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ABSTRACT

When using a pre-trained vision-language model (VLM) to classify an image, we
often need to use the pre-trained VLM to compute a similarity score between the
image and texts containing a semantic label, e.g., “a photo of a cat”, where “a
photo of a” is called a prompt and “cat” is the semantic label (a.k.a. a class in
classification tasks). The existing studies have shown that the selection of prompts
can significantly affect the scoring scheme between a given image and a semantic
label, and they proposed a new score via using a weighting vector to reassemble
scores regarding different prompts. However, these studies assume that all classes
should share the same weighting vector. In this paper, we first empirically show
that the existing approach is sub-optimal. We subsequently revisit the existing
reweighting strategy from a probabilistic view and find an implicit assumption in
prior work: the conditional independence of classes and weights, which often does
not hold in practice. To cope with this problem, we propose class-aware prompt
reweighting (CARPRT), a strategy designed to adjust the weighting vector for each
class. CARPRT calculates the relevance scores for prompt-class pairs with respect
to all images, and identifies the maximum score for each prompt-class pair. These
maximum scores are then averaged across prompts for each class to estimate the
class-specific weighting vectors, ensuring that prompts are optimally reweighted
based on class-specific information. Our experiments demonstrate that CARPRT
outperforms the existing reweighting strategy under the image classification tasks.

1 INTRODUCTION

Vision-language models (VLMs), such as CLIP (Radford et al., 2021), ALIGN (Jia et al., 2021), and
LiT (Zhai et al., 2022), have transformed the way models understand visual content by leveraging
information from both visual and textual modalities. VLMs can perform zero-shot classification
tasks by encoding previously unseen class labels through text prompting (Radford et al., 2021), yet
their performance remains highly sensitive to the quality of the prompts (Pham et al., 2023; Radford
et al., 2021; Karmanov et al., 2024). These prompt templates, which are human-crafted textual
structures, embed downstream class labels for specific tasks. However, relying on a single prompt
often results in a lack of robust performance across different downstream tasks. For example, applying
a prompt like “a type of animal” for EuroSAT (Helber et al., 2019)–satellite images for land-use
classification–leads to poor accuracy due to lack of relevance between the prompt and the image. To
address this limitation, prompt ensembling (Radford et al., 2021) averages the text embeddings of
multiple prompts containing class names, forming a more reliable class-representative embedding,
which in turn improving both accuracy and robustness across target tasks.

Prompt ensembling may yield suboptimal results when the number of prompts is too large and
includes some that are unsuitable for the specific downstream tasks (Radford et al., 2021). There is a
growing need for more automated approaches that can identify and weight the most effective prompts
from a large prompt template pool without human intervention. Allingham et al. (2023) introduced
a zero-shot prompt weighting method that assigns weights to each prompt template from the pool
based on downstream data, achieving performance comparable to hand-crafted selections. However,
this method assumes that the optimal weights are the same across different classes, which overlooks
the diverse characteristics of different classes. This raises a question: is it reasonable to apply the
same prompt weights to all classes in a dataset.
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(a) Accuracy Differences between ZPE and
Class-Specific Weights

(b) Weight Differences between ZPE and
Class-Specific Weights

Figure 1: The optimal weights vary across different classes, even within the same downstream dataset. (a) On
the Flower102 dataset, the five classes with the most pronounced accuracy discrepancies between zero-shot
zero-shot prompt ensembling (ZPE) (Allingham et al., 2023) and class-specific weights are highlighted. (b)
A heatmap visualizes the weight differences between ZPE and class-specific weights across five components.
Red regions indicates larger weight differences, while blue regions indicate smaller or negligible differences,
showing how the weights differ for each of the selected classes.

Intuitively, different classes and prompt templates vary in importance. For example, the prompt
template “This is a photo of a [label], a type of fruit” is clearly more suitable when the [label] is

“strawberry,” while “This is a photo of a label, a type of animal” is likely to provide more accurate
information for labels like “lamb.” To substantiate this intuition, we conducted proof-of-concept
experiments on Flower102 (Nilsback & Zisserman, 2008), comparing the classification accuracy of
class-specific weights against zero-shot prompt ensembling (ZPE) (Allingham et al., 2023). Class-
specific weights were derived by applying ZPE separately for each class, tailoring the weights to
the unique characteristics of each class. As Figure 1(a) shows, class-specific weights consistently
yield higher classification accuracy, indicating that zero-shot prompt weights may not be universally
optimal across different classes. Figure 1(b) further highlights significant variations in that the
class-specific weights, suggesting that the optimal weights indeed differ across different classes.

Moreover, in Section 3, we present a probabilistic viewpoint based on Bayes’ Theorem to understand
weighted prompt ensembling in the zero-shot classification context, where the interactions of prompts,
classes and images can be characterized with probabilistic tools. Our analysis uncovers a key implicit
limitation in the class-shared-weighting (e.g., ZPE) method: the conditional independence assumption
between the class and weights, which is not always satisfied in practice, resulting in limiting the
expressivity of class-shared-weighted prompt ensembling schemes.

Inspired by our findings, in Section 4, we propose a class-aware prompt reweighting method called
CARPRT in the zero-shot context1, aiming to infer a unique weight vector for each class. Building
upon CLIP (Radford et al., 2021), CARPRT computes the relevance score for each image and
prompt-class pair by calculating the similarity between their respective text and image embeddings.
The image is then assigned with a pseudo-class label based on the highest relevance score across
all prompt-class pairs. Subsequently, these pseudo-labels are used to derive class-aware weights.
The weight vector for each class is formed by selecting the highest score for each prompt-class pair,
ensuring that the resulting weights prioritize the most relevant prompts for each class. This aligns the
prompt weighting process with the unique characteristics of each class.

We verify the efficacy of CARPRT using the open-source CLIP model over multiple benchmarks,
including ten fine-grained classification tasks, ImageNet (Russakovsky et al., 2015) and its variant
test sets. Experimental results show that CARPRT outperforms existing prompt reweighting methods
and achieves state-of-the-art performance in classification accuracy, highlighting the potential of
class-awareness as a promising new direction in addressing the prompt reweighting problem.

2 PRELIMINARY AND RELATED WORKS

CLIP for Zero-shot Image Classification. CLIP (Radford et al., 2021) is a VLM that achieves
visual-text alignment through large-scale contrastive pre-training. It consists of an image encoder

1We do not assume labelled to be available for estimating the weights, thus the class-specific weighting in
the proof-of-concept experiment (Figure 1(a) and 1(b) is no longer applicable.
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f : X → Z and a text encoder g : T → Z , where X and T represent the image and text spaces,
respectively, and Z is a shared embedding space. The alignment is driven by maximizing the cosine
similarity between the embeddings of matched image-text pairs while minimizing it for non-matched
pairs, enabling CLIP to capture semantic correlations between visual and textual data.

This alignment is extended to various downstream vision tasks, such as zero-shot image classification.
Consider a class space Y = {y1, . . . , yC}, each class yc is mapped to a text description tc via a
prompt template p : Y → T , e.g., tc =“A photo of {yc}.”. The text encoder g(·) embeds these
descriptions into Z , i.e., zT

c = g(tc), which results in C class embeddings, denoted as[
zT
1 zT

2 · · · zT
C

]⊤
. (1)

Then for image x ∈ X , CLIP predicts the label by selecting the class whose text embedding has the
highest cosine similarity sim(·, ·) with the image embedding zI = f(x), such that

ŷ = argmaxc∈{1,...,C} sim
(
zI, zT

c

)
. (2)

This enables zero-shot classification based on semantic alignment without task-specific fine-tuning.
Yet, when a prompt template lacks task-specific relevance, the semantic inconsistency between the
prompt template and the visual context can lead to misaligned class embeddings.

Prompt Ensembling (PE). Radford et al. (2021) aim to address the issue above by prompt ensembling
(PE) that leverages multiple prompt templates and computes their text representations, to improve
the robustness of class embeddings. PE introduces P = {pi}ni=1 as a pool of prompt templates,
where each pi maps class yc to a textual description ti,c = pi(yc), such that each ti,c provides a
semantically diverse perspective for yc. Then, the text encoder g(·) embeds all these n descriptions
for each class yc, which eventually yields the class embeddings for ∀yc ∈ Y , such thatz

T
1
...
zT
C

 =
1

n


z

T
1,1 zT

2,1 · · · zT
n,1

...
...

. . .
...

zT
1,C zT

2,C · · · zT
n,C

 ·

1...
1


 . (3)

In other words, for each yc, its class embedding zT
c is obtained by averaging the embeddings zT

i,c
derived from all prompts pi ∈ P. In doing so, PE reduces sensitivity to each individual suboptimal
prompt by leveraging the collective semantic information captured by a diverse set of prompts.

Weighted Prompt Ensembling. Allingham et al. (2023) propose ZPE that extends PE to further
mitigate the impact of task-irrelevant prompts. Instead of uniform weighting as in PE (Eq. 3), ZPE
scores each prompt and assigns higher weights to prompts with higher task-relevance scores, by
using an unlabeled downstream dataset D = {xj}mj=1. Concretely, define w = [w1, . . . , wn]

⊤ as the
weights encoding the relevance of each prompt to the task. The weight for prompt pi ∈ P is computed
as wi =

∑
j maxc∈{1,...,C} sim(zI

j , z
T
i,yc

)/m, where zI
j is the image embedding of xj , and zT

i,yc

is the text embedding under prompt pi for class yc. This quantifies wi as the average maximum
similarity across all samples, between the image embeddings and the text embeddings of prompt pi
over all classes. This leads to the class embeddings for ∀yc ∈ Y asz

T
1
...
zT
C

 =
1

n


z

T
1,1 zT

2,1 · · · zT
n,1

...
...

. . .
...

zT
1,C zT

2,C · · · zT
n,C

 ·

w1

...
wn


 . (4)

This implies a weighted-aggregation of the embeddings zT
i,c obtained from all prompts pi ∈ P with

respect to w, enabling ZPE to focus more on prompts better aligned with the current task.

Limitations. While ZPE offers improvements over mean-aggregated PE, it still assumes that the
optimal weight for each prompt pi is constant across all classes and ignores a crucial factor as
Figure 1 reveals: the same prompt can contribute differently to classification depending on the class.
Mathematically, this calls for an expansion from the weight vector w to a matrix W = {Wc}yc∈Y ,
where each class yc has its own set of weights Wc = [w1,c, . . . , wn,c]

⊤, leading toz
T
1
...
zT
C

 =
1

n


z

T
1,1 zT

2,1 · · · zT
n,1

...
...

. . .
...

zT
1,C zT

2,C · · · zT
n,C

 ·

w1,1 w1,2 · · · w1,C

...
...

. . .
...

wn,1 wn,2 · · · wn,C


 . (5)
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This reformulation captures the varying relevance of each prompt for different classes, which enables
more flexible aggregation of prompted embeddings, motivating a principled reweighting scheme that
better reflects such class specificity. Existing PE methods have largely overlooked this aspect, nor
attempted to understand why class specificity is necessary to determine prompt relevance and how
statistical tools help to address it. To bridge this gap, we next present a probabilistic framework that
establishes a principled connection between class-aware reweighting and zero-shot classification.

3 UNDERSTANDING PROMPT REWEIGHTING: A PROBABILISTIC VIEWPOINT

Eq. 2 describes zero-shot classification with CLIP as predicting the label ŷ∗ given a query image x∗.
Equivalently, this task can be framed as modeling Pr(y∗ | x∗,P,D), i.e., the conditional probability
of label y∗ given input x∗, the set of prompts P, and the unlabeled dataset D = {xj}mj=1, regardless
of the specific PE strategy used (whether based on Eq. (3), Eq. (4), or Eq. (5)). To probe how prompt
reweighting influences this task, we now analyze its probabilistic structure, particularly taking into
account the effect of prompts and weights.

Let W ∈ W be a weight matrix. We begin by marginalizing over the weight space W as

Pr(y | x,P,D) =
∫
W

Pr(y | x,P,D,W) Pr(W | x,P,D)dW

=

∫
W

Pr(y | x,P,D,W) Pr(W | P,D)dW,

(6)

where the second equation results from the conditional independence between query image x∗ and
weights W, as W is not updated based on x∗ in the zero-shot setting. This decomposition suggests
two essential tasks in zero-shot classification: (i) accurately modeling the weights Pr(W | P,D) and
(ii) utilizing Pr(y | x,P,D,W) to predict the label given a specific weight configuration. As such, we
will continue to explore how further expansions can inform and align with practical implementations.

3.1 MODELING Pr(W | P,D)

Given m i.i.d samples, we express this probability using the Bayes’ rule as

Pr(W | P,D) ∝ Pr(W | P) Pr(D | W,P) = Pr(W | P)
∏m

j=1
Pr(xj | W,P), (7)

where Pr(xj | W,P) is further marginalized over the possible classes for each sample xj , such that

Pr(xj | W,P) =
∑

yc∈Y
Pr(xj | yc,W,P) Pr(yc | W,P). (8)

This allows us to express the likelihood Pr(xj | yc,W,P) as a sum over all classes, weighted by
their the conditional class probabilities Pr(yc | W,P).

Modeling Pr(yc | W,P). When domain knowledge is unavailable, a common choice for estimating
the probability Pr(yc | W,P) is to assume a uniform prior over the classes. However, in zero-shot
classification, we assume the unlabeled dataset, when used with the predictions from a pre-trained
CLIP, can provide a reliable empirical estimate of the class prior distribution.

Proposition 1. Let D = {xj}mj=1 be an unlabeled dataset with unobserved classes Y = {y1, . . . , yC},
and Pr(yc) be the true class probability for class yc. Let ŷ be the pseudo label produced by a pre-
trained model. For sufficiently large m, the empirical class distribution P̂r(yc | W,P) converges to

Pr(yc). Specifically, for any ϵ > 0, we have: Pr
{
|P̂r(yc|W,P)− Pr(yc)| ≥ ϵ

}
≤ 2 exp

(
−2mϵ2

)
,

Remark 1. Proposition 1 implies that we can approximate true distributions by:

P̂r(yc | W,P) =
nc∑

yc′∈Y nc′
, ∀yc ∈ Y, (9)

where nc =
∑m

j=1 1ŷj=yc
denotes the number of times yc was predicted over all samples in D. These

predictions ŷj can be produced by following Eq. 2 in using CLIP.
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Modeling Pr(xj | yc,W,P). This likelihood term represents the probability of observing an image
xj ∈ X given a class yc, prompt set P, and weight matrix W. To characterize it, we use Energy-based
Models (EBMs) (LeCun et al., 2006) capable of modeling complex high-dimensional distributions.
EBMs allow us to express any probability distribution by defining an unnormalized energy function,
with the normalization enforced by a partition function. The likelihood p(xj | yc,W,P) can thus be
formulated in the form of an EBM as

p(xj | yc,W,P) =
1

Z(yc,W,P)
exp

{
sim(zI

j , z
T
c )
}
, (10)

where zI
j = f(xj) and zT

c = g(pi(yc)). In this way, sim(zI
j , z

T
c ) can be seen as the negative of the

energy function. In EBMs, configurations with higher similarity (and hence lower energy) are more
likely. The partition function Z(yc,W,P) =

∫
X exp(sim(zI, zT

c ))dx ensures that the likelihood is
properly normalized across all possible images. While estimating the exact likelihood is intractable,
in classification we are interested in the relative likelihoods of different classes for a given image.
Lemma 1 (Relative Likelihood). The likelihood of an image x, given class c, prompt weights W
and a prompt pool P, following the EBM defined in Eq. (10), is proportional to

Pr(xj | yc,W,P) ∝ exp
{
sim(zI

j , z
T
c )
}
∝ exp

{
n∑

i=1

(wi,c z
T
i,c)

⊤ · zI

}
, (11)

where zI
j = f(xj) and zT

i,c = g(pi(yc)) are image embeddings of sample xj and text embeddings of
class yc under prompt pi, respectively.

Class-aware Weighting Matters. Lemma 1 (proof in Appendix E) results from a general formulation
of PE. For each class yc, sim(zI

j , z
T
c ) ends up with a linear combination of image-class similarities

over all n prompt-class pairs. Each pair has a distinct embedding zT
i,c and weight wi,c reflects its

contribution to the classification of yc. Under this framework, ZPE (Allingham et al., 2023) is a
special case with a conditional independence assumption, i.e., wi,c = wi for all yc ∈ Y given W
and P. While simplifying the model, this assumption constrains the range of likelihood functions
that ZPE can represent. We now examine the representational limitations of such class-independent
weighting schemes.
Proposition 2. Let X be the image space, Y be the class space. Given a set of prompts P, for any
prompt weighting scheme S (cf. Eqs. (3-5)), define the representable likelihood set FS as:

FS = {f : X × Y → R+ | ∃W ∈ WS ,P, s.t. f(x, yc) ∝ Pr(x | yc,W,P)} ,
where WS is the weight space under the scheme S. Let FCI and FCA be the representable likelihood
set induced from class-independent weighting (cf. Eq. (4)) and class-aware weighting (cf. Eq. (5))
schemes. Then, we have: ∃f∗ ∈ FCA such that ∀fCI ∈ FCI,∃x ∈ X , yc ∈ Y where f∗(x, yc) ̸=
fCI(x, yc).
Remark 2. Proposition 3 shows that class-independent weighting (e.g., ZPE) cannot fully capture
the variety of likelihood functions representable by class-aware weighting. This further indicates that
prompt weights wi,c must be class-specific to ensure that each class benefits from the most relevant
prompts, as determined by the visual-text similarity measured by CLIP.

3.2 MODELING Pr(y | x,P,D,W)

Zero-shot classification is a training-free process, meaning that we cannot optimize prompt weights
using standard learning methods. We approximate Pr(y∗|x∗,P,D,W) with Pr(y∗|x∗,P,Ŵ), where
Ŵ is considered a point estimate that captures information from D, as we have discussed2 in Eq. (9)
and Eq. (11). Concretely, by considering each individual prompt from the prompt set P, we have

Pr(y∗|x∗,P,Ŵ) =
∑
pi∈P

Pr(y∗|x∗, pi,Ŵ) ∝
exp

(∑n
i=1(wi,c z

T
i,c)

⊤ · zI
∗
)

∑
c′∈1,...,C exp

(∑n
i=1(wi,c′ zT

i,c′)
⊤ · zI

∗

) , (12)

By now, we have framed CLIP-based zero-shot classification in a probabilistic framework (Eq. (6)),
justified class-aware prompt reweighting (Propositions 1 and 3), and interpreted how class prediction
for a query image can be performed (Eq. (12)) under this framework.

2The relevant content of weights prior Pr(W|P) is deferred to Appendix D to keep the focus of the main
text on class-aware reweighting, which is the central theme of this study.
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Figure 2: Overview of CARPRT. The model first generates the text input with the template pool P of prompt
templates based on the label space Y . These text inputs are then processed by a text encoder g to generate text
representations. Simultaneously, an image encoder f generates representations for the downstream unlabeled
images. The score tensor is generated by comparing the text and image representations, and these scores are then
used to estimate the weight matrix W, which adjusts the importance of each prompt template for each class.

4 CLASS-AWARE PROMPT REWEIGHTING FOR VLMS

We now introduce CARPRT, a minimalistic yet effective implementation that adheres to the key
principles established in Section 3. CARPRT is designed to enhance zero-shot classification with
CLIP by adaptively reweighting prompts according to their relevance to each class.

Overview. Given an unlabeled dataset D = {xj}mj=1, an unknown class label space Y =
{y1, . . . , yC}, a fixed prompt set P = {pi}ni=1, and a pre-trained CLIP model, define the weight
matrix for all prompts in P as W, such that W = {Wc}yc∈Y , where each Wc = [w1,c, . . . , wn,c]

⊤

lies on an (n− 1)-dimensional simplex. The goal of CARPRT is to find a class-aware weight matrix
W∗ ∈ W for classifying the images ∀x ∈ D with CLIP, without using any true labels. As shown in
Figure 2, CARPRT consists of two main stages: Score Calculation and Weight Calculation. The full
process is described in Algorithm 4.1.

4.1 PROMPT RELEVANCE SCORE CALCULATION

As Eqs.(7-8) suggest, the key to estimating Pr(W|P,D) lies in individual likelihood Pr(xj |yc,W,P).
According to Lemma 1, Pr(xj |yc,W,P) is fully consistent with the similarity score provided by
CLIP. Thus, in the first stage, CARPRT calculates the similarity scores between each image embedding
and each prompted-class embedding. Given an input image xj ∈ D, the prompt template pi ∈ P and
the relevance score sj,i,c of xj and pi belongs to the class yc ∈ Y can be expressed by:

sj,i,c = sim(zT
j , z

T
i,c) (13)

where zI
j = f(xj) denotes the image embedding and zT

i,c = g(pi(yc)) refers the text embedding
generated for class yc under prompt pi. Eq. (13) provides a unnormalized estimate of Pr(xj |yc,W,P)
and serves as the foundation for reweighting prompt-template combinations.

Correcting Frequency Bias. Before moving on to weight calculation, we take an additional debiasing
step to correct the relevance scores. Frequency bias arises when the frequent concepts that appear
in test images D, but do not necessarily correspond to the target classes for prediction. Allingham
et al. (2023) propose to mitigate this bias by subtracting expected scores derived from the pre-training
dataset of CLIP. However, since neither the true pre-training dataset of CLIP, nor the open-sourced
Laion-400M (Schuhmann et al., 2021) used as pre-training data in ZPE, are not publicly available at
the time of this study, we adapt this approach for CARPRT by using test data instead.

6
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Algorithm 1 Class-Aware Prompt Reweighting (CARPRT)
Input: Pre-trained CLIP with image encoder f and text encoder g, a prompt set P, an unlabeled dataset D, a
candidate label space Y and the temperature parameter τ and the normalization scale λ.
1: Generate prompted-class texts pi(yc),∀pi ∈ P,∀yc ∈ Y;
2: Encode image embeddings zI

j = f(xj), ∀xj ∈ D;
3: Encode text embeddings zT

i,c = g(pi(yc)), ∀pi ∈ P, ∀yc ∈ Y;
4: Obtain the relevance score set S = {sj,i,c}m,n,C

j=1,i=1,c=1 by Eq. (13) ;
5: Obtain the normalized score by Eq. (14);
6: Obtain the pseudo-labels set: Ŷ = {ŷj,i}m,n

j=1,i=1;
7: Derive the weight matrix W∗ by Eq. (15) and Eq. (16);
Output: a class-aware prompt weight matrix W∗.

Specifically, CARPRT normalizes the relevance scores by subtracting the expected scores calculated
over a subset of the test data. Let S denote the relevance scores computed with Eq. (13) from all test
data. We set a sampling rate γ, which specifies the proportion of test data scores used in normalization.
Then, the corrected relevance score for a sample xj , prompt pi and the class yc is:

s̄j,i,c = sj,i,c −
1

γ|S|
∑γ|S|

j′=1
sj′,i,c. (14)

In this way, the corrected scores better reflect the actual relative importance of prompts in relation to
the specific target classes being predicted.

4.2 CLASS-AWARE WEIGHT CALCULATION

In the second stage, CARPRT estimates the class-specific weights for each prompt-class combination
based on the relevance scores sj,i,c computed in Eq. (13). These weights adjust the importance of
each prompt template, ensuring that the most relevant prompts are emphasized for each class. The
weight estimation process unfolds as follows.

First, we create a pseudo-label set Ŷ = {ŷj,i}m,n
j=1,i=1, where the pseudo-label ŷji for each sample

xj under prompt pi is determined as the class yc that maximizes the relevance score sj,i,c, i.e. ,
ŷji = argmaxyc∈Y sj,i,c. Then, we compute intermediate weight w′

i,c for each prompt-class pair
by aggregating the scores sj,i,c across all images xj predicted to belong to class yc under prompt pi.
This can be expressed as:

w′
i,c =

∑m
j=1 sj,i,c1ŷji=yc∑

j 1ŷji=yc

. (15)

Here, 1ŷji=yc
is an indicator function that is 1 if ŷj,i = yc, and 0 otherwise. This aligns with the

empirical estimate of the class prior probabilities as indicated by Eq. (9). Afterward, a softmax
normalization is applied to these intermediate weights to obtain the final weight w∗

i,c,

w∗
i,c =

exp (w′
i,c/τ)∑

c exp (w
′
i,c/τ)

, (16)

where τ is the temperature that controls the sharpness of the distribution. The use of softmax ensures
the probabilistic validity of the weights for each class, i.e.,

∑n
i=1 wi,c = 1. By constructing w∗

i,c in
this manner, we integrate empirical class distributions into the reweighting scheme, ensuring that w∗

i,c
reflects both the relevance scores (Eq. (8)) and the estimated class priors (Eq. (9)), thus providing a
principled inference approach to class-aware prompt reweighting.

5 EXPERIMENTS

Setup. We evaluate the effectiveness of CARPRT on ten fine-grained classification benchmarks,
include Caltech101, DTD, EuroSAT, Aircraft, Food101, Flowers102, Pets, Cars, Sun397 and UCF101.
We include further evaluations on ImageNet along with its variant test sets: ImageNet-R, ImageNet-A,
ImageNet-Sketch, and ImageNet-V2. See Appendix B for details of the datasets. We adhere to
the established experimental protocol by (Zhou et al., 2022b). For prompt templates, we adopt
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Table 1: Accuracy (%) comparison between baselines and our method % on various fine-grained
classification datasets using CLIP-ViT-B/16 and CLIP-ResNet50 backbones. Bold value represents
the highest accuracy on each column. Standard deviations are shown on the second row for ZPE and
CARPRT.

Caltech101 DTD EuroSAT Aircraft Food101 Flower102 Pets Cars SUN397 UCF101 Average

CLIP-ViT-B/16
Equal Weight 92.50 46.88 51.86 21.49 85.34 64.21 79.46 65.21 64.92 67.41 63.93

ZPE 92.49 47.25 52.26 21.60 85.48 66.10 79.85 64.73 64.87 68.28 64.29
±0.08 ±0.63 ±0.03 ±0.28 ±0.05 ±0.06 ±0.58 ±0.07 ±0.02 ±0.17 ±0.20

CARPRT 92.60 47.74 55.85 22.64 85.78 68.58 82.48 65.02 65.49 68.61 65.48
±0.07 ±0.68 ±0.03 ±0.24 ±0.05 ±0.11 ±0.49 ±0.07 ±0.01 ±0.16 ±0.19

CLIP-ResNet50
Equal Weight 86.41 41.69 30.34 16.05 75.53 56.95 75.98 55.74 59.32 60.06 55.81

ZPE 85.83 41.94 30.95 16.24 75.61 56.67 74.79 55.67 59.21 61.06 55.80
±0.06 ±0.39 ±0.03 ±0.17 ±0.07 ±0.07 ±0.63 ±0.03 ±0.01 ±0.25 ±0.17

CARPRT 86.63 42.66 30.88 16.29 76.08 60.01 76.94 55.75 59.90 61.87 56.70
±0.06 ±0.42 ±0.03 ±0.15 ±0.06 ±0.09 ±0.51 ±0.03 ±0.01 ±0.16 ±0.16

the pool of 247 prompts as used by Allingham et al. (2023). Additionally, we conduct ablation
and hyper-parameter studies to analyze the behavior of our method. Details regarding baselines,
implementations and our anonymous code repository are in Appendix C.

We note that the results of ZPE reported in Tables 1 and Tables 2 differ from those in the original
study Allingham et al. (2023). This discrepancy arises primarily because ZPE used the LAION-400M
(Schuhmann et al., 2021) dataset as pre-trained data for normalization to correct for frequency biases.
The dataset is no longer publicly accessible, precluding us from evaluating ZPE with the same
normalization process. Also, the ZPE implementation used a batch size of 5,000, a configuration we
could not replicate due to computational limitations.

5.1 RESULTS ON FINE GRAINED DATASETS

Overall Comparison. Following the data split used by Zhou et al. (2022b), we evaluate the model
performances on 10 fine-grained classification tasks, as shown in Table 1. Our method outperforms
the baselines in most tasks. For example, on EuroSAT, we achieve a significant improvement of 3.59%
over ZPE using the CLIP-ViT-B/16 backbone. Similarly, on Flower102, we record a 2.48% increase
in accuracy. On average, using the CLIP-ViT-B/16 backbone, our method yields an improvement of
1.19% over ZPE across all datasets, demonstrating the overall efficacy of our method.

Scalability. We further evaluate the scalability of CARPRT using the CLIP-ResNet50 backbone.
As shown in the lower half of Table 1, our method consistently outperforms ZPE. For example, on
EuroSAT, CARPRT achieves an improvement of 2.93% over ZPE, and a 0.92% increase is observed
on average. These results demonstrate that our approach generalizes well across different backbone.

Quality of Prompts Matters. The performance gain is less obvious or there is a performance
gap on some datasets, such as Cars and Aircraft. This may be attributed to the lower quality of
the pseudo-labels generated by CLIP for these datasets, which directly impacts the performance of
our method, as it relies heavily on pseudo-label accuracy. Additionally, the template pool used for
these datasets was manually crafted for the entire dataset, rather than being tailored to individual
classes(Radford et al., 2021; Zhai et al., 2022). This may result in reduced class differentiation,
leading to smaller variations in the class-specific weights. Nonetheless, our method exhibits superior
performance overall, particularly when class-specific prompt relevance is critical.

5.2 RESULTS ON IMAGENET AND ITS VARIANTS DATASETS RESULT

Overall Comparison. We also evaluate the performance of our method across ImageNet and its
variant datasets (ImageNet-A, ImageNet-R, ImageNet-Sketch, and ImageNet-V2), as shown in
Table 2. Our method outperforms the baselines, though the gains are modest. For CLIP-ViT-B/16,
CARPRT achieves 60.70 %, compared to 60.51 % accuracy on average. When using the CLIP-
ResNet50 backbone, our method also shows an improvement in accuracy, i.e., 53.81% (ZPE) vs
53.72% (CARPRT) on average.
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Table 2: Accuracy (%) comparison between baselines and our method % on ImageNet and its variants
using CLIP-ViT-B/16 and CLIP-ResNet50 backbones. Bold value represents the highest accuracy on
each column. Standard deviations are shown on the second row for ZPE and CARPRT.

ImageNet -A -R -Sketch -V2 Equal Weight

CLIP-ViT-B/16

Average 67.59 49.35 77.33 46.92 61.37 60.51

ZPE 67.42 49.84 77.28 47.14 61.11 60.58
±0.01 ±0.12 ±0.03 ±0.02 ±0.11 ±0.06

CARPRT 67.81 49.12 77.48 47.53 61.58 60.70
±0.01 ±0.07 ±0.04 ±0.02 ±0.09 ±0.05

CLIP-ResNet50

Equal Weight 59.12 46.25 69.05 39.05 54.05 53.50

ZPE 59.78 46.37 69.27 39.14 54.07 53.72
±0.01 ±0.08 ±0.01 ±0.07 ±0.09 ±0.06

CARPRT 59.98 46.19 69.38 39.25 54.26 53.81
±0.02 ±0.09 ±0.01 ±0.04 ±0.03 ±0.06

(a) Temperature Hyper-Parameter Analysis (b) Sampling Ratio Hyper-Parameter Analysis

Figure 3: Hyper-Parameter Analysis on Fine-Grained Datasets.The shaded area represents the standard deviation.
Subfigure (a) illustrates the variation of accuracy with temperature adjustments. Subfigure (b) demonstrates the
stability of accuracy across different sampling ratios.

Analysis of Incremental Improvements in ImageNet Performance. The improvements on Ima-
geNet and its variants datasets are smaller compared to those observed on the fine-grained datasets,
for the following reasons. First, frequency bias is likely more pronounced in ImageNet and its
variants. Given our use of a relatively small batch size of 512 and the exclusion of larger datasets
such as LAION-400M for debiasing, the skewed class distribution may have negatively impacted the
results. Second, the quality of the template pool plays a crucial role in model performance. According
to (Allingham et al., 2023), the template pool was constructed by combining templates from 10
fine-grained datasets and 6 ImageNet and its variants datasets. Fine-grained datasets benefit more
from the pool, as they can exploit class-specific templates. In contrast, the more diverse categories
in ImageNet and its variants find less relevant information in the fine-grained templates, deriving
less benefit from these templates. This mismatch reduces the overall effectiveness of our method on
ImageNet datasets as it relies on the information provided by the templates. These limitations suggest
that addressing frequency bias and improving the relevance of templates for broader datasets could
lead to more substantial performance improvements in future iterations of CARPRT.

Hyper-Parameter Sensitivity. Figure 3 illustrates two key hyper-parameters on the performance of
CARPRT: the temperature parameter τ and the sampling ratio γ used during score normalization,
spanning 10 fine-grained datasets.

The temperature parameter τ controls the sharpness of the weight distribution across prompt templates,
directly affecting how strongly the model emphasizes relevant prompts. As illustrated in Figure 3(a),
the accuracy peaks at a temperature of 3.0 and maintains relatively high stability across a range of
values, with a slight decline as the temperature further increases. The under-performance observed at
τ = 0.5 can be explained by the way temperature affects the distribution of weights across prompt
templates. A lower temperature, such as 0.5, sharpens the focus on the most probable prompts
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Table 3: Accuracy (%) comparison with uniform weight and class-aware weights across 10 fine-
grained datasets. Bold value represents the highest accuracy on each column.

Caltech101 DTD EuroSAT Aircraft Food101 Flower102 Pets Cars SUN397 UCF101 Average
Uniform 92.48 47.13 54.17 21.64 85.35 67.12 81.04 65.09 64.99 68.03 64.46
Class-Aware 92.60 47.49 55.85 22.53 85.78 68.41 82.39 65.02 65.49 68.61 65.42

but also reduce the distribution’s spread. Given the use of 247 prompt templates, even those with
marginal relevance collectively contribute to enhancing model robustness and generalization through
an ensemble effect. This effect allows the model to capture a wider range of information cues.
When the temperature is set too low, the model becomes overly concentrated on dominant prompts,
potentially overlooking broader information captured by less dominant prompts. The sampling
ratio γ governs the fraction of the test data used for estimating the expected scores during bias
correction. As Figure 3(b) shows, accuracy consistent performance across different sampling levels,
implying robustness with varying data availability. Details regarding hyper-parameter analysis are in
Appendixe H.

Class-aware Weight Matters. We further examine the “uniformity” of weight vectors. We test
with a configuration where the class-aware weights derived by CARPRT are collapsed into a uni-
form weight vector as wu

i = 1
C

∑
c wi,c. This aggregation assesses whether the complexity of

class-specific weights is necessary or if a simplified, averaged representation can achieve similar
performance. It helps determine if the merits of class-aware weights lies in their specificity or if a
general representation suffices for certain tasks. Results in Table 3 show that models with class-aware
weights consistently outperform those using uniform weights. The improvement is most evident in
datasets with pronounced class-specific traits, such as EuroSAT, Flower102, and Pets, where accuracy
increases significantly. These results highlight the importance of adapting weights to class-specific
traits, as uniform weights may hinder CLIP to exploit the semantic differences across classes.

6 DISCUSSION AND FUTURE OUTLOOK

Related Works. Prompts play a vital role in adapting pre-trained VLMs to downstream tasks.
Alongside prompt reweighting, prompt tuning methods such as CoOp (Zhou et al., 2022b), CoCoOp
(Zhou et al., 2022a) and MaPLe (Khattak et al., 2023a), have also been actively explored, focusing on
optimizing task-specific prompts. In contrast with these training-based methods, CARPRT focuses
on better utilizing existing prompts in a training-free manner. Test-time adaptation, on the other hand,
updates feature statistics (Wang et al., 2021) or fine-tune the prompts (Shu et al., 2022) to adapt to
each test sample during inference, whereas CARPRT leaves the model and prompts unchanged but
reweights existing prompts based on their relevance to the test data. This makes CARPRT orthogonal
to prompt tuning and test-time adaptation. We report additional results of combining CARPRT with
test-time adaptation in Appendix G. See Appendix A for detailed discussion of related works.

Summary. This study focused on prompt ensembling and confirmed that class-aware prompt
reweighting is not only beneficial but essential for improving the efficacy of VLMs across a variety
of downstream classification tasks. By moving beyond uniform weighting, we showed that adapting
weights to better reflect the class-specific characteristics leads to measurable gains in classification
accuracy. We hope this study encourages further exploration of integrating class-awareness with
other VLM adaptation techniques to enhance across a wider range of applications.

Future Work. As per previously discussed limitations, two specific avenues for future work stand out:
First, refining the estimation of class-specific weights could enhance class-aware prompt reweighting.
Existing methods often rely on top-1 pseudo-labels, which may fail in complex tasks with multiple
plausible labels. A promising alternative is to explore top-k pseudo-labels, which have been shown to
yield higher accuracy in applications such as CLIP, where top-level classifications provide a richer set
of potential alignments between visual inputs and textual prompts. Second, the efficacy of CARPRT
is tied to the quality and diversity of the prompt template pool, which however is overlooked by
current methods. Future work may focus on cost-effective strategies for creating and evaluating
diverse and representative prompts. This could involve developing metrics that assess how well
prompts capture the distinctive characteristics of different classes and methods that amplify inter-class
differences could improve model performance in differentiating closely related categories.
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A DETAILED RELATED WORKS

Prompt tuning methods. Prompt tuning adapts a pre-trained model by introducing learnable
embeddings, known as prompt tokens, at the input stage. These tokens can be either text prompts
or visual prompts, enabling flexible adjustments to the model’s input interface to better address
specific tasks. CoOp was the first to apply prompt tuning in CLIP, optimizing learnable prompts
within its textual branch for few-shot image recognition (Zhou et al., 2022b). Addressing CoOp’s
limitations, CoCoOp introduces conditionally generated prompts based on visual features to enhance
generalization performance (Zhou et al., 2022a). Further, MaPLe advances a multi-modal approach,
applying prompt tuning simultaneously within the vision and textual branches to facilitate better
transfer capabilities (Khattak et al., 2023a). Building upon MaPle, PromptSRC employs a strategy
that enhances textual prompt learning by utilizing descriptive text generated by large language models
(LLMs), such as GPT-4 (Khattak et al., 2023b). However, this approach requires updating learnable
input variables in the text or image inputs, leading to additional computational resources and labeled
downstream data, even if only few-shot data is used. Since our problem setting differs from that of
tuning methods, we do not include such approaches as baselines in our experiments with CARPRT.

Test-time Adaptation The test-time adaptation (TTA) problem is aim to adapts models adapts
models to testing downstream data (Ganin et al., 2016; Long et al., 2015; Zhang et al., 2022). TTA
methods can be diveded into two types: the training-based method and the training-free method.
Training-based methods typically involve updating model weights or fine-tuning prompts based on
test data (Zhang et al., 2022). TTA methods, such as TENT, adapt models by optimizing for test-time
objectives like entropy minimization, adjusting the model’s batch normalization statistics to align with
the test distribution (Wang et al., 2021). CoTTA have explored contrastive learning to preserve feature
space alignment, making TTA effective for CLIP-like models (Chen et al., 2022). TPT addresses
the challenge in vision-language models by fine-tuning a learnable prompt for each individual test
sample (Shu et al., 2022). DiffTPT extends this approach by utilizing pre-trained diffusion models
to increase the diversity of test data samples used in TPT, enhancing the effectiveness of test-time
prompt tuning (Feng et al., 2023).

On the other hand, non-training methods rely on adjusting normalization statistics or augmenting
test samples without changing model parameters (Li et al., 2016; Karmanov et al., 2024). Since the
problem setting of non-training TTA methods, which only require unlabeled test data and do not
involve additional training, aligns with the CARPRT setup, we analyze the non-training TTA methods
in comparison to CARPRT in Appendix G.

B DATASETS

Fine-grained datasets. Following Zhou et al. (2022b), we evaluate our method in 10 different fine-
grained datasets. Caltech101 (Fei-Fei et al., 2004): A dataset containing images of objects belonging
to 101 different categories, commonly used for object recognition tasks; DTD (Cimpoi et al., 2014):
A texture dataset containing images categorized by describable texture attributes such as ”bumpy” or
”scaly”; EuroSAT (Helber et al., 2019): A dataset for land use and land cover classification, consisting
of satellite images across 10 classes such as residential, forest, and river; Aircraft (Maji et al., 2013):
A fine-grained dataset containing aircraft images, used for recognizing and classifying different
airplane models; Food101 (Bossard et al., 2014): A large dataset containing 101 food categories,
designed for image recognition tasks in the food domain; Flower102 (Nilsback & Zisserman, 2008):
A fine-grained flower classification dataset with 102 different types of flowers, used for challenging
image recognition tasks; Oxford Pets (Parkhi et al., 2012): A dataset consisting of images of 37 pet
breeds, used for fine-grained image classification tasks; Cars196 (Krause et al., 2013): A fine-grained
dataset for car model classification, with 196 car classes focused on vehicle recognition; SUN397
(Xiao et al., 2010): A large-scale scene recognition dataset with 397 scene categories, covering a
wide variety of environments; UCF101 (Khurram, 2012): A dataset for action recognition in videos,
containing 101 human action categories captured in realistic video scenarios.

ImageNet and its Variant datasets. Following (Allingham et al., 2023), we also evaluate our
method in ImageNet and the following variants of the ImageNet dataset: ImageNet (Russakovsky
et al., 2015): A large-scale dataset for image classification, containing over 14 million labeled images
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Table 4: Details for the datasets in our experiments.
Dataset Classes Test Size
ImageNet 1000 50,000
ImageNet-R 200 30,000
ImageNet-A 200 6862
ImageNet-Sketch 1000 50,889
ImageNet-V2 1000 10,000

Caltech101 100 2465
DTD 47 1692
EuroSat 10 8100
Aircraft 100 3333
Food101 101 30,300
Flowers102 102 2463
Oxford Pets 37 3669
Cars196 196 8041
Sun397 397 19,850
UCF101 101 3783

across 1,000 object categories; ImageNet-A (Hendrycks et al., 2021b): A curated subset of ImageNet
consisting of challenging adversarial images that fool standard models, designed to test the robustness
of image classifiers; ImageNet-R (Hendrycks et al., 2021a): A dataset containing renditions of
ImageNet objects in diverse artistic forms, such as paintings, cartoons, and sculptures, used to
assess model performance on non-photorealistic images; ImageNet-Sketch (Wang et al., 2019): A
sketch-based dataset derived from ImageNet, used to evaluate model robustness and generalization to
line drawings of objects; ImageNet-V2 (Recht et al., 2019): A reproduction of the original ImageNet
test set collected under similar conditions, used to measure model generalization to a newly collected
version of the dataset.

C DETAILS REGARDING EXPERIMENTS

Implementation Details. We implement all methods using PyTorch 1.7.1 and Python 3.7.6, and
conduct all experiments on a single NVIDIA A100 Tensor Core GPU. Our vision-language model is
built on the architecture and pretrained weights from OpenCLIP (Radford et al., 2021). The code for
our experiments is available at https://anonymous.4open.science/r/CARPRT-8402/
provided for reproducibility.

Hyper-parameter Settings. We set fixed hyper-parameters for the different datasets. The temperature
τ is set to 3.0 for fine-grained datasets and 5.1 for ImageNet (Russakovsky et al., 2015) and its
variants. The sampling ratio γ is consistently set to 0.8 for both types of datasets, and the batch size
is fixed at 512 for all experiments.

D DISCUSSION OF Pr(W|P)

We extend the discussion of the proposed probabilistic interpretation (Section 3) to the weights
prior Pr(W|P). In the current zero-shot classification scenario addressed by CARPRT, there is no
optimization-based process for “estimating” the weights, and as such, the weight prior Pr(W|P)
does not play a role in the methodology. Nevertheless, our probabilistic framework is flexible enough
to accommodate more general trainable settings, such as active learning and few-shot estimation,
where the probabilistic formulation becomes particularly beneficial. In these cases, a discussion of
the weight prior would provide valuable insights and contribute to a more complete understanding of
the framework’s advantages.

Suppose there is a label space Y with size |Y| = C. Let P = {pi}ni=1 be a pool of n independent
prompt templates. Let W = {Wc}Cc=1 be our weight matrix. Recall that Wc ∈ ∆n−1 is the
(n− 1)-dimensional probability simplex, representing the weights for class yc across all prompts.
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We consider three choices of priors: uniform prior, global Dirichlet prior, and class-specific Dirichlet
priors.

Uniform Prior. The uniform prior assumes all valid weight configurations are equally likely a priori.

p(W|P) =

{
1

|W| if W ∈ W
0 otherwise

where W = {W ∈ Rn×C :Wc ∈ ∆n−1 for all c ∈ {1, ..., C}}.

The uniform prior is the easiest setup to implement and does not introduce bias towards any particular
weight configuration. However, the uniform prior does not leverage any prior knowledge about the
prompts, which is prone to overfitting with limited data (when adapted to trainable setting).

Global Dirichlet Prior. This defines a single Dirichlet distribution over all weights, treating them as
a single vector.

p(W|P) = Dir(vec(W)|α1, ..., αnC)

where vec(W) is the vectorization of W, and αi > 0 are concentration parameters of the Dirichlet
distribution.

Compared to uniform prior, Dirichlet prior can encode varying degrees of certainty about different
weights. Moreover, it is conjugate to multinomial likelihood, allowing for closed-form posterior
updates for certain model setup. This can also align with ZPE-like class-shared-weighting strategies.
However, it ignores the class structure and treats all weights as part of a single distribution, potentially
missing class-specific patterns.

Class-specific Dirichlet Prior. This strategy sets an independent Dirichlet distribution for each
class’s weight, and stacks a product of C classes’ Dirichlet distributions.

p(W|P) =
C∏

c=1

Dir(Wc|αc,1, ..., αc,n)

where αc,i > 0 are class and prompt-specific contenration parameters.

Currently, this setup best suits our class-aware prompt reweighting mechanism, as it allows for
different prior beliefs about weight distributions for each class, class-specific modeling. Compared
with global Dirichlet, it reduces dimensionality - each Dirichlet distribution is over n parameters, not
n×C anymore. More importantly, it aligns with the per-class simplex constraint of the weight space.

Entropy Analysis. Different prior choices lead to different entropy results. The uniform prior has an
associated entropy as

H[p(W|P)]uniform = log |W|,
where |W| is the volume of the weight space.

As for global Dirichlet prior, we have

H[p(W|P)] = logB(α) + (α0 − nC)ψ(α0)−
nC∑
i=1

(αi − 1)ψ(αi),

where B(·) is the multivariate beta function, and ψ(·) is the digamma function.

The entropy for class-specific Dirichlet priors is

H[p(W|P)] =
C∑

c=1

(logB(αc) + (αc,0 − n)ψ(αc,0)−
n∑

i=1

(αc,i − 1)ψ(αc,i)),

where αc = (αc,1, ..., αc,n) and αc,0 =
∑n

i=1 αc,i for each class c.

When we are setting the equal concentration parameters, such that αi = α for all i in the global
Dirichlet, and αc,i = α for all c, i in the class-specific Dirichlets, and let α = 1, the uniform prior
has the highest entropy (uninformative), while the class-specific Dirichlets having the lowest entropy.
This is because the class-specific Dirichlets with α = 1 are equivalent to independent uniform
distributions over smaller simplices, further concentrating the probability.
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E DETAILED PROOFS

Lemma 2 (Relative Likelihood cf. Lemma 1). The likelihood of an image x, given class c, prompt
weights W and a prompt pool P, following the EBM defined in Eq. (10), is proportional to:

Pr(xj | yc,W,P) ∝ exp
{

sim(zI
j , z

T
c )
}
∝ exp

{
n∑

i=1

(wi,c z
T
i,c)

⊤ · zI

}
, (17)

where zI
j = f(xj) and zT

i,c = g(pi(yc)) are image embeddings of sample xj and text embeddings of
class yc under prompt pi, respectively.

Proof. Similarity as Negative Energy. As with (LeCun et al., 2006), a general form of EBMs is
given by Pθ(x) = exp(−βEθ(x))/Z(θ), which enables us to define unnormalized energy function
with a partition function for normalization. Therefore, in our zero-shot classification context, we
define the energy function with respect to the score function of the CLIP.

E(xj , yc,W,P) = sim(zI
j ,x

T
c )

This score function measures the compatibility between the image embedding zI
j and the text

embedding embedding xT
c of class yc. higher compatibility corresponds to lower energy, aligning

with the EBM principle that more likely configurations (of model) have lower energy.

Intractable Partition Function. Computing the partition function is intractable since we need to
marginalize over the image space. However, what we care about is the relative relation between
Pr(xj | yc,W,P) and Pr(xj | yc′ ,W,P), we can safely drop off the partition function in our
relative likelihood.

Similarity Computation. Consider a general linear combination of similarities for a prompt ensem-
ble:

sim(zI, zT
c ) = hc

(
{sim(zI, zT

i,c)}ni=1

)
hc({si}ni=1) =

n∑
i=1

αi,csi + βc

where hc : Rd → R is a function that linearly combines the similarities over all prompts pi ∈ P for a
specific class yc. αi,c ∈ R and βc ∈ R are weights and bias terms. Substituting si = sim(zI, zT

i,c) =

zT⊤
i,c · zI, we get:

sim(zI
j , z

T
i,c) =

n∑
i=1

αi,c(z
T
i,c)

⊤ · zI
j + βc

We can then absorb the bias term βc into the exponential function,
Pr(xj | yc,W,P) ∝ exp(sim(zI

j , z
T
i,c))

= exp(

n∑
i=1

αi,c(z
T
i,c)

⊤ · zI
j + βc)

= exp(βc) exp(

n∑
i=1

αi,c(z
T
i,c)

⊤ · zI
j)

∝ exp(

n∑
i=1

(αi,cz
T
i,c)

⊤ · zI
j).

By setting wi,c = αi,c, we arrive at the formulation in Lemma 1.

Proposition 3 (cf. Proposition 3). Let X be the image space, Y be the class space. Given a set of
prompts P, for any prompt weighting scheme S (cf. Eqs. (3-5)), define the representable likelihood
set FS as:

FS = {f : X × Y → R+ | ∃W ∈ WS ,P, s.t. f(x, yc) ∝ Pr(x | yc,W,P)} ,
where WS is the weight space under the scheme S. Let FCI and FCA be the representable likelihood
set induced from class-independent weighting (cf. Eq. (4)) and class-aware weighting (cf. Eq. (5))
schemes. Then, we have: ∃f∗ ∈ FCA such that ∀fCI ∈ FCI,∃x ∈ X , yc ∈ Y where f∗(x, yc) ̸=
fCI(x, yc).
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Proof. We prove this by constructing a specific function in FCA and showing it cannot be represented
by any function in FCI. For simplicity, we consider a toy setting with three classes Y = {y1, y2, y3}
and two prompts P = {p1, p2}. For any x ∈ X , the function under class-aware weighting for
∀ yc ∈ {y1, y2, y3} takes the form:

f∗(x, yc) =

|P|∑
i=1

wi,c Pr(x | yc, pi)

= w1,c Pr(x | yc, p1) + w2,c Pr(x | yc, p2).

where wi,j ∈ R+ are class-aware weights for prompt i and class j. For ease of notation, we denote
the prompt-conditional likelihood by ai,c ≜ Pr(x | yc, pi). This way f∗ ∈ FCA can be expressed as

f∗(x, y1) = w1,1a1,1 + w2,1a2,1

f∗(x, y2) = w1,2a1,2 + w2,2a2,2

f∗(x, y3) = w1,3a1,3 + w2,3a2,3

We then consider a specific instance3 of this function by choosing:

w1,1 = 2, w2,1 = 1

w1,2 = 1, w2,2 = 2

w1,3 = 3, w2,3 = 3

This leads to
f∗(x, y1) = 2a1,1 + a2,1

f∗(x, y2) = a1,2 + 2a2,2

f∗(x, y3) = 3a1,3 + 3a2,3

Now, suppose for contradiction that ∃fCI ∈ FCI such that f∗ = fCI. By definition of FCI, fCI takes
the form fCI(x, yc) = w1a1,c + w2a2,c, where w1, w2 ∈ R+ are class-independent weights.

If f∗ = fCI, then for all classes yc ∈ {y1, y2, y3}, we must have the following equations to hold
simultaneously:

2a1,1 + a2,1 = w1a1,1 + w2a2,1 (for y1)
a1,2 + a2,2 = w1a1,2 + w2a2,2 (for y2)

3a1,3 + 3a2,3 = w1a1,3 + w2a2,3 (for y3)

From these equations, we can deduce that

w1 = 2 and w2 = 1 must hold for any a1,1, a2,1 > 0 (for y1)
w1 = 1 and w2 = 2 must hold for any a1,2, a2,2 > 0 (for y2)
w1 = 3 and w2 = 3 must hold for any a1,3, a2,3 > 0 (for y1)

Thus, we need w1 = 2 for y1 while w1 = 1 for y2, immediately leading to a contradiction as w1

cannot simultaneously equal 1 and 2.

Therefore, no class-independent weighting scheme can represent the function f∗ we constructed.
We have proven that ∃f∗ ∈ FCA such that ∀fCI ∈ FCI, ∃x ∈ X , yc ∈ gY where f∗(x, yc) ̸=
fCI(x, yc).

F CONNECTING CARPRT FORMULATION WITH THE PROBABILISTIC
FRAMEWORK

We now detail the correspondence between the CARPRT formulation (Section 4) and the probabilistic
framework established in Section 3.

Concretely, the practical implementation Eqs. (13-16) align with Eqs.(7-11) in the following manner.

3unnormalized weights, just for illustration
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Table 5: Accuracy (%) comparison between our method and baselines combing to TDA method using
CLIP-ViT-B/16 and CLIP-ResNet50 backbones. Bold value represents the highest accuracy on each
column.

Caltech101 DTD EuroSAT Aircraft Food101 Flower102 Pets Cars SUN397 UCF101 Average

CLIP-ViT-B/16

Human Select 94.24 47.40 58.00 23.91 86.14 71.42 88.63 67.28 67.62 70.66 67.53
Equal Weight 93.18 46.75 60.60 23.37 86.04 65.61 84.21 67.44 66.41 71.48 66.51
ZPE 93.49 47.02 62.48 23.09 86.21 68.10 84.12 67.23 66.98 71.23 67.00
CARPRT 94.02 48.52 63.95 24.05 86.50 70.36 84.50 67.83 68.06 71.85 67.96

CLIP-ResNet50

Human Select 91.42 41.00 56.97 20.55 83.34 62.75 83.62 64.14 65.86 68.52 63.82
Equal Weight 92.03 41.77 54.56 19.77 83.41 62.50 80.65 63.55 64.14 68.80 63.12
ZPE 91.67 41.89 56.78 19.84 83.21 56.67 81.66 63.43 64.87 68.72 63.45
CARPRT 91.75 42.71 57.65 19.98 83.61 62.66 81.38 65.98 65.98 68.65 63.76

Score Calculation. Eq. (13) implements the likelihood term Pr(xj |yc,W,P) from Eq. (11) by
defining sj,i,c =

exp(aj,i,c/λ)∑
y∈Y exp(aj,i,c/λ)

. This formulation aligns with the EBM in Eq. (11) by using
cosine similarity aj,i,c as the negative energy term and normalizing through softmax to obtain proper
probabilities.

Weight Calculation. Eqs. (15-16) correspond to estimating Pr(W |P,D) from Eq. (8) through a
two-step process. Eq. (15) first obtains the pseudo-labels for samples as the empirical estimates
P̂r(yc|W,P) (i.e., Eq. (9)). It then estimates intermediate weights by aggregating scores across
pseudo-labeled samples by multiplying the scores Pr(xj |yc,W,P) (i.e., sj,i,c) with P̂r(yc|W,P).
Eq. (16) applies softmax to ensure the resulting weights form a valid probability distribution over
prompts for each class, which satisfies the simplex constraint implied by our probabilistic framework.

G COMBINING CARPRT AND TEST-TIME ADAPTATION METHOD

Our method aligns more closely with the training-free TTA method as it operates without training,
making it computationally efficient. TDA is a state-of-the-art, training-free test-time adaptation (TTA)
method for CLIP that enables efficient and effective adaptation of vision-language models without
backpropagation (Karmanov et al., 2024).

Our approach is not in conflict with TDA but is orthogonal to it. While TDA uses a human-
selected prompt pool for each task, our method can serve as a complementary module that replaces
this human selection pool, providing an alternative way of selecting prompts without requiring
human intervention. This allows our method to work alongside TDA, enhancing the adaptability of
vision-language models in a more automated manner. We conduct the experiment to compare the
performance of our method with several baselines, including the human-selected prompts, the equal
weight prompt selection, an ZPE, all combined with the TDA method. The results are evaluated using
both CLIP-ViT-B/16 and CLIP-ResNet50 backbones across ten fine-grained datasets, as shown in
Table 5.

From the result, we can observe that our method outperforms the other baselines in several datasets,
achieving the highest average accuracy of 67.96% for CLIP-ViT-B/16 and 63.76% for CLIP-ResNet50.
Specifically, for datasets like EuroSAT, Food101, and Flower102, our method shows significant
improvements over the human-selected and ZPE baselines. These improvements demonstrate that our
approach effectively enhances the performance of TTA methods, by offering a more efficient prompt
selection strategy. However, there are cases where it falls short compared to human-selected prompts.
This may be caused by the limited diversity and smaller size of the template pool, where automatic
reweighting methods may not perform as well as direct human selection. However, the automated
approach significantly reduces the human labor cost. This experiment demonstrates the promising
future of our method—not only in prompt reweighting but also as a technique that can be integrated
into other vision-language model (VLM) transfer learning approaches. The ability to automatically
adjust prompts in a computationally efficient manner paves the way for broader applications and
adaptability in various VLM-based tasks.
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Posterior Update with TTA. When prompt weights can be updated continuously, such as in TTA
settings, different priors (e.g., uniform, global Dirichlet, or class-specific Dirichlet) define initial
beliefs about weight distributions before observing test data. In the TTA scenario, test data arrives as
a stream: {x(0), . . . ,x(t),x(t+1), . . . }. Based on Eq. (8), we have a general form of posterior

p(W|x(t),P) ∝ p(x(t)|W,P)p(W|P),
where p(W |P) is the prior, p(x(t)|W,P) is the likelihood from test data, and p(W |x(t),P) is the
posterior that guides weight updates sample-by-sample. The posterior updating process follows:

For first test sample x(0):

Prior : p(W|P)
Likelihood : p(x(0)|W,P)
Posterior : p(W |x(0),P) ∝ p(x(0)|W,P)p(W|P)

Then, as we observe the second test sample x(1), we have

Prior : p(W|x(0),P) (previous posterior)

Likelihood : p(x(1)|W,P)
Posterior : p(W|x(0),x(1),P) ∝ p(x(1)|W,P)p(W|x(0),P)

This leads to the sequential update scheme, formulated as

p(W|x(0), . . . ,x(t),P) ∝ p(x(t)|W,P)p(W|x(0), ...,x(t−1),P)

Thus, in TTA settings, these priors can be (1) initialized based on initial test samples; and (2) updated
sequentially as new test samples arrive.

More specifically, choosing different prior distributions would lead to different updating computations.

Uniform Prior. Recall the uniform prior is defined as

p(W |P) =

{
1

|W| if W ∈ W
0 otherwise

By taking log to both LHS and RHS, we will have

log p(W|P) =
{
− log |W| if W ∈ W
−∞ otherwise

which then leads to the log posterior to be expressed as

log p(W|x(t),P) ∝ − log |W|+ log
∑
yc∈Y

p(x(t)|yc,W,P)p(yc|W,P)

= − log |W|+ log
∑
yc∈Y

exp

(
n∑

i=1

(
wi,cz

T
i,c

)⊤ · zI

)
·

1ŷji=yc∑
j′ 1ŷj′i=yc

Global Dirichlet Prior. The global Dirichlet prior treats all weights across classes as a single vector:

p(W |P) = Dir(vec(W )|α1, ..., αnC)

where vec(W) ∈ RnC is the vectorization of weight matrix W (here we denote C = |Y| as the
cardinality of label space) Similarly, we will have the log prior and posterior as

log p(W|P) = logDir(vec(W)|α1, ..., αnC)

= log Γ(α0)−
nC∑
k=1

log Γ(αk) +

nC∑
k=1

(αk − 1) logwk (α0 =

nC∑
k=1

αk)

= log Γ(

nC∑
k=1

αk)−
C∑

c=1

n∑
i=1

log Γ(α(c−1)n+i) +

C∑
c=1

n∑
i=1

(α(c−1)n+i − 1) logwi,c
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and
log p(W|x(t),P) ∝ log p(W|P) + log p(x(t)|W,P)− log p(x(t)|P)

= log Γ(α0)−
nC∑
k=1

log Γ(αk) +

C∑
c=1

n∑
i=1

(α(c−1)n+i − 1) logwi,c

+ log
∑
yc∈Y

p(x|yc,W,P)p(yc|W,P)

= log Γ(α0)−
nC∑
k=1

log Γ(αk) +

C∑
c=1

n∑
i=1

(α(c−1)n+i − 1) logwi,c

+ log
∑
yc∈Y

exp

(
n∑

i=1

(
wi,cz

T
i,c

)⊤ · zI

)
·

1ŷji=yc∑
j′ 1ŷj′i=yc

Class-specific Dirichlet Prior. We again start from the prior definition

p(W |P) =
C∏

c=1

Dir(Wc|αc,1, ..., αc,n)

then turn into the log prior and posterior

log p(W|P) =
C∑

c=1

logDir(Wc|αc,1, ..., αc,n)

=

C∑
c=1

[
log Γ(αc,0)−

n∑
i=1

log Γ(αc,i) +

n∑
i=1

(αc,i − 1) logwi,c

]
(αc,0 =

n∑
i=1

αc,i)

and log posterior

log p(W|x(t),P) =
C∑

c=1

[
log Γ(αc,0)−

n∑
i=1

log Γ(αc,i) +

n∑
i=1

(αc,i − 1) logwi,c

]
+ log

∑
yc∈Y

p(x|yc,W,P)p(yc|W,P)

=

C∑
c=1

[
log Γ(αc,0)−

n∑
i=1

log Γ(αc,i) +

n∑
i=1

(αc,i − 1) logwi,c

]

+ log
∑
yc∈Y

exp

(
n∑

i=1

(
wi,cz

T
i,c

)⊤ · zI

)
·

1ŷji=yc∑
j′ 1ŷj′i=yc

However, since Dirichlet priors would introduce additional steps (e.g., estimating concentration
parameters α), in our preliminary investigation, we used uniform prior to keep simplicity. Despite
this simplest setup, our CARPRT prompt reweighting strategy effectively facilitated TTA methods.
We leave more systematic explorations of alternative priors (e.g., Dirichlet) into future work.

H DETAILED RESULTS FOR HYPERPARAMETER ANAYLSIS

In this section, we present the results of our hyperparameter analysis across all fine-grained datasets.
Table 6 shows the accuracy for varying temperature setting. In zero-shot classification, where only
test data is available, conventional hyperparameter selection is inherently difficult due to the lack
of training or validation data. Following Shu et al. (2018), we aim to identify hyperparameters that
exhibit robust and consistent performance across diverse datasets..

As shown in Table 6, a temperature of 3.0 consistently provides strong results across datasets. While it
may not be optimal for each dataset, it offers a practical and generalizable choice under the constraints
of the zero-shot setting.
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Table 6: Accuracy(%) results for varying temperature settings across fine-grained datasets using
CLIP-ViT-B/16 backbone. Bold value represents the highest accuracy in each column.

Temperature Caltech101 DTD EuroSAT Aircraft Food101 Flower102 Pets Cars SUN397 UCF101 Average

1 87.97 46.16 54.07 21.13 84.42 57.97 74.05 58.10 58.29 61.07 60.32
2 91.91 47.56 56.04 22.62 85.87 68.88 82.76 64.35 64.85 67.91 65.28
3 92.60 47.74 55.85 22.64 85.78 68.58 82.48 65.02 65.49 68.61 65.48
4 92.56 47.10 54.62 22.56 85.68 66.42 81.86 65.26 65.48 68.69 65.02
5 92.72 47.08 54.03 22.62 85.62 65.68 81.74 65.38 65.39 68.40 64.87
10 92.68 47.24 52.59 22.30 85.47 65.05 81.34 63.23 63.23 67.53 63.86

Table 7: Accuracy (%) comparison between our method and baselines on CIFAR-10 using the
CLIP-ViT-B/16 backbone. Bold values represent the highest accuracy in each column.

Balanced Datasets β = 10 β = 50 β = 100

Average 89.56 89.58 89.57 89.56
ZPE 89.55 90.02 90.78 91.07
CARPRT 90.82 91.07 91.36 91.70
Gain from ZPE +1.27 +1.05 +0.58 +0.63
Gain from Average +1.26 +1.49 +1.79 +2.14

I EXPERIMENTS ON IMBALANCED DATASETS

In this section, we evaluate the performance of CARPRT on datasets with class imbalances. Following
Cao et al. (2019), we manually construct an imbalanced CIFAR-10 (Krizhevsky et al., 2009) dataset
using an exponential decay strategy to create various degrees of class imbalance. We use an imbalance
factor β to describe the severity of the long-tailed distribution, defined as the ratio between the number
of training samples in the most frequent class and the least frequent class. Specifically, β is given by:

β =
Nmax

Nmin
,

where Nmax and Nmin represent the number of training samples in the most frequent and least
frequent classes, respectively. We conduct experiments with different imbalance ratios, setting
β = 10, β = 50, and β = 100, using the CLIP-ViT-B/16 backbone.

The results shown in Table 7 demonstrate that CARPRT significantly outperforms the average baseline
for all degrees of class imbalance. Specifically, CARPRT provides a consistent improvement in
performance over ZPE, though the gain decreases as the imbalance factor β increases. This decreasing
gain may be attributed to the global nature of the ZPE weight estimation, which remains effective even
under a higher imbalance. ZPE calculates a single weight for the entire dataset, capturing the overall
distribution and maintaining reasonable performance, even when certain classes are underrepresented.

In contrast, CARPRT uses a per-class weighting strategy, which allows better adaptation to individual
class characteristics, which is highly effective in balanced or moderately imbalanced settings. How-
ever, when the class imbalance becomes severe, the challenge arises for classes with very few samples
(e.g., only 10 samples). In these cases, the reliability of CARPRT’s weight estimates decreases as a
result of insufficient data, impacting performance.

J IMPACT OF TEMPLATE QUALITY

In this section, we investigate the impact of template quality on ImageNet classification tasks.
Specifically, we explore how different prompt template pools influence performance by evaluating
two newly generated template pools alongside the original templates on the ImageNet datasets.
Specifically, Pool1 was generated using Claude 3.5 (Anthropic, 2024) to produce 300 templates
tailored to the ImageNet label space. Each category in Pool1 consists of 100 prompt templates
structured in descriptive formats, such as ”A photo of a ”, ”A photo of a ”, ”The type of ”. These
templates aim to incorporate task-specific context and improve the alignment between the prompts
and ImageNet categories. Pool2, on the other hand, was constructed using Phi 3.1 (OpenAI, 2024)
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to create highly descriptive templates. For each ImageNet category, Phi 3.1 generated five detailed
prompts, resulting in a total of 5,000 templates across all categories. These templates focus on
providing class-specific descriptive information, enabling a more precise and nuanced interaction
with the underlying vision-language model. These additional template pools were evaluated on
ImageNet dataset compared to the original templates (Pool0), as shown in Table 8.

Table 8: Accuracy (%) comparison across different template pools using ZPE and CARPRT methods
on ImageNet classification.

Pool Method ImageNet Acc. (%) Perf. Comparison

Pool0 ZPE 67.42 –
CARPRT 67.81 +0.39

Pool1 ZPE 68.18 –
CARPRT 68.36 +0.18

Pool2 ZPE 68.14 –
CARPRT 68.79 +0.65

For Pool1, This pool targets more task-specific information by generating templates with respect
to the ImageNet label space. This leads to performance improvements for both ZPE and CARPRT
prompt reweighting strategies compared to Pool0. On the other hand, the generated templates in Pool2
incorporate more class-specific descriptive information. CARPRT benefits significantly from these
templates, achieving greater performance gains compared to ZPE. This highlights the effectiveness of
class-aware prompt reweighting in leveraging descriptive templates.

K COMBINING CLASS-AWARE PROMPT REWEIGHTING WITH PROMPT
TUNING METHOD.

Prompt tuning has recently become a powerful technique for adapting CLIP and other pre-trained
vision-language models to downstream tasks. By learning optimal prompts that guide the model’s
understanding of new data, prompt tuning has shown remarkable effectiveness (Zhou et al., 2022b;a;
Khattak et al., 2023b). ProDA optimizes prompt distributions to improve few-shot performance by
training a set of learnable invisible prompt embeddings. While CARPRT is primarily designed to
reweight visible prompt templates, our approach is not restricted to visible prompts. In this section,
we also apply class-aware reweighting to the invisible prompts trained by ProDA, making our method
capable of enhancing performance in various prompt tuning scenarios.

Our CARPRT method could enhance the ProDA framework by introducing a class-aware reweighting
technique that adjusts the influence of each prompt based on the underlying class structure. Specif-
ically, before each iteration of ProDA’s prompt distribution learning, we use CARPRT to update
the weights, which then guide the model’s logit outputs for training the prompts. As the problem
setting transitions from zero-shot to few-shot, our approach adapts by refining the weight estimation.
Specifically, we use ground truth labels instead of the pseudo labels for weight estimation, as shown
in the following replacement for Eq. (15):

w′
i,c =

∑m
j=1 sj,i,c1yj=yc∑m

j=1 1yj=yc

, (18)

where yj is the ground truth label of the sample j. The results show in Table 9 demonstrate that
our method provides notable improvements in most data sets, highlighting the effectiveness of our
class-aware prompt reweighting mechanism.

L ETHIC STATEMENT

This research adheres to the ICLR Code of Ethics, ensuring that all practices comply with ethical
standards regarding data privacy, research integrity, and fairness. The study does not involve human
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Table 9: Accuracy (%) comparison between our method and the baseline on fined-grained datasets
using the CLIP-ViT-B/16 backbone. Bold values represent the highest accuracy in each raw.

ProDA ProDA + CARPRT

Caltech101 91.3 95.4
DTD 70.1 69.6
EuroSAT 84.3 83.4
Aircraft 36.6 36.9
Food101 82.4 88.1
Flower102 95.5 95.6
Pets 90.0 93.7
Cars 75.5 78.6
Average 78.2 80.2

or animal subjects, and all datasets mentioned in Appendix B utilized in the experiments are publicly
available and anonymized, eliminating any potential privacy concerns. We have taken careful steps
to avoid any potential bias or unfairness in our methodologies and experimental procedures. The
algorithms and models developed in this work are designed to be transparent and reproducible,
and any ethical concerns related to the broader applications of the research have been addressed
appropriately.
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