep k-
NN (Bahri et al., 2020), SimiFeat (Zhu et al., 2022)-Voting
and Ranking, discrepancy in the image space (Discrepancy)
(ΥDIS

X from Thomas & Kovashka (2022)), CLIP Similar-
ity (Kang et al., 2023), and CLIP Logits (Liang et al., 2023;
Feng et al.).

In the captioning setting, we compare our method with
LLaVA (Liu et al., 2024) prompting and CapFilt (Li et al.,
2022). We note that the latter can be viewed as an oracle
for natural image captioning, as it has been trained in a
supervised manner on clean mscoco data. CLIP Similar-
ity (Kang et al., 2023), Discrepancy (Thomas & Kovashka,
2022), and Datamap (Swayamdipta et al., 2020) can also

be used directly in this setting. Next, to adapt classification
baselines to captioning, we embed the captions using the
corresponding CLIP text encoder, and then use K-means
clustering to assign the text caption into one of 100 clusters.
We then apply Deep k-NN (Bahri et al., 2020) and Confi-
dent Learning (Northcutt et al., 2021a), using the cluster
ID as the discretized class. Finally, we adapt VDC (Zhu
et al., 2024) to the captioning setting using open source
models. Further details can be found in Appendix E.

6. Results
6.1. LEMON Outperforms Baselines on Label Error

Detection

Classification In Table 2, we show the performance of
LEMON against the baselines for label error detection
on four classification datasets. We find that our method
performs on-par with, or outperforms, existing baselines
which do not require classifier training on all classification
datasets. Two downstream-task specific approaches (AUM
and Datamap) outperform most training-free models (partic-
ularly on cifar100), but LEMON performs comparably
and even outperforms them in two datasets. Similar re-
sults are also observed on the two synthetic error types (see
Appendix Table I.2). We find that LEMONFIX performs
almost comparably with LEMONOPT, and still beats almost
all baselines.

Captioning In Table 3, we find that our method outper-
forms existing neighborhood and similarity-based baselines
on three datasets. In two datasets, our model underperforms
the oracle (CapFilt) which has been pre-trained on clean
captions from the mscoco dataset. Results for synthetic
error types show similar trends (see Appendix I.2).

Label Error Detection Performance Across Noise Levels
In Figure I.1, we show the performance of LEMON ver-
sus the CLIP similarity baseline on mscoco and mmimdb,
varying the level of the synthetic noise. We find that
LEMON performs better uniformly across noise levels.

6

LEMON: Label Error Detection using Multimodal Neighbors

Table 2: Label error detection performance across classification datasets. We separate AUM, Datamap, and Confident
learning, as they require training a classifier from scratch. Bold denotes best score within each training approach. A full
version of this table with AUPRC can be found in Appendix I.1.

Method Training-Free cifar10 cifar100 miniImageNet stanfordCars

AUROC F1 AUROC F1 AUROC F1 AUROC F1

AUM
✗

98.3 (0.1) 92.9 (0.1) 92.3 (0.3) 81.1 (0.3) 83.1 (0.2) 68.3 (0.4) 70.4 (2.3) 47.2 (3.1)
Datamap 98.2 (0.1) 92.2 (0.5) 91.8 (0.3) 80.8 (0.5) 85.1 (0.3) 70.6 (0.2) 72.2 (1.7) 50.4 (2.1)
Confident 89.6 (1.4) 88.2 (1.7) 78.6 (0.4) 73.7 (0.5) 59.5 (0.7) 37.7 (1.5) 60.7 (0.3) 39.9 (0.6)

CLIP Logits

✓

95.5 (0.2) 86.2 (0.6) 84.9 (0.7) 72.0 (0.9) 90.0 (0.2) 77.1 (0.2) 68.8 (0.1) 47.3 (0.5)
CLIP Sim. 92.2 (0.2) 82.3 (0.3) 80.8 (0.9) 68.7 (1.1) 89.3 (0.2) 76.1 (0.4) 69.8 (0.4) 46.6 (0.5)
Simifeat-V 90.9 (0.1) 88.4 (0.5) 79.3 (0.4) 72.8 (0.7) 68.2 (0.3) 55.1 (0.6) 63.4 (1.3) 43.3 (1.5)
Simifeat-R 90.7 (0.2) 88.2 (0.3) 79.6 (0.2) 73.3 (0.3) 68.1 (0.2) 54.8 (0.5) 63.6 (1.2) 43.5 (1.6)
Discrepancy 77.1 (1.9) 66.4 (2.2) 66.0 (1.5) 58.9 (0.8) 79.5 (0.2) 64.0 (0.1) 65.7 (0.3) 44.3 (0.7)
Deep k-NN 97.8 (0.1) 91.4 (0.6) 87.4 (0.3) 75.7 (0.3) 83.2 (0.2) 68.5 (0.2) 71.5 (0.6) 49.1 (0.6)
LEMONFIX (Ours) 97.7 (0.2) 90.9 (0.1) 88.9 (0.7) 75.4 (0.6) 89.5 (0.2) 74.7 (0.2) 72.6 (0.7) 47.7 (2.0)
LEMONOPT (Ours) 98.1 (0.0) 92.0 (0.2) 90.8 (0.0) 78.4 (0.0) 90.0 (0.4) 76.9 (0.2) 73.1 (0.5) 51.3 (0.5)

Table 3: Label error detection performance on captioning datasets. We separate CapFilt as it has been trained on clean
mscoco data. Bold denotes best (highest) score. A full version of this table with AUPRC can be found in Appendix I.2.

Method flickr30k mscoco mmimdb mimiccxr

AUROC F1 AUROC F1 AUROC F1 AUROC F1

LLaVA 79.3 (0.8) 65.0 (1.1) 80.3 (0.1) 74.9 (0.3) 58.4 (0.2) 58.5 (0.1) 53.9 (0.5) 57.0 (0.1)
Datamap 52.7 (1.5) 50.4 (1.8) 68.9 (0.8) 60.3 (1.2) 54.0 (0.3) 57.2 (0.1) 50.2 (1.2) 57.0 (0.1)
Discrepancy 73.0 (0.6) 59.0 (0.3) 72.7 (0.3) 62.5 (0.3) 57.8 (0.4) 57.4 (0.2) 60.0 (0.7) 57.2 (0.1)
VDC 92.9 (1.1) 81.1 (1.6) 94.1 (0.2) 86.3 (0.4) 80.5 (0.3) 69.3 (0.6) 50.8 (0.4) 57.0 (0.1)
Deep k-NN 71.1 (0.4) 59.2 (0.8) 76.6 (0.4) 67.5 (0.8) 61.2 (0.4) 58.3 (0.4) 62.9 (0.4) 59.2 (0.1)
Confident 63.1 (0.9) 54.0 (0.9) 71.5 (0.5) 66.5 (0.5) 52.8 (1.1) 51.8 (1.8) 61.8 (0.3) 58.1 (0.6)
CLIP Sim. 94.8 (0.5) 84.2 (0.9) 93.8 (0.2) 84.5 (0.4) 85.1 (0.3) 72.7 (0.6) 64.1 (0.4) 59.2 (0.0)
LEMONFIX (Ours) 93.6 (0.2) – 92.0 (0.1) – 84.3 (0.3) – 66.3 (0.4) –
LEMONOPT (Ours) 94.5 (0.2) 83.6 (1.4) 95.6 (0.2) 87.0 (0.2) 86.0 (0.1) 73.5 (0.3) 70.4 (1.6) 61.1 (0.8)

CapFilt (Supervised Training) 98.6 (0.1) 93.1 (0.7) 99.3 (0.0) 95.4 (0.4) 82.7 (0.7) 71.3 (0.3) 49.7 (0.3) 57.0 (0.0)

Size of Labeled Validation Set In Appendix Figure I.3,
we examine how varying the size of the labeled valida-
tion set impacts the performance of LEMONOPT. We find
that in all four captioning datasets, having about 100-500
labeled examples is sufficient to tune hyperparameters in
LEMONOPT to outperform LEMONFIX. In the three datasets
where LEMONFIX underperforms the CLIP similarity base-
line, we find again that having 100-500 labeled validation
samples is sufficient for tuning LEMONOPT to perform on
par with this baseline.

Robustness to Hyperparameters Here, we test the ro-
bustness of our method when there is no labeled validation
set available. First, in Appendix I.4, we visualize the F1 of
the selected score when varying β and γ, keeping all other
hyperparameters at their selected optimal values. We find
that for most datasets and noise types, there is a reasonably
large space of such hyperparameters, bounded away from
the origin, which achieves close to optimal performance.

Next, we compare the performance of LEMONOPT and
LEMONFIX with hyperparameters described in Section 5.2
across all datasets in Table I.8. We find that when there is no
labeled validation set available, using these hyperparameters

results in an AUROC drop of only 1.6% on average (std =
1.3%), with a worst-case AUROC drop of 4.1% across all
18 dataset and noise type combinations. Thus, even when
a labeled validation set is not available, LEMONFIX with
reasonable hyperparameter settings is able to outperform
most baselines which do use such information.

6.2. Filtering Mislabeled Data Improves Downstream
Performance

Classification To assess the impact of label error detection
on the performance of the downstream classification tasks,
we filter out samples from the training set with mislabel
scores in the top q percentile. We vary q, train ViT (Dosovit-
skiy et al., 2020) models on the filtered dataset, and evaluate
the downstream test accuracy using clean data. We com-
pare the performance of LEMONOPT with all training-free
baselines that produce a continuous score (i.e. all except
Simifeat and Confident). In Figure 3, we find that training
with LEMONOPT filtered samples leads to the highest ac-
curacy on cifar10 and cifar100 after removing more
than 30% of the data. Training with LEMONOPT filtered
samples is also on par with baselines on the other datasets
(either the best or within 1% of the best baseline) as shown

7

LEMON: Label Error Detection using Multimodal Neighbors

40 60 80 100
%Data retained

0.80

0.85

0.90

0.95

Ac
cu

ra
cy

cifar10

40 60 80 100
%Data retained

0.60

0.65

0.70

0.75

Ac
cu

ra
cy

cifar100

LEMoN (Ours)
Deep k-NN
Clip Sim.
Clip Logits
Discrepancy

Figure 3: Downstream classification accuracy on cifar10
(left) and cifar100 (right) with LEMONOPT with human
noise versus the baselines. Note that the noise prevalence is
40% in both datasets.

Table 4: Downstream captioning performance when remov-
ing 40% samples with highest mislabel scores. We find that
filtering noisy data with LEMONOPT improves captioning.

Dataset Method B@4 CIDER ROUGE

flickr30k

No Filtering 27.9 (0.7) 64.7 (0.3) 49.3 (0.3)
CLIP Sim. 29.6 (0.5) 71.5 (1.3) 50.6 (0.3)

LEMONOPT 29.5 (0.6) 72.5 (0.8) 51.0 (0.4)

Clean 31.0 (0.4) 75.0 (0.8) 51.9 (0.0)

mscoco

No Filtering 35.0 (0.1) 116.7 (0.4) 56.3 (0.2)
CLIP Sim. 37.8 (0.1) 126.5 (0.4) 58.3 (0.1)

LEMONOPT 38.0 (0.2) 126.7 (0.5) 58.4 (0.1)

Clean 37.9 (0.3) 127.0 (0.6) 58.4 (0.1)

in Appendix I.14. We also show that filtering data in this
manner does not reduce classifier robustness (Appendix
I.16).

Captioning We finetune a pre-trained GenerativeIm-
age2Text (GIT) (Wang et al., 2022a) model to generate
captions. Given the large size of the model, we use the
parameter-efficient Low-Rank Adaptation (LoRA) (Hu et al.,
2021) for all captioning models. We train models with clean
data, noisy captions (No Filtering), and by filtering data
detected as being mislabeled by a label detection method.
In Table 4, we compare results of using either our model or
a strong baseline (CLIP Sim.) for filtering data, as measured
by the BLEU-4 (Papineni et al., 2002), CIDER (Vedantam
et al., 2015), and ROUGE (Lin, 2004) scores. In all cases,
we filtered out the top 40% percentile of data predicted to be
mislabeled (i.e., equal to the expected prevalence of noisy
data). We find that (1) filtering out data predicted to be
mislabeled helps recover performance as compared to train-
ing on fully clean data along multiple metrics, and (2) our
method performs comparably to the baseline in improving
downstream results, with some improvements over CLIP
Similarity on mscoco and flickr30k (for CIDER and
ROUGE, and for BLEU-4 scores on mscoco). However, as
training with a fully clean dataset only outperforms training
with a fully noisy (i.e. no filtering) dataset by 2-3 BLEU-4

points, the range of potential improvement for any filtering
method is limited.

6.3. Ablations

In Table I.10, we show the performance of our method after
ablating each component. We find that mislabel detection
performance almost decreases monotonically as we remove
additional components until we reach the CLIP Similarity
baseline. We find that ablating the τ1 and τ2 terms results in
a performance loss of about 1%. In Table I.11, we examine
the performance of each of the three components of our
score and their combinations. We find that dmm is the
most critical term. Of the two nearest neighbors terms, we
find that sn (nearest image neighbors) is more important in
general, though this is highly dataset dependent, e.g. error
detection in mmimdb relies much more on neighbors in the
text space than the image space, while the opposite is true
for mscoco.

6.4. External Pretraining May Not Be Required

Medical Images Thus far, all of the results for LEMON
(and CLIP Similarity) have utilized CLIP models which
have been pretrained on external datasets (e.g. PMC-15M in
the case of BiomedCLIP). Here, we examine whether we can
achieve comparable performance by pretraining CLIP from
scratch only on the noisy data. We select mimiccxr as it
has the most samples out of all captioning datasets. Similar
to CheXzero (Tiu et al., 2022), we pretrain a CLIP ViT B/16
from scratch on the mimiccxr training set with 40% noise.
We train this model for 10 epochs with a batch size of 64,
and do not do any model selection or early stopping. We
then apply LEMON and the CLIP similarity baseline using
this model, for the same noise level and noise type. We
present our results in Table 5. Surprisingly, we find that
pretraining CLIP only on noisy data from MIMIC-CXR
actually outperforms BiomedCLIP. This could be attributed
to the pretraining domain (chest X-rays and radiology notes)
matching the inference domain exactly (Nguyen et al., 2022).
As an upper bound, we evaluate the same methods using
CheXzero (Tiu et al., 2022), which has been pretrained on
clean MIMIC-CXR data. We find that, as expected, it far
outperforms this baseline. We conclude that, for large noisy
datasets, pretraining a CLIP model from scratch could be a
viable solution, though pretraining on clean data from the
same domain is certainly superior.

Web-Scale Corpus Motivated by this result, we conduct
a large scale experiment on the CC3M dataset (Changpinyo
et al., 2021), which contains 2.9 million valid URLs to
image-caption pairs. We pretrain CLIP from scratch on
this dataset, then use this CLIP model to filter samples in
the original dataset using LEMONFIX and the CLIP simi-
larity baseline. We select the 1 million samples with the

8

LEMON: Label Error Detection using Multimodal Neighbors

Table 5: Performance of LEMON for label error detection
versus the CLIP similarity baseline on mimiccxr, when
external pretrained models may not be available. Biomed-
CLIP (Zhang et al., 2023a) is trained on a large corpus
of biomedical image-text pairs. We find that pretraining
only on noisy data from MIMIC-CXR outperforms Biomed-
CLIP, though pretraining on clean mimiccxr data (as in
CheXzero (Tiu et al., 2022)) does perform better.

Random Noise Cat. Noise

AUROC F1 AUROC F1

BiomedCLIP
Clip Sim. 66.8 (0.8) 60.1 (0.4) 64.1 (0.4) 59.2 (0.0)
LEMONFIX (Ours) 69.5 (0.7) - 66.3 (0.4) -
LEMONOPT (Ours) 73.7 (1.7) 63.5 (0.8) 70.4 (1.6) 61.1 (0.8)

CLIP Pretrain
On Noisy Data

Clip Sim. 78.8 (0.1) 66.8 (0.3) 76.5 (0.5) 64.4 (0.5)
LEMONFIX (Ours) 80.5 (0.1) - 77.0 (0.5) -
LEMONOPT (Ours) 80.0 (0.9) 67.7 (0.5) 77.2 (0.8) 64.6 (0.3)

CheXzero
Clip Sim. 90.8 (0.2) 79.5 (0.2) 88.4 (0.6) 76.1 (0.7)
LEMONFIX (Ours) 91.4 (0.1) - 88.4 (0.7) -
LEMONOPT (Ours) 91.8 (0.2) 80.9 (0.6) 88.5 (0.4) 76.2 (1.0)

lowest mislabel scores from each method, and pretrain an-
other CLIP from scratch on this clean subset. We evaluate
the resulting model on zero-shot classification using the
VTAB benchmark (Zhai et al., 2019). We find filtering with
LEMoN marginally outperforms the baseline on average
zero-shot accuracy, though both underperform pretraining
on the full corpus. Full details are in Appendix I.9. We
additionally conduct an experiment on Datacomp (Gadre
et al., 2024) in Appendix I.10.

6.5. Real-World Analysis

We conduct a preliminary study of LEMON on real datasets
without known label errors. We run LEMONFIX and
the CLIP similarity baseline on cifar10, cifar100,
flickr30k, and mscoco. As no labeled validation set
is available, we use optimal hyperparameters from models
previously run on each dataset with synthetic noise from
Section 6.1 (Appendix I.11). For each dataset, we select the
top 200 images from the validation and test splits with the
highest mislabel scores. We then manually annotated each
sample to determine whether it was mislabeled. Crucially,
during labeling, images were randomly selected, so the la-
beler is unaware of whether the candidate image originated
from the baseline or our method. We find that our method
outperforms the baseline for every dataset (Table 6). Exam-
ples of real-world mislabels are also in Figures 1 and I.5.
We present a further comparison of our identified error sets
in cifar10 and cifar100 with crowd-sourced labels
(Northcutt et al., 2021b) in Appendix I.13.

7. Conclusion
In this work, we proposed LEMON, a method that leverages
the neighborhood structure of contrastively pretrained mul-

Table 6: We manually label 200 images from real-world
datasets that each method identifies as the most likely to
be mislabeled and show the percentage (%) of times where
it is actually mislabeled. Numbers in parentheses are 95%
confidence intervals from a binomial proportion.

CLIP Sim. Ours

cifar10 5.5 (3.2) 10.0 (4.2)
cifar100 11.0 (4.3) 20.5 (5.6)

flickr30k 32.5 (6.5) 41.0 (6.8)
mscoco 19.5 (5.5) 25.5 (6.0)

timodal embeddings to automatically identify label errors
in image datasets with natural language text labels.

Our approach is a promising step to automatically detecting
and filtering data mislabels at scale. Through experiments
on multiple datasets with synthetic and real-world noise,
we demonstrated LEMON’s effectiveness in detecting label
errors and improving downstream model performance.

Limitations Our work has several limitations. As we pri-
marily rely on existing open-sourced datasets, some parts
of these datasets may have been used as training data in pre-
trained models. We specifically chose pretrained models that
take care not to include the test sets of such datasets. Further,
we run experiments on a real-world healthcare dataset with
access controls (mimiccxr) to verify our results. Next,
we assume that there exists an oracle binary indicator for
whether a sample is mislabeled. As we saw in practice,
real-world mislabels contain much more uncertainty and
ambiguity, e.g. due to blurry images (Gao et al., 2017;
Basile et al., 2021; Gordon et al., 2021; 2022). Evaluating
the effectiveness of our score as a measure of this uncer-
tainty is an area of future work.

Acknowledgments
This work was supported in part by a National Science Foun-
dation (NSF) 22-586 Faculty Early Career Development
Award (#2339381), a Gordon & Betty Moore Foundation
award, and a Google Research Scholar award. We would
like to thank Walter Gerych and Olawale Salaudeen for their
valuable feedback.

Impact Statement
In this work, we have studied the identification and removal
of samples deemed to be mislabels. We recognize that not
all such samples are truly erroneous, and that these false
positives may not be uniformly distributed across the space
of images and text. For example, automated detectors such
as LEMON may flag legitimate but atypical examples, such
as rare concepts, under-represented languages or dialec-
tic phrases, and images from minority classes or groups.

9

LEMON: Label Error Detection using Multimodal Neighbors

Removal of these samples may then lead to downstream
models with certain biases. To alleviate these issues, we
encourage practitioners to use LEMON and similar tools
to surface candidates for expert review, rather than as an
unsupervised pruning tool. We view the ability to manually
examine such samples as a strength of the filtering approach,
over loss-based approaches, for learning under label noise.

References
Arevalo, J., Solorio, T., Montes-y Gómez, M., and González,

F. A. Gated multimodal units for information fusion.
arXiv preprint arXiv:1702.01992, 2017.

Bahri, D., Jiang, H., and Gupta, M. Deep k-nn for noisy
labels. In International Conference on Machine Learning,
pp. 540–550. PMLR, 2020.

Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar,
S., Goldstein, T., Bordes, F., Bardes, A., Mialon, G., Tian,
Y., et al. A cookbook of self-supervised learning. arXiv
preprint arXiv:2304.12210, 2023.

Basile, V., Cabitza, F., Campagner, A., and Fell, M. To-
ward a perspectivist turn in ground truthing for predictive
computing. arXiv preprint arXiv:2109.04270, 2021.

Bernhardt, M., Castro, D. C., Tanno, R., Schwaighofer,
A., Tezcan, K. C., Monteiro, M., Bannur, S., Lungren,
M. P., Nori, A., Glocker, B., et al. Active label cleaning
for improved dataset quality under resource constraints.
Nature communications, 13(1):1161, 2022.

Beyer, L., Hénaff, O. J., Kolesnikov, A., Zhai, X., and Oord,
A. v. d. Are we done with imagenet? arXiv preprint
arXiv:2006.07159, 2020.

Cai, S., Qiu, L., Chen, X., Zhang, Q., and Chen, L.
Semantic-enhanced image clustering. In Proceedings of
the AAAI conference on artificial intelligence, volume 37,
pp. 6869–6878, 2023.

Changpinyo, S., Sharma, P., Ding, N., and Soricut, R. Con-
ceptual 12m: Pushing web-scale image-text pre-training
to recognize long-tail visual concepts. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pp. 3558–3568, 2021.

Chen, H., Wang, J., Shah, A., Tao, R., Wei, H., Xie, X.,
Sugiyama, M., and Raj, B. Understanding and mitigating
the label noise in pre-training on downstream tasks. arXiv
preprint arXiv:2309.17002, 2023.

Chen, S., Gallifant, J., Gao, M., Moreira, P., Munch, N.,
Muthukkumar, A., Rajan, A., Kolluri, J., Fiske, A., Hast-
ings, J., et al. Cross-care: Assessing the healthcare im-
plications of pre-training data on language model bias.
arXiv preprint arXiv:2405.05506, 2024.

Chen, T., Kornblith, S., Norouzi, M., and Hinton, G. A
simple framework for contrastive learning of visual rep-
resentations. In International conference on machine
learning, pp. 1597–1607. PMLR, 2020.

Cui, Z., Zhang, Y., and Ji, Q. Label error correction and gen-
eration through label relationships. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 34,
pp. 3693–3700, 2020.

Dai, W., Li, J., Li, D., Tiong, A., Zhao, J., Wang, W., Li,
B., Fung, P., and Hoi, S. Instructblip: Towards general-
purpose vision-language models with instruction tuning.
arxiv 2023. arXiv preprint arXiv:2305.06500, 2, 2023.

Diffenderfer, J., Bartoldson, B., Chaganti, S., Zhang, J.,
and Kailkhura, B. A winning hand: Compressing deep
networks can improve out-of-distribution robustness. Ad-
vances in neural information processing systems, 34:664–
676, 2021.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M.,
Heigold, G., Gelly, S., et al. An image is worth 16x16
words: Transformers for image recognition at scale. In
International Conference on Learning Representations,
2020.

Dubey, A., Jauhri, A., Pandey, A., Kadian, A., Al-Dahle,
A., Letman, A., Mathur, A., Schelten, A., Yang, A., Fan,
A., et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Feng, C., Tzimiropoulos, G., and Patras, I. Clipcleaner:
Cleaning noisy labels with clip. In ACM Multimedia
2024.

Fu, Z., Song, K., Zhou, L., and Yang, Y. Noise-aware im-
age captioning with progressively exploring mismatched
words. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 38, pp. 12091–12099, 2024.

Gadre, S. Y., Ilharco, G., Fang, A., Hayase, J., Smyrnis, G.,
Nguyen, T., Marten, R., Wortsman, M., Ghosh, D., Zhang,
J., et al. Datacomp: In search of the next generation of
multimodal datasets. Advances in Neural Information
Processing Systems, 36, 2024.

Gao, B.-B., Xing, C., Xie, C.-W., Wu, J., and Geng, X.
Deep label distribution learning with label ambiguity.
IEEE Transactions on Image Processing, 26(6):2825–
2838, 2017.

Gertz, R. J., Dratsch, T., Bunck, A. C., Lennartz, S., Iuga,
A.-I., Hellmich, M. G., Persigehl, T., Pennig, L., Gietzen,
C. H., Fervers, P., et al. Potential of gpt-4 for detecting
errors in radiology reports: Implications for reporting
accuracy. Radiology, 311(1):e232714, 2024.

10

LEMON: Label Error Detection using Multimodal Neighbors

Ghasemi, A. and Zahediasl, S. Normality tests for statistical
analysis: a guide for non-statisticians. International jour-
nal of endocrinology and metabolism, 10(2):486, 2012.

Gordon, M. L., Zhou, K., Patel, K., Hashimoto, T., and
Bernstein, M. S. The disagreement deconvolution: Bring-
ing machine learning performance metrics in line with
reality. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems, pp. 1–14, 2021.

Gordon, M. L., Lam, M. S., Park, J. S., Patel, K., Hancock,
J., Hashimoto, T., and Bernstein, M. S. Jury learning: In-
tegrating dissenting voices into machine learning models.
In Proceedings of the 2022 CHI Conference on Human
Factors in Computing Systems, pp. 1–19, 2022.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Grivas, A., Alex, B., Grover, C., Tobin, R., and Whiteley, W.
Not a cute stroke: analysis of rule-and neural network-
based information extraction systems for brain radiology
reports. In Proceedings of the 11th international work-
shop on health text mining and information analysis, pp.
24–37, 2020.

Hendrycks, D. and Dietterich, T. Benchmarking neural
network robustness to common corruptions and perturba-
tions. In International Conference on Learning Represen-
tations, 2018.

Honnibal, M. and Montani, I. spaCy 2: Natural language
understanding with Bloom embeddings, convolutional
neural networks and incremental parsing. To appear,
2017.

Hu, E. J., Wallis, P., Allen-Zhu, Z., Li, Y., Wang, S., Wang,
L., Chen, W., et al. Lora: Low-rank adaptation of large
language models. In International Conference on Learn-
ing Representations, 2021.

Hu, J. C., Cavicchioli, R., and Capotondi, A. Exploiting
multiple sequence lengths in fast end to end training for
image captioning. In 2023 IEEE International Confer-
ence on Big Data (BigData), pp. 2173–2182. IEEE, 2023.

Huang, B., He, F., Wang, Q., Chen, H., Li, G., Feng,
Z., Wang, X., and Zhu, W. Neighbor does matter:
Global positive-negative sampling for vision-language
pre-training. In ACM Multimedia 2024, 2024.

Huang, R., Long, Y., Han, J., Xu, H., Liang, X., Xu, C.,
and Liang, X. Nlip: Noise-robust language-image pre-
training. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 37, pp. 926–934, 2023.

Jiang, L., Huang, D., Liu, M., and Yang, W. Beyond syn-
thetic noise: Deep learning on controlled noisy labels. In
International conference on machine learning, pp. 4804–
4815. PMLR, 2020.

Johnson, A. E., Pollard, T. J., Greenbaum, N. R., Lun-
gren, M. P., Deng, C.-y., Peng, Y., Lu, Z., Mark, R. G.,
Berkowitz, S. J., and Horng, S. Mimic-cxr-jpg, a large
publicly available database of labeled chest radiographs.
arXiv preprint arXiv:1901.07042, 2019.

Kang, W., Mun, J., Lee, S., and Roh, B. Noise-aware
learning from web-crawled image-text data for image
captioning. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pp. 2942–2952,
2023.

Karpathy, A. and Fei-Fei, L. Deep visual-semantic align-
ments for generating image descriptions. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pp. 3128–3137, 2015.

Kim, T., Ko, J., Choi, J., Yun, S.-Y., et al. Fine samples for
learning with noisy labels. Advances in Neural Informa-
tion Processing Systems, 34:24137–24149, 2021.

Lai, Z., Vesdapunt, N., Zhou, N., Wu, J., Huynh, C. P.,
Li, X., Fu, K. K., and Chuah, C.-N. Padclip: Pseudo-
labeling with adaptive debiasing in clip for unsupervised
domain adaptation. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 16155–
16165, 2023.

Li, J., Li, D., Xiong, C., and Hoi, S. Blip: Bootstrapping
language-image pre-training for unified vision-language
understanding and generation. In International confer-
ence on machine learning, pp. 12888–12900. PMLR,
2022.

Li, J., Li, D., Savarese, S., and Hoi, S. Blip-2: Bootstrapping
language-image pre-training with frozen image encoders
and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Li, Y., Liang, F., Zhao, L., Cui, Y., Ouyang, W., Shao, J., Yu,
F., and Yan, J. Supervision exists everywhere: A data ef-
ficient contrastive language-image pre-training paradigm.
In International Conference on Learning Representations,
2021.

Liang, C., Zhu, L., Shi, H., and Yang, Y. Combating label
noise with a general surrogate model for sample selection.
arXiv preprint arXiv:2310.10463, 2023.

Liang, V. W., Zhang, Y., Kwon, Y., Yeung, S., and Zou,
J. Y. Mind the gap: Understanding the modality gap
in multi-modal contrastive representation learning. Ad-
vances in Neural Information Processing Systems, 35:
17612–17625, 2022.

11

LEMON: Label Error Detection using Multimodal Neighbors

Liao, T., Taori, R., Raji, I. D., and Schmidt, L. Are we
learning yet? a meta review of evaluation failures across
machine learning. In Thirty-fifth Conference on Neural In-
formation Processing Systems Datasets and Benchmarks
Track (Round 2), 2021.

Lin, C.-Y. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, pp.
74–81, 2004.

Lin, K., Li, L., Lin, C.-C., Ahmed, F., Gan, Z., Liu, Z., Lu,
Y., and Wang, L. Swinbert: End-to-end transformers with
sparse attention for video captioning. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 17949–17958, 2022.

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ra-
manan, D., Dollár, P., and Zitnick, C. L. Microsoft coco:
Common objects in context. In Computer Vision–ECCV
2014: 13th European Conference, Zurich, Switzerland,
September 6-12, 2014, Proceedings, Part V 13, pp. 740–
755. Springer, 2014.

Liu, B., Bubeck, S., Eldan, R., Kulkarni, J., Li, Y., Nguyen,
A., Ward, R., and Zhang, Y. Tinygsm: achieving¿ 80%
on gsm8k with small language models. arXiv preprint
arXiv:2312.09241, 2023.

Liu, H., Li, C., Wu, Q., and Lee, Y. J. Visual instruction tun-
ing. Advances in neural information processing systems,
36, 2024.

Longpre, S., Yauney, G., Reif, E., Lee, K., Roberts, A.,
Zoph, B., Zhou, D., Wei, J., Robinson, K., Mimno, D.,
et al. A pretrainer’s guide to training data: Measuring the
effects of data age, domain coverage, quality, & toxicity.
arXiv preprint arXiv:2305.13169, 2023.

Loshchilov, I. and Hutter, F. Decoupled weight decay reg-
ularization. In International Conference on Learning
Representations, 2018.

Luccioni, A. S. and Rolnick, D. Bugs in the data: How ima-
genet misrepresents biodiversity. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37,
pp. 14382–14390, 2023.

Menghini, C., Delworth, A., and Bach, S. Enhancing clip
with clip: Exploring pseudolabeling for limited-label
prompt tuning. Advances in Neural Information Pro-
cessing Systems, 36:60984–61007, 2023.

Misra, I. and Maaten, L. v. d. Self-supervised learning of
pretext-invariant representations. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pp. 6707–6717, 2020.

Natarajan, N., Dhillon, I. S., Ravikumar, P. K., and Tewari,
A. Learning with noisy labels. Advances in neural infor-
mation processing systems, 26, 2013.

Nguyen, T., Ilharco, G., Wortsman, M., Oh, S., and Schmidt,
L. Quality not quantity: On the interaction between
dataset design and robustness of clip. Advances in Neural
Information Processing Systems, 35:21455–21469, 2022.

Northcutt, C., Jiang, L., and Chuang, I. Confident learn-
ing: Estimating uncertainty in dataset labels. Journal of
Artificial Intelligence Research, 70:1373–1411, 2021a.

Northcutt, C. G., Athalye, A., and Mueller, J. Pervasive la-
bel errors in test sets destabilize machine learning bench-
marks. arXiv preprint arXiv:2103.14749, 2021b.

Oord, A. v. d., Li, Y., and Vinyals, O. Representation learn-
ing with contrastive predictive coding. arXiv preprint
arXiv:1807.03748, 2018.

Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. Bleu:
a method for automatic evaluation of machine transla-
tion. In Proceedings of the 40th annual meeting of the
Association for Computational Linguistics, pp. 311–318,
2002.

Pleiss, G., Zhang, T., Elenberg, E., and Weinberger, K. Q.
Identifying mislabeled data using the area under the mar-
gin ranking. Advances in Neural Information Processing
Systems, 33:17044–17056, 2020.

Plummer, B. A., Wang, L., Cervantes, C. M., Caicedo, J. C.,
Hockenmaier, J., and Lazebnik, S. Flickr30k entities:
Collecting region-to-phrase correspondences for richer
image-to-sentence models. In Proceedings of the IEEE
international conference on computer vision, pp. 2641–
2649, 2015.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark, J.,
et al. Learning transferable visual models from natural
language supervision. In International conference on
machine learning, pp. 8748–8763. PMLR, 2021.

Rennie, S. J., Marcheret, E., Mroueh, Y., Ross, J., and Goel,
V. Self-critical sequence training for image captioning. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 7008–7024, 2017.

Ridnik, T., Ben-Baruch, E., Noy, A., and Zelnik-Manor, L.
Imagenet-21k pretraining for the masses. Proceedings
of 35th Conference on Neural Information Processing
Systems, Track on Datasets and Benchmarks, 2021.

Rottmann, M. and Reese, M. Automated detection of la-
bel errors in semantic segmentation datasets via deep
learning and uncertainty quantification. In Proceedings

12

LEMON: Label Error Detection using Multimodal Neighbors

of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 3214–3223, 2023.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bern-
stein, M., et al. Imagenet large scale visual recognition
challenge. International journal of computer vision, 115:
211–252, 2015.

Schrodi, S., Hoffmann, D. T., Argus, M., Fischer, V., and
Brox, T. Two effects, one trigger: On the modality gap,
object bias, and information imbalance in contrastive
vision-language representation learning. arXiv preprint
arXiv:2404.07983, 2024.

Schroff, F., Kalenichenko, D., and Philbin, J. Facenet: A
unified embedding for face recognition and clustering. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 815–823, 2015.

Schubert, M., Riedlinger, T., Kahl, K., Kröll, D., Schoenen,
S., Šegvić, S., and Rottmann, M. Identifying label errors
in object detection datasets by loss inspection. In Proceed-
ings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 4582–4591, 2024.

Schuhmann, C., Vencu, R., Beaumont, R., Kaczmarczyk,
R., Mullis, C., Katta, A., Coombes, T., Jitsev, J., and
Komatsuzaki, A. Laion-400m: Open dataset of clip-
filtered 400 million image-text pairs. arXiv preprint
arXiv:2111.02114, 2021.

Sohn, K. Improved deep metric learning with multi-class
n-pair loss objective. Advances in neural information
processing systems, 29, 2016.

Swayamdipta, S., Schwartz, R., Lourie, N., Wang, Y., Ha-
jishirzi, H., Smith, N. A., and Choi, Y. Dataset cartog-
raphy: Mapping and diagnosing datasets with training
dynamics. arXiv preprint arXiv:2009.10795, 2020.

Thomas, C. and Kovashka, A. Preserving semantic neigh-
borhoods for robust cross-modal retrieval. In Computer
Vision–ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23–28, 2020, Proceedings, Part XVIII
16, pp. 317–335. Springer, 2020.

Thomas, C. and Kovashka, A. Emphasizing complementary
samples for non-literal cross-modal retrieval. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 4632–4641, 2022.

Tiu, E., Talius, E., Patel, P., Langlotz, C. P., Ng, A. Y.,
and Rajpurkar, P. Expert-level detection of pathologies
from unannotated chest x-ray images via self-supervised
learning. Nature Biomedical Engineering, 6(12):1399–
1406, 2022.

Vasudevan, V., Caine, B., Gontijo Lopes, R., Fridovich-
Keil, S., and Roelofs, R. When does dough become a
bagel? analyzing the remaining mistakes on imagenet.
Advances in Neural Information Processing Systems, 35:
6720–6734, 2022.

Vedantam, R., Lawrence Zitnick, C., and Parikh, D. Cider:
Consensus-based image description evaluation. In Pro-
ceedings of the IEEE conference on computer vision and
pattern recognition, pp. 4566–4575, 2015.

Wang, J., Yang, Z., Hu, X., Li, L., Lin, K., Gan, Z., Liu, Z.,
Liu, C., and Wang, L. Git: A generative image-to-text
transformer for vision and language. Transactions on
Machine Learning Research, 2022a.

Wang, Y., Xu, J., and Sun, Y. End-to-end transformer
based model for image captioning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
pp. 2585–2594, 2022b.

Wei, J., Zhu, Z., Cheng, H., Liu, T., Niu, G., and Liu,
Y. Learning with noisy labels revisited: A study
using real-world human annotations. arXiv preprint
arXiv:2110.12088, 2021.

Wu, P., Zheng, S., Goswami, M., Metaxas, D., and Chen, C.
A topological filter for learning with label noise. Ad-
vances in neural information processing systems, 33:
21382–21393, 2020.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudi-
nov, R., Zemel, R., and Bengio, Y. Show, attend and
tell: Neural image caption generation with visual atten-
tion. In International conference on machine learning,
pp. 2048–2057. PMLR, 2015.

Young, P., Lai, A., Hodosh, M., and Hockenmaier, J. From
image descriptions to visual denotations: New similarity
metrics for semantic inference over event descriptions.
Transactions of the Association for Computational Lin-
guistics, 2:67–78, 2014.

Zhai, X., Puigcerver, J., Kolesnikov, A., Ruyssen, P.,
Riquelme, C., Lucic, M., Djolonga, J., Pinto, A. S., Neu-
mann, M., Dosovitskiy, A., et al. The visual task adapta-
tion benchmark. 2019.

Zhang, S., Xu, Y., Usuyama, N., Bagga, J., Tinn, R., Preston,
S., Rao, R., Wei, M., Valluri, N., Wong, C., et al. Large-
scale domain-specific pretraining for biomedical vision-
language processing. arXiv preprint arXiv:2303.00915,
2(3):6, 2023a.

Zhang, S., Xu, Y., Usuyama, N., Xu, H., Bagga, J., Tinn, R.,
Preston, S., Rao, R., Wei, M., Valluri, N., et al. Biomed-
clip: a multimodal biomedical foundation model pre-
trained from fifteen million scientific image-text pairs.
arXiv preprint arXiv:2303.00915, 2023b.

13

LEMON: Label Error Detection using Multimodal Neighbors

Zhu, Z., Dong, Z., and Liu, Y. Detecting corrupted labels
without training a model to predict. In International con-
ference on machine learning, pp. 27412–27427. PMLR,
2022.

Zhu, Z., Zhang, M., Wei, S., Wu, B., and Wu, B. Vdc: Versa-
tile data cleanser based on visual-linguistic inconsistency
by multimodal large language models. In The Twelfth
International Conference on Learning Representations,
2024.

14

LEMON: Label Error Detection using Multimodal Neighbors

A. Theoretical results
A.1. Proof: Theorem 4.1

Suppose that ζY is distributed such that supp(kζY (1− p)) ⊆ {0, 1, ..., k}. For a correctly labeled sample (X,Y), we have
that kζY (1− p) of the neighbors are relevant and have correct labels, and so each contribute dX (X, X̄) to Sm(X,Y), and
all remaining samples are either incorrectly labeled, or are not relevant to Y , and so each contribute dX (X,X ′). Since
Sm(X,Y) is the sum of iid Gaussians, it is also a Gaussian, with:

E[Sm(X,Y)] =
1

k

(
E[E[d(X, X̄1) + ...+ d(X, X̄kζY (1−p))|ζ]] + E[E[d(X,X ′

1) + ...+ d(X,X ′
k−kζY (1−p))|ζ]]

)
= E[ζY](1− p)µ2 + (1− E[ζY](1− p))µ1

= E[ζY](1− p)(µ2 − µ1) + µ1

Var[Sm(X,Y)] = E[Var(Sm(X,Y)|ζY)] + Var(E[Sm(X,Y)|ζY])

= E[
1

k2
Var

(
d(X, X̄1) + ...+ d(X, X̄kζY (1−p)) + d(X,X ′

1) + ...+ d(X,X ′
k−kζY (1−p))|ζY

)
]

+ Var(E[Sm(X,Y)|ζY])

= E[
1

k

(
ζY (1− p)σ2

2 + (1− ζY (1− p))σ2
1

)
] + Var(ζY (1− p)(µ2 − µ1) + µ1)

=
1

k

(
E[ζY](1− p)σ2

2 + (1− E[ζY](1− p))σ2
1

)
+Var(ζY)(1− p)2(µ2 − µ1)

2

Similarly,

S(X ′, Y ′) ∼ N (µ1,
σ2
1

k
)

Putting it all together:

P(Sm(X ′, Y ′)− Sm(X,Y) > 0) = 1− Φ(
−µ

σ
)

Where µ = E[ζY](1− p)(µ1 − µ2), σ =
√

1
k (E[ζY](1− p)σ2

2 + (2− E[ζY](1− p))σ2
1) + Var(ζY)(1− p)2(µ2 − µ1)2,

and Φ is the Gaussian CDF. Note that Var(ζY) is finite as ζY is bounded by [0, 1].
Setting µ > 0 gives Lemma 4.3.

A.2. Empirically Validating Assumption 2

A.2.1. CLASSIFICATION AT DATASET LEVEL

To empirically validate Assumption 2, we first utilize the training sets from the original CIFAR-10 and CIFAR-100 datasets.
As these are classification datasets, we naturally define J as: x2 ∈ J (x1) ⇐⇒ y1 = y2, i.e. all images with the same
label are paraphrases. We encode these images using the image encoder from OpenAI CLIP ViT-B/32 (Radford et al., 2021),
and utilize the cosine distance as dX . We compute pairwise distance between all 40,000 samples, and categorize these
distances into either x′ ∈ J(x) or x′ ̸∈ J(x). We plot a histogram of these distances in Figure A.1. Visually, both of these
distributions appear to be normal, and we also observe that µ1 > µ2 from Lemma 4.2. We then run a Shapiro–Wilk test on
all four distributions to test for normality, randomly subsampling to 100 samples, as the Shapiro-Wilk test is not suitable
for large sample sizes (Ghasemi & Zahediasl, 2012). We find that in all four cases, the null hypothesis cannot be rejected
(p > 0.05), and the test statistics are all greater than 0.97, indicating a high degree of normality.

A.2.2. CAPTIONING AT PER-SAMPLE LEVEL

We verify Assumption 2 at a sample-wise level, for the analagous H(Y), by conducting an experiment on captions from
flickr30k. We select 20 random captions, then prompt Llama 3.1-8B-instruct (Grattafiori et al., 2024) to generate 50

15

LEMON: Label Error Detection using Multimodal Neighbors

0.0 0.2 0.4 0.6
d(X, X ′)

0

2

4

6

8
De

ns
ity

X ′ (X)
X ′ (X)

(a) CIFAR-10

0.0 0.2 0.4 0.6
d(X, X ′)

0

2

4

6

De
ns

ity

X ′ (X)
X ′ (X)

(b) CIFAR-100

Figure A.1: Histogram of cosine distances in the CLIP image embedding space

paraphrasings of each caption (via sampling with temperature of 1), corresponding to 50 samples from H(Y) for each
caption. For the samples Y ′ ̸∈ H(Y), we randomly select 50 other captions from the dataset. To match the support of the
Gaussian, we take the distance function to be the log cosine distance (note that this does not change the ordering of the
score across samples). We compute this distance using the text encoder from OpenAI CLIP ViT-B/32 (Radford et al., 2021),
and plot histograms for each caption. We visualize our results in Figure A.2. Running the same Shapiro-Wilk test from
Section A.2.1, we find that of the positive samples, 8/20 are Gaussian, and of the negative samples, 16/20 are Gaussian.
Thus, there is some evidence the Gaussianity assumption holds for natural language and complex paraphrase functions.

A.3. Second Theorem

We demonstrate that the embedding models trained via the contrastive multimodal objective are natural noisy label detectors.
Theorem A.1 (Contrastive Multimodal Embedding Models Detect Noisy Labels). Let Y = R and consider a training
dataset D. Suppose that ĥX

θ : X → Rd is an embedding function, and ĥY
θ : Y → Rd is a Lipschitz continuous embedding

function with constant LY > 0, meaning that for all y, y′ ∈ Y ,∥∥∥ĥY
θ (y)− ĥY

θ (y
′)
∥∥∥
2
≤ LY |y − y′|.

For an input x ∈ X and its corresponding positive label y ∈ Y , let η be a random variable drawn from a normal distribution:
η ∼ N (0, σ2). Define a noisy label y′ = y + η. Let dmm(u, v) = ||u− v||2, which is proportional to

√
dcos(u, v) when

||u||2 = ||v||2 = 1. Then, with probability at least δ(ϵ) = 1− 2Φ
(
− ϵ

σ

)
, where ϵ > 0 and Φ is the cumulative distribution

function of the standard normal distribution, the following inequality holds:

dmm

(
ĥX
θ (x), ĥY

θ (y
′)
)
≥ dmm

(
ĥX
θ (x), ĥY

θ (y)
)
− LY ϵ.

When LY is small, this means that the score for the mislabeled sample cannot be much lower than the score for the positive
pair with high probability. Thus, we can see that multimodal embeddings are inherently capable of detecting mislabeled
pairs, ensuring the distance between the embeddings of positive pairs is smaller than that of negative pairs. This motivates
the use of dmm in LEMON and in prior work (Kang et al., 2023; Liang et al., 2023).

Proof: Since ĥY
θ is Lipschitz continuous with constant LY , for any y, y′ ∈ Y , we have:∥∥∥ĥY

θ (y
′)− ĥY

θ (y)
∥∥∥
2
≤ LY |y′ − y| = LY |η| (4)

Let dmm(u, v) = ||u− v||2 be the Euclidean distance. Note that when ||u||2 = ||v||2 = 1 (as in our experiments), we have
that ||u− v||2 =

√
2(1− uT v) =

√
2dcos(u, v), and so the two distances provide the same ordering of scores. Applying

16

LEMON: Label Error Detection using Multimodal Neighbors

A man in a white shirt and
apron cuts up a bird.

A man in a white hoodie is
sitting on top of bamboo

scaffolding near the roof of a
building holding a spade.

A female soccer player in a
yellow uniform in a soccer

field.

Men dressed up in blue
uniforms standing in

formation.

A girls' soccer team in green
and black uniforms and their
coach, wearing a white shirt
and shorts, are stretching
their legs out on the field.

Woman standing in front of a
large pot holding the lid and

wearing a yellow apron.
A group of asians smiling and

eating.
Little girls in swimsuits are

laughing

The man on the yellow
basketball team tries to score
while the men on the opposing

team try to block his shot.
Two young men play electric

guitars on stage.
A group of people playing on a

beach.

A few men stand in the
background of fruit market

illuminated by red light.

Three men sit outside of a
cafe.

A man in a hat and a man in
glasses talk on the side of

the road as a man walks past
them.

A brown dog is shown standing
in the water near a muddy

beach.

A man in a red shirt is
sitting on the grass, and a
ball is flying towards him.

A determined soccer player
kicks the soccer ball away

from the opposing player, near
a goal post, while the

opposing player stays focused
on the ball.

Man with outstretched arms
standing on a stone base

Shaft of light in a cave shows
three spelunkers

A brown dog is panting hard on
grass during a sunny day.

d(Y, Y ′)

De
ns

ity Y ′ (X)
Y ′ (X)

Figure A.2: Histogram of log-cosine distances in the CLIP text embedding space

17

LEMON: Label Error Detection using Multimodal Neighbors

the triangle inequality, we get:

dmm

(
ĥX
θ (x), ĥY

θ (y
′)
)
≥ dmm

(
ĥX
θ (x), ĥY

θ (y)
)
−
∥∥∥ĥY

θ (y)− ĥY
θ (y

′)
∥∥∥
2
.

When |η| ≤ ϵ, and substituting from Equation (4), it follows that:

dmm

(
ĥX
θ (x), ĥY

θ (y
′)
)
≥ dmm

(
ĥX
θ (x), ĥY

θ (y)
)
− LYϵ

Since η ∼ N (0, σ2), the probability that |η| ≤ ϵ is:

P (|η| ≤ ϵ) = 1− 2Φ
(
− ϵ

σ

)
= δ(ϵ),

where Φ is the cumulative distribution function of the standard normal distribution.

Thus, with probability at least δ(ϵ), we have:

dmm

(
ĥX
θ (x), ĥY

θ (y
′)
)
≥ dmm

(
ĥX
θ (x), ĥY

θ (y)
)
− LYϵ

When LY is small, this means that the score for the mislabeled sample cannot be much lower than the score for the positive
pair with high probability.

B. Comparison with Thomas & Kovashka (2022)
The goal of Thomas & Kovashka (2022) to identify samples with semantic diversity, which is different from our goal of
identifying mislabeled examples. As such, their proposed scores (i.e. ΥDIS and ΥDIV) may not be effective in identifying
mislabeled samples. As an example, consider the score ΥDIS

Y , which computes the similarity between the original caption,
and the captions of its second-degree neighbors in text-space. Given a particular caption, e.g. “This is a plane from the front
view” in Figure 2, it could have second-degree neighbors in text-space that are semantically very similar to this caption (e.g.
“A plane facing the viewer”). However, only computing the distance of these captions in text space does not provide any
signal for whether the image is correctly paired to the caption. Similarly, the ΥDIV scores also would not necessarily work,
as the closeness of neighbors to each other in either modality do not provide a signal for whether the original sample is
mislabeled.

However, the score from Thomas & Kovashka (2022) that would intuitively provide a signal for mislabeling is ΥDIS
X , which

computes second-degree neighbors in text space, then examines similarity between images. This is essentially the sum over
dX (x,xmj

) terms in our Equation (3), but using second-degree neighbors instead of nearest neighbors. In addition, our
Equation (3) contains two additional weighting terms (which we show improve label error performance in our ablation
experiments). Finally, our proposed score contains the sum of two additional terms, which are not explored in Thomas &
Kovashka (2022).

We compare the performance of our method against the ΥDIS
X score in the main paper, and show performance of all four

individual scores and two combined scores from Thomas & Kovashka (2022) in Appendix I.8.

18

LEMON: Label Error Detection using Multimodal Neighbors

C. LEMON Algorithm

Algorithm 1: LEMON: Label Error Detection Using Multimodal Neighbors

Input: Dataset D = {(xi,yi)}Ni=1, Multimodal encoders hX
θ , hY

θ , Distance functions dX , dY
Hyperparameters: k, β, γ, τ1,n, τ2,n, τ1,m, τ2,m
Output: Scores {si}Ni=1

1 Cache embeddings hX
θ (xi) and hY

θ (yi) for (xi,yi) ∈ D ;

2 Cache dmm(xi,yi) = 1− hX
θ (xi)·hY

θ (yi)

∥hX
θ (xi)∥2∥hY

θ (yi)∥2
for (xi,yi) ∈ D ;

3 for i = 1 to N do
4 Find indices {nj}kj=1 of k nearest neighbors of xi from D \ {(xi,yi)} using dX ; // dX can use cached

hX
θ

5 Find indices {mj}kj=1 of k nearest neighbors of yi from D \ {(xi,yi)} using dY ; // dY can use cached

hY
θ

6 Compute sn,i :=
1
k

∑k
j=1 dY(yi,ynj

)e−τ1,ndX (xi,xnj
)e−τ2,ndmm(xnj

,ynj
);

7 Compute sm,i :=
1
k

∑k
j=1 dX (xi,xmj

)e−τ1,mdY(yi,ymj
)e−τ2,mdmm(xmj

,ymj
);

8 si := dmm(xi,yi) + βsn,i + γsm,i

9 return s;

For each image-caption pair in the dataset, we first compute how similar the image and caption are to each other using
a pre-trained CLIP model (dmm), which gives a basic measure of how well they match. To compute sm, we compute
the nearest neighbors of the caption among other captions in the dataset. For each neighbor, we look at how similar their
corresponding image is to the original image. The intuition is that if a sample is correctly labeled, the image should be
similar to images of other samples with similar captions. We weight each neighbor based on how close it is to our original
sample and how well-matched the neighboring pairs themselves are. Finally, we repeat this for nearest neighbors in the
image space to get sn. LEMON is then the weighted sum of these three scores.

Table C.1: Notation and definitions used in Section 3.

Symbol/Notation Meaning

D Dataset consisting of samples (x,y)Ni=1

x,X First modality and its corresponding space (e.g., images)
y,Y Second modality and its corresponding space (e.g., text)
f∗ Oracle function that assigns a binary mislabel indicator zi
zi Mislabel indicator for sample i (zi = 1 if mislabeled, zi = 0 otherwise)

f(x,y) = s Model output score
dX , dY Distance functions in X and Y spaces
B(x, r) Ball of radius r centered at x in X space
B(y, r) Ball of radius r centered at y in Y space
rk(x) Radius such that the ball B(x, r) contains at least k neighbors
xnj

Nearest neighbor j in X space
ymj Nearest neighbor j in Y space

hθ = (hX
θ , hY

θ) Multimodal encoder mapping X and Y to Rd

dmm(x,y) Multimodal distance between x and y
sn(x,y,D) Score component based on x’s neighbors, see Equation (2).
sm(x,y,D) Score component based on y’s neighbors, see Equation (3).

β, γ Hyperparameters weighting sn and sm
τ1,n, τ2,n, τ1,m, τ2,m Hyperparameters for weighting terms in sn and sm

k Number of nearest neighbors

19

LEMON: Label Error Detection using Multimodal Neighbors

D. Data Processing
D.1. Classification

We utilize CIFAR10N (cifar10) and CIFAR100N (cifar100) object detection (Zhu et al., 2022) datasets for all
classification-based experiments. Each image is associated with a label indicating the primary object present in the image.
These datasets contain 50,000 image-label pairs, with a clean and noisy label available per image. The noisy labels are
examples of real human errors within the dataset. Further, we also generate synthetically noised labels as described in
the main text. All images are resized to 224x224, center cropped, and normalized using mean and standard deviations
corresponding to CLIP during the pre-processing stage. These two datasets are released under the Creative Commons
Attribution-NonCommercial 4.0 license.

For miniImageNet and stanfordCars, we use the “red” datasets from Jiang et al. (2020), which contain noise from
real-world web annotators. We split the full dataset (containing all annotations) into 75%/12.5%/12.5% train/val/test sets,
stratifying by the mislabel flag. The annotations are licensed by Google under CC BY 4.0 license, and the images are under
CC BY 2.0 license.

To generate the “text” modality for these classification datasets, we utilize the label name correspond to each class. For
example, class 0 in cifar10 is “airplane”, and this is the caption associated we associate with all images of that class. In
contrast to the caption-based datasets, there will be multiple k-nearest neighbors in the text modality with zero distance (i.e.,
with the same class label).

D.2. Captioning

We preprocess MSCOCO (Lin et al., 2014) and Flickr30k (Young et al., 2014) by using the Karpathy split (Karpathy &
Fei-Fei, 2015), and then selecting one random annotation from the ones available. For the MMIMDB dataset (Arevalo et al.,
2017), we utilize the plot outline as the text, and use the dataset splits provided. For MIMIC-CXR (Johnson et al., 2019),
we use all images in the database and the provided data splits, and extract the findings and impression sections from the
radiology note for the text modality. Images were normalized and transformed using the same procedure described above.

For downstream captioning, we use the pre-trained tokenizer and image processor corresponding to the pre-trained model
(GIT (Wang et al., 2022a)) to pre-process image and captions.

Note that flickr30k is available under Flickr terms of use for non-commercial research and/or educational purposes4.
mscoco is available under Creative Commons Attribution 4.0 License. mmimdb is available for personal and non-
commercial use5. Finally, mimiccxr is available under the PhysioNet Credentialed Health Data License 1.5.06.

E. Baseline Methods
E.1. Classification

TRAINING-DEPENDENT

AUM (Pleiss et al., 2020): This model assumes access to a classifier that can predict the class that an image likely belongs
to. Then, the margin of difference between the prediction probability from the trained classifier for the assigned class and
the class with the (next) highest probability is computed and averaged over training epochs. This score is thresholded to
identify potential label errors.

Datamap (Swayamdipta et al., 2020): Similar to AUM, this method requires access to a pretrained classifier. In this
baseline, it is assumed that instances with label errors are ‘hard to learn’, and thus low confidence in prediction throughout
training epochs. To produce a single score, we combine the mean and standard deviation of the probability associated with
the assigned class into a single score7.

Confident Learning (Northcutt et al., 2021a) is designed to identify labeling errors in classification datasets by modeling

4https://shannon.cs.illinois.edu/DenotationGraph/
5https://developer.imdb.com/non-commercial-datasets/
6https://physionet.org/content/mimic-cxr/view-license/2.0.0/
7We experimented with different strategies, and the square root of the product of the mean and (1-standard deviation) and (1-mean)

and standard deviation led to comparable, high validation F1 scores.

20

https://shannon.cs.illinois.edu/DenotationGraph/
https://developer.imdb.com/non-commercial-datasets/
https://physionet.org/content/mimic-cxr/view-license/2.0.0/

LEMON: Label Error Detection using Multimodal Neighbors

the relationship between true class labels and noisy ones. It sets thresholds for each true-noisy label pair. Using these
thresholds, the model employs predicted class probabilities to rank predictions for each class, filtering out the noisy data.

TRAINING-FREE

CLIP Logits (Liang et al., 2023): CLIP is used as a zero-shot classifier to obtain the softmax-based probability for the
assigned class. This value is then thresholded to identify label errors. Recently, (Feng et al.) used a similar zero-shot
prediction jointly with a semi-supervised training approach for learning in the presence of label noise.

CLIP Similarity (Kang et al., 2023): The distance (either euclidean or cosine) between image and text embeddings from
CLIP are computed and thresholded.

Deep k-NN(Bahri et al., 2020) The proportion of k nearest neighbors8 with the same label is computed for each image of
interest. Prior works have utilized different representations for obtaining neighbors, including logits and representations
from pre-trained (Zhu et al., 2022) vision models. We find that pre-trained representations from CLIP outperformed logits
from a zero-shot CLIP classifier (Zhu et al., 2022).

SimiFeat (Zhu et al., 2022) uses nearby features to detect noisy labels under the assumption that local groups of features
share clean or noisy labels. SimiFeat-V (Zhu et al., 2022) uses local voting and SimiFeat-R leverages ranking to detect
noisy labels based on HOC estimator. The binary outputs produced are used for all score computations. Note that the
difference between Simifeat-V and deep k-NN is in the data processing and augmentation.

Discrepancy (Thomas & Kovashka, 2022) finds second-degree nearest neighbors in the text space, then computes the
average distance of these neighbors to the original sample in image space. We utilize the same CLIP model to compute
semantic distance here as in LEMON.

Note that AUM and Datamap use the entire dataset as the reference set for label error detection, whereas SimiFeat uses
both the train and test sets as reference sets, following the implementation in their original papers (Pleiss et al., 2020;
Swayamdipta et al., 2020; Zhu et al., 2022).

E.2. Captioning

PRE-TRAINED OR SUPERVISED

LLaVA (Liu et al., 2024): We prompt LLaVA (v1.6-vicuna-13b) with the following prompt: The proposed caption
for this image is "{}". Is this caption correct? Only answer with "Yes" or "No".
We examine the probability distribution over the first non-special token, and find the likelihood of the token with the highest
probability. If the corresponding token in lower case starts with “yes”, we return 1− this probability as the mislabel score.
Otherwise, we return the probability.

VDC (Zhu et al., 2024): As the original VDC paper does not explore the captioning setting, we make the following
modifications to adapt it to our setup:

• As we only utilize open-source models in our method, to preserve fairness, we also implement VDC with open-
source models. Specifically, we use Llama-3.1-8B-Instruct (Dubey et al., 2024) for the LLM in the Visual Question
Generation (VQG) and Visual Answer Evaluation (VAE) stages (note that the VDC paper uses the OpenAI API), and
InstructBLIP-Vicuna-7b (Dai et al., 2023) as the VLLM in the Visual Question Answering (VQA) stage (as in the VDC
paper).

• In the VQG stage, instead of generating specific questions for each class, we generate six specific questions for each
caption. We slightly modify the VQG prompt (Table 8 in the VDC paper) to adapt it to captioning, and omit providing
the label set, as the set of all possible captions is infinite. We keep the two general questions used in the VDC paper.

CapFilt (oracle-like): We generate predictions using a pre-trained model trained to distinguish between high-quality
MSCOCO and noisy synthetic captions (Li et al., 2022). This forms an oracle-like, supervised baseline. We use a pre-trained
checkpoint (pre-trained on the train split of MSCOCO)9 for producing prediction scores.

8Note that this score can only take value in {0, 1/k, 2/k, ..., 1}.
9https://huggingface.co/Salesforce/blip-itm-base-coco

21

https://huggingface.co/Salesforce/blip-itm-base-coco

LEMON: Label Error Detection using Multimodal Neighbors

UNSUPERVISED

Datamap: We compute the causal language modeling loss across training epochs and compute the product of the mean and
variance in loss across epochs. That is, we expect captioning loss for instances with label errors to be consistently high. We
train captioning models for 3 epochs, with LoRA rank set to 4, and a maximum length of corresponding to maximum model
length10 for the finetuning task.

Confident Learning: We adapt this approach for dual-modality datasets, such as image-text pairs, by clustering text
embeddings to serve as class labels for noise detection.

DOWNSTREAM-TASK UNAWARE

Deep KNN: We cluster captions similar to confident learning, adapting classification baseline.

CLIP Similarity: This is the same setup as classification.

Discrepancy: This is the same setup as classification.

F. Compute Setup
We run our experiments on a shared Slurm cluster. Most experiments used one RTX A6000 with 48 GB VRAM, 10 CPU
cores of Intel Xeon Ice Lake Platinum 8368, and 50 GB RAM.

G. Hyperparameters in Label Error Detection
The hyperparameters in each case were selected based on the validation set F1-score. Note that LEMONFIX does not require
hyperparameter tuning. Baseline code is included in the supplementary material. For SimiFeat-V and -R, we use the official
open-sourced implementation directly.

G.1. Classification

The search space for each method:

1. AUM, Datamap: learning rate ∈ {5e− 5, 5e− 6}, training for epochs ∈ {5, 10}11

2. Confident learning: learning rate ∈ {5e− 6, 5e− 5}, upto 30 epochs with early stopping with a patience of 10.

3. CLIP Sim.: cosine distance metric, no other hyperparameters

4. CLIP Zero shot: distance metric

5. Discrepancy: k ∈ {1, 2, 5, 10, 15, 20, 30, 50}

6. deep k-NN: k, cosine distance metric

7. Simifeat: we set k = 10 following the original paper (Zhu et al., 2022).

G.2. Captioning

For most baselines requiring a class index–obtained by clustering captions–we set the number of clusters to be 100.

1. LLaVA: Small amount of prompt tuning. The optimal prompt selected was The proposed caption for
this image is ‘‘{}’’. Is this caption correct? Only answer with ‘‘Yes’’ or
‘‘No’’.’

2. Confident learning: learning rate ∈ {5e− 6, 5e− 5}, upto 30 epochs with early stopping with a patience of 10, number
of clusters for captions12

10This is longer than captions in the train sets of all datasets except the medical dataset.
11Note that we experiment with training for fewer epochs to avoid memorization, following (Pleiss et al., 2020).
12For mimiccxr, we use 10 clusters.

22

LEMON: Label Error Detection using Multimodal Neighbors

3. Discrepancy: k ∈ {1, 2, 5, 10, 15, 20, 30, 50}

4. deep k-NN: k ∈ {1, 2, 5, 10, 15, 20, 30, 50}, number of text clusters

5. VDC: no tunable hyperparameters

G.3. Our Method

We search the following hyperparameters for our LEMONOPT:

1. k ∈ {1, 2, 5, 10, 15, 20, 30, 50}

2. Distance metric (either cosine or euclidean)

3. β, γ, τ1,n, τ2,n, τ1,m, τ2,m: We take the hyperparameter set which achieves the best validation set F1 from these two
strategies: (1) Using Scipy’s minimize function, with initial guess (1, 1, ..., 1), and with no explicit bounds. (2)
Using a grid search with the following grid:

• β ∈ {0, 5, 10, 15, ..., 100}
• γ ∈ {0, 5, 10, 15, ..., 100}
• τ1,n, τ2,n, τ1,m, τ2,m ∈ {0, 1, 5, 10}

G.4. Optimal Hyperparameters

Optimal hyperparameters for classification datasets can be found in Table G.1, and optimal hyperparameters for captioning
datasets can be found in Table G.2.

Table G.1: Optimal hyperparameters for methods shown in Table I.1. Note that Simifeat, VDC, CLIP Sim., and LEMONFIX

have no tunable hyperparameters.

cifar10 cifar100 miniImageNet stanfordCars

AUM LR = 5E-6
Epochs = 5

LR = 5E-5
Epochs = 5

LR = 5E-6
Epochs = 10

LR = 5E-5
Epochs = 10

Datamap LR = 5E-6
Epochs = 5

LR = 5E-5
Epochs = 5

LR = 5E-5
Epochs = 10

LR = 5E-5
Epochs = 10

Confident
LR=5e-06
Epochs=30
Batch size=128

LR=5e-06
Epochs=30
Batch size=128

LR=5e-05
Epochs=30
Batch size=128

LR=5e-05
Epochs=30
Batch size=128

CLIP Logits Cosine distance Cosine distance Cosine distance Cosine distance

Discrepancy k=20 k=50 k=30 k=20

Deep k-NN k=50
cosine distance

k=20
cosine distance

k=50
cosine distance

k=30
cosine distance

LEMONOPT

k=50
cosine distance
β = 20
γ = 35
τ1,n = 0
τ2,n = 5
τ1,m = 0
τ2,m = 5

k=20
cosine distance
β = 2.14
γ = −0.024
τ1,n = −1.71
τ2,n = 4.85
τ1,m = −0.068
τ2,m = −0.019

k=50
Euclidean distance
β = 0.664
γ = 0.395
τ1,n = 1.91
τ2,n = 1.04
τ1,m = 1.00
τ2,m = 1.35

k=15
Euclidean distance
β = 0.631
γ = 0.431
τ1,n = 0.898
τ2,n = −0.192
τ1,m = 0.0
τ2,m = −0.001

23

LEMON: Label Error Detection using Multimodal Neighbors

Table G.2: Optimal hyperparameters for methods shown in Table 3. Note that LLaVA, VDC, CLIP Sim. and LEMONFIX

have no tunable hyperparameters.

flickr30k mscoco mmimdb mimiccxr

Datamap
Batch size = 16
Epochs = 3
LoRA rank = 4

Batch size = 16
Epochs = 3
LoRA rank = 4

Batch size = 16
Epochs = 3
LoRA rank = 4

Batch size = 16
Epochs = 3
LoRA rank = 4

Discrepancy k=5 k=10 k=10 k=10

Deep k-NN k=50
n cluster=100

k=50
n cluster=100

k=20
n cluster=100

k=50
n cluster=100

Confident

LR=5e-06
Epochs=30
Batch size=128
n cluster=10

LR=5e-06
Epochs=30
Batch size=128,
n cluster=100

LR=5e-05
Epochs=30
Batch size=128
n cluster=10

LR=5e-06
Epochs=30
Batch size=16
n cluster=10

LEMONOPT

k=30
cosine distance
β = 0.092
γ = 0.177
τ1,n = 0.274
τ2,n = 0.074
τ1,m = 0.072
τ2,m = 0.0

k=30
cosine distance
β = 5.324
γ = 11.057
τ1,n = 5.143
τ2,n = 10.498
τ1,m = 7.233
τ2,m = 15.637

k=10
Euclidean distance
β = 1.001
γ = 1.202
τ1,n = 0.983
τ2,n = 1.000
τ1,m = 4.450
τ2,m = 1.080

k=30
cosine distance
β = 5
γ = 10
τ1,n = 5
τ2,n = 10
τ1,m = 5
τ2,m = 10

H. Hyperparameters in Downstream Models
H.1. Classification

We train a Vision Transformer (ViT)-based image classification (Dosovitskiy et al., 2020)13 model pre-trained on ImageNet-
21k (Ridnik et al., 2021) and fine-tuned on ImageNet 2012 (Russakovsky et al., 2015) with an additional linear layer. We
add a linear layer above the last hidden state. We train for up to 30 epochs with an initial learning rate of and early stopping
with a patience of 4. We tune learning rates on the fully noisy set, for learning rate in ∈ {5e − 4, 1e − 3, 1e − 5} (with
cosine annealing learning rate scheduling).

H.2. Captioning

The hyperparameter tuning grid for the captioning model14 are: learning rate of 1e− 4, batch size: 16, maximum number
of epochs: 10. The model checkpoint from the epoch with the lowest validation loss is used for caption generation at
test time. For text generation, we use beam search with 4 beams, following Wang et al. (2022a). We use the AdamW
optimizer (Loshchilov & Hutter, 2018), with cosine scheduling for learning rate with 1000 warmup steps. We tune LoRA
rank in {4,16} based on BLEU-4 scores on the validation set. We also experimented with a lower learning rate of 1e− 5 on
the fully noisy set, and observed higher performance (in terms of validation BLEU-4) with a higher learning rate of 1e− 4.

Here, for finding best epoch during training, we assume that validation loss is correlated with language model quality. We
leave strategies such as self-critical training validation (Rennie et al., 2017) to future work. We verified that retaining the
model from the last epoch leads to similar trends in results – see Table I.9 for models trained up to 10 epochs. We find that
both LEMON and the baseline perform within 1 point of each other on both datasets (similar to the results with loss-based
checkpointing), and filtering out noisy data improves downstream captioning performance.

13https://huggingface.co/google/vit-base-patch16-224
14https://huggingface.co/microsoft/git-base

24

https://huggingface.co/google/vit-base-patch16-224
https://huggingface.co/microsoft/git-base

LEMON: Label Error Detection using Multimodal Neighbors

20% 40% 60% 80%
Noise Level

40%

60%

80%

100%

AU
PR

C

(a) AUPRC on mmimdb

20% 40% 60% 80%
Noise Level

80.0%

85.0%

90.0%

95.0%

100.0%

AU
PR

C

CLIP Sim.
Ours

(b) AUPRC on mscoco

20% 40% 60% 80%
Noise Level

60%

80%

F1
 S

co
re

(c) F1 on mmimdb

20% 40% 60% 80%
Noise Level

80.0%

90.0%

F1
 S

co
re

CLIP Sim.
Ours

(d) F1 on mscoco

20% 40% 60% 80%
Noise Level

85.00%

86.00%

87.00%

AU
RO

C

(e) AUROC on mmimdb

20% 40% 60% 80%
Noise Level

93.00%

94.00%

95.00%

AU
RO

C

CLIP Sim.
Ours

(f) AUROC on mscoco

Figure I.1: Test-set performance of LEMONOPT compared to the CLIP Similarity for varying levels of the synthetic noise.

I. Additional Experimental Results
I.1. Label Error Detection in Classification Settings

Full results on classification datasets using the noise types bolded in Table 1 (including AUPRC) can be found in Table I.1.

The performance of all baselines and our method on the two types of synthetic errors are shown in Table I.2, all at a noise
level of 40% (comparable to the amount of error in the noisy CIFAR datasets).

I.2. Label Error Detection in Captioning Settings

Full results on classification datasets using the noise types bolded in Table 1 (including AUPRC) can be found in Table I.3.

Results on the remaining synthetic noise types (at 40%) can be found in: flickr30k: Table I.4, mscoco: Table I.5,
mmimdb: Table I.6, and mimic-cxr: Table I.7. Across all datasets and noising types, we find that our model outperforms
other non-oracle/supervised baselines.

I.3. Varying Noise Level

We show the AUROC for varying noise levels in Figure I.1.

I.4. Robustness to Hyperparameters

We show the test-set F1 of LEMON for varying β and γ, keeping all other hyperparameters at their fixed optimal values, in
Figure I.2. In Table I.8, we show the performance of LEMON when hyperparameters are fixed (at k = 30, cosine distance,
β = γ = 5, τ1,n = τ1,m = 0.1, and τ2,n = τ2,m = 5) versus when they are optimized using a labeled validation set. Note
that F1 is not computed as it requires external information to select a threshold.

I.5. Ablations of our Method

Ablations of our method can be found in Table I.10 and Table I.11.

I.6. Runtime Comparison

We compare the runtime of LEMON with baselines in Table I.12.

25

LEMON: Label Error Detection using Multimodal Neighbors

0.
0

1.
75 3.
5

5.
25

7.
01

8.
76

10
.5

1
12

.2
6

14
.0

1
15

.7
6

17
.5

1
19

.2
7

21
.0

2
22

.7
7

24
.5

2
26

.2
7

28
.0

2
29

.7
7

31
.5

2
33

.2
8

0.0
1.56
3.13
4.69
6.25
7.81
9.38

10.94
12.5

14.06
15.63
17.19
18.75
20.31
21.88
23.44
25.0

26.56
28.13
29.69

0.86

0.88

0.90

0.92

0.94

(a) cifar10, asymmetric noise

0.
0

1.
05

2.
11

3.
16

4.
21

5.
26

6.
32

7.
37

8.
42

9.
47

10
.5

3
11

.5
8

12
.6

3
13

.6
8

14
.7

4
15

.7
9

16
.8

4
17

.8
9

18
.9

5
20

.0

0.0
2.63
5.26
7.89

10.53
13.16
15.79
18.42
21.05
23.68
26.32
28.95
31.58
34.21
36.84
39.47
42.11
44.74
47.37
50.0 0.84

0.86

0.88

0.90

0.92

0.94

(b) cifar10, symmetric noise

0.
0

1.
05

2.
11

3.
16

4.
21

5.
26

6.
32

7.
37

8.
42

9.
47

10
.5

3
11

.5
8

12
.6

3
13

.6
8

14
.7

4
15

.7
9

16
.8

4
17

.8
9

18
.9

5
20

.0

0.0
3.16
6.32
9.47

12.63
15.79
18.95
22.11
25.26
28.42
31.58
34.74
37.89
41.05
44.21
47.37
50.53
53.68
56.84
60.0 0.76

0.78

0.80

0.82

0.84

0.86

0.88

(c) cifar10, real noise
0.

0
1.

05
2.

11
3.

16
4.

21
5.

26
6.

32
7.

37
8.

42
9.

47
10

.5
3

11
.5

8
12

.6
3

13
.6

8
14

.7
4

15
.7

9
16

.8
4

17
.8

9
18

.9
5

20
.0

0.0
1.05
2.11
3.16
4.21
5.26
6.32
7.37
8.42
9.47

10.53
11.58
12.63
13.68
14.74
15.79
16.84
17.89
18.95
20.0

0.78

0.80

0.82

0.84

0.86

(d) cifar100, asymmetric noise

0.
0

1.
05

2.
11

3.
16

4.
21

5.
26

6.
32

7.
37

8.
42

9.
47

10
.5

3
11

.5
8

12
.6

3
13

.6
8

14
.7

4
15

.7
9

16
.8

4
17

.8
9

18
.9

5
20

.0

0.0
1.58
3.16
4.74
6.32
7.89
9.47

11.05
12.63
14.21
15.79
17.37
18.95
20.53
22.11
23.68
25.26
26.84
28.42
30.0

0.82

0.84

0.86

0.88

0.90

(e) cifar100, symmetric noise

0.
0

1.
05

2.
11

3.
16

4.
21

5.
26

6.
32

7.
37

8.
42

9.
47

10
.5

3
11

.5
8

12
.6

3
13

.6
8

14
.7

4
15

.7
9

16
.8

4
17

.8
9

18
.9

5
20

.0

0.0
1.58
3.16
4.74
6.32
7.89
9.47

11.05
12.63
14.21
15.79
17.37
18.95
20.53
22.11
23.68
25.26
26.84
28.42
30.0 0.64

0.66

0.68

0.70

0.72

0.74

0.76

0.78

(f) cifar100, real noise

0.
0

1.
74

3.
48

5.
23

6.
97

8.
71

10
.4

5
12

.1
9

13
.9

4
15

.6
8

17
.4

2
19

.1
6

20
.9

22
.6

5
24

.3
9

26
.1

3
27

.8
7

29
.6

1
31

.3
6

33
.1

0.0
1.64
3.27
4.91
6.54
8.18
9.81

11.45
13.09
14.72
16.36
17.99
19.63
21.27
22.9

24.54
26.17
27.81
29.44
31.08 0.9625

0.9650

0.9675

0.9700

0.9725

0.9750

0.9775

0.9800

(g) mscoco, random noise

0.
0

1.
69

3.
38

5.
07

6.
76

8.
45

10
.1

4
11

.8
3

13
.5

2
15

.2
1

16
.9

18
.5

9
20

.2
8

21
.9

7
23

.6
6

25
.3

5
27

.0
4

28
.7

3
30

.4
2

32
.1

1

0.0
1.09
2.17
3.26
4.35
5.43
6.52
7.61
8.69
9.78

10.87
11.95
13.04
14.13
15.21
16.3

17.39
18.47
19.56
20.65

0.78

0.80

0.82

0.84

0.86

(h) mscoco, cat noise

26

LEMON: Label Error Detection using Multimodal Neighbors

0.
0

1.
93

3.
85

5.
78 7.

7
9.

63
11

.5
5

13
.4

8
15

.4
17

.3
3

19
.2

5
21

.1
8

23
.1

25
.0

3
26

.9
5

28
.8

8
30

.8
32

.7
3

34
.6

5
36

.5
8

0.0
1.74
3.48
5.21
6.95
8.69

10.43
12.16

13.9
15.64
17.38
19.11
20.85
22.59
24.33
26.06

27.8
29.54
31.28
33.01 0.795

0.800

0.805

0.810

0.815

0.820

0.825

(i) mscoco, noun noise

0.
0

6.
32

12
.6

3
18

.9
5

25
.2

6
31

.5
8

37
.8

9
44

.2
1

50
.5

3
56

.8
4

63
.1

6
69

.4
7

75
.7

9
82

.1
1

88
.4

2
94

.7
4

10
1.

05
10

7.
37

11
3.

68
12

0.
0

0.0
11.05
22.11
33.16
44.21
55.26
66.32
77.37
88.42
99.47

110.53
121.58
132.63
143.68
154.74
165.79
176.84
187.89
198.95
210.0 0.955

0.960

0.965

0.970

0.975

(j) flickr30k, random noise

0.
0

0.
51

1.
02

1.
52

2.
03

2.
54

3.
05

3.
55

4.
06

4.
57

5.
08

5.
59

6.
09 6.
6

7.
11

7.
62

8.
12

8.
63

9.
14

9.
65

0.0
0.54
1.07
1.61
2.14
2.68
3.22
3.75
4.29
4.82
5.36
5.9

6.43
6.97
7.5

8.04
8.58
9.11
9.65

10.18 0.60

0.65

0.70

0.75

0.80

0.85

(k) flickr30k, noun noise
0.

0
1.

05
2.

11
3.

16
4.

21
5.

26
6.

32
7.

37
8.

42
9.

47
10

.5
3

11
.5

8
12

.6
3

13
.6

8
14

.7
4

15
.7

9
16

.8
4

17
.8

9
18

.9
5

20
.0

0.0
1.05
2.11
3.16
4.21
5.26
6.32
7.37
8.42
9.47

10.53
11.58
12.63
13.68
14.74
15.79
16.84
17.89
18.95
20.0 0.58

0.59

0.60

0.61

0.62

0.63

0.64

(l) mimiccxr, random noise

0.
0

1.
58

3.
16

4.
74

6.
32

7.
89

9.
47

11
.0

5
12

.6
3

14
.2

1
15

.7
9

17
.3

7
18

.9
5

20
.5

3
22

.1
1

23
.6

8
25

.2
6

26
.8

4
28

.4
2

30
.0

0.0
1.05
2.11
3.16
4.21
5.26
6.32
7.37
8.42
9.47

10.53
11.58
12.63
13.68
14.74
15.79
16.84
17.89
18.95

20.0
0.575

0.580

0.585

0.590

0.595

0.600

0.605

0.610

(m) mimiccxr, cat noise

0.
0

1.
57

3.
14 4.
7

6.
27

7.
84

9.
41

10
.9

8
12

.5
4

14
.1

1
15

.6
8

17
.2

5
18

.8
2

20
.3

9
21

.9
5

23
.5

2
25

.0
9

26
.6

6
28

.2
3

29
.7

9

0.0
1.55
3.11
4.66
6.22
7.77
9.33

10.88
12.43
13.99
15.54
17.1

18.65
20.21
21.76
23.32
24.87
26.42
27.98
29.53 0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

(n) mmimdb, random noise

0.
0

1.
05

2.
11

3.
16

4.
21

5.
26

6.
32

7.
37

8.
42

9.
47

10
.5

3
11

.5
8

12
.6

3
13

.6
8

14
.7

4
15

.7
9

16
.8

4
17

.8
9

18
.9

5
20

.0

0.0
1.58
3.16
4.74
6.32
7.89
9.47

11.05
12.63
14.21
15.79
17.37
18.95
20.53
22.11
23.68
25.26
26.84
28.42
30.0 0.56

0.58

0.60

0.62

0.64

0.66

0.68

0.70

(o) mmimdb, noun noise

0.
0

0.
64

1.
27

1.
91

2.
54

3.
18

3.
81

4.
45

5.
08

5.
72

6.
36

6.
99

7.
63

8.
26 8.
9

9.
53

10
.1

7
10

.8
11

.4
4

12
.0

8

0.0
0.61
1.23
1.84
2.46
3.07
3.68
4.3

4.91
5.53
6.14
6.75
7.37
7.98
8.59
9.21
9.82

10.44
11.05
11.66 0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

(p) mmimdb, cat noise

Figure I.2: F1 of our method for varying β and γ, keeping all other hyperparameters their fixed optimal values.

27

LEMON: Label Error Detection using Multimodal Neighbors

Table I.1: Label error detection performance across classification datasets, for the bolded noise types in Table 1. We separate
AUM, Datamap, and Confident learning, as they require training a classifier from scratch. Bold denotes best score within
each training approach.

Dataset Method Training-free AUROC (%) AUPRC (%) F1 (%)

cifar10

AUM
✗

98.3 (0.1) 97.9 (0.1) 92.9 (0.1)
Datamap 98.2 (0.1) 97.6 (0.1) 92.2 (0.5)

Confident 89.6 (1.4) 86.1 (1.8) 88.2 (1.7)

CLIP Logits

✓

95.5 (0.2) 93.9 (0.3) 86.2 (0.6)
CLIP Sim. 92.2 (0.2) 90.2 (0.4) 82.3 (0.3)
Simifeat-V 90.9 (0.1) 88.3 (0.4) 88.4 (0.5)
Simifeat-R 90.7 (0.2) 87.9 (0.4) 88.2 (0.3)

Discrepancy 77.1 (1.9) 70.4 (2.7) 66.4 (2.2)
Deep k-NN 97.8 (0.1) 96.5 (0.2) 91.4 (0.6)

LEMONFIX (Ours) 97.7 (0.2) 96.8 (0.3) 90.9 (0.1)
LEMONOPT (Ours) 98.1 (0.0) 97.4 (0.1) 92.0 (0.2)

cifar100

AUM
✗

92.3 (0.3) 90.0 (0.5) 81.1 (0.3)
Datamap 91.8 (0.3) 89.5 (0.5) 80.8 (0.5)

Confident 78.6 (0.4) 68.8 (0.9) 73.7 (0.5)

CLIP Logits

✓

84.9 (0.7) 80.3 (1.2) 72.0 (0.9)
CLIP Sim. 80.8 (0.9) 75.2 (1.3) 68.7 (1.1)
Simifeat-V 79.6 (0.2) 71.1 (0.5) 73.3 (0.3)
Simifeat-R 79.6 (0.2) 71.1 (0.5) 73.3 (0.3)

Discrepancy 66.0 (1.5) 57.4 (2.3) 58.9 (0.8)
Deep k-NN 87.4 (0.3) 77.9 (1.0) 75.7 (0.3)

LEMONFIX (Ours) 88.9 (0.7) 84.6 (1.1) 75.4 (0.6)
LEMONOPT (Ours) 90.8 (0.0) 87.4 (0.3) 78.4 (0.0)

miniImageNet

AUM
✗

83.1 (0.2) 73.2 (0.5) 68.3 (0.4)
Datamap 85.1 (0.3) 70.1 (0.8) 70.6 (0.2)

Confident 59.5 (0.7) 42.0 (0.8) 37.7 (1.5)

CLIP Logits

✓

90.0 (0.2) 80.9 (0.5) 77.1 (0.2)
CLIP Sim. 89.3 (0.2) 80.7 (0.3) 76.1 (0.4)
Simifeat-V 68.2 (0.3) 53.2 (0.6) 55.1 (0.6)
Simifeat-R 68.1 (0.2) 53.0 (0.2) 54.8 (0.5)

Discrepancy 79.5 (0.2) 65.9 (0.4) 64.0 (0.6)
Deep k-NN 83.2 (0.2) 70.9 (0.6) 75.2 (0.4)

LEMONFIX (Ours) 89.5 (0.2) 81.5 (0.3) 74.7 (0.2)
LEMONOPT (Ours) 90.0 (0.4) 79.7 (3.1) 76.9 (0.2)

stanfordCars

AUM
✗

70.4 (2.3) 42.0 (1.0) 47.2 (3.1)
Datamap 72.2 (1.7) 39.5 (0.2) 50.4 (2.1)

Confident 60.7 (0.3) 29.9 (0.2) 39.9 (0.6)

CLIP Logits

✓

68.8 (0.1) 39.7 (0.9) 47.3 (0.5)
CLIP Sim. 69.8 (0.4) 40.7 (1.0) 46.6 (0.5)
Simifeat-V 63.4 (1.3) 33.2 (1.6) 43.3 (1.5)
Simifeat-R 63.6 (1.2) 33.4 (1.1) 43.5 (1.6)

Discrepancy 65.7 (0.3) 33.3 (0.6) 44.3 (0.7)
Deep k-NN 71.5 (0.6) 41.7 (0.7) 49.1 (0.6)

LEMONFIX (Ours) 72.6 (0.7) 44.9 (1.4) 47.7 (2.0)
LEMONOPT (Ours) 73.1 (0.5) 40.5 (0.4) 51.3 (0.5)

28

LEMON: Label Error Detection using Multimodal Neighbors

Table I.2: Label error detection performance on synthetic errors for classification datasets

AUROC AUPRC F1

mean std mean std mean std

Dataset Flip Type Method

cifar10

asymmetric

AUM 93.7 0.6 86.6 0.6 86.6 1.1
Datamap 93.6 0.4 86.3 0.8 86.0 0.9

Confident 87.3 4.7 78.0 7.3 84.7 5.7

CLIP Logits 98.8 0.2 97.9 0.3 93.2 0.4
CLIP Sim. 97.0 0.2 95.3 0.1 89.4 0.5
Simifeat-V 69.8 0.5 57.7 0.7 60.5 0.7
Simifeat-R 70.2 0.7 58.6 1.0 61.0 1.0

Discrepancy 63.2 3.3 51.3 1.4 58.5 1.2
Deep k-NN 85.2 0.7 66.2 0.9 79.5 0.8
LEMONFIX 97.5 0.2 94.8 0.6 90.2 0.8
LEMONOPT 98.8 0.2 97.8 0.5 93.9 0.3

symmetric

AUM 99.8 0.0 99.7 0.0 98.1 0.3
Datamap 99.8 0.0 99.7 0.0 98.0 0.2

Confident 97.5 0.2 94.8 0.7 96.9 0.4

CLIP Logits 98.5 0.0 97.9 0.1 92.2 0.1
CLIP Sim. 97.1 0.1 95.9 0.2 89.5 0.1
Simifeat-V 96.5 0.0 93.9 0.2 94.2 0.3
Simifeat-R 96.4 0.2 93.7 0.4 94.2 0.3

Discrepancy 84.5 2.3 78.2 3.0 73.2 1.1
Deep k-NN 99.2 0.1 98.1 0.2 96.1 0.3
LEMONFIX 99.5 0.1 99.2 0.1 95.9 0.3
LEMONOPT 99.6 0.1 99.4 0.1 96.8 0.2

cifar100

asymmetric

AUM 82.4 2.0 67.5 2.6 75.2 1.5
Datamap 74.4 1.0 59.3 1.2 66.1 1.5

Confident 71.7 2.5 56.6 3.0 67.3 2.7

CLIP Logits 96.6 0.3 94.8 0.5 88.3 0.7
CLIP Sim. 95.1 0.4 93.1 0.5 85.6 0.6
Simifeat-V 65.4 1.4 52.4 1.7 57.1 1.9
Simifeat-R 65.4 1.2 52.8 1.6 57.0 1.7

Discrepancy 62.0 0.6 50.8 1.2 58.1 0.9
Deep k-NN 62.6 0.3 47.7 0.8 63.2 0.5
LEMONFIX 94.9 0.3 92.1 0.4 84.3 0.4
LEMONOPT 96.7 0.3 95.3 0.4 88.4 0.5

symmetric

AUM 99.2 0.3 98.9 0.4 95.2 1.1
Datamap 99.2 0.4 98.8 0.7 95.0 1.5

Confident 87.8 0.6 77.8 1.0 85.2 0.5

CLIP Logits 96.8 0.1 95.2 0.3 89.1 0.4
CLIP Sim. 95.5 0.2 93.5 0.3 86.6 0.9
Simifeat-V 91.1 0.5 84.9 1.0 84.5 0.9
Simifeat-R 90.9 0.6 84.4 1.7 84.6 0.8

Discrepancy 82.8 0.9 75.8 1.0 70.7 0.5
Deep k-NN 96.7 0.1 91.7 0.3 91.0 0.4
LEMONFIX 98.4 0.1 97.7 0.2 92.0 0.1
LEMONOPT 99.0 0.0 98.7 0.1 94.1 0.1

29

LEMON: Label Error Detection using Multimodal Neighbors

Table I.3: Label error detection performance on captioning datasets, for the bolded noise types in Table 1.

Dataset Method AUROC (%) AUPRC (%) F1 (%)

flickr30k

LLaVA 79.3 (0.8) 58.5 (0.2) 65.0 (1.1)
Datamap 52.7 (1.5) 37.9 (1.4) 50.4 (1.8)

Discrepancy 73.0 (0.6) 59.2 (1.8) 59.0 (0.3)
VDC 92.9 (1.1) 87.2 (0.3) 81.1 (1.6)

Deep k-NN 71.1 (0.4) 52.0 (1.0) 59.2 (0.8)
Confident 63.1 (0.9) 42.1 (1.2) 54.0 (0.9)

CLIP Sim. 94.8 (0.5) 92.8 (0.5) 84.2 (0.9)
LEMONFIX (Ours) 93.6 (0.2) 92.0 (0.2) -
LEMONOPT (Ours) 94.5 (0.2) 92.8 (0.3) 83.6 (1.4)

CapFilt (Oracle) 98.6 (0.1) 98.1 (0.1) 93.1 (0.7)

mscoco

LLaVA 80.3 (0.1) 63.4 (0.3) 74.9 (0.3)
Datamap 68.9 (0.8) 60.3 (0.0) 60.3 (1.2)

Discrepancy 72.7 (0.3) 67.2 (0.4) 62.5 (0.3)
VDC 94.1 (0.2) 91.8 (0.2) 86.3 (0.4)

Deep k-NN 76.6 (0.4) 70.3 (0.6) 67.5 (0.8)
Confident 71.5 (0.5) 56.4 (0.5) 66.5 (0.5)

CLIP Sim. 93.8 (0.2) 93.0 (0.4) 84.5 (0.4)
LEMONFIX (Ours) 92.0 (0.1) 91.8 (0.3) -
LEMONOPT (Ours) 95.6 (0.2) 94.6 (0.3) 87.0 (0.2)

CapFilt (Oracle) 99.3 (0.0) 99.1 (0.0) 95.4 (0.4)

mmimdb

LLaVA 58.4 (0.2) 46.4 (0.2) 58.5 (0.1)
Discrepancy 57.8 (0.4) 46.1 (0.9) 57.4 (0.2)

VDC 80.5 (0.3) 67.1 (0.3) 69.3 (0.6)
Datamap 54.0 (0.3) 43.3 (0.4) 57.2 (0.1)

deep k-NN 61.2 (0.4) 47.2 (0.5) 58.3 (0.4)
Confident 52.8 (1.1) 41.4 (0.6) 51.8 (1.8)

CLIP Sim. 85.1 (0.3) 77.8 (0.7) 72.7 (0.6)
LEMONFIX (Ours) 84.3 (0.3) 77.7 (0.8) -
LEMONOPT (Ours) 86.0 (0.1) 79.4 (0.6) 73.5 (0.3)

CapFilt 82.7 (0.7) 73.3 (1.2) 71.3 (0.3)

mimiccxr

LLaVA 53.9 (0.5) 42.7 (0.7) 57.0 (0.1)
Datamap 50.2 (1.2) 40.2 (1.0) 57.0 (0.1)

Discrepancy 60.0 (0.7) 50.2 (0.5) 57.2 (0.1)
VDC 50.8 (0.4) 40.3 (0.2) 57.0 (0.1)

deep k-NN 62.9 (0.4) 48.0 (0.3) 59.2 (0.1)
Confident 61.8 (0.3) 47.0 (0.2) 58.1 (0.6)

CLIP Sim. 64.1 (0.4) 51.7 (0.5) 59.2 (0.0)
LEMONFIX (Ours) 66.3 (0.4) 54.6 (0.5) -
LEMONOPT (Ours) 70.4 (1.6) 60.4 (1.6) 61.1 (0.8)

CapFilt 49.7 (0.3) 40.0 (0.2) 57.0 (0.0)

30

LEMON: Label Error Detection using Multimodal Neighbors

Table I.4: flickr30k: Label Error Detection

Dataset Noise Type Method AUROC AUPRC F1

mean std mean std mean std

flickr30k

noun

LLaVA 79.3 0.8 58.5 0.2 65.0 1.1
Datamap 52.7 1.5 37.9 1.4 50.4 1.8

Discrepancy 73.0 0.6 59.2 1.8 59.0 0.3
VDC 92.9 1.1 87.2 0.3 81.1 1.6

Deep kNN 71.1 0.4 52.0 1.0 59.2 0.8
Confident 63.1 0.9 42.1 1.2 54.0 0.9

CLIP Sim. 94.8 0.5 92.8 0.5 84.2 0.9
LEMONFIX 93.6 0.2 92.0 0.2 83.4 0.6
LEMONOPT 94.5 0.2 92.8 0.3 83.6 1.4

CapFilt 98.6 0.1 98.1 0.1 93.1 0.7

random

LLaVA 81.3 1.0 65.6 1.4 72.2 1.1
Datamap 68.2 0.4 61.1 1.5 58.9 0.5

Discrepancy 83.8 1.2 75.3 2.3 72.2 1.4
VDC 98.2 0.2 96.4 0.3 92.1 0.6

Deep kNN 81.1 1.6 65.3 1.7 72.7 1.2
Confident 71.2 0.6 55.3 0.5 67.1 0.8

CLIP Sim. 99.5 0.1 99.3 0.1 95.7 0.5
LEMONFIX 99.4 0.2 99.3 0.2 96.3 0.7
LEMONOPT 99.5 0.2 99.4 0.3 96.3 1.0

CapFilt 99.9 0.0 99.8 0.0 97.9 0.2

Table I.5: msccoco: Label Error Detection

Dataset Noise Type Method AUROC AUPRC F1

mean std mean std mean std

mscoco

cat

LLaVA 80.3 0.1 63.4 0.3 74.9 0.3
Datamap 68.9 0.8 60.3 0.0 60.3 1.2

Discrepancy 72.7 0.3 67.2 0.4 62.5 0.3
VDC 94.1 0.2 91.8 0.2 86.3 0.4

Deep kNN 76.6 0.4 70.3 0.6 67.5 0.8
Confident 71.5 0.5 56.4 0.5 66.5 0.5

CLIP Sim. 93.8 0.2 93.0 0.4 84.5 0.4
LEMONFIX 92.0 0.1 91.8 0.3 82.8 0.4
LEMONOPT 95.6 0.2 94.6 0.3 87.0 0.2

CapFilt 99.3 0.0 99.1 0.0 95.4 0.4

noun

LLaVA 79.4 0.2 61.3 0.3 72.6 0.2
Datamap 62.1 0.7 50.0 0.3 56.2 0.2

Discrepancy 72.4 0.6 64.0 0.4 60.0 0.9
VDC 91.9 0.5 88.3 0.7 82.7 0.5

Deep kNN 75.7 1.3 66.8 1.4 65.8 1.3
Confident 69.8 1.1 52.8 1.5 63.3 1.3

CLIP Sim. 92.1 0.2 90.5 0.2 80.8 0.6
LEMONFIX 90.4 0.5 89.5 0.4 80.2 0.5
LEMONOPT 92.9 0.5 91.5 0.5 82.3 0.7

CapFilt 98.7 0.2 98.4 0.2 93.6 0.5

random

LLaVA 82.6 0.3 65.1 0.6 76.7 0.2
Datamap 78.8 0.5 71.5 0.8 67.0 0.6

Discrepancy 90.8 0.4 84.2 0.6 80.1 0.9
VDC 99.1 0.2 98.3 0.2 95.8 0.3

Deep kNN 94.5 0.4 88.4 0.7 87.9 0.7
Confident 85.0 0.8 71.4 1.1 81.8 0.9

CLIP Sim. 99.5 0.1 99.4 0.1 97.1 0.1
LEMONFIX 99.5 0.2 99.4 0.1 97.3 0.2
LEMONOPT 99.6 0.1 99.5 0.1 97.5 0.1

CapFilt 99.9 0.0 99.9 0.0 98.9 0.1

31

LEMON: Label Error Detection using Multimodal Neighbors

Table I.6: mmimdb: Label Error Detection

Dataset Noise Type Method AUROC AUPRC F1

mean std mean std mean std

mmimdb

cat

LLaVA 58.4 0.2 46.4 0.2 58.5 0.1
Datamap 54.0 0.3 43.3 0.4 57.2 0.1

Discrepancy 57.8 0.4 46.1 0.9 57.4 0.2
VDC 80.5 0.3 67.1 0.3 69.3 0.6

deep k-nn 61.2 0.4 47.2 0.5 58.3 0.4
Confident 52.8 1.1 41.4 0.6 51.8 1.8

CLIP Sim. 85.1 0.3 77.8 0.7 72.7 0.6
LEMONFIX 84.3 0.3 77.7 0.8 69.9 0.8
LEMONOPT 86.0 0.1 79.4 0.6 73.5 0.3

CapFilt 82.7 0.7 73.3 1.2 71.3 0.3

noun

LLaVA 59.1 0.3 44.2 0.6 55.2 0.2
Datamap 47.5 0.5 35.0 0.4 54.0 0.3

Discrepancy 58.8 1.0 43.3 1.3 54.6 0.7
VDC 79.0 0.2 62.3 0.3 65.9 0.4

deep k-nn 61.4 0.1 44.2 0.3 55.8 0.3
Confident 53.7 1.3 38.8 0.8 48.6 1.9

CLIP Sim. 82.8 0.4 72.8 0.5 68.4 1.1
LEMONFIX 82.1 0.4 72.7 0.6 65.2 1.1
LEMONOPT 84.2 0.5 75.9 0.5 69.5 0.4

CapFilt 79.9 0.1 66.2 0.4 67.1 0.3

random

LLaVA 58.5 0.8 46.7 0.5 58.5 0.1
Datamap 54.3 0.9 43.6 1.1 57.2 0.1

Discrepancy 60.0 0.7 47.4 0.8 58.0 0.5
VDC 82.7 0.2 69.6 0.4 72.1 0.4

deep k-nn 64.0 0.2 49.0 0.1 60.4 0.1
Confident 52.0 1.0 41.0 0.5 52.1 3.1

CLIP Sim. 88.1 0.1 82.0 0.2 75.7 0.4
LEMONFIX 87.6 0.1 81.9 0.3 73.8 0.2
LEMONOPT 89.3 0.9 84.2 1.3 77.0 1.2

CapFilt 84.9 0.4 76.4 0.7 73.1 0.3

Table I.7: mimiccxr: Label Error Detection

Dataset Noise Type Method AUROC AUPRC F1

mean std mean std mean std

mimiccxr

cat

LLaVA 53.9 0.5 42.7 0.7 57.0 0.1
Datamap 50.2 1.2 40.2 1.0 57.0 0.1

Discrepancy 60.0 0.7 50.2 0.5 57.2 0.1
VDC 50.8 0.4 40.3 0.2 57.0 0.1

Deep k-NN 62.9 0.4 48.0 0.3 59.2 0.1
Confident 61.8 0.3 47.0 0.2 58.1 0.6

CLIP Sim. 64.1 0.4 51.7 0.5 59.2 0.0
LEMONFIX 66.3 0.4 54.6 0.5 55.5 0.3
LEMONOPT 70.4 1.6 60.4 1.6 61.1 0.8

CapFilt 49.7 0.3 40.0 0.2 57.0 0.0

random

LLaVA 50.8 0.4 40.6 0.2 57.1 0.0
Datamap 51.3 0.4 40.9 0.6 57.1 0.0

Discrepancy 62.5 0.5 52.2 1.0 57.2 0.5
VDC 52.4 0.9 41.6 0.7 57.2 0.1

Deep k-NN 66.6 0.6 53.8 1.1 59.4 0.2
Confident 65.0 1.0 49.5 0.7 61.6 1.1

CLIP Sim. 66.8 0.8 54.4 0.9 60.1 0.4
LEMONFIX 69.5 0.7 57.8 1.0 57.7 1.2
LEMONOPT 73.7 1.7 64.1 2.2 63.5 0.8

CapFilt 50.6 0.4 40.1 0.5 57.1 0.0

32

LEMON: Label Error Detection using Multimodal Neighbors

Table I.8: We show the AUROC and AUPRC of LEMON when we search for the optimal hyperparameters using a labeled
validation set (LEMONOPT) and when we use fixed hyperparameters (LEMONFIX: k = 30, cosine distance, β = γ = 5,
τ1,n = τ1,m = 0.1, and τ2,n = τ2,m = 5). The mean gap in AUROC is -1.6 (1.3), and the mean gap in AUPRC is -1.6 (2.4).
Note that F1 is not computed as it requires external information to select a threshold.

AUROC AUPRC

Dataset Noise Type LEMONOPT LEMONFIX Gap LEMONOPT LEMONFIX Gap

cifar10
asymmetric 98.8 (0.2) 97.5 (0.2) -1.4 (0.1) 97.8 (0.5) 94.8 (0.6) -3.0 (0.1)

real 98.1 (0.0) 97.7 (0.2) -0.5 (0.2) 97.4 (0.1) 96.8 (0.3) -0.5 (0.2)
symmetric 99.6 (0.1) 99.5 (0.1) -0.2 (0.1) 99.4 (0.1) 99.2 (0.1) -0.2 (0.1)

cifar100
asymmetric 96.7 (0.3) 94.9 (0.3) -1.9 (0.1) 95.3 (0.4) 92.1 (0.4) -3.2 (0.1)

real 90.8 (0.0) 88.9 (0.7) -1.8 (0.7) 87.4 (0.3) 84.6 (1.1) -2.8 (0.9)
symmetric 99.0 (0.0) 98.4 (0.1) -0.7 (0.1) 98.7 (0.1) 97.7 (0.2) -1.0 (0.1)

miniImageNet human 90.0 (0.4) 89.5 (0.2) -0.5 (0.2) 79.7 (3.0) 81.5 (0.3) +1.8 (2.7)

StanfordCars human 73.1 (0.5) 72.6 (0.7) -0.5 (0.5) 40.5 (0.4) 44.9 (1.4) +4.4 (1.0)

flickr30k
noun 94.5 (0.2) 93.6 (0.2) -0.9 (0.3) 92.8 (0.3) 92.0 (0.2) -0.8 (0.1)

random 99.5 (0.2) 99.4 (0.2) -0.0 (0.1) 99.4 (0.3) 99.3 (0.2) -0.1 (0.2)

mimiccxr
cat 70.4 (1.6) 66.3 (0.4) -4.1 (1.5) 60.4 (1.6) 54.6 (0.5) -5.8 (1.5)

random 73.7 (1.7) 69.5 (0.7) -4.1 (1.5) 64.1 (2.2) 57.8 (1.0) -6.3 (1.7)

mmimdb
cat 86.0 (0.1) 84.3 (0.3) -1.6 (0.3) 79.4 (0.6) 77.7 (0.8) -1.7 (0.2)

noun 84.2 (0.5) 82.1 (0.4) -2.1 (0.6) 75.9 (0.5) 72.7 (0.6) -3.2 (0.5)
random 89.3 (0.9) 87.6 (0.1) -1.6 (0.8) 84.2 (1.3) 81.9 (0.3) -2.3 (1.2)

mscoco
cat 95.6 (0.2) 92.0 (0.1) -3.6 (0.1) 94.6 (0.3) 91.8 (0.3) -2.8 (0.1)

noun 92.9 (0.5) 90.4 (0.5) -2.5 (0.2) 91.5 (0.5) 89.5 (0.4) -2.0 (0.3)
random 99.6 (0.1) 99.5 (0.2) -0.1 (0.0) 99.5 (0.1) 99.4 (0.1) -0.1 (0.0)

Table I.9: Downstream captioning performance when removing 40% samples with highest mislabel scores, and models are
trained without early stopping for 10 epochs. We find that filtering noisy data with LEMONOPT improves captioning.

Dataset Method B@4 ROUGE CIDER

flickr30k

No Filtering 28.0 49.5 65.1
CLIP Sim. 29.1 50.5 71.4

LEMONOPT 29.5 50.9 72.1

Clean 30.8 51.9 74.6

mscoco

No Filtering 35.0 56.3 116.7
CLIP Sim. 38.1 58.5 126.9

LEMONOPT 37.9 58.4 126.5

Clean 38.2 58.5 127.7

Table I.10: Performance of our method after ablating various components. We find that mislabel detection performance
almost decreases monotonically as we remove additional components, with the exception of two metrics on mmimdb where
one ablation is statistically comparable to the original method.

mmimdb mscoco

AUROC AUPRC F1 AUROC AUPRC F1

LEMONOPT (Ours) 86.0 (0.1) 79.4 (0.6) 73.5 (0.3) 95.6 (0.2) 94.6 (0.3) 87.0 (0.2)
−τ1 85.3 (0.3) 78.2 (1.1) 72.9 (0.5) 94.6 (0.3) 93.8 (0.4) 85.2 (0.5)
−τ2 85.6 (0.1) 78.6 (0.5) 73.3 (0.3) 94.7 (0.2) 93.8 (0.5) 85.4 (0.8)
−τ1, τ2 85.4 (0.2) 78.1 (0.7) 73.0 (0.7) 94.7 (0.3) 93.8 (0.5) 85.3 (0.9)
−sn 86.1 (0.2) 79.6 (0.6) 73.7 (0.2) 94.6 (0.3) 93.6 (0.5) 84.7 (0.7)
−sm 85.3 (0.2) 77.9 (0.7) 73.1 (0.4) 94.9 (0.2) 94.0 (0.4) 86.5 (0.6)
−sn, sm (CLIP Sim.) 85.1 (0.3) 77.8 (0.7) 72.7 (0.6) 93.8 (0.2) 93.0 (0.4) 84.5 (0.4)

33

LEMON: Label Error Detection using Multimodal Neighbors

Table I.11: AUROC of label error detection for each component of our score. We find that dmm is the most critical
component of the score. Of the two nearest neighbor terms, we find that sn (nearest image neighbors) is the more important
term for most datasets.

cifar10 cifar100 miniImageNet stanfordCars flickr30k mscoco mmimdb mimiccxr

dmm (CLIP Sim.) 92.2 (0.2) 80.8 (0.1) 89.3 (0.2) 69.8 (0.4) 94.8 (0.5) 93.8 (0.2) 85.1 (0.3) 64.1 (0.4)
sm 80.2 (1.1) 65.4 (2.0) 80.8 (0.3) 66.1 (0.6) 75.9 (3.0) 75.9 (0.2) 60.4 (0.7) 59.7 (0.5)
sn 98.1 (0.0) 88.4 (0.1) 84.3 (0.2) 73.0 (0.6) 69.9 (2.3) 76.3 (0.8) 53.7 (0.2) 57.7 (0.7)
dmm + sm 92.5 (0.5) 81.3 (1.1) 89.6 (0.2) 70.0 (0.6) 95.0 (0.5) 94.6 (0.3) 86.0 (0.2) 64.5 (0.6)
sn + sm 98.0 (0.2) 88.8 (0.2) 84.5 (0.4) 73.0 (0.7) 83.2 (0.5) 86.1 (0.6) 67.5 (1.0) 64.7 (1.0)
dmm + sn 98.2 (0.1) 90.7 (0.2) 90.0 (0.4) 73.1 (0.5) 94.9 (0.3) 94.9 (0.2) 85.3 (0.2) 64.4 (2.0)
dmm + sn + sm (LEMON) 98.1 (0.0) 90.8 (0.0) 90.0 (0.4) 73.1 (0.5) 94.5 (0.2) 95.6 (0.2) 86.0 (0.0) 70.4 (1.6)

Table I.12: Average (∼) per-sample runtime (milliseconds) of each method for label error detection. Standard deviation
across 3 random data seeds are shown in parentheses. Experiments were run using job scheduling with GTX A6000 or
A100 GPUs.

cifar10 cifar100 miniImageNet stanfordCars mscoco flickr30k mimiccxr mmimdb

LEMON 10.1 (0.5) 9.6 (0.5) 7.8 (1.6) 11.0 (2.0) 18.8 (1.8) 35.9 (1.2) 52.2 (2.7) 21.1 (1.4)
CLIP Sim. 2.9 (0.0) 2.9 (0.0) 6.5 (0.1) 6.8 (0.1) 11.5 (0.1) 9.8 (0.0) 17.1 (0.0) 24.7 (1.0)
Deep kNN 7.0 (1.4) 6.3 (1.8) 7.5 (1.8) 5.4 (0.4) 50.5 (1.4) 63.3 (3.4) 337.6 (13.9) 29.6 (2.0)
Datamap 19.0 (0.7) 19.3 (0.5) 39.2 (1.4) 41.2 (2.7) 35.4 (0.9) 35.2 (1.6) 45.5 (0.2) 67.5 (1.2)
CaptFilt - - - - 13.5 (0.1) 14.8 (0.0) 29.6 (0.0) 35.3 (1.6)
VDC - - - - 4460 (880) 5160 (503) 7932 (3.4) 4672 (357)

34

LEMON: Label Error Detection using Multimodal Neighbors

I.7. Varying Validation Set Size

In Figure I.3, we examine the effect of varying validation set size (by random subsampling) on LEMONOPT.

101 102 103

|Val Set|

0.7

0.8

0.9

AU
RO

C

LEMoNopt

LEMoNfix

CLIP Sim.

(a) mscoco, cat noise

101 102 103

|Val Set|

0.90

0.92

0.94

AU
RO

C

LEMoNopt

LEMoNfix

CLIP Sim.

(b) flickr30k, cat noise

101 102 103

|Val Set|

0.6

0.7

0.8

0.9

AU
RO

C

LEMoNopt

LEMoNfix

CLIP Sim.

(c) mmimdb, noun noise

101 102 103

|Val Set|

0.55

0.60

0.65

0.70

AU
RO

C
LEMoNopt

LEMoNfix

CLIP Sim.

(d) mimiccxr, cat noise

Figure I.3: Test-set AUROC of mislabel detection with varying size of the labeled validation set for LEMONOPT. Note that
LEMONFIX and CLIP Sim. do not have any hyperparameters and as such do not rely on a labeled validation set.

I.8. Empirical Comparison with Thomas & Kovashka (2022)

In Table I.13, we compare the performance of LEMONOPT against the four individual scores and two combined scores
proposed in Thomas & Kovashka (2022), using the datasets and noise types shown in Table 1. For the Comb-Val strategy, as
there are four terms, we sweep over weights in {1, 2, 3, 4, 5}4, selecting the best combination using a labeled validation
set, identically to LEMON. For the Comb-Stat strategy, we use the mean and standard deviations, as in Equation (8) in
Thomas & Kovashka (2022). We find that none of the combined scores significantly outperform ΥDIS

X . This is because in
both combination strategies, a non-zero weight is placed on the other terms, which essentially adds noise to the final score
without contributing any signal.

I.9. Real-World Web Scale Corpus (CC3M)

We conduct an experiment of LEMONFIX on CC3M (Changpinyo et al., 2021), a large web-scraped dataset of images and
annotations, where we demonstrate the utility of LEMON filtered data on CLIP pretraining. We download CC3M, which
contains 2.9 million valid URLs to image-caption pairs. We then pretrain a CLIP model (ViT-B/16) from scratch on this
dataset for 20 epochs, with a batch size of 128, and using a cyclic learning rate scheduler with a learning rate of 10−4.

We then use this CLIP model as the basis to compute distances for LEMONFIX, using the reasonable hyperparameters from
the main paper: k = 30, cosine distance, τ1,n = τ1,m = 0.1, and τ2,n = τ2,m = 5. We then select the 1 million samples
with the lowest mislabel scores, filtering out the 1.9 million samples most suspected to be mislabels. We pre-train another
CLIP model from scratch on this subset using the same architecture and setup as above. We evaluate the resulting model on

35

LEMON: Label Error Detection using Multimodal Neighbors

Table I.13: Comparison of label error detection performance of LEMoN versus baselines from Thomas & Kovashka (2022).

Dataset Metric ΥDIS
X ΥDIS

Y ΥDIV
X ΥDIV

Y Comb-Val Comb-Stat LEMONOPT

cifar10
AUROC 77.1 (1.9) 48.2 (1.2) 50.3 (3.5) 45.0 (1.9) 59.6 (19.5) 59.6 (19.5) 98.1 (0.0)
AUPRC 70.4 (2.7) 41.2 (1.1) 41.6 (1.6) 38.9 (2.1) 51.6 (20.5) 51.6 (20.5) 97.4 (0.1)
F1 66.4 (2.2) 58.4 (0.8) 58.4 (0.8) 58.4 (0.8) 62.9 (8.0) 62.9 (8.0) 92.0 (0.2)

cifar100
AUROC 66.0 (1.5) 49.7 (0.9) 51.1 (1.1) 49.9 (1.9) 51.5 (6.2) 51.8 (7.0) 90.8 (0.0)
AUPRC 57.4 (2.3) 40.0 (1.3) 42.8 (1.6) 40.9 (1.1) 41.9 (5.6) 42.3 (6.3) 87.4 (0.3)
F1 58.9 (0.8) 57.2 (0.3) 57.3 (0.2) 57.1 (0.2) 57.8 (0.7) 57.8 (0.7) 78.4 (0.0)

miniImageNet
AUROC 79.5 (0.3) 47.4 (0.5) 64.6 (0.2) 48.3 (1.1) 75.4 (0.2) 76.6 (0.3) 90.0 (0.4)
AUPRC 65.9 (0.4) 32.5 (0.0) 46.3 (0.2) 33.5 (0.2) 59.8 (0.2) 61.7 (0.3) 79.7 (3.1)
F1 64.0 (0.1) 50.9 (0.1) 53.7 (0.3) 50.9 (0.1) 60.5 (0.4) 61.2 (0.6) 76.9 (0.2)

stanfordCars
AUROC 65.7 (0.3) 50.8 (1.1) 51.9 (0.9) 50.1 (0.5) 62.0 (0.1) 64.1 (0.1) 73.1 (0.5)
AUPRC 33.3 (0.6) 23.3 (0.7) 23.3 (0.4) 23.4 (0.2) 30.1 (0.2) 31.9 (0.4) 40.5 (0.4)
F1 44.3 (0.7) 38.0 (0.1) 38.0 (0.5) 38.2 (0.2) 41.4 (0.1) 43.3 (0.2) 51.3 (0.5)

flickr30k
AUROC 73.0 (0.6) 53.3 (1.4) 49.9 (2.9) 52.9 (0.2) 63.9 (0.6) 70.5 (0.2) 94.5 (0.2)
AUPRC 59.2 (1.8) 37.1 (1.8) 32.8 (1.9) 37.0 (0.8) 47.2 (2.1) 53.7 (2.7) 92.8 (0.3)
F1 59.0 (0.3) 50.9 (0.3) 50.8 (0.4) 50.8 (0.3) 59.4 (3.7) 62.6 (3.3) 83.6 (1.4)

mimiccxr
AUROC 60.0 (0.7) 49.6 (0.4) 49.7 (1.1) 49.1 (1.3) 51.6 (3.1) 52.5 (4.7) 70.4 (1.6)
AUPRC 50.2 (0.5) 39.3 (0.5) 39.8 (0.1) 39.4 (1.0) 40.5 (2.7) 42.2 (4.8) 60.4 (1.6)
F1 57.2 (0.1) 57.0 (0.0) 57.0 (0.1) 57.0 (0.1) 57.2 (0.1) 57.3 (0.1) 61.1 (0.8)

mmimdb
AUROC 57.8 (0.4) 50.1 (0.4) 48.6 (0.4) 50.4 (0.3) 53.4 (2.0) 54.7 (2.6) 86.0 (0.1)
AUPRC 46.1 (0.9) 40.2 (0.6) 38.9 (0.5) 40.2 (0.5) 41.0 (3.1) 42.0 (3.6) 79.4 (0.6)
F1 57.4 (0.2) 57.1 (0.0) 57.1 (0.0) 57.1 (0.0) 56.5 (1.8) 56.6 (2.0) 73.5 (0.3)

mscoco
AUROC 72.7 (0.3) 48.5 (0.8) 52.9 (0.8) 48.8 (0.2) 49.7 (0.5) 50.1 (0.7) 95.6 (0.2)
AUPRC 67.2 (0.4) 39.1 (0.5) 42.3 (1.0) 39.4 (0.0) 38.9 (0.3) 39.5 (0.2) 94.6 (0.3)
F1 62.5 (0.3) 57.0 (0.2) 57.1 (0.0) 57.0 (0.2) 57.3 (0.1) 57.3 (0.1) 87.0 (0.2)

36

LEMON: Label Error Detection using Multimodal Neighbors

Table I.14: Performance of each method on the Datacomp (Gadre et al., 2024) small benchmark from the filtering track.
As of 2024/11/14, only 9.96M images (“Data Available”) out of 12.8M are accessible. We compare the performance of
LEMONOPT versus the CLIP score baseline after filtering to 3.5M images.

Method ImageNet ImageNet Dist. Shifts VTAB Retrieval Avg (38 datasets)

Data Available
(9.96M Samples)

LEMONFIX 0.045 0.053 0.188 0.116 0.168
CLIP score 0.043 0.049 0.177 0.119 0.160

From Gadre et al. (2024)
(12.8M Samples)

No filtering 0.025 0.033 0.145 0.114 0.132
Basic filtering 0.038 0.043 0.150 0.118 0.142
Text-based 0.046 0.052 0.169 0.125 0.157
Image-based 0.043 0.047 0.178 0.121 0.159
LAION-2B filtering 0.031 0.040 0.136 0.092 0.133
CLIP score 0.051 0.055 0.190 0.119 0.173
Image-based + CLIP score 0.039 0.045 0.162 0.094 0.144

zero-shot classification using the VTAB benchmark (Zhai et al., 2019), and compare it with CLIP models trained using data
filtered to 1 million examples using the CLIP similarity baseline, and the original unfiltered model.

In Table I.15, we find that LEMONFIX marginally outperforms the CLIP similarity baseline on average zero-shot accuracy,
though both underperform pretraining on the full corpus. Similar results can be found for few-shot linear probing (Table I.16)
and full finetuning (Table I.17). One likely explanation of this is that although a large proportion of images in the CC3M
dataset are technically “mislabelled” in that the caption is not a precisely correct description of the image, some substrings
of these noisy captions may, on aggregate, contain useful word associations which the model learns, and thus may be useful
to downstream tasks.

We examine images of images selected to be mislabels by our method in Figure I.4. We find that our method identifies
images that are completely mislabeled – one cause of which is images changing after they have been indexed. In addition,
our method also identifies samples which are ambiguous or imprecise.

I.10. Real-World Web Scale Corpus (Datacomp)

We conduct an experiment of LEMONFIX on Datacomp (Gadre et al., 2024). We use the small dataset from the filtering track,
which originally consisted of 12.8M images. As these images are accessed directly from the web, only 9.96M images were
able to be downloaded as of 2024/11/14. We apply LEMONFIX to this dataset using OpenAI CLIP ViT-L/14 embeddings
provided by Datacomp. We select the 3.5M images with lowest mislabel scores, and use the default hyperparameters from
Datacomp to train a CLIP model, and evaluate it on the same 38 zero-shot classification datasets. We compare with filtering
using only the CLIP score (equivalent to CLIP Sim.) to the same number of images. In Table I.14, we find that given the
available images, LEMONFIX outperforms the baseline on average, and on three of four individual evaluations. However,
neither method outperforms the scores reported in the original paper due to their dataset being larger.

I.11. Hyperparameters Used for Real-World

We show the hyperparameters used for the real-world experiment in Table I.18. We use k = 30, cosine distance, and these
hyperparameters, which originate from a hyperparameter search on synthetically noised data. We note that flickr30k has
some negative hyperparameters, which we attribute to overfitting to a relatively small validation set during hyperparameter
selection.

I.12. Examples of Detected Real Label Errors

We show additional examples of label errors in Figure I.5.

37

LEMON: Label Error Detection using Multimodal Neighbors

Table I.15: Zero-shot accuracy (%) of various CLIP models on the VTAB benchmark (Zhai et al., 2019). CLIP models
(ViT-B/16) are pretrained from scratch on a subset of CC3M (Changpinyo et al., 2021) which has been filtered to 1 million
samples using LEMONFIX and the CLIP similarity baseline, using a version of CLIP pretrained on the entire dataset.

CLIP Sim. LEMONFIX Unfiltered

caltech101 28.25 28.99 51.43
cifar100 11.02 6.79 18.65
clevr closest object distance 18.11 22.58 25.76
clevr count all 12.98 12.65 12.05
dmlab 14.78 16.22 16.62
dsprites label orientation 2.44 1.34 1.98
dsprites label x position 3.06 3.20 3.13
dsprites label y position 3.11 2.89 3.20
dtd 6.60 3.94 12.34
eurosat 14.37 22.07 9.93
flowers 6.11 5.19 6.83
food101 4.94 5.31 9.02
pets 7.63 4.69 8.23
sun397 13.89 14.22 24.02
svhn 7.80 12.35 8.00

Average 10.34 10.83 14.08

Table I.16: Few-shot linear-probing accuracy (%) using 5 samples per class of various CLIP models on the VTAB benchmark.

CLIP Sim. LEMONFIX Unfiltered

caltech101 53.50 53.45 60.82
cifar100 18.66 17.11 23.59
clevr closest object distance 23.39 25.48 25.97
clevr count all 19.19 20.43 23.22
dmlab 18.43 21.01 19.72
dsprites label orientation 9.11 8.40 9.91
dsprites label x position 3.78 4.52 4.20
dsprites label y position 6.93 7.90 8.20
dtd 28.88 29.84 38.78
eurosat 66.17 65.20 64.76
flowers 57.31 54.53 62.35
food101 11.94 13.50 17.89
pets 18.92 17.12 24.42
sun397 21.43 21.60 32.53
svhn 12.05 12.60 12.99

Average 24.65 24.85 28.62

38

LEMON: Label Error Detection using Multimodal Neighbors

Table I.17: Full finetuning linear-probing accuracy (%) using 5 samples per class of various CLIP models on the VTAB
benchmark.

CLIP Sim. LEMONFIX Unfiltered

caltech101 65.91 65.94 74.80
cifar100 49.74 48.53 56.54
clevr closest object distance 52.35 55.83 53.74
clevr count all 55.03 54.05 57.99
dmlab 39.10 39.31 43.00
dsprites label orientation 38.58 38.65 42.75
dsprites label x position 27.08 36.61 32.78
dsprites label y position 46.31 47.63 49.56
dtd 44.20 42.07 51.91
eurosat 92.70 92.09 93.00
flowers 65.72 63.65 72.45
food101 47.75 48.62 55.23
pets 40.86 40.69 51.57
sun397 49.58 49.45 57.84
svhn 38.08 39.25 42.74

Average 50.20 50.83 55.73

fresh milk in the glass on colour
background, illustration

a very young baby girl playing with toys
in a white studio portrait of a stock photo

homes for sale and luxury real estate
including horse farms and property in

the areas
tangled tree roots on a forest trail

a park covered in yellow leaves and
lined with tall trees turning bright yellow

during an autumn day

face of people -- stock
photo #

begin your exercise with a
jump rope easy and funny

evil looking person sitting
atop a hay bale royalty - free

Figure I.4: Sample images and captions from CC3M which have been identified as mislabeled by LEMONFIX.

39

LEMON: Label Error Detection using Multimodal Neighbors

Table I.18: Hyperparameters used for the real-world experiment. We use k = 30, cosine distance, and the hyperparameters
below, which originate from a hyperparameter search on synthetically noised data.

β γ τ1,n τ2,n τ1,m τ2,m

cifar10 20 10 0 5 0 5
cifar100 15 0 0 5 0 0
mscoco 5.324 11.057 5.143 10.498 7.233 15.637
mmimdb 15 5 5 10 5 10
flickr30k 0.092 -0.177 -0.274 -0.074 -0.072 0.000
mimiccxr 5 10 5 10 5 10

This is a plane from the
front view

MSCOCO

The emu is sitting in the
dirt near a metal fence.

A WOMAND IN ALL BLACK
BEHIND TO WHITE DOGS

A small house stands in
a small constraining

carriage.

Are you coming with me
for a cup of coffee?

Flickr30k

A young girl celebrating her team
after winning world series in the

world finals held in texas.

A boy in red shirt
playing ball.

The policeman car driving
down the street.

CIFAR100CIFAR10

Leopard

Bus

Lobster

Camel

Automobile

Airplane

Horse

Deer

Figure I.5: Example images in each dataset identified by our method to be mislabels, and labeled as errors by a human
annotator.

40

LEMON: Label Error Detection using Multimodal Neighbors

I.13. Comparison with Northcutt et al., 2021 (Northcutt et al., 2021b)

In Northcutt et al., 2021 (Northcutt et al., 2021b), the authors utilized confident learning (Northcutt et al., 2021a) to identify
suspected errors in the test sets of cifar10 and cifar100. They then obtained 5 human labels for each suspected error
using Amazon Mechanical Turk, and confirmed the image to be a mislabel if at least 3 of 5 workers stated so. This amounts
to 54 confirmed mislabels in cifar10 (out of 221 suspected), and 585 confirmed mislabels in cifar100 (out of 1650
suspected). In this section, we compare the performance of LEMONFIX versus the CLIP similarity baseline on this set. As
this set is a subset of the images identified to be mislabels by confident learning, we are not able to compare our model
performance with confident learning itself. In addition, this presents a pessimistic view (lower bound) of the performance
of our method, as there are many images identified by LEMON which are mislabeled, but were not selected by confident
learning in (Northcutt et al., 2021b). We demonstrate examples of these images in Figure I.6.

In Table I.19, we compare the performance of LEMONFIX with the CLIP similarity baseline on the error set from Northcutt
et al., 2021 (Northcutt et al., 2021b). First, we compute the mean ranking of all error set samples as ranked by each method,
out of 10,000 test-set samples. We find that our method ranks error set samples higher on average than the baseline, though
the variance is large. Next, we subset to the top —CL Set— ranked samples for each method, and compute the percentage
of which are actually in the error set. We note that this precision metric is upper bounded by the precision of the reference
method (confident learning). Again, we find that LEMONFIX outperforms the baseline, and is able to identify more actual
label errors than CLIP similarity at this threshold.

CIFAR10

CIFAR100

idx = 3309
label = deer

idx = 4175
label = cat

idx = 7524
label = cat

idx = 5031
label = camel

idx = 5681
label = seal

idx = 9269
label = pear

Figure I.6: Demonstrative examples of mislabeled samples in cifar10 and cifar100 which have been identified by our
method in the top —CL Set—, but was not identified by confident learning in Northcutt et al., 2021 (Northcutt et al., 2021b)
and thus was not a part of their error set.

I.14. Downstream Classification with Label Error Detection-based Filtering

Here, we show the impact of filtering out different proportions of the training data based on label error predictions, and
obtaining test performance.

I.14.1. AVERAGE ACCURACY

We observe that the gap in performance is low between LEMONOPT and the best method (less than 1% on stanfordCars)
in terms of downstream accuracy (see Figure I.7). LEMONOPT is the best method on miniImageNet.

41

LEMON: Label Error Detection using Multimodal Neighbors

Table I.19: Comparison of LEMONFIX (Ours) with the CLIP similarity baseline on the human labeled error set from
Northcutt et al., 2021 (Northcutt et al., 2021b). In this prior work, the authors used confident learning to identify |CL Set|
candidate label errors in cifar10 and cifar100, |Error Set| of which are confirmed to be mislabels by Mechanical
Turkers. Mean Ranking denotes the average ranking of all error set samples as ranked by each method. Precision @ Top
|CL Set| involves taking the top |CL Set| samples as ranked by each method, and computing the percentage of which are in
the error set. Note that each dataset’s test set consists of 10,000 samples. Numbers in parentheses represent one standard
deviation.

Mean Ranking Precision @ Top |CL Set|
Dataset |CL Set| |Error Set| LEMONFIX CLIP Sim. Oracle LEMONFIX CLIP Sim.

cifar10 275 54 1269.7 (1905.1) 2681.0 (2507.1) 19.64% 6.55% 1.45%
cifar100 2235 585 2357.5 (1981.5) 3642.1 (2719.5) 26.17% 14.41% 10.16%

40 60 80 100
%Data retained

0.5

0.6

0.7

Ac
cu

ra
cy

stanfordCars

40 60 80 100
%Data retained

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

miniImageNet

LEMoN (Ours)
Deep k-NN
Clip Sim.
Clip Logits
Discrepancy

Figure I.7: Downstream accuracy on stanfordCars and miniImageNet.

I.15. Area Under Test Error vs % Data Retained Curve

We compute the area under the test error (i.e., 1-accuracy) vs % data retained curve in Table I.20. Note that the minimum
data retained is 30% (i.e., the minimum amount of data required for training the downstream model).

On cifar10 and miniImageNet, we observe that LEMON performs the best in terms of AUC (i.e., lowest test error).
On stanfordCars, Deep k-NN performs better. However, the gap in performance is low between LEMONOPT and the
best method on all datasets.

Table I.20: Area under the curve: test error vs % data retained for all four classification datasets. Lower is better, and bold
denotes best method.

Method cifar10 cifar100 stanfordCars miniImageNet

CLIP Sim. 4.58 16.89 24.52 8.84
CLIP Logits 4.54 16.90 25.72 8.27
Discrepancy 5.98 20.22 26.57 13.07
Deep k-NN 4.37 17.54 24.46 9.29
Ours 4.23 17.02 24.48 7.91

I.16. Out-of-Domain Robustness

We report the test performance on an Out-of-Domain (OOD) dataset CIFAR-10C (Hendrycks & Dietterich, 2018), when
models are trained and validated on the cifar10 noisy train set. The CIFAR-10C dataset contains 19 corruptions
applied to the cifar10 test set, with varying severity of corruption. Then, robustness is measured as the average test
top-1 class accuracy performance on the CIFAR-10C dataset (across all corruption types and severities), following prior
work (Diffenderfer et al., 2021). We observe that our method outperforms the CLIP similarity baseline on robustness, when
percentage of data retained is less than 60%.

42

LEMON: Label Error Detection using Multimodal Neighbors

40 60 80 100
%Data Retained

0.78

0.80

0.82

0.84

0.86

Ro
bu

st
ne

ss

Clip Sim.
LEMoN (Ours)

Figure I.8: Downstream accuracy on CIFAR-10C, averaged across all corruption types.

43

