CARPRT: CLASS-AWARE PROMPT REWEIGHTING FOR PRE-TRAINED VISION-LANGUAGE MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

When using a pre-trained vision-language model (VLM) to classify an image, we often need to use the pre-trained VLM to compute a similarity score between the image and texts containing a semantic label, e.g., "a photo of a cat", where "a photo of a" is called a prompt and "cat" is the semantic label (a.k.a. a class in classification tasks). The existing studies have shown that the selection of prompts can significantly affect the scoring scheme between a given image and a semantic label, and they proposed a new score via using a *weighting vector* to reassemble scores regarding different prompts. However, these studies assume that all classes should share the same weighting vector. In this paper, we first empirically show that the existing approach is sub-optimal. We subsequently revisit the existing reweighting strategy from a probabilistic view and find an implicit assumption in prior work: the conditional independence of classes and weights, which often does not hold in practice. To cope with this problem, we propose *class-aware prompt* reweighting (CARPRT), a strategy designed to adjust the weighting vector for each class. CARPRT calculates the relevance scores for prompt-class pairs with respect to all images, and identifies the maximum score for each prompt-class pair. These maximum scores are then averaged across prompts for each class to estimate the class-specific weighting vectors, ensuring that prompts are optimally reweighted based on class-specific information. Our experiments demonstrate that CARPRT outperforms the existing reweighting strategy under the image classification tasks.

029 030

004

010 011

012

013

014

015

016

017

018

019

020

021

024

025

026

027

028

031 032

033

1 INTRODUCTION

Vision-language models (VLMs), such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), and 034 LiT (Zhai et al., 2022), have transformed the way models understand visual content by leveraging 035 information from both visual and textual modalities. VLMs can perform zero-shot classification tasks by encoding previously unseen class labels through text prompting (Radford et al., 2021), yet 037 their performance remains highly sensitive to the quality of the prompts (Pham et al., 2023; Radford et al., 2021; Karmanov et al., 2024). These prompt templates, which are human-crafted textual structures, embed downstream class labels for specific tasks. However, relying on a single prompt 040 often results in a lack of robust performance across different downstream tasks. For example, applying 041 a prompt like "a type of animal" for EuroSAT (Helber et al., 2019)-satellite images for land-use 042 classification-leads to poor accuracy due to lack of relevance between the prompt and the image. To 043 address this limitation, prompt ensembling (Radford et al., 2021) averages the text embeddings of 044 multiple prompts containing class names, forming a more reliable class-representative embedding, which in turn improving both accuracy and robustness across target tasks.

Prompt ensembling may yield suboptimal results when the number of prompts is too large and includes some that are unsuitable for the specific downstream tasks (Radford et al., 2021). There is a growing need for more automated approaches that can identify and weight the most effective prompts from a large prompt template pool without human intervention. Allingham et al. (2023) introduced a zero-shot prompt weighting method that assigns weights to each prompt template from the pool based on downstream data, achieving performance comparable to hand-crafted selections. However, this method assumes that the optimal weights are the same across different classes, which overlooks the diverse characteristics of different classes. This raises a question: *is it reasonable to apply the same prompt weights to all classes in a dataset*.

Figure 1: The optimal weights vary across different classes, even within the same downstream dataset. (a) On the Flower102 dataset, the five classes with the most pronounced accuracy discrepancies between zero-shot zero-shot prompt ensembling (ZPE) (Allingham et al., 2023) and class-specific weights are highlighted. (b)
 A heatmap visualizes the weight differences between ZPE and class-specific weights across five components. Red regions indicates larger weight differences, while blue regions indicate smaller or negligible differences, showing how the weights differ for each of the selected classes.

Intuitively, different classes and prompt templates vary in importance. For example, the prompt 071 template "This is a photo of a [label], a type of fruit" is clearly more suitable when the [label] is 072 "strawberry," while "This is a photo of a label, a type of animal" is likely to provide more accurate 073 information for labels like "lamb." To substantiate this intuition, we conducted proof-of-concept 074 experiments on Flower102 (Nilsback & Zisserman, 2008), comparing the classification accuracy of 075 class-specific weights against zero-shot prompt ensembling (ZPE) (Allingham et al., 2023). Class-076 specific weights were derived by applying ZPE separately for each class, tailoring the weights to 077 the unique characteristics of each class. As Figure 1(a) shows, class-specific weights consistently 078 yield higher classification accuracy, indicating that zero-shot prompt weights may not be universally 079 optimal across different classes. Figure 1(b) further highlights significant variations in that the class-specific weights, suggesting that the optimal weights indeed differ across different classes.

Moreover, in Section 3, we present a probabilistic viewpoint based on Bayes' Theorem to understand
 weighted prompt ensembling in the zero-shot classification context, where the interactions of prompts,
 classes and images can be characterized with probabilistic tools. Our analysis uncovers a key implicit
 limitation in the class-shared-weighting (e.g., ZPE) method: the conditional independence assumption
 between the class and weights, which is not always satisfied in practice, resulting in limiting the
 expressivity of class-shared-weighted prompt ensembling schemes.

087 Inspired by our findings, in Section 4, we propose a *class-aware prompt reweighting* method called 088 CARPRT in the zero-shot context¹, aiming to infer a unique weight vector for each class. Building upon CLIP (Radford et al., 2021), CARPRT computes the relevance score for each image and 090 prompt-class pair by calculating the similarity between their respective text and image embeddings. 091 The image is then assigned with a pseudo-class label based on the highest relevance score across 092 all prompt-class pairs. Subsequently, these pseudo-labels are used to derive class-aware weights. The weight vector for each class is formed by selecting the highest score for each prompt-class pair, 093 ensuring that the resulting weights prioritize the most relevant prompts for each class. This aligns the 094 prompt weighting process with the unique characteristics of each class. 095

We verify the efficacy of CARPRT using the open-source CLIP model over multiple benchmarks,
 including ten fine-grained classification tasks, ImageNet (Russakovsky et al., 2015) and its variant
 test sets. Experimental results show that CARPRT outperforms existing prompt reweighting methods
 and achieves state-of-the-art performance in classification accuracy, highlighting the potential of
 class-awareness as a promising new direction in addressing the prompt reweighting problem.

101 102

103 104 2 PRELIMINARY AND RELATED WORKS

CLIP for Zero-shot Image Classification. CLIP (Radford et al., 2021) is a VLM that achieves visual-text alignment through large-scale contrastive pre-training. It consists of an image encoder

106 107

¹We do not assume labelled to be available for estimating the weights, thus the class-specific weighting in the proof-of-concept experiment (Figure 1(a) and 1(b) is no longer applicable.

108 $f: \mathcal{X} \to \mathcal{Z}$ and a text encoder $g: \mathcal{T} \to \mathcal{Z}$, where \mathcal{X} and \mathcal{T} represent the image and text spaces, 109 respectively, and \mathcal{Z} is a shared embedding space. The alignment is driven by maximizing the cosine 110 similarity between the embeddings of matched image-text pairs while minimizing it for non-matched 111 pairs, enabling CLIP to capture semantic correlations between visual and textual data.

This alignment is extended to various downstream vision tasks, such as zero-shot image classification. Consider a class space $\mathcal{Y} = \{y_1, \dots, y_C\}$, each class y_c is mapped to a text description t_c via a prompt template $p: \mathcal{Y} \to \mathcal{T}$, e.g., $t_c =$ "A photo of $\{y_c\}$.". The text encoder $g(\cdot)$ embeds these descriptions into \mathcal{Z} , i.e., $z_c^{\mathrm{T}} = g(t_c)$, which results in C class embeddings, denoted as

$$\begin{bmatrix} \boldsymbol{z}_1^{\mathrm{T}} & \boldsymbol{z}_2^{\mathrm{T}} & \cdots & \boldsymbol{z}_C^{\mathrm{T}} \end{bmatrix}^{\top}$$
 (1)

(2)

Then for image $x \in \mathcal{X}$, CLIP predicts the label by selecting the class whose text embedding has the highest cosine similarity $sim(\cdot, \cdot)$ with the image embedding $z^{I} = f(x)$, such that

.....

123

124

117

121 122

This enables zero-shot classification based on semantic alignment without task-specific fine-tuning. Yet, when a prompt template lacks task-specific relevance, the semantic inconsistency between the prompt template and the visual context can lead to misaligned class embeddings.

 $\hat{y} = \arg \max_{c \in \{1, \dots, C\}} \operatorname{sim} (\boldsymbol{z}^{\mathrm{I}}, \boldsymbol{z}_{c}^{\mathrm{T}}).$

Prompt Ensembling (PE). Radford et al. (2021) aim to address the issue above by prompt ensembling (PE) that leverages *multiple* prompt templates and computes their text representations, to improve the robustness of class embeddings. PE introduces $\mathbb{P} = \{p_i\}_{i=1}^n$ as a pool of prompt templates, where each p_i maps class y_c to a textual description $\mathbf{t}_{i,c} = p_i(y_c)$, such that each $\mathbf{t}_{i,c}$ provides a semantically diverse perspective for y_c . Then, the text encoder $g(\cdot)$ embeds all these *n* descriptions for each class y_c , which eventually yields the class embeddings for $\forall y_c \in \mathcal{Y}$, such that

$$\begin{bmatrix} \boldsymbol{z}_{1}^{\mathrm{T}} \\ \vdots \\ \boldsymbol{z}_{C}^{\mathrm{T}} \end{bmatrix} = \frac{1}{n} \left(\begin{bmatrix} \boldsymbol{z}_{1,1}^{\mathrm{T}} & \boldsymbol{z}_{2,1}^{\mathrm{T}} & \cdots & \boldsymbol{z}_{n,1}^{\mathrm{T}} \\ \vdots & \vdots & \ddots & \vdots \\ \boldsymbol{z}_{1,C}^{\mathrm{T}} & \boldsymbol{z}_{2,C}^{\mathrm{T}} & \cdots & \boldsymbol{z}_{n,C}^{\mathrm{T}} \end{bmatrix} \cdot \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix} \right).$$
(3)

In other words, for each y_c , its class embedding z_c^{T} is obtained by *averaging* the embeddings $z_{i,c}^{\mathrm{T}}$ derived from all prompts $p_i \in \mathbb{P}$. In doing so, PE reduces sensitivity to each individual suboptimal prompt by leveraging the collective semantic information captured by a diverse set of prompts.

Weighted Prompt Ensembling. Allingham et al. (2023) propose ZPE that extends PE to further 139 mitigate the impact of task-irrelevant prompts. Instead of uniform weighting as in PE (Eq. 3), ZPE 140 scores each prompt and assigns higher weights to prompts with higher task-relevance scores, by 141 using an unlabeled downstream dataset $\mathbb{D} = \{x_j\}_{j=1}^m$. Concretely, define $w = [w_1, \ldots, w_n]^\top$ as the weights encoding the relevance of each prompt to the task. The weight for prompt $p_i \in \mathbb{P}$ is computed as $w_i = \sum_j \max_{c \in \{1, \ldots, C\}} \sin(\mathbf{z}_j^{\mathrm{T}}, \mathbf{z}_{i, y_c}^{\mathrm{T}})/m$, where $\mathbf{z}_j^{\mathrm{T}}$ is the image embedding of x_j , and $\mathbf{z}_{i, y_c}^{\mathrm{T}}$ 142 143 144 is the text embedding under prompt p_i for class y_c . This quantifies w_i as the average maximum 145 similarity across all samples, between the image embeddings and the text embeddings of prompt p_i 146 over all classes. This leads to the class embeddings for $\forall y_c \in \mathcal{Y}$ as 1/17

$$\begin{bmatrix} \mathbf{z}_{1}^{\mathrm{T}} \\ \vdots \\ \mathbf{z}_{C}^{\mathrm{T}} \end{bmatrix} = \frac{1}{n} \left(\begin{bmatrix} \mathbf{z}_{1,1}^{\mathrm{T}} & \mathbf{z}_{2,1}^{\mathrm{T}} & \cdots & \mathbf{z}_{n,1}^{\mathrm{T}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{z}_{1,C}^{\mathrm{T}} & \mathbf{z}_{2,C}^{\mathrm{T}} & \cdots & \mathbf{z}_{n,C}^{\mathrm{T}} \end{bmatrix} \cdot \begin{bmatrix} w_{1} \\ \vdots \\ w_{n} \end{bmatrix} \right).$$
(4)

This implies a *weighted-aggregation* of the embeddings $z_{i,c}^{T}$ obtained from all prompts $p_i \in \mathbb{P}$ with respect to w, enabling ZPE to focus more on prompts better aligned with the current task.

Limitations. While ZPE offers improvements over *mean-aggregated* PE, it still assumes that the optimal weight for each prompt p_i is *constant* across all classes and ignores a crucial factor as Figure 1 reveals: *the same prompt can contribute differently to classification depending on the class*. Mathematically, this calls for an expansion from the weight vector w to a matrix $\mathbf{W} = {\mathbf{W}_c}_{y_c \in \mathcal{Y}}$, where each class y_c has its own set of weights $\mathbf{W}_c = [w_{1,c}, \dots, w_{n,c}]^{\top}$, leading to

$$\begin{bmatrix} \mathbf{z}_{1}^{\mathrm{T}} \\ \vdots \\ \mathbf{z}_{C}^{\mathrm{T}} \end{bmatrix} = \frac{1}{n} \left(\begin{bmatrix} \mathbf{z}_{1,1}^{\mathrm{T}} & \mathbf{z}_{2,1}^{\mathrm{T}} & \cdots & \mathbf{z}_{n,1}^{\mathrm{T}} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{z}_{1,C}^{\mathrm{T}} & \mathbf{z}_{2,C}^{\mathrm{T}} & \cdots & \mathbf{z}_{n,C}^{\mathrm{T}} \end{bmatrix} \cdot \begin{bmatrix} w_{1,1} & w_{1,2} & \cdots & w_{1,C} \\ \vdots & \vdots & \ddots & \vdots \\ w_{n,1} & w_{n,2} & \cdots & w_{n,C} \end{bmatrix} \right).$$
(5)

This reformulation captures the varying relevance of each prompt for different classes, which enables
 more flexible aggregation of prompted embeddings, motivating a principled reweighting scheme that
 better reflects such class specificity. Existing PE methods have largely overlooked this aspect, nor
 attempted to understand *why* class specificity is necessary to determine prompt relevance and *how* statistical tools help to address it. To bridge this gap, we next present a probabilistic framework that
 establishes a principled connection between *class-aware reweighting* and zero-shot classification.

168 169

170

177

178 179

181 182

183

189

190 191

196 197

3 UNDERSTANDING PROMPT REWEIGHTING: A PROBABILISTIC VIEWPOINT

171 Eq. 2 describes zero-shot classification with CLIP as predicting the label \hat{y}^* given a query image x^* . Equivalently, this task can be framed as modeling $\Pr(y^* \mid x^*, \mathbb{P}, \mathbb{D})$, i.e., the conditional probability of label y^* given input x^* , the set of prompts \mathbb{P} , and the unlabeled dataset $\mathbb{D} = \{x_j\}_{j=1}^m$, regardless of the specific PE strategy used (whether based on Eq. (3), Eq. (4), or Eq. (5)). To probe how *prompt reweighting* influences this task, we now analyze its probabilistic structure, particularly taking into account the effect of prompts and weights.

Let $\mathbf{W} \in \mathcal{W}$ be a weight matrix. We begin by marginalizing over the weight space \mathcal{W} as

$$\Pr(y \mid \boldsymbol{x}, \mathbb{P}, \mathbb{D}) = \int_{\mathcal{W}} \Pr(y \mid \boldsymbol{x}, \mathbb{P}, \mathbb{D}, \mathbf{W}) \Pr(\mathbf{W} \mid \boldsymbol{x}, \mathbb{P}, \mathbb{D}) d\mathbf{W}$$
$$= \int_{\mathcal{W}} \Pr(y \mid \boldsymbol{x}, \mathbb{P}, \mathbb{D}, \mathbf{W}) \Pr(\mathbf{W} \mid \mathbb{P}, \mathbb{D}) d\mathbf{W},$$
(6)

where the second equation results from the conditional independence between query image x^* and weights W, as W is not updated based on x^* in the zero-shot setting. This decomposition suggests two essential tasks in zero-shot classification: (i) accurately modeling the weights Pr(W | P, D) and (ii) utilizing Pr(y | x, P, D, W) to predict the label given a specific weight configuration. As such, we will continue to explore *how further expansions can inform and align with practical implementations*.

3.1 MODELING $Pr(\mathbf{W} \mid \mathbb{P}, \mathbb{D})$

Given m i.i.d samples, we express this probability using the Bayes' rule as

$$\Pr(\mathbf{W} \mid \mathbb{P}, \mathbb{D}) \propto \Pr(\mathbf{W} \mid \mathbb{P}) \Pr(\mathbb{D} \mid \mathbf{W}, \mathbb{P}) = \Pr(\mathbf{W} \mid \mathbb{P}) \prod_{j=1}^{m} \Pr(\mathbf{x}_{j} \mid \mathbf{W}, \mathbb{P}),$$
(7)

where $\Pr(x_j \mid \mathbf{W}, \mathbb{P})$ is further marginalized over the possible classes for each sample x_j , such that

$$\Pr(\boldsymbol{x}_j \mid \mathbf{W}, \mathbb{P}) = \sum_{y_c \in \mathcal{Y}} \Pr(\boldsymbol{x}_j \mid y_c, \mathbf{W}, \mathbb{P}) \Pr(y_c \mid \mathbf{W}, \mathbb{P}).$$
(8)

This allows us to express the likelihood $Pr(x_j | y_c, \mathbf{W}, \mathbb{P})$ as a sum over all classes, weighted by their the conditional class probabilities $Pr(y_c | \mathbf{W}, \mathbb{P})$.

Modeling $Pr(y_c | \mathbf{W}, \mathbb{P})$. When domain knowledge is unavailable, a common choice for estimating the probability $Pr(y_c | \mathbf{W}, \mathbb{P})$ is to assume a uniform prior over the classes. However, in zero-shot classification, we assume the unlabeled dataset, when used with the predictions from a pre-trained CLIP, can provide a reliable empirical estimate of the class prior distribution.

Proposition 1. Let $\mathbb{D} = \{x_j\}_{j=1}^m$ be an unlabeled dataset with unobserved classes $\mathcal{Y} = \{y_1, \dots, y_C\}$, and $\Pr(y_c)$ be the true class probability for class y_c . Let \hat{y} be the pseudo label produced by a pretrained model. For sufficiently large m, the empirical class distribution $\Pr(y_c \mid \mathbf{W}, \mathbb{P})$ converges to $\Pr(y_c)$. Specifically, for any $\epsilon > 0$, we have: $\Pr\left\{ |\Pr(y_c \mid \mathbf{W}, \mathbb{P}) - \Pr(y_c)| \ge \epsilon \right\} \le 2 \exp\left(-2m\epsilon^2\right)$,

Remark 1. *Proposition 1 implies that we can approximate true distributions by:*

$$\hat{\Pr}(y_c \mid \mathbf{W}, \mathbb{P}) = \frac{n_c}{\sum_{y_{c'} \in \mathcal{Y}} n_{c'}}, \ \forall y_c \in \mathcal{Y},$$
(9)

213 214 215

211 212

where $n_c = \sum_{j=1}^m \mathbb{1}_{\hat{y}_j = y_c}$ denotes the number of times y_c was predicted over all samples in \mathbb{D} . These predictions \hat{y}_j can be produced by following Eq. 2 in using CLIP.

Modeling $Pr(x_j | y_c, \mathbf{W}, \mathbb{P})$. This likelihood term represents the probability of observing an image $x_j \in \mathcal{X}$ given a class y_c , prompt set \mathbb{P} , and weight matrix \mathbf{W} . To characterize it, we use Energy-based Models (EBMs) (LeCun et al., 2006) capable of modeling complex high-dimensional distributions. EBMs allow us to express any probability distribution by defining an *unnormalized* energy function, with the normalization enforced by a partition function. The likelihood $p(x_j | y_c, \mathbf{W}, \mathbb{P})$ can thus be formulated in the form of an EBM as

$$p(\boldsymbol{x}_j \mid y_c, \mathbf{W}, \mathbb{P}) = \frac{1}{Z(y_c, \mathbf{W}, \mathbb{P})} \exp\left\{ \operatorname{sim}(\boldsymbol{z}_j^{\mathrm{I}}, \boldsymbol{z}_c^{\mathrm{T}}) \right\},$$
(10)

where $z_j^{\rm I} = f(x_j)$ and $z_c^{\rm T} = g(p_i(y_c))$. In this way, $\sin(z_j^{\rm I}, z_c^{\rm T})$ can be seen as the negative of the energy function. In EBMs, configurations with higher similarity (and hence lower energy) are more likely. The partition function $Z(y_c, \mathbf{W}, \mathbb{P}) = \int_{\mathcal{X}} \exp(\sin(z^{\rm I}, z_c^{\rm T})) dx$ ensures that the likelihood is properly normalized across all possible images. While estimating the exact likelihood is intractable, in classification we are interested in the relative likelihoods of different classes for a given image.

Lemma 1 (Relative Likelihood). The likelihood of an image x, given class c, prompt weights W and a prompt pool \mathbb{P} , following the EBM defined in Eq. (10), is proportional to

$$\Pr(\boldsymbol{x}_j \mid y_c, \mathbf{W}, \mathbb{P}) \propto \exp\left\{ \operatorname{sim}(\boldsymbol{z}_j^{\mathrm{I}}, \boldsymbol{z}_c^{\mathrm{T}}) \right\} \propto \exp\left\{ \sum_{i=1}^n (w_{i,c} \, \boldsymbol{z}_{i,c}^{\mathrm{T}})^{\mathrm{T}} \cdot \boldsymbol{z}^{\mathrm{I}} \right\},\tag{11}$$

where $z_j^{I} = f(x_j)$ and $z_{i,c}^{T} = g(p_i(y_c))$ are image embeddings of sample x_j and text embeddings of class y_c under prompt p_i , respectively.

Class-aware Weighting Matters. Lemma 1 (proof in Appendix E) results from a *general* formulation of PE. For each class y_c , $sim(z_j^I, z_c^T)$ ends up with a linear combination of image-class similarities over all *n* prompt-class pairs. Each pair has a distinct embedding $z_{i,c}^T$ and weight $w_{i,c}$ reflects its contribution to the classification of y_c . Under this framework, ZPE (Allingham et al., 2023) is a *special* case with a conditional independence assumption, i.e., $w_{i,c} = w_i$ for all $y_c \in \mathcal{Y}$ given W and \mathbb{P} . While simplifying the model, this assumption constrains the range of likelihood functions that ZPE can represent. We now examine the representational limitations of such class-independent weighting schemes.

Proposition 2. Let \mathcal{X} be the image space, \mathcal{Y} be the class space. Given a set of prompts \mathbb{P} , for any prompt weighting scheme S (cf. Eqs. (3-5)), define the representable likelihood set \mathcal{F}_S as:

247

256

257 258

259

260

261

266

267

268

269

222 223

229

230

231 232 233

236

$$\mathcal{F}_{S} = \{f: \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_{+} \mid \exists \mathbf{W} \in \mathcal{W}_{S}, \mathbb{P}, \text{ s.t. } f(\boldsymbol{x}, y_{c}) \propto \Pr(\boldsymbol{x} \mid y_{c}, \mathbf{W}, \mathbb{P})\}$$

where \mathcal{W}_S is the weight space under the scheme S. Let \mathcal{F}_{CI} and \mathcal{F}_{CA} be the representable likelihood set induced from class-independent weighting (cf. Eq. (4)) and class-aware weighting (cf. Eq. (5)) schemes. Then, we have: $\exists f^* \in \mathcal{F}_{CA}$ such that $\forall f_{CI} \in \mathcal{F}_{CI}, \exists x \in \mathcal{X}, y_c \in \mathcal{Y}$ where $f^*(x, y_c) \neq f_{CI}(x, y_c)$.

Remark 2. Proposition 3 shows that class-independent weighting (e.g., ZPE) cannot fully capture the variety of likelihood functions representable by class-aware weighting. This further indicates that prompt weights $w_{i,c}$ must be class-specific to ensure that each class benefits from the most relevant prompts, as determined by the visual-text similarity measured by CLIP.

3.2 MODELING $\Pr(y \mid \boldsymbol{x}, \mathbb{P}, \mathbb{D}, \mathbf{W})$

Zero-shot classification is a *training-free* process, meaning that we cannot optimize prompt weights using standard learning methods. We approximate $\Pr(y^* | \boldsymbol{x}^*, \mathbb{P}, \mathbb{D}, \mathbf{W})$ with $\Pr(y^* | \boldsymbol{x}^*, \mathbb{P}, \hat{\mathbf{W}})$, where $\hat{\mathbf{W}}$ is considered a point estimate that captures information from \mathbb{D} , as we have discussed² in Eq. (9) and Eq. (11). Concretely, by considering each individual prompt from the prompt set \mathbb{P} , we have

$$\Pr(y^* | \boldsymbol{x}^*, \mathbb{P}, \hat{\mathbf{W}}) = \sum_{p_i \in \mathbb{P}} \Pr(y^* | \boldsymbol{x}^*, p_i, \hat{\mathbf{W}}) \propto \frac{\exp\left(\sum_{i=1}^n (w_{i,c} \, \boldsymbol{z}_{i,c}^{\mathsf{T}})^\top \cdot \boldsymbol{z}_i^{\mathsf{T}}\right)}{\sum_{c' \in 1, \dots, C} \exp\left(\sum_{i=1}^n (w_{i,c'} \, \boldsymbol{z}_{i,c'}^{\mathsf{T}})^{\mathsf{T}} \cdot \boldsymbol{z}_i^{\mathsf{T}}\right)}, \quad (12)$$

By now, we have framed CLIP-based zero-shot classification in a probabilistic framework (Eq. (6)), justified class-aware prompt reweighting (Propositions 1 and 3), and interpreted how class prediction for a query image can be performed (Eq. (12)) under this framework.

²The relevant content of weights prior $\Pr(\mathbf{W}|\mathbb{P})$ is deferred to Appendix **D** to keep the focus of the main text on class-aware reweighting, which is the central theme of this study.

Figure 2: Overview of CARPRT. The model first generates the text input with the template pool \mathbb{P} of prompt templates based on the label space \mathcal{Y} . These text inputs are then processed by a text encoder g to generate text representations. Simultaneously, an image encoder f generates representations for the downstream unlabeled images. The score tensor is generated by comparing the text and image representations, and these scores are then used to estimate the weight matrix \mathbf{W} , which adjusts the importance of each prompt template for each class.

4 CLASS-AWARE PROMPT REWEIGHTING FOR VLMS

We now introduce CARPRT, a minimalistic yet effective implementation that adheres to the key principles established in Section 3. CARPRT is designed to enhance zero-shot classification with CLIP by adaptively reweighting prompts according to their relevance to each class.

Overview. Given an unlabeled dataset $\mathbb{D} = \{x_j\}_{j=1}^m$, an unknown class label space $\mathcal{Y} = \{y_1, \dots, y_C\}$, a fixed prompt set $\mathbb{P} = \{p_i\}_{i=1}^n$, and a pre-trained CLIP model, define the weight matrix for all prompts in \mathbb{P} as \mathbf{W} , such that $\mathbf{W} = \{\mathbf{W}_c\}_{y_c \in \mathcal{Y}}$, where each $\mathbf{W}_c = [w_{1,c}, \dots, w_{n,c}]^\top$ lies on an (n-1)-dimensional simplex. The goal of CARPRT is to find a *class-aware weight matrix* $\mathbf{W}^* \in \mathbf{W}$ for classifying the images $\forall x \in \mathbb{D}$ with CLIP, without using any true labels. As shown in Figure 2, CARPRT consists of two main stages: *Score Calculation* and *Weight Calculation*. The full process is described in Algorithm 4.1.

4.1 PROMPT RELEVANCE SCORE CALCULATION

As Eqs.(7-8) suggest, the key to estimating $\Pr(\mathbf{W}|\mathbb{P}, \mathbb{D})$ lies in individual likelihood $\Pr(\mathbf{x}_j|y_c, \mathbf{W}, \mathbb{P})$. According to Lemma 1, $\Pr(\mathbf{x}_j|y_c, \mathbf{W}, \mathbb{P})$ is fully consistent with the similarity score provided by CLIP. Thus, in the first stage, CARPRT calculates the similarity scores between each image embedding and each prompted-class embedding. Given an input image $\mathbf{x}_j \in \mathbb{D}$, the prompt template $p_i \in \mathbb{P}$ and the relevance score $s_{j,i,c}$ of \mathbf{x}_j and p_i belongs to the class $y_c \in \mathcal{Y}$ can be expressed by:

$$s_{i,i,c} = \sin(\boldsymbol{z}_i^{\mathrm{T}}, \boldsymbol{z}_{i,c}^{\mathrm{T}}) \tag{13}$$

where $z_j^{I} = f(x_j)$ denotes the image embedding and $z_{i,c}^{T} = g(p_i(y_c))$ refers the text embedding generated for class y_c under prompt p_i . Eq. (13) provides a unnormalized estimate of $\Pr(x_j|y_c, \mathbf{W}, \mathbb{P})$ and serves as the foundation for reweighting prompt-template combinations.

Correcting Frequency Bias. Before moving on to weight calculation, we take an additional debiasing
 step to correct the relevance scores. Frequency bias arises when the frequent concepts that appear
 in test images D, but do not necessarily correspond to the target classes for prediction. Allingham
 et al. (2023) propose to mitigate this bias by subtracting expected scores derived from the pre-training
 dataset of CLIP. However, since neither the true pre-training dataset of CLIP, nor the open-sourced
 Laion-400M (Schuhmann et al., 2021) used as pre-training data in ZPE, are not publicly available at
 the time of this study, we adapt this approach for CARPRT by using test data instead.

324	Algorithm 1 Class-Aware Prompt Reweighting (CARPRT)
325	Input: Pre-trained CLIP with image encoder f and text encoder g, a prompt set \mathbb{P} , an unlabeled dataset \mathbb{D} , a
326	candidate label space \mathcal{Y} and the temperature parameter τ and the normalization scale λ .
327	1: Generate prompted-class texts $p_i(y_c), \forall p_i \in \mathbb{P}, \forall y_c \in \mathcal{Y};$
328	2: Encode image embeddings $\boldsymbol{z}_j^{\mathrm{I}} = f(\boldsymbol{x}_j), \forall \boldsymbol{x}_j \in \mathbb{D};$
329	3: Encode text embeddings $\boldsymbol{z}_{i,c}^{\mathrm{T}} = g(p_i(y_c)), \forall p_i \in \mathbb{P}, \forall y_c \in \mathcal{Y};$
330	4: Obtain the relevance score set $\mathbb{S} = \{s_{j,i,c}\}_{i=1,c=1}^{m,n,C}$ by Eq. (13);
331	5: Obtain the normalized score by Eq. (14);
332	6: Obtain the pseudo-labels set: $\hat{\mathbb{Y}} = \{\hat{y}_{j,i}\}_{i=1,i=1}^{m,n}$;
333	7: Derive the weight matrix \mathbf{W}^* by Eq. (15) and Eq. (16);
334	Output: a class-aware prompt weight matrix \mathbf{W}^* .
UU-T	

337

338

339

340 341

342 343

344

345

347

Specifically, CARPRT normalizes the relevance scores by subtracting the expected scores calculated over a subset of the test data. Let S denote the relevance scores computed with Eq. (13) from all test data. We set a sampling rate γ , which specifies the proportion of test data scores used in normalization. Then, the corrected relevance score for a sample x_i , prompt p_i and the class y_c is:

$$\bar{s}_{j,i,c} = s_{j,i,c} - \frac{1}{\gamma|\mathbb{S}|} \sum_{j'=1}^{\gamma|\mathbb{S}|} s_{j',i,c}.$$
(14)

In this way, the corrected scores better reflect the actual relative importance of prompts in relation to the specific target classes being predicted.

4.2 CLASS-AWARE WEIGHT CALCULATION

348 In the second stage, CARPRT estimates the class-specific weights for each prompt-class combination 349 based on the relevance scores $s_{j,i,c}$ computed in Eq. (13). These weights adjust the importance of each prompt template, ensuring that the most relevant prompts are emphasized for each class. The 350 weight estimation process unfolds as follows. 351

352 First, we create a pseudo-label set $\hat{\mathbb{Y}} = \{\hat{y}_{j,i}\}_{j=1,i=1}^{m,n}$, where the pseudo-label \hat{y}_{ji} for each sample x_j under prompt p_i is determined as the class y_c that maximizes the relevance score $s_{j,i,c}$, *i.e.*, 353 354 $\hat{y}_{ji} = \arg \max_{y_c \in \mathcal{Y}} s_{j,i,c}$. Then, we compute intermediate weight $w'_{i,c}$ for each prompt-class pair 355 by aggregating the scores $s_{i,i,c}$ across all images x_i predicted to belong to class y_c under prompt p_i . This can be expressed as: 356 $w_{i,c}' = \frac{\sum_{j=1}^{m} s_{j,i,c} \mathbb{1}_{\hat{y}_{ji}} = y_c}{\sum_{j} \mathbb{1}_{\hat{y}_{ji}} = y_c}.$

359 360

361

362

364 365 Here, $\mathbb{1}_{\hat{y}_{ji}=y_c}$ is an indicator function that is 1 if $\hat{y}_{j,i}=y_c$, and 0 otherwise. This aligns with the empirical estimate of the class prior probabilities as indicated by Eq. (9). Afterward, a softmax normalization is applied to these intermediate weights to obtain the final weight $w_{i,c}^*$,

$$w_{i,c}^{*} = \frac{\exp(w_{i,c}^{\prime}/\tau)}{\sum_{c} \exp(w_{i,c}^{\prime}/\tau)},$$
(16)

(15)

where τ is the temperature that controls the sharpness of the distribution. The use of softmax ensures 366 the probabilistic validity of the weights for each class, i.e., $\sum_{i=1}^{n} w_{i,c} = 1$. By constructing $w_{i,c}^*$ in 367 this manner, we integrate empirical class distributions into the reweighting scheme, ensuring that w_{ic}^* 368 reflects both the relevance scores (Eq. (8)) and the estimated class priors (Eq. (9)), thus providing a 369 principled inference approach to *class-aware prompt reweighting*. 370

371 372

373

5 **EXPERIMENTS**

374 **Setup**. We evaluate the effectiveness of CARPRT on ten fine-grained classification benchmarks, include Caltech101, DTD, EuroSAT, Aircraft, Food101, Flowers102, Pets, Cars, Sun397 and UCF101. 375 376 We include further evaluations on ImageNet along with its variant test sets: ImageNet-R, ImageNet-A, ImageNet-Sketch, and ImageNet-V2. See Appendix B for details of the datasets. We adhere to 377 the established experimental protocol by (Zhou et al., 2022b). For prompt templates, we adopt

Table 1: Accuracy (%) comparison between baselines and our method % on various fine-grained classification datasets using CLIP-ViT-B/16 and CLIP-ResNet50 backbones. Bold value represents the highest accuracy on each column. Standard deviations are shown on the second row for ZPE and CARPRT

	Caltech101	DTD	EuroSAT	Aircraft	Food101	Flower102	Pets	Cars	SUN397	UCF101	Average
					CLIP-ViT-l	B/16					
Equal Weight	92.50	46.88	51.86	21.49	85.34	64.21	79.46	65.21	64.92	67.41	63.93
ZDE	92.49	47.25	52.26	21.60	85.48	66.10	79.85	64.73	64.87	68.28	64.29
ZPE	± 0.08	± 0.63	± 0.03	± 0.28	± 0.05	± 0.06	± 0.58	± 0.07	± 0.02	± 0.17	± 0.20
CADDT	92.60	47.74	55.85	22.64	85.78	68.58	82.48	65.02	65.49	68.61	65.48
CARPRI	± 0.07	± 0.68	± 0.03	± 0.24	± 0.05	± 0.11	± 0.49	± 0.07	± 0.01	± 0.16	± 0.19
				(CLIP-ResN	et50					
Equal Weight	86.41	41.69	30.34	16.05	75.53	56.95	75.98	55.74	59.32	60.06	55.81
705	85.83	41.94	30.95	16.24	75.61	56.67	74.79	55.67	59.21	61.06	55.80
ZPE	± 0.06	± 0.39	± 0.03	± 0.17	± 0.07	± 0.07	± 0.63	± 0.03	± 0.01	± 0.25	± 0.17
CADDDT	86.63	42.66	30.88	16.29	76.08	60.01	76.94	55.75	59.90	61.87	56.70
CARPRI	+0.06	+0.42	+0.03	+0.15	+0.06	+0.09	+0.51	+0.03	± 0.01	± 0.16	+0.16

the pool of 247 prompts as used by Allingham et al. (2023). Additionally, we conduct ablation and hyper-parameter studies to analyze the behavior of our method. Details regarding baselines, implementations and our anonymous code repository are in Appendix C.

We note that the results of ZPE reported in Tables 1 and Tables 2 differ from those in the original 398 study Allingham et al. (2023). This discrepancy arises primarily because ZPE used the LAION-400M (Schuhmann et al., 2021) dataset as pre-trained data for normalization to correct for frequency biases. 400 The dataset is no longer publicly accessible, precluding us from evaluating ZPE with the same 401 normalization process. Also, the ZPE implementation used a batch size of 5,000, a configuration we 402 could not replicate due to computational limitations.

403 404 405

378

379

380

381

393 394

395

396

397

399

RESULTS ON FINE GRAINED DATASETS 5.1

406 **Overall Comparison**. Following the data split used by Zhou et al. (2022b), we evaluate the model 407 performances on 10 fine-grained classification tasks, as shown in Table 1. Our method outperforms 408 the baselines in most tasks. For example, on EuroSAT, we achieve a significant improvement of 3.59% 409 over ZPE using the CLIP-ViT-B/16 backbone. Similarly, on Flower102, we record a 2.48% increase 410 in accuracy. On average, using the CLIP-ViT-B/16 backbone, our method yields an improvement of 1.19% over ZPE across all datasets, demonstrating the overall efficacy of our method. 411

412 Scalability. We further evaluate the scalability of CARPRT using the CLIP-ResNet50 backbone. 413 As shown in the lower half of Table 1, our method consistently outperforms ZPE. For example, on 414 EuroSAT, CARPRT achieves an improvement of 2.93% over ZPE, and a 0.92% increase is observed 415 on average. These results demonstrate that our approach generalizes well across different backbone.

416 Quality of Prompts Matters. The performance gain is less obvious or there is a performance 417 gap on some datasets, such as Cars and Aircraft. This may be attributed to the lower quality of 418 the pseudo-labels generated by CLIP for these datasets, which directly impacts the performance of 419 our method, as it relies heavily on pseudo-label accuracy. Additionally, the template pool used for 420 these datasets was manually crafted for the entire dataset, rather than being tailored to individual 421 classes(Radford et al., 2021; Zhai et al., 2022). This may result in reduced class differentiation, 422 leading to smaller variations in the class-specific weights. Nonetheless, our method exhibits superior 423 performance overall, particularly when class-specific prompt relevance is critical.

- 424
- 425 426

5.2 RESULTS ON IMAGENET AND ITS VARIANTS DATASETS RESULT

427 Overall Comparison. We also evaluate the performance of our method across ImageNet and its 428 variant datasets (ImageNet-A, ImageNet-R, ImageNet-Sketch, and ImageNet-V2), as shown in 429 Table 2. Our method outperforms the baselines, though the gains are modest. For CLIP-ViT-B/16, CARPRT achieves 60.70 %, compared to 60.51 % accuracy on average. When using the CLIP-430 ResNet50 backbone, our method also shows an improvement in accuracy, i.e., 53.81% (ZPE) vs 431 53.72% (CARPRT) on average.

- /1 -	\sim	\sim
4	3	2

Table 2: Accuracy (%) comparison between baselines and our method % on ImageNet and its variants using CLIP-ViT-B/16 and CLIP-ResNet50 backbones. **Bold** value represents the highest accuracy on each column. Standard deviations are shown on the second row for ZPE and CARPRT.

	ImageNet	-A	-R	-Sketch	-V2	Equal Weig
	CI	LIP-ViT-B	/16			
Average	67.59	49.35	77.33	46.92	61.37	60.51
705	67.42	49.84	77.28	47.14	61.11	60.58
ZFE	± 0.01	± 0.12	± 0.03	± 0.02	± 0.11	± 0.06
CADDT	67.81	49.12	77.48	47.53	61.58	60.70
CARINI	± 0.01	± 0.07	± 0.04	± 0.02	± 0.09	± 0.05
	CL	IP-ResNe	et50			
Equal Weight	59.12	46.25	69.05	39.05	54.05	53.50
7DE	59.78	46.37	69.27	39.14	54.07	53.72
	± 0.01	± 0.08	± 0.01	± 0.07	± 0.09	± 0.06
CADDT	59.98	46.19	69.38	39.25	54.26	53.81
CARFKI	± 0.02	± 0.09	± 0.01	± 0.04	± 0.03	± 0.06

Figure 3: Hyper-Parameter Analysis on Fine-Grained Datasets. The shaded area represents the standard deviation. Subfigure (a) illustrates the variation of accuracy with temperature adjustments. Subfigure (b) demonstrates the stability of accuracy across different sampling ratios.

Analysis of Incremental Improvements in ImageNet Performance. The improvements on Ima-geNet and its variants datasets are smaller compared to those observed on the fine-grained datasets, for the following reasons. First, frequency bias is likely more pronounced in ImageNet and its variants. Given our use of a relatively small batch size of 512 and the exclusion of larger datasets such as LAION-400M for debiasing, the skewed class distribution may have negatively impacted the results. Second, the quality of the template pool plays a crucial role in model performance. According to (Allingham et al., 2023), the template pool was constructed by combining templates from 10 fine-grained datasets and 6 ImageNet and its variants datasets. Fine-grained datasets benefit more from the pool, as they can exploit class-specific templates. In contrast, the more diverse categories in ImageNet and its variants find less relevant information in the fine-grained templates, deriving less benefit from these templates. This mismatch reduces the overall effectiveness of our method on ImageNet datasets as it relies on the information provided by the templates. These limitations suggest that addressing frequency bias and improving the relevance of templates for broader datasets could lead to more substantial performance improvements in future iterations of CARPRT.

Hyper-Parameter Sensitivity. Figure 3 illustrates two key hyper-parameters on the performance of CARPRT: the temperature parameter τ and the sampling ratio γ used during score normalization, spanning 10 fine-grained datasets.

The temperature parameter τ controls the sharpness of the weight distribution across prompt templates, directly affecting how strongly the model emphasizes relevant prompts. As illustrated in Figure 3(a), the accuracy peaks at a temperature of 3.0 and maintains relatively high stability across a range of values, with a slight decline as the temperature further increases. The under-performance observed at $\tau = 0.5$ can be explained by the way temperature affects the distribution of weights across prompt templates. A lower temperature, such as 0.5, sharpens the focus on the most probable prompts

490 491

487

488 489 Table 3: Accuracy (%) comparison with uniform weight and class-aware weights across 10 finegrained datasets. **Bold** value represents the highest accuracy on each column.

	Caltech101	DTD	EuroSAT	Aircraft	Food101	Flower102	Pets	Cars	SUN397	UCF101	Average
Uniform	92.48	47.13	54.17	21.64	85.35	67.12	81.04	65.09	64.99	68.03	64.46
Class-Aware	92.60	47.49	55.85	22.53	85.78	68.41	82.39	65.02	65.49	68.61	65.42

492 but also reduce the distribution's spread. Given the use of 247 prompt templates, even those with 493 marginal relevance collectively contribute to enhancing model robustness and generalization through 494 an ensemble effect. This effect allows the model to capture a wider range of information cues. 495 When the temperature is set too low, the model becomes overly concentrated on dominant prompts, 496 potentially overlooking broader information captured by less dominant prompts. The sampling 497 ratio γ governs the fraction of the test data used for estimating the expected scores during bias 498 correction. As Figure 3(b) shows, accuracy consistent performance across different sampling levels, implying robustness with varying data availability. Details regarding hyper-parameter analysis are in 499 Appendixe H. 500

501 **Class-aware Weight Matters**. We further examine the "uniformity" of weight vectors. We test 502 with a configuration where the class-aware weights derived by CARPRT are collapsed into a uniform weight vector as $w_i^{\rm u} = \frac{1}{C} \sum_c w_{i,c}$. This aggregation assesses whether the complexity of 504 class-specific weights is necessary or if a simplified, averaged representation can achieve similar 505 performance. It helps determine if the merits of class-aware weights lies in their specificity or if a general representation suffices for certain tasks. Results in Table 3 show that models with class-aware 506 weights consistently outperform those using uniform weights. The improvement is most evident in 507 datasets with pronounced class-specific traits, such as EuroSAT, Flower102, and Pets, where accuracy 508 increases significantly. These results highlight the importance of adapting weights to class-specific 509 traits, as uniform weights may hinder CLIP to exploit the semantic differences across classes. 510

511 512

6 DISCUSSION AND FUTURE OUTLOOK

513 514

515 **Related Works.** Prompts play a vital role in adapting pre-trained VLMs to downstream tasks. Alongside prompt reweighting, prompt tuning methods such as CoOp (Zhou et al., 2022b), CoCoOp 516 (Zhou et al., 2022a) and MaPLe (Khattak et al., 2023a), have also been actively explored, focusing on 517 optimizing task-specific prompts. In contrast with these training-based methods, CARPRT focuses 518 on better utilizing existing prompts in a *training-free* manner. Test-time adaptation, on the other hand, 519 updates feature statistics (Wang et al., 2021) or *fine-tune* the prompts (Shu et al., 2022) to adapt to 520 each test sample during inference, whereas CARPRT leaves the model and prompts unchanged but 521 reweights existing prompts based on their relevance to the test data. This makes CARPRT orthogonal 522 to prompt tuning and test-time adaptation. We report additional results of combining CARPRT with 523 test-time adaptation in Appendix G. See Appendix A for detailed discussion of related works.

Summary. This study focused on prompt ensembling and confirmed that class-aware prompt reweighting is not only beneficial but essential for improving the efficacy of VLMs across a variety of downstream classification tasks. By moving beyond uniform weighting, we showed that adapting weights to better reflect the class-specific characteristics leads to measurable gains in classification accuracy. We hope this study encourages further exploration of integrating class-awareness with other VLM adaptation techniques to enhance across a wider range of applications.

Future Work. As per previously discussed limitations, two specific avenues for future work stand out: 531 First, refining the estimation of class-specific weights could enhance class-aware prompt reweighting. 532 Existing methods often rely on top-1 pseudo-labels, which may fail in complex tasks with multiple 533 plausible labels. A promising alternative is to explore top-k pseudo-labels, which have been shown to 534 yield higher accuracy in applications such as CLIP, where top-level classifications provide a richer set of potential alignments between visual inputs and textual prompts. Second, the efficacy of CARPRT 536 is tied to the quality and diversity of the prompt template pool, which however is overlooked by current methods. Future work may focus on cost-effective strategies for creating and evaluating diverse and representative prompts. This could involve developing metrics that assess how well 538 prompts capture the distinctive characteristics of different classes and methods that amplify inter-class differences could improve model performance in differentiating closely related categories.

540 541	Acknowledgments
542 543	The authors would like to thank all reviewers for their valuable and constructive comments in advance.
544 545	REFERENCES
546 547 548	James Urquhart Allingham, Jie Ren, Michael W Dusenberry, Xiuye Gu, Yin Cui, Dustin Tran, Jeremiah Zhe Liu, and Balaji Lakshminarayanan. A simple zero-shot prompt weighting technique to improve prompt ensembling in text-image models. In <i>ICML</i> , 2023.
549	Anthropic. Claude 3.5: Advancements in large language models. Anthropic Research, 2024.
550 551 552	Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – mining discriminative compo- nents with random forests. In <i>ECCV</i> , 2014.
553 554	Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced datasets with label-distribution-aware margin loss. In <i>NeurIPS</i> , 2019.
555 556 557	Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive test-time adaptation. In <i>CVPR</i> , 2022.
558 559	Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi. Describing textures in the wild. In <i>CVPR</i> , 2014.
560 561 562	Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning generative visual models from few training examples: An incremental bayesian approach tested on 101 object categories. In <i>CVPR</i> , 2004.
563 564	Chun-Mei Feng, Kai Yu, Yong Liu, Salman Khan, and Wangmeng Zuo. Diverse data augmentation with diffusions for effective test-time prompt tuning. In <i>CVPR</i> , 2023.
565 566 567 568	Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario March, and Victor Lempitsky. Domain-adversarial training of neural networks. <i>Journal of machine learning research</i> , 2016.
569 570 571	Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and deep learning benchmark for land use and land cover classification. <i>IEEE Journal of Selected</i> <i>Topics in Applied Earth Observations and Remote Sensing</i> , 2019.
572 573 574 575	Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kadavath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu, Samyak Parajuli, Mike Guo, et al. The many faces of robustness: A critical analysis of out-of-distribution generalization. In <i>ICCV</i> , 2021a.
576 577	Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt, and Dawn Song. Natural adversarial examples. In <i>CVPR</i> , 2021b.
578 579 580 581	Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning with noisy text supervision. In <i>ICML</i> , 2021.
582 583	Adilbek Karmanov, Dayan Guan, Shijian Lu, Abdulmotaleb El Saddik, and Eric Xing. Efficient test-time adaptation of vision-language models. In <i>CVPR</i> , 2024.
584 585	Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shahbaz Khan. Maple: Multi-modal prompt learning. In <i>CVPR</i> , 2023a.
587 588 589	Muhammad Uzair Khattak, Syed Talal Wasim, Muzammal Naseer, Salman Khan, Ming-Hsuan Yang, and Fahad Shahbaz Khan. Self-regulating prompts: Foundational model adaptation without forgetting. In <i>ICCV</i> , 2023b.
590 591	Soomro Khurram. Ucf101: A dataset of 101 human actions classes from videos in the wild. <i>arXiv</i> preprint arXiv: 1212.0402, 2012.
592 593	Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained categorization. In <i>ICCV</i> , 2013.

594	Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.
595	Yann LeCun, Sumit Chonra, Raia Hadsell, M.Ranzato, Fuije Huang, et al. A tutorial on energy-based
596	learning. Predicting structured data, 1(0), 2006.
500	
590	Yanghao Li, Naiyan Wang, Jianping Shi, Jiaying Liu, and Xiaodi Hou. Revisiting batch normalization
600	101 practical domain adaptation. arxiv preprint arxiv:1005.04779, 2010.
601	Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features with
602	deep adaptation networks. In <i>ICML</i> , 2015.
603	Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
604	visual classification of aircraft. In arXiv preprint arXiv:1306.5151, 2013.
605	Maria-Elena Nilsback and Andrew Zisserman, Automated flower classification over a large number
606	of classes. In Indian conference on computer vision, graphics & image processing, 2008.
607	Open AL Dhi 2 1. Concertive models for vision language tools. Open AL Technical Beneut 2024
608	OpenAI. Phi 5.1: Generative models for vision-language tasks. OpenAI Technical Report, 2024.
609	Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and CV Jawahar. Cats and dogs. In CVPR,
610	2012.
611	Hieu Pham, Zihang Dai, Golnaz Ghiasi, Kenji Kawaguchi, Hanxiao Liu, Adams Wei Yu, Jiahui Yu,
612	Yi-Ting Chen, Minh-Thang Luong, Yonghui Wu, et al. Combined scaling for zero-shot transfer
613	learning. Neurocomputing, 2023.
614	Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
615	Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
615	models from natural language supervision. In ICML, 2021.
619	Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and Vaishaal Shankar. Do imagenet classifiers
619	generalize to imagenet? In <i>ICML</i> , 2019.
620	
621	Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesn, Sean Ma, Zhineng Huang, Andrai Karnathy, Aditya Khosla, Michael Bernstein, et al. Imagenet large scale visual recognition
622	challenge. <i>IICV</i> 2015
623	
624	Christoph Schuhmann, Richard Vencu, Romain Beaumont, Robert Kaczmarczyk, Clayton Mullis,
625	Aarush Katta, Theo Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laton-400m: Open dataset of alip filtered 400 million image text pairs. arXiv praprint arXiv:2111.02114, 2021
626	cup-intered 400 minion mage-text pairs. <i>urxiv preprint urxiv.2111.02114</i> , 2021.
627	Manli Shu, Weili Nie, De-An Huang, Zhiding Yu, Tom Goldstein, Anima Anandkumar, and Chaowei
628	X1ao. Test-time prompt tuning for zero-shot generalization in vision-language models. In <i>NeurIPS</i> , 2022
629	2022.
630	Rui Shu, Hung H Bui, Hirokazu Narui, and Stefano Ermon. A dirt-t approach to unsupervised domain
631	adaptation. In <i>ICLR</i> , 2018.
632	Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
633	test-time adaptation by entropy minimization. In ICLR, 2021.
625	Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing, Learning robust global representations
636	by penalizing local predictive power. <i>NeurIPS</i> , 2019.
637	Lianviong Viao, James Have, Kriste & Ebinger, Aude Olive, and Antonio Terrolba, Sun detabases
638	Large-scale scene recognition from abbey to zoo. In CVPR 2010
639	
640	Xiaohua Zhai, Xiao Wang, Basil Mustafa, Andreas Steiner, Daniel Keysers, Alexander Kolesnikov,
641	and Lucas Beyer. Lit: Zero-snot transfer with locked-image text tuning. In CVPR, 2022.
642	Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
643	augmentation. In <i>NeurIPS</i> , 2022.
644	Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Conditional prompt learning for
645	vision-language models. In CVPR, 2022a.
646	Kaiyang Zhou Jingkang Yang Chen Change Loy and Ziwei Liu Learning to prompt for vision-
647	language models. In <i>IJCV</i> , 2022b.

648 A DETAILED RELATED WORKS

650 **Prompt tuning methods.** Prompt tuning adapts a pre-trained model by introducing learnable 651 embeddings, known as prompt tokens, at the input stage. These tokens can be either text prompts 652 or visual prompts, enabling flexible adjustments to the model's input interface to better address 653 specific tasks. CoOp was the first to apply prompt tuning in CLIP, optimizing learnable prompts 654 within its textual branch for few-shot image recognition (Zhou et al., 2022b). Addressing CoOp's limitations, CoCoOp introduces conditionally generated prompts based on visual features to enhance 655 656 generalization performance (Zhou et al., 2022a). Further, MaPLe advances a multi-modal approach, applying prompt tuning simultaneously within the vision and textual branches to facilitate better 657 transfer capabilities (Khattak et al., 2023a). Building upon MaPle, PromptSRC employs a strategy 658 that enhances textual prompt learning by utilizing descriptive text generated by large language models 659 (LLMs), such as GPT-4 (Khattak et al., 2023b). However, this approach requires updating learnable 660 input variables in the text or image inputs, leading to additional computational resources and labeled 661 downstream data, even if only few-shot data is used. Since our problem setting differs from that of 662 tuning methods, we do not include such approaches as baselines in our experiments with CARPRT.

663

681 682

683

664 Test-time Adaptation The test-time adaptation (TTA) problem is aim to adapts models adapts 665 models to testing downstream data (Ganin et al., 2016; Long et al., 2015; Zhang et al., 2022). TTA 666 methods can be diveded into two types: the training-based method and the training-free method. 667 Training-based methods typically involve updating model weights or fine-tuning prompts based on 668 test data (Zhang et al., 2022). TTA methods, such as TENT, adapt models by optimizing for test-time objectives like entropy minimization, adjusting the model's batch normalization statistics to align with 669 the test distribution (Wang et al., 2021). CoTTA have explored contrastive learning to preserve feature 670 space alignment, making TTA effective for CLIP-like models (Chen et al., 2022). TPT addresses 671 the challenge in vision-language models by fine-tuning a learnable prompt for each individual test 672 sample (Shu et al., 2022). DiffTPT extends this approach by utilizing pre-trained diffusion models 673 to increase the diversity of test data samples used in TPT, enhancing the effectiveness of test-time 674 prompt tuning (Feng et al., 2023). 675

On the other hand, non-training methods rely on adjusting normalization statistics or augmenting
test samples without changing model parameters (Li et al., 2016; Karmanov et al., 2024). Since the
problem setting of non-training TTA methods, which only require unlabeled test data and do not
involve additional training, aligns with the CARPRT setup, we analyze the non-training TTA methods
in comparison to CARPRT in Appendix G.

B DATASETS

684 Fine-grained datasets. Following Zhou et al. (2022b), we evaluate our method in 10 different finegrained datasets. Caltech101 (Fei-Fei et al., 2004): A dataset containing images of objects belonging 685 to 101 different categories, commonly used for object recognition tasks; DTD (Cimpoi et al., 2014): 686 A texture dataset containing images categorized by describable texture attributes such as "bumpy" or 687 "scaly"; EuroSAT (Helber et al., 2019): A dataset for land use and land cover classification, consisting 688 of satellite images across 10 classes such as residential, forest, and river; Aircraft (Maji et al., 2013): 689 A fine-grained dataset containing aircraft images, used for recognizing and classifying different 690 airplane models; Food101 (Bossard et al., 2014): A large dataset containing 101 food categories, 691 designed for image recognition tasks in the food domain; Flower102 (Nilsback & Zisserman, 2008): 692 A fine-grained flower classification dataset with 102 different types of flowers, used for challenging 693 image recognition tasks; Oxford Pets (Parkhi et al., 2012): A dataset consisting of images of 37 pet 694 breeds, used for fine-grained image classification tasks; Cars196 (Krause et al., 2013): A fine-grained 695 dataset for car model classification, with 196 car classes focused on vehicle recognition; SUN397 696 (Xiao et al., 2010): A large-scale scene recognition dataset with 397 scene categories, covering a wide variety of environments; UCF101 (Khurram, 2012): A dataset for action recognition in videos, 697 containing 101 human action categories captured in realistic video scenarios. 698

699

ImageNet and its Variant datasets. Following (Allingham et al., 2023), we also evaluate our method in ImageNet and the following variants of the ImageNet dataset: ImageNet (Russakovsky et al., 2015): A large-scale dataset for image classification, containing over 14 million labeled images

Dataset	Classes	Test Siz
ImageNet	1000	50,000
mageNet-R	200	30,000
mageNet-A	200	6862
mageNet-Sketch	1000	50,889
ImageNet-V2	1000	10,000
Caltech101	100	2465
DTD	47	1692
EuroSat	10	8100
Aircraft	100	3333
Food101	101	30,300
Flowers102	102	2463
Oxford Pets	37	3669
Cars196	196	8041
Sun397	397	19,850
JCF101	101	3783

Table 4: Details for the datasets in our experiments.

across 1,000 object categories; ImageNet-A (Hendrycks et al., 2021b): A curated subset of ImageNet consisting of challenging adversarial images that fool standard models, designed to test the robustness of image classifiers; ImageNet-R (Hendrycks et al., 2021a): A dataset containing renditions of ImageNet objects in diverse artistic forms, such as paintings, cartoons, and sculptures, used to assess model performance on non-photorealistic images; ImageNet-Sketch (Wang et al., 2019): A sketch-based dataset derived from ImageNet, used to evaluate model robustness and generalization to line drawings of objects; ImageNet-V2 (Recht et al., 2019): A reproduction of the original ImageNet test set collected under similar conditions, used to measure model generalization to a newly collected version of the dataset.

C DETAILS REGARDING EXPERIMENTS

Implementation Details. We implement all methods using PyTorch 1.7.1 and Python 3.7.6, and conduct all experiments on a single NVIDIA A100 Tensor Core GPU. Our vision-language model is built on the architecture and pretrained weights from OpenCLIP (Radford et al., 2021). The code for our experiments is available at https://anonymous.4open.science/r/CARPRT-8402/provided for reproducibility.

Hyper-parameter Settings. We set fixed hyper-parameters for the different datasets. The temperature τ is set to 3.0 for fine-grained datasets and 5.1 for ImageNet (Russakovsky et al., 2015) and its variants. The sampling ratio γ is consistently set to 0.8 for both types of datasets, and the batch size is fixed at 512 for all experiments.

744 D DISCUSSION OF $Pr(\mathbf{W}|\mathbb{P})$

We extend the discussion of the proposed probabilistic interpretation (Section 3) to the weights prior $\Pr(\mathbf{W}|\mathbb{P})$. In the current zero-shot classification scenario addressed by CARPRT, there is no optimization-based process for "estimating" the weights, and as such, the weight prior $\Pr(\mathbf{W}|\mathbb{P})$ does not play a role in the methodology. Nevertheless, our probabilistic framework is flexible enough to accommodate more general trainable settings, such as active learning and few-shot estimation, where the probabilistic formulation becomes particularly beneficial. In these cases, a discussion of the weight prior would provide valuable insights and contribute to a more complete understanding of the framework's advantages.

Suppose there is a label space \mathcal{Y} with size $|\mathcal{Y}| = C$. Let $\mathbb{P} = \{p_i\}_{i=1}^n$ be a pool of n independent prompt templates. Let $\mathbf{W} = \{\mathbf{W}_c\}_{c=1}^C$ be our weight matrix. Recall that $\mathbf{W}_c \in \Delta^{n-1}$ is the (n-1)-dimensional probability simplex, representing the weights for class y_c across all prompts.

756 We consider three choices of priors: uniform prior, global Dirichlet prior, and class-specific Dirichlet 757 priors. 758

Uniform Prior. The uniform prior assumes all valid weight configurations are equally likely a priori.

759 760 761

762 763

$$p(\mathbf{W}|\mathbb{P}) = \begin{cases} \frac{1}{|\mathcal{W}|} & \text{if } \mathbf{W} \in \mathcal{W} \\ 0 & \text{otherwise} \end{cases}$$

where $\mathcal{W} = \{ \mathbf{W} \in \mathbb{R}^{n \times C} : W_c \in \Delta^{n-1} \text{ for all } c \in \{1, ..., C\} \}.$ 764

765 The uniform prior is the easiest setup to implement and does not introduce bias towards any particular 766 weight configuration. However, the uniform prior does not leverage any prior knowledge about the 767 prompts, which is prone to overfitting with limited data (when adapted to trainable setting).

768 **Global Dirichlet Prior**. This defines a single Dirichlet distribution over all weights, treating them as 769 a single vector. 770

$$p(\mathbf{W}|\mathbb{P}) = \text{Dir}(\text{vec}(\mathbf{W})|\alpha_1, ..., \alpha_{nC})$$

771 where vec(W) is the vectorization of W, and $\alpha_i > 0$ are concentration parameters of the Dirichlet 772 distribution. 773

Compared to uniform prior, Dirichlet prior can encode varying degrees of certainty about different 774 weights. Moreover, it is conjugate to multinomial likelihood, allowing for closed-form posterior 775 updates for certain model setup. This can also align with ZPE-like class-shared-weighting strategies. 776 However, it ignores the class structure and treats all weights as part of a single distribution, potentially 777 missing class-specific patterns. 778

Class-specific Dirichlet Prior. This strategy sets an independent Dirichlet distribution for each 779 class's weight, and stacks a product of C classes' Dirichlet distributions. 780

$$p(\mathbf{W}|\mathbb{P}) = \prod_{c=1}^{C} \text{Dir}(\mathbf{W}_{c}|\alpha_{c,1},...,\alpha_{c,n})$$

784 where $\alpha_{c,i} > 0$ are class and prompt-specific contentation parameters.

785 Currently, this setup best suits our class-aware prompt reweighting mechanism, as it allows for 786 different prior beliefs about weight distributions for each class, class-specific modeling. Compared 787 with global Dirichlet, it reduces dimensionality - each Dirichlet distribution is over n parameters, not 788 $n \times C$ anymore. More importantly, it aligns with the per-class simplex constraint of the weight space. 789

Entropy Analysis. Different prior choices lead to different entropy results. The uniform prior has an 790 associated entropy as 791

$$H[p(\mathbf{W}|\mathbb{P})]_{\text{uniform}} = \log |\mathcal{W}|,$$

 $H[p(\mathbf{W}|\mathbb{P})] = \log B(\alpha) + (\alpha_0 - nC)\psi(\alpha_0) - \sum_{i=1}^{nC} (\alpha_i - 1)\psi(\alpha_i),$

where $|\mathcal{W}|$ is the volume of the weight space. 793

794 As for global Dirichlet prior, we have 795

797 798

799 800

801 802

792

781 782 783

where $B(\cdot)$ is the multivariate beta function, and $\psi(\cdot)$ is the digamma function.

The entropy for class-specific Dirichlet priors is

$$H[p(\mathbf{W}|\mathbb{P})] = \sum_{c=1}^{C} (\log B(\alpha_c) + (\alpha_{c,0} - n)\psi(\alpha_{c,0}) - \sum_{i=1}^{n} (\alpha_{c,i} - 1)\psi(\alpha_{c,i})),$$

803 804

where $\alpha_c = (\alpha_{c,1}, ..., \alpha_{c,n})$ and $\alpha_{c,0} = \sum_{i=1}^n \alpha_{c,i}$ for each class c. 805

806 When we are setting the equal concentration parameters, such that $\alpha_i = \alpha$ for all i in the global 807 Dirichlet, and $\alpha_{c,i} = \alpha$ for all c, i in the class-specific Dirichlets, and let $\alpha = 1$, the uniform prior has the highest entropy (uninformative), while the class-specific Dirichlets having the lowest entropy. 808 This is because the class-specific Dirichlets with $\alpha = 1$ are equivalent to independent uniform 809 distributions over smaller simplices, further concentrating the probability.

810 E DETAILED PROOFS 811

812

813

814 815 816

824

842 843 844

854

857

858

859 860 **Lemma 2** (Relative Likelihood *cf.* Lemma 1). The likelihood of an image x, given class c, prompt weights W and a prompt pool \mathbb{P} , following the EBM defined in Eq. (10), is proportional to:

$$\Pr(\boldsymbol{x}_j \mid y_c, \mathbf{W}, \mathbb{P}) \propto \exp\left\{ sim(\boldsymbol{z}_j^{\mathrm{I}}, \boldsymbol{z}_c^{\mathrm{T}}) \right\} \propto \exp\left\{ \sum_{i=1}^n (w_{i,c} \, \boldsymbol{z}_{i,c}^{\mathrm{T}})^{\top} \cdot \boldsymbol{z}^{\mathrm{I}} \right\},\tag{17}$$

where $z_j^{I} = f(x_j)$ and $z_{i,c}^{T} = g(p_i(y_c))$ are image embeddings of sample x_j and text embeddings of class y_c under prompt p_i , respectively.

820 *Proof.* Similarity as Negative Energy. As with (LeCun et al., 2006), a general form of EBMs is 821 given by $P_{\theta}(x) = \exp(-\beta E_{\theta}(x))/Z(\theta)$, which enables us to define unnormalized energy function 822 with a partition function for normalization. Therefore, in our zero-shot classification context, we 823 define the energy function with respect to the score function of the CLIP.

$$E(\boldsymbol{x}_j, y_c, \mathbf{W}, \mathbb{P}) = \operatorname{sim}(\boldsymbol{z}_j^{\mathrm{I}}, \boldsymbol{x}_c^{\mathrm{T}})$$

This score function measures the compatibility between the image embedding z_j^{I} and the text embedding embedding x_c^{T} of class y_c . higher compatibility corresponds to lower energy, aligning with the EBM principle that more likely configurations (of model) have lower energy.

Intractable Partition Function. Computing the partition function is intractable since we need to marginalize over the image space. However, what we care about is the relative relation between $\Pr(x_j \mid y_c, \mathbf{W}, \mathbb{P})$ and $\Pr(x_j \mid y_{c'}, \mathbf{W}, \mathbb{P})$, we can safely drop off the partition function in our relative likelihood.

833 Similarity Computation. Consider a general linear combination of similarities for a prompt ensemble:
 834 ble:

$$\operatorname{sim}(\boldsymbol{z}^{\mathrm{T}}, \boldsymbol{z}_{c}^{\mathrm{T}}) = h_{c} \left(\{ \operatorname{sim}(\boldsymbol{z}^{\mathrm{T}}, \boldsymbol{z}_{i,c}^{\mathrm{T}}) \}_{i=1}^{n} \right.$$
$$h_{c} \left(\{ s_{i} \}_{i=1}^{n} \right) = \sum_{i=1}^{n} \alpha_{i,c} s_{i} + \beta_{c}$$

)

839 where $h_c : \mathbb{R}^d \to \mathbb{R}$ is a function that linearly combines the similarities over all prompts $p_i \in \mathbb{P}$ for a 840 specific class y_c . $\alpha_{i,c} \in \mathbb{R}$ and $\beta_c \in \mathbb{R}$ are weights and bias terms. Substituting $s_i = \sin(\mathbf{z}^{\mathrm{I}}, \mathbf{z}_{i,c}^{\mathrm{T}}) =$ 841 $\mathbf{z}_{i,c}^{\mathrm{TT}} \cdot \mathbf{z}^{\mathrm{I}}$, we get:

$$\operatorname{sim}(\boldsymbol{z}_{j}^{\mathrm{I}}, \boldsymbol{z}_{i,c}^{\mathrm{T}}) = \sum_{i=1}^{n} \alpha_{i,c}(\boldsymbol{z}_{i,c}^{\mathrm{T}})^{\top} \cdot \boldsymbol{z}_{j}^{\mathrm{I}} + \beta_{c}$$

We can then absorb the bias term β_c into the exponential function,

$$\begin{aligned} \Pr(\boldsymbol{x}_j \mid y_c, \mathbf{W}, \mathbb{P}) &\propto \exp(\sin(\boldsymbol{z}_j^{\mathrm{I}}, \boldsymbol{z}_{i,c}^{\mathrm{T}})) \\ &= \exp(\sum_{i=1}^n \alpha_{i,c} (\boldsymbol{z}_{i,c}^{\mathrm{T}})^\top \cdot \boldsymbol{z}_j^{\mathrm{I}} + \beta_c) \\ &= \exp(\beta_c) \exp(\sum_{i=1}^n \alpha_{i,c} (\boldsymbol{z}_{i,c}^{\mathrm{T}})^\top \cdot \boldsymbol{z}_j^{\mathrm{I}}) \\ &\propto \exp(\sum_{i=1}^n (\alpha_{i,c} \boldsymbol{z}_{i,c}^{\mathrm{T}})^\top \cdot \boldsymbol{z}_j^{\mathrm{I}}). \end{aligned}$$

By setting
$$w_{i,c} = \alpha_{i,c}$$
, we arrive at the formulation in Lemma 1.

Proposition 3 (cf. Proposition 3). Let \mathcal{X} be the image space, \mathcal{Y} be the class space. Given a set of prompts \mathbb{P} , for any prompt weighting scheme S (cf. Eqs. (3-5)), define the representable likelihood set \mathcal{F}_S as:

$$\mathcal{F}_{S} = \left\{ f : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}_{+} \mid \exists \mathbf{W} \in \mathcal{W}_{S}, \mathbb{P}, \text{ s.t. } f(\boldsymbol{x}, y_{c}) \propto \Pr(\boldsymbol{x} \mid y_{c}, \mathbf{W}, \mathbb{P}) \right\},\$$

where \mathcal{W}_S is the weight space under the scheme S. Let \mathcal{F}_{CI} and \mathcal{F}_{CA} be the representable likelihood set induced from class-independent weighting (cf. Eq. (4)) and class-aware weighting (cf. Eq. (5)) schemes. Then, we have: $\exists f^* \in \mathcal{F}_{CA}$ such that $\forall f_{CI} \in \mathcal{F}_{CI}, \exists x \in \mathcal{X}, y_c \in \mathcal{Y}$ where $f^*(x, y_c) \neq f_{CI}(x, y_c)$.

Proof. We prove this by constructing a specific function in \mathcal{F}_{CA} and showing it cannot be represented by any function in \mathcal{F}_{CL} . For simplicity, we consider a **toy** setting with three classes $\mathcal{Y} = \{y_1, y_2, y_3\}$ and two prompts $\mathbb{P} = \{p_1, p_2\}$. For any $x \in \mathcal{X}$, the function under class-aware weighting for $\forall y_c \in \{y_1, y_2, y_3\}$ takes the form:

$$egin{aligned} f^*(oldsymbol{x},y_c) &= \sum_{i=1}^{|\mathbb{P}|} w_{i,c} \operatorname{Pr}(oldsymbol{x} \mid y_c,p_i) \ &= w_{1,c} \operatorname{Pr}(oldsymbol{x} \mid y_c,p_1) + w_{2,c} \operatorname{Pr}(oldsymbol{x} \mid y_c,p_2). \end{aligned}$$

where $w_{i,j} \in \mathbb{R}_+$ are class-aware weights for prompt *i* and class *j*. For ease of notation, we denote the prompt-conditional likelihood by $a_{i,c} \triangleq \Pr(\boldsymbol{x} \mid y_c, p_i)$. This way $f^* \in \mathcal{F}_{CA}$ can be expressed as

876	$f^*(\boldsymbol{x}, y_1) = w_{1,1}a_{1,1} + w_{2,1}a_{2,1}$
877	$f^*(\boldsymbol{x}, y_2) = w_{1,2}a_{1,2} + w_{2,2}a_{2,2}$
878	$f^*(\boldsymbol{x}, y_3) = w_{1,3}a_{1,3} + w_{2,3}a_{2,3}$

We then consider a specific instance³ of this function by choosing:

$w_{1,1} = 2,$	$w_{2,1} = 1$
$w_{1,2} = 1,$	$w_{2,2} = 2$
$w_{1,3} = 3,$	$w_{2,3} = 3$

This leads to

000	This leads to	
886		$f^*(\boldsymbol{x}, y_1) = 2a_{1,1} + a_{2,1}$
887		$f^*(a, u_1) = a_{1,1} + 2a_{2,1}$
888		$f(x, y_2) = u_{1,2} + 2u_{2,2}$
889		$f^*(\boldsymbol{x}, y_3) = 3a_{1,3} + 3a_{2,3}$

Now, suppose for contradiction that $\exists f_{CI} \in \mathcal{F}_{CI}$ such that $f^* = f_{CI}$. By definition of \mathcal{F}_{CI} , f_{CI} takes the form $f_{CI}(x, y_c) = w_1 a_{1,c} + w_2 a_{2,c}$, where $w_1, w_2 \in \mathbb{R}_+$ are class-independent weights.

If $f^* = f_{CI}$, then for all classes $y_c \in \{y_1, y_2, y_3\}$, we must have the following equations to hold simultaneously:

$2a_{1,1} + a_{2,1} = w_1a_{1,1} + w_2a_{2,1}$	(for y_1)
$a_{1,2} + a_{2,2} = w_1 a_{1,2} + w_2 a_{2,2}$	(for y_2)
$3a_{1,3} + 3a_{2,3} = w_1a_{1,3} + w_2a_{2,3}$	(for y_3)

From these equations, we can deduce that

 $w_1 = 2$ and $w_2 = 1$ must hold for any $a_{1,1}, a_{2,1} > 0$ (for y_1) $w_1 = 1$ and $w_2 = 2$ must hold for any $a_{1,2}, a_{2,2} > 0$ (for y_2) $w_1 = 3$ and $w_2 = 3$ must hold for any $a_{1,3}, a_{2,3} > 0$ (for y_1)

Thus, we need $w_1 = 2$ for y_1 while $w_1 = 1$ for y_2 , immediately leading to a contradiction as w_1 cannot simultaneously equal 1 and 2.

Therefore, no class-independent weighting scheme can represent the function f^* we constructed. Therefore, no class-independent weighting scheme can \mathcal{F}_{CI} , $\exists x \in \mathcal{X}, y_c \in gY$ where $f^*(x, y_c) \neq \Box$ $f_{\rm CI}(\boldsymbol{x}, y_c).$

CONNECTING CARPRT FORMULATION WITH THE PROBABILISTIC F FRAMEWORK

We now detail the correspondence between the CARPRT formulation (Section 4) and the probabilistic framework established in Section 3.

Concretely, the practical implementation Eqs. (13-16) align with Eqs.(7-11) in the following manner.

³unnormalized weights, just for illustration

Table 5: Accuracy (%) comparison between our method and baselines combing to TDA method using 919 CLIP-ViT-B/16 and CLIP-ResNet50 backbones. Bold value represents the highest accuracy on each column

	Caltech101	DTD	EuroSAT	Aircraft	Food101	Flower102	Pets	Cars	SUN397	UCF101	Average
				(CLIP-ViT-B	/16					
Human Select	94.24	47.40	58.00	23.91	86.14	71.42	88.63	67.28	67.62	70.66	67.53
Equal Weight	93.18	46.75	60.60	23.37	86.04	65.61	84.21	67.44	66.41	71.48	66.51
ZPE	93.49	47.02	62.48	23.09	86.21	68.10	84.12	67.23	66.98	71.23	67.00
CARPRT	94.02	48.52	63.95	24.05	86.50	70.36	84.50	67.83	68.06	71.85	67.96
				(CLIP-ResNe	et50					
Human Select	91.42	41.00	56.97	20.55	83.34	62.75	83.62	64.14	65.86	68.52	63.82
Equal Weight	92.03	41.77	54.56	19.77	83.41	62.50	80.65	63.55	64.14	68.80	63.12
ZPE	91.67	41.89	56.78	19.84	83.21	56.67	81.66	63.43	64.87	68.72	63.45
CARPRT	91.75	42.71	57.65	19.98	83.61	62.66	81.38	65.98	65.98	68.65	63.76

918

920

932 933

934

935 936

937

938

939

940

941

942

944 945

Score Calculation. Eq. (13) implements the likelihood term $\Pr(x_i | y_c, W, \mathbb{P})$ from Eq. (11) by defining $s_{j,i,c} = \frac{\exp(a_{j,i,c}/\lambda)}{\sum_{y \in \mathcal{Y}} \exp(a_{j,i,c}/\lambda)}$. This formulation aligns with the EBM in Eq. (11) by using cosine similarity $a_{j,i,c}$ as the negative energy term and normalizing through softmax to obtain proper probabilities.

Weight Calculation. Eqs. (15-16) correspond to estimating $\Pr(W|\mathbb{P}, \mathbb{D})$ from Eq. (8) through a two-step process. Eq. (15) first obtains the pseudo-labels for samples as the empirical estimates $\Pr(y_c|W,\mathbb{P})$ (i.e., Eq. (9)). It then estimates intermediate weights by aggregating scores across pseudo-labeled samples by multiplying the scores $\Pr(x_i|y_c, W, \mathbb{P})$ (i.e., $s_{i,i,c}$) with $\Pr(y_c|W, \mathbb{P})$. Eq. (16) applies softmax to ensure the resulting weights form a valid probability distribution over prompts for each class, which satisfies the simplex constraint implied by our probabilistic framework. 943

G COMBINING CARPRT AND TEST-TIME ADAPTATION METHOD

946 947

950

951

Our method aligns more closely with the training-free TTA method as it operates without training, 948 making it computationally efficient. TDA is a state-of-the-art, training-free test-time adaptation (TTA) 949 method for CLIP that enables efficient and effective adaptation of vision-language models without backpropagation (Karmanov et al., 2024).

952 Our approach is not in conflict with TDA but is orthogonal to it. While TDA uses a humanselected prompt pool for each task, our method can serve as a complementary module that replaces 953 this human selection pool, providing an alternative way of selecting prompts without requiring 954 human intervention. This allows our method to work alongside TDA, enhancing the adaptability of 955 vision-language models in a more automated manner. We conduct the experiment to compare the 956 performance of our method with several baselines, including the human-selected prompts, the equal 957 weight prompt selection, an ZPE, all combined with the TDA method. The results are evaluated using 958 both CLIP-ViT-B/16 and CLIP-ResNet50 backbones across ten fine-grained datasets, as shown in 959 Table 5. 960

From the result, we can observe that our method outperforms the other baselines in several datasets, 961 achieving the highest average accuracy of 67.96% for CLIP-ViT-B/16 and 63.76% for CLIP-ResNet50. 962 Specifically, for datasets like EuroSAT, Food101, and Flower102, our method shows significant 963 improvements over the human-selected and ZPE baselines. These improvements demonstrate that our 964 approach effectively enhances the performance of TTA methods, by offering a more efficient prompt 965 selection strategy. However, there are cases where it falls short compared to human-selected prompts. 966 This may be caused by the limited diversity and smaller size of the template pool, where automatic 967 reweighting methods may not perform as well as direct human selection. However, the automated 968 approach significantly reduces the human labor cost. This experiment demonstrates the promising 969 future of our method—not only in prompt reweighting but also as a technique that can be integrated into other vision-language model (VLM) transfer learning approaches. The ability to automatically 970 adjust prompts in a computationally efficient manner paves the way for broader applications and 971 adaptability in various VLM-based tasks.

Posterior Update with TTA. When prompt weights can be updated continuously, such as in TTA settings, different priors (e.g., uniform, global Dirichlet, or class-specific Dirichlet) define initial beliefs about weight distributions before observing test data. In the TTA scenario, test data arrives as a stream: $\{x^{(0)}, \ldots, x^{(t)}, x^{(t+1)}, \ldots\}$. Based on Eq. (8), we have a general form of posterior

$$p(\mathbf{W}|\boldsymbol{x}^{(t)},\mathbb{P}) \propto p(\boldsymbol{x}^{(t)}|\mathbf{W},\mathbb{P})p(\mathbf{W}|\mathbb{P})$$

where $p(W|\mathbb{P})$ is the prior, $p(\boldsymbol{x}^{(t)}|\mathbf{W},\mathbb{P})$ is the likelihood from test data, and $p(W|\boldsymbol{x}^{(t)},\mathbb{P})$ is the posterior that guides weight updates sample-by-sample. The posterior updating process follows:

For first test sample $x^{(0)}$:

 Then, as we observe the second test sample $x^{(1)}$, we have

Prior : $p(\mathbf{W}|\boldsymbol{x}^{(0)}, \mathbb{P})$ (previous posterior)

Prior : $p(\mathbf{W}|\mathbb{P})$

Likelihood : $p(\boldsymbol{x}^{(0)}|\mathbf{W}, \mathbb{P})$

Likelihood : $p(\boldsymbol{x}^{(1)}|\mathbf{W}, \mathbb{P})$

Posterior :
$$p(\mathbf{W}|\boldsymbol{x}^{(0)}, \boldsymbol{x}^{(1)}, \mathbb{P}) \propto p(\boldsymbol{x}^{(1)}|\mathbf{W}, \mathbb{P})p(\mathbf{W}|\boldsymbol{x}^{(0)}, \mathbb{P})$$

Posterior : $p(W|\boldsymbol{x}^{(0)}, \mathbb{P}) \propto p(\boldsymbol{x}^{(0)}|\mathbf{W}, \mathbb{P})p(\mathbf{W}|\mathbb{P})$

This leads to the sequential update scheme, formulated as

$$p(\mathbf{W}|\boldsymbol{x}^{(0)},...,\boldsymbol{x}^{(t)},\mathbb{P}) \propto p(\boldsymbol{x}^{(t)}|\mathbf{W},\mathbb{P})p(\mathbf{W}|\boldsymbol{x}^{(0)},...,\boldsymbol{x}^{(t-1)},\mathbb{P})$$

Thus, in TTA settings, these priors can be (1) initialized based on initial test samples; and (2) updated sequentially as new test samples arrive.

More specifically, choosing different prior distributions would lead to different updating computations.

Uniform Prior. Recall the uniform prior is defined as

$$p(W|\mathbb{P}) = \begin{cases} \frac{1}{|\mathcal{W}|} & \text{if } W \in \mathcal{W} \\ 0 & \text{otherwise} \end{cases}$$

1003 By taking log to both LHS and RHS, we will have

$$\log p(\mathbf{W}|\mathbb{P}) = \begin{cases} -\log |\mathcal{W}| & \text{if } \mathbf{W} \in \mathcal{W} \\ -\infty & \text{otherwise} \end{cases}$$

which then leads to the log posterior to be expressed as

$$\log p(\mathbf{W}|m{x}^{(t)},\mathbb{P}) \propto -\log |\mathcal{W}| + \log \sum_{y_c \in \mathcal{Y}} p(m{x}^{(t)}|y_c,\mathbf{W},\mathbb{P}) p(y_c|\mathbf{W},\mathbb{P})$$

$$= -\log |\mathcal{W}| + \log \sum_{y_c \in \mathcal{Y}} \exp \left(\sum_{i=1}^n \left(w_{i,c} \boldsymbol{z}_{i,c}^{\mathrm{T}} \right)^{\top} \cdot \boldsymbol{z}^{\mathrm{I}} \right) \cdot \frac{\mathbb{1}_{\hat{y}_{j'} = y_c}}{\sum_{j'} \mathbb{1}_{\hat{y}_{j'_i} = y_c}}$$

C n

1014 Global Dirichlet Prior. The global Dirichlet prior treats all weights across classes as a single vector:

$$p(W|\mathbb{P}) = \operatorname{Dir}(\operatorname{vec}(W)|\alpha_1, ..., \alpha_{nC})$$

1018 where $\operatorname{vec}(\mathbf{W}) \in \mathbb{R}^{nC}$ is the vectorization of weight matrix W (here we denote $C = |\mathcal{Y}|$ as the 1019 cardinality of label space) Similarly, we will have the log prior and posterior as

1020
$$\log p(\mathbf{W}|\mathbb{P}) = \log \operatorname{Dir}(\operatorname{vec}(\mathbf{W})|\alpha_1, ..., \alpha_{nC})$$

1021 nC

1022
1023
$$= \log \Gamma(\alpha_0) - \sum_{k=1}^{n \cup} \log \Gamma(\alpha_k) + \sum_{k=1}^{n \cup} (\alpha_k - 1) \log w_k \quad (\alpha_0 = \sum_{k=1}^{n \cup} \alpha_k)$$

1025
$$= \log \Gamma(\sum_{k=1}^{n} \alpha_k) - \sum_{c=1}^{n} \sum_{i=1}^{n} \log \Gamma(\alpha_{(c-1)n+i}) + \sum_{c=1}^{n} \sum_{i=1}^{n} (\alpha_{(c-1)n+i} - 1) \log w_{i,c}$$

and $\log p(\mathbf{W}|\boldsymbol{x}^{(t)}, \mathbb{P}) \propto \log p(\mathbf{W}|\mathbb{P}) + \log p(\boldsymbol{x}^{(t)}|\mathbf{W}, \mathbb{P}) - \log p(\boldsymbol{x}^{(t)}|\mathbb{P})$ $= \log \Gamma(\alpha_0) - \sum_{k=1}^{nC} \log \Gamma(\alpha_k) + \sum_{c=1}^{C} \sum_{i=1}^{n} (\alpha_{(c-1)n+i} - 1) \log w_{i,c}$ $+\log \sum_{y_c \in \mathcal{V}} p(x|y_c, \mathbf{W}, \mathbb{P}) p(y_c|\mathbf{W}, \mathbb{P})$ $= \log \Gamma(\alpha_0) - \sum_{k=1}^{nC} \log \Gamma(\alpha_k) + \sum_{c=1}^{C} \sum_{i=1}^{n} (\alpha_{(c-1)n+i} - 1) \log w_{i,c}$ $+\log \sum_{u_i \in \mathcal{V}} \exp\left(\sum_{j=1}^n \left(w_{i,c} \boldsymbol{z}_{i,c}^{\mathrm{T}}\right)^{\top} \cdot \boldsymbol{z}^{\mathrm{I}}\right) \cdot \frac{\mathbb{1}_{\hat{y}_{ji} = y_c}}{\sum_{j'} \mathbb{1}_{\hat{y}_{j'i} = y_c}}$

Class-specific Dirichlet Prior. We again start from the prior definition

$$p(W|\mathbb{P}) = \prod_{c=1}^{C} \operatorname{Dir}(W_c | \alpha_{c,1}, ..., \alpha_{c,n})$$

then turn into the log prior and posterior

$$\begin{array}{ll} 1046 \\ 1047 \\ 1048 \\ 1049 \\ 1050 \\ 1051 \end{array} \quad \text{log } p(\mathbf{W}|\mathbb{P}) = \sum_{c=1}^{C} \log \operatorname{Dir}(W_c | \alpha_{c,1}, ..., \alpha_{c,n}) \\ = \sum_{c=1}^{C} \left[\log \Gamma(\alpha_{c,0}) - \sum_{i=1}^{n} \log \Gamma(\alpha_{c,i}) + \sum_{i=1}^{n} (\alpha_{c,i} - 1) \log w_{i,c} \right] \quad (\alpha_{c,0} = \sum_{i=1}^{n} \alpha_{c,i}) \\ \end{array}$$

and log posterior

$$\log p(\mathbf{W}|\boldsymbol{x}^{(t)}, \mathbb{P}) = \sum_{c=1}^{C} \left[\log \Gamma(\alpha_{c,0}) - \sum_{i=1}^{n} \log \Gamma(\alpha_{c,i}) + \sum_{i=1}^{n} (\alpha_{c,i} - 1) \log w_{i,c} \right] + \log \sum p(x|y_c, \mathbf{W}, \mathbb{P}) p(y_c|\mathbf{W}, \mathbb{P})$$

 \boldsymbol{n}

 \boldsymbol{n}

1057
$$y_c \in \mathcal{Y}$$
1058 $\sum_{c=1}^{C}$

$$= \sum_{c=1} \left[\log \Gamma(\alpha_{c,0}) - \sum_{i=1} \log \Gamma(\alpha_{c,i}) + \sum_{i=1} (\alpha_{c,i}-1) \log w_{i,c} \right]$$

$$= \sum_{c=1} \left[\log \Gamma(\alpha_{c,0}) - \sum_{i=1} \log \Gamma(\alpha_{c,i}) + \sum_{i=1} (\alpha_{c,i}-1) \log w_{i,c} \right]$$

$$+ \log \sum_{c=1} \exp \left(\sum_{i=1}^{n} (w_{i,c} \boldsymbol{z}_{i,c}^{\mathrm{T}})^{\mathrm{T}} \cdot \boldsymbol{z}_{i}^{\mathrm{T}} \right) \cdot \frac{\mathbb{1}_{\hat{y}_{ji}=y_{c}}}{\mathbb{1}_{\hat{y}_{ji}=y_{c}}}$$

$$+\log \sum_{y_c \in \mathcal{Y}} \exp\left(\sum_{i=1}^{\infty} \left(w_{i,c} \boldsymbol{z}_{i,c}^{\mathrm{T}}\right)^{\top} \cdot \boldsymbol{z}^{\mathrm{I}}\right) \cdot \frac{\mathbb{I}_{\hat{y}_{j}i} = y_c}{\sum_{j'} \mathbb{I}_{\hat{y}_{j'}i} = y_c}$$
1063

However, since Dirichlet priors would introduce additional steps (e.g., estimating concentration parameters α), in our preliminary investigation, we used uniform prior to keep simplicity. Despite this simplest setup, our CARPRT prompt reweighting strategy effectively facilitated TTA methods. We leave more systematic explorations of alternative priors (e.g., Dirichlet) into future work.

Η **DETAILED RESULTS FOR HYPERPARAMETER ANAYLSIS**

In this section, we present the results of our hyperparameter analysis across all fine-grained datasets. Table 6 shows the accuracy for varying temperature setting. In zero-shot classification, where only test data is available, conventional hyperparameter selection is inherently difficult due to the lack of training or validation data. Following Shu et al. (2018), we aim to identify hyperparameters that exhibit robust and consistent performance across diverse datasets..

As shown in Table 6, a temperature of 3.0 consistently provides strong results across datasets. While it may not be optimal for each dataset, it offers a practical and generalizable choice under the constraints of the zero-shot setting.

Table 6: Accuracy(%) results for varying temperature settings across fine-grained datasets using
CLIP-ViT-B/16 backbone. Bold value represents the highest accuracy in each column.

Temperature	Caltech101	DTD	EuroSAT	Aircraft	Food101	Flower102	Pets	Cars	SUN397	UCF101
1	87.97	46.16	54.07	21.13	84.42	57.97	74.05	58.10	58.29	61.07
2	91.91	47.56	56.04	22.62	85.87	68.88	82.76	64.35	64.85	67.91
3	92.60	47.74	55.85	22.64	85.78	68.58	82.48	65.02	65.49	68.61
4	92.56	47.10	54.62	22.56	85.68	66.42	81.86	65.26	65.48	68.69
5	92.72	47.08	54.03	22.62	85.62	65.68	81.74	65.38	65.39	68.40
10	92.68	47.24	52.59	22.30	85.47	65.05	81.34	63.23	63.23	67.53

Table 7: Accuracy (%) comparison between our method and baselines on CIFAR-10 using the CLIP-ViT-B/16 backbone. **Bold** values represent the highest accuracy in each column.

	Balanced Datasets	$\beta = 10$	$\beta = 50$	$\beta = 100$
Average	89.56	89.58	89.57	89.56
ZPE	89.55	90.02	90.78	91.07
CARPRT	90.82	91.07	91.36	91.70
Gain from ZPE	+1.27	+1.05	+0.58	+0.63
Gain from Average	+1.26	+1.49	+1.79	+2.14

1101

1080 1081

1089

1090

I EXPERIMENTS ON IMBALANCED DATASETS

1102 In this section, we evaluate the performance of CARPRT on datasets with class imbalances. Following 1103 Cao et al. (2019), we manually construct an imbalanced CIFAR-10 (Krizhevsky et al., 2009) dataset 1104 using an exponential decay strategy to create various degrees of class imbalance. We use an imbalance 1105 factor β to describe the severity of the long-tailed distribution, defined as the ratio between the number 1106 of training samples in the most frequent class and the least frequent class. Specifically, β is given by:

1107

1108

1109 1110

where N_{max} and N_{min} represent the number of training samples in the most frequent and least frequent classes, respectively. We conduct experiments with different imbalance ratios, setting $\beta = 10, \beta = 50$, and $\beta = 100$, using the CLIP-ViT-B/16 backbone.

 $\beta = \frac{N_{\max}}{N_{\min}},$

1114 The results shown in Table 7 demonstrate that CARPRT significantly outperforms the average baseline 1115 for all degrees of class imbalance. Specifically, CARPRT provides a consistent improvement in 1116 performance over ZPE, though the gain decreases as the imbalance factor β increases. This decreasing 1117 gain may be attributed to the global nature of the ZPE weight estimation, which remains effective even 1118 under a higher imbalance. ZPE calculates a single weight for the entire dataset, capturing the overall 1119 distribution and maintaining reasonable performance, even when certain classes are underrepresented.

In contrast, CARPRT uses a per-class weighting strategy, which allows better adaptation to individual
class characteristics, which is highly effective in balanced or moderately imbalanced settings. However, when the class imbalance becomes severe, the challenge arises for classes with very few samples
(e.g., only 10 samples). In these cases, the reliability of CARPRT's weight estimates decreases as a
result of insufficient data, impacting performance.

1125 1126

J IMPACT OF TEMPLATE QUALITY

In this section, we investigate the impact of template quality on ImageNet classification tasks.
Specifically, we explore how different prompt template pools influence performance by evaluating two newly generated template pools alongside the original templates on the ImageNet datasets.
Specifically, Pool1 was generated using Claude 3.5 (Anthropic, 2024) to produce 300 templates tailored to the ImageNet label space. Each category in Pool1 consists of 100 prompt templates structured in descriptive formats, such as "A photo of a ", "A photo of a ", "The type of ". These templates aim to incorporate task-specific context and improve the alignment between the prompts and ImageNet categories. Pool2, on the other hand, was constructed using Phi 3.1 (OpenAI, 2024)

to create highly descriptive templates. For each ImageNet category, Phi 3.1 generated five detailed prompts, resulting in a total of 5,000 templates across all categories. These templates focus on providing class-specific descriptive information, enabling a more precise and nuanced interaction with the underlying vision-language model. These additional template pools were evaluated on ImageNet dataset compared to the original templates (Pool0), as shown in Table 8.

1139

1140Table 8: Accuracy (%) comparison across different template pools using ZPE and CARPRT methods
on ImageNet classification.

Pool	Method	ImageNet Acc. (%)	Perf. Comparison
Pool0	ZPE CARPRT	67.42 67.81	+0.39
Pool1	ZPE CARPRT	68.18 68.36	+0.18
Pool2	ZPE CARPRT	68.14 68.79	+0.65

For Pool1, This pool targets more task-specific information by generating templates with respect to the ImageNet label space. This leads to performance improvements for both ZPE and CARPRT prompt reweighting strategies compared to Pool0. On the other hand, the generated templates in Pool2 incorporate more class-specific descriptive information. CARPRT benefits significantly from these templates, achieving greater performance gains compared to ZPE. This highlights the effectiveness of class-aware prompt reweighting in leveraging descriptive templates.

1157 1158

1159 1160

K COMBINING CLASS-AWARE PROMPT REWEIGHTING WITH PROMPT TUNING METHOD.

1161 1162

Prompt tuning has recently become a powerful technique for adapting CLIP and other pre-trained 1163 vision-language models to downstream tasks. By learning optimal prompts that guide the model's 1164 understanding of new data, prompt tuning has shown remarkable effectiveness (Zhou et al., 2022b;a; 1165 Khattak et al., 2023b). ProDA optimizes prompt distributions to improve few-shot performance by 1166 training a set of learnable invisible prompt embeddings. While CARPRT is primarily designed to 1167 reweight visible prompt templates, our approach is not restricted to visible prompts. In this section, 1168 we also apply class-aware reweighting to the invisible prompts trained by ProDA, making our method 1169 capable of enhancing performance in various prompt tuning scenarios. 1170

Our CARPRT method could enhance the ProDA framework by introducing a class-aware reweighting technique that adjusts the influence of each prompt based on the underlying class structure. Specifically, before each iteration of ProDA's prompt distribution learning, we use CARPRT to update the weights, which then guide the model's logit outputs for training the prompts. As the problem setting transitions from zero-shot to few-shot, our approach adapts by refining the weight estimation. Specifically, we use ground truth labels instead of the pseudo labels for weight estimation, as shown in the following replacement for Eq. (15):

- 1177 1178
- 1179
- 1180

1186

 $w_{i,c}' = \frac{\sum_{j=1}^{m} s_{j,i,c} \mathbb{1}_{y_j = y_c}}{\sum_{j=1}^{m} \mathbb{1}_{y_j = y_c}},$ (18)

where y_j is the ground truth label of the sample j. The results show in Table 9 demonstrate that our method provides notable improvements in most data sets, highlighting the effectiveness of our class-aware prompt reweighting mechanism.

1185 L ETHIC STATEMENT

1187 This research adheres to the ICLR Code of Ethics, ensuring that all practices comply with ethical standards regarding data privacy, research integrity, and fairness. The study does not involve human

1190	using the CLIF-VII-D/101	Dackbolle. Doi	u values l	epresent the highest ac	
1191			ProDA	ProDA + CARPRT	
1192		Caltech101	91.3	95.4	
1193		DTD	70.1	69.6	
1194		EuroSAT	84.3	83.4	
1195		Aircraft	36.6	36.9	
1196		Food101	82.4	88.1	
1197		Flower102	95.5	95.6	
1198		Pets	90.0	93.7	
1199		Cars	75.5	78.6	
1200		Average	78.2	80.2	

1189Table 9: Accuracy (%) comparison between our method and the baseline on fined-grained datasets1190using the CLIP-ViT-B/16 backbone. Bold values represent the highest accuracy in each raw.

or animal subjects, and all datasets mentioned in Appendix B utilized in the experiments are publicly available and anonymized, eliminating any potential privacy concerns. We have taken careful steps to avoid any potential bias or unfairness in our methodologies and experimental procedures. The algorithms and models developed in this work are designed to be transparent and reproducible, and any ethical concerns related to the broader applications of the research have been addressed appropriately.