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Abstract

Existing video steganography methods primarily embed secret information by mod-
ifying video content in the spatial or compressed domains. However, such methods
are prone to distortion drift and are easily detected by steganalysis. Generative
steganography, which avoids direct modification of the cover data, offers a promis-
ing alternative. Despite recent advances, most generative steganography studies fo-
cus on images and are difficult to extend to videos because of compression-induced
distortions and the unique architecture of video generation models. To address these
challenges, we propose LD-RoViS, a training-free and robust video steganography
framework for the deterministic latent diffusion model. By modulating implicit con-
ditional parameters during the diffusion process, LD-RoViS constructs a dedicated
steganographic channel. Additionally, we introduce a novel multi-mask mechanism
to mitigate errors caused by video compression and post-processing. The experi-
mental results demonstrate that LD-RoViS can embed approximately 12,000 bits
of data into a 5-second video with an extraction accuracy exceeding 99%. Our im-
plementation is available at https://github.com/xiangkun1999/LD-RoViS.

1 Introduction

In the contemporary digital era, the rapid spread and extensive sharing of information have brought
increasing attention to information security. Steganography [1], as a key technique for information
hiding, aims to embed secret data within normal data to enable covert communication. Among
various media, video has become a particularly valuable cover for steganography because of its high
complexity and large capacity for hiding data [2]. In contrast, steganalysis [3], as an adversarial
technique of steganography, seeks to detect the presence of hidden information.

Early video steganography methods can be broadly categorized into spatial domain methods and
transform domain methods. Spatial domain methods [4, 5, 6, 7, 8, 9] embed information by directly
modifying pixel values in video frames. Transform domain methods [10, 11, 12, 13, 14, 15, 16], on
the other hand, leverage transformations such as DWT and DCT to embed data in the frequency
domain, enhancing robustness against video encoding. Given the advantages of compressed video in
storage and transmission, researchers have also explored compressed domain steganography [17, 18,
19, 20, 21, 22, 23], embedding messages into elements such as DCT coefficients, motion vectors, and
prediction modes during video compression. While effective in certain scenarios, these traditional
methods inevitably modify video content or encode content, making them vulnerable to distortion
drift and steganalysis attacks [24, 25, 26].

With the rapid development of generative AI, many high-performance models has emerged, capable
of generating realistic text, images, and video. Among them, video generation models based on
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diffusion models have become a dominant paradigm, exemplified by advanced systems such as
Sora [27], Gen-4 [28], Veo-2, HunyuanVideo [29], and Wan2.1 [30]. Simultaneously, AI-generated
videos have become widespread on social media platforms, reshaping the data environment for video
steganography. According to statistics from Zebracat AI2, AI-generated videos account for 40% of
video content on major social platforms. Recent studies have proposed generative steganography
methods [31, 32, 33, 34, 35, 36, 37, 38, 39], which avoid directly modifying the cover data, and
instead embed secret messages implicitly during the data generation process. These methods have
shown strong resistance to steganalysis. However, current research in this area has focused almost
exclusively on images, leaving generative video steganography largely unexplored.

Given that videos are composed of sequences of images, and that generative image steganography
has matured considerably, an intuitive question arises: Can these methods be extended to videos?
Some researchers have made early attempts in this direction. For example, [40] extends [31] into
latent space and provides a simple implementation of video steganography based on Stable Video
Diffusion [41]. Similarly, [42] employs a face-swapping model to embed messages into facial features,
achieving robust video steganography. However, these methods are not compatible with most state-
of-the-art (SOTA) video generation models, which face three main challenges: First, SOTA video
generation models often rely on deterministic sampling to accelerate inference, making methods such
as [31, 32, 33, 40]—which depend on random noise sampling—inapplicable. Second, most diffusion
samplers are designed for one-directional generation and cannot achieve perfect invertibility, whereas
[36, 37, 38, 39] map messages to the initial noise and depend on accurate inversion of the sampling
process for extraction, making them unsuitable for non-reversible video diffusion models. Third,
compression processing [43] imposed by video-sharing platforms presents additional challenges to
the robustness of steganographic embedding.

To address these limitations, we propose LD-RoViS (Latent Diffusion-based Robust Video
Steganography), a training-free and robust steganography framework designed for deterministic
latent diffusion models. By modulating the conditional parameters at the final time step of the
diffusion process, we construct a steganographic channel to embed secret information into latent
variables. Furthermore, to ensure robustness against video compression on social platforms, we
introduce a multi-mask mechanism to identify and utilize the robust regions in the latent space for
message embedding.

Our main contributions can be summarized as follows:

• We introduce LD-RoViS, the first training-free video steganography method for deterministic
latent diffusion models.

• We design an implicit parameter modulation strategy to seamlessly integrate message
embedding into the generation process.

• We propose a multi-mask mechanism to identify robust regions in latent space, enabling
adaptive message embedding and enhancing resistance to compression-induced errors.

• We conduct extensive experiments to evaluate LD-RoViS, demonstrating its superior perfor-
mance over existing methods in terms of capacity, robustness, and security.

2 Related Work

2.1 Diffusion Models

The core framework of diffusion models consists of two phases: forward diffusion and reverse
denoising. The forward process incrementally corrupts data with Gaussian noise until it becomes
pure noise, whereas the reverse process learns to predict and remove noise via neural networks
to reconstruct the original data. Diffusion models have emerged as the dominant paradigm in
generative models because of their high-quality generation capabilities. Current diffusion models can
be categorized on the basis of their sampling strategies, as outlined below.

DDPM (Denoising Diffusion Probabilistic Model). The forward process of DDPM [44] follows a
Markov chain for noise addition, whereas the reverse process trains a U-Net via variational inference.

2https://www.zebracat.ai/post/ai-video-creation-statistics
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From one time step t to the previous time step t− 1, the reverse sampling in DDPM can be expressed
as:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ σtϵ, ϵ ∼ N (0, I), (1)

where ϵθ(xt, t) is the noise predicted by the neural network, αt and ᾱt are predefined noise scheduler
parameters, and σt is the standard deviation of the sampled Gaussian noise. Despite excellent genera-
tion quality, DDPM requires hundreds of sampling iterations, leading to low efficiency. Additionally,
its reliance on stochastic sampling of ϵ makes it a non-deterministic model.

DDIM (Denoising Diffusion Implicit Model). To address DDPM’s inefficiency, DDIM [45] employs
a non-Markovian process and reparameterization to enable sampling with arbitrary step sizes. From a
time step t to a time step s (where s < t), the DDIM sampling can be expressed as:

xs =
√
ᾱsfθ(xt, t) +

√
1− ᾱs − σ2

sϵθ(xt, t) + σsϵ, fθ(xt, t) =
xt −

√
1− ᾱtϵθ(xt, t)√

ᾱt
, (2)

where ϵθ(xt, t) is the noise predicted by the neural network, ᾱt and ᾱs are the predefined noise
scheduler parameters. When σs ̸= 0, DDIM becomes non-deterministic; otherwise, DDIM is
deterministic.

Flow Matching. Instead of relying on Markov chains, Flow Matching [46] formulates diffusion as
the continuous evolution of vector fields. From a time step t to a time step t−∆t, the flow-based
sampling in Flow Matching can be expressed as:

xt−∆t = xt −∆t · fθ(xt, t), (3)

where fθ(xt, t) is an output of a neural network. Since Flow Matching does not involve the sampling
of random variables, it is deterministic.

2.2 Diffusion-Based Generative Steganography

Steganographic methods based on diffusion models embed hidden information into the data synthesis
process. Previous work mainly focused on image steganography, which supports image-level [34, 35]
or message-level [31, 40, 33, 32] hiding. In this paper, we focus on message-level hiding.

StegaDDPM [32] performs steganographic embedding at the final time step of the reverse diffusion
process. By partitioning the probability density function of the Gaussian distribution into equal-
probability intervals, it constructs a reversible mapping from binary messages to Gaussian noise
variables ϵ, thereby enabling message embedding within the generated images. However, this method
is highly sensitive to lossy image transformations.

LDStega [33] extends StegaDDPM from the pixel space to the latent space, making it compatible
with mainstream latent diffusion models. By mapping messages to a biased distribution, LDStega
reduces the probability of extraction errors. In addition, it enhances robustness by performing a
pre-encoding and decoding scheme on the latent variables.

Pulsar [31] adopts a different mapping strategy. At the final time step of the diffusion process, two
noise samples, ϵ1 and ϵ2, are generated via two distinct secret keys. These are then mixed according
to a binary message to produce the final noise added to the image. The receiver extracts the hidden
message by comparing the distances between the stego image and the two reference images generated
via the secret keys.

PSyDUCK [40] extends Pulsar from the pixel space to the latent space and investigates the impact of
using two distinct keys at different diffusion timesteps. Moreover, it explores the applicability of the
method in video generation models.

These methods heavily rely on non-deterministic sampling models. However, mainstream video
generation models typically adopt deterministic sampling to enable faster inference and better con-
trollability [30], rendering the above methods inapplicable. Moreover, the compression [43] applied
by video-sharing platforms poses additional challenges to the robustness of video steganography
methods.
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Figure 1: Overview of our proposed LD-RoViS.

3 Method

Our robust video steganography method is built upon a deterministic latent diffusion video model,
enabling reliable message embedding and extraction even under challenging transmission conditions.
The following sections provide a systematic overview of the proposed method.

3.1 Overview of LD-RoViS

As shown in Fig. 1, the sender and receiver share the same parameters: prompt, seed, ks, and cfg,
where prompt refers to the text input fed into the video generation model to control the semantic
content of the generated video. seed is a random seed that controls the sampling of the initial noise
XT . The values ks, and cfg denote different values of the classifier-free guidance (CFG) scale. The
CFG scale controls how closely the generated content aligns with the input prompt.

On the sender’s side, prompt, seed, and ks are used to drive the diffusion process in the latent space
up to the final time step. At this final time step, message embedding is performed via cfg and the
message m, yielding the final latent variable Xs. This latent variable is then passed through the
decoder D to generate the stego video Vs. The stego video is shared with the receiver via social
platforms, and the received video is denoted as V ′

s . The receiver encodes V ′
s via the encoder E to

obtain the latent variable X ′
s, and leverages the shared prompt, seed, and ks to perform the same

generation procedure as the sender. At the final time step, the receiver uses cfg and X ′
s to extract the

hidden message.

In the following, we use V ∈ RC×F×H×W to represent the video, and X ∈ RC′×F ′×H′×W ′
to

represent the latent variable, where C,F,H,W denote the number of channels, frames, height, and
width of the video V , while C ′, F ′, H ′,W ′ represent the corresponding attributes in the latent space.

3.2 Message Embedding

The detailed framework of our proposed LD-RoViS is shown in Fig. 2, where “Shared” denotes the
operations that need to be performed by both the sender and the receiver.

To embed a message, the sender first executes the “Shared” component. Specifically, the sender
provides prompt and seed to the video generative model (denoted as G). The model G begins by
sampling XT from a Gaussian distribution using the given seed, and then performs T − 1 denoising
steps to obtain the latent representation X1. We use Diffuse(·) to represent the denoising process,
then the above process can be formulated as:

X1 = Diffuse(G,XT , ks). (4)

3.2.1 Parameter Modulation Strategy

The parameter modulation strategy lies at the core of our steganographic method. During each denois-
ing step, the CFG scale controls the weighting between the predicted conditional and unconditional
noise, formulated as:

ϵθ(xt, t) = preduncond + CFG · (predcond − preduncond), (5)
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Figure 2: Framework of our proposed LD-RoViS.

where ϵθ(xt, t) denotes the noise predicted by G at each timestep, while predcond and preduncond
represent the conditional and unconditional predicted noise, respectively.

Varying the CFG scale alters the trajectory of the diffusion process, resulting in different latent
variables. This modulation strategy is equally applicable to deterministic diffusion models. On the
basis of this insight, we can generate three different outputs—X0, X1

0 , and X2
0—from the same latent

variable X1 in the final denoising step by using different values of CFG ks, ks + cfg, and ks − cfg,
respectively. This can be expressed as:

Xi = Diffuse(G,X1, ki), where Xi ∈ {X0, X
1
0 , X

2
0}, ki ∈ {ks, ks + cfg, ks − cfg}. (6)

These latents exhibit subtle semantic differences while maintaining visual consistency with prompt,
creating a discriminative latent pair for message encoding.

3.2.2 Multi-mask Mechanism

Before message embedding, we design a multi-mask mechanism to identify robust regions in the
latent space, aiming to enhance the resilience of the steganographic method against operations such
as video compression.

Invariance Mask M1: This mask highlights latent positions that remain stable after encoder-decoder
and noise addition. As shown in the “Preprocess” section of Fig. 2, we apply encoding, decoding, and
noise to X0 to simulate the distortion that may occur when the generated video is used in real-world
scenarios. We use Noise(·) to denote lossy processing such as video compression. The above process
can be expressed as:

X ′
0 = E(Noise(D(X0))). (7)

We then compute the L1 distance between X0 and X ′
0 as:

d1(c, f, h, w) = ∥X0(c, f, h, w)−X ′
0(c, f, h, w)∥, (8)

where (c, f, h, w) indices valid positions within the spatial-temporal dimensions.

The invariance mask M1 is defined as the set of position indices corresponding to the smallest τ1%
values in d1. We define this function as Mask(·), formally expressed as:

M1(c, f, h, w) = Mask(d1, τ1) =
{
1 if d1(c, f, h, w) ∈ top smallest τ1,
0 otherwise.

(9)

M1 = 1 marks invariant regions resilient to codec distortions and noise.

Discriminative Mask M2: This mask identifies latent positions where X1
0 and X2

0 differ the most,
enabling reliable bit discrimination. Similarly, we compute L1 distances between X1

0 and X2
0 :

d2(c, f, h, w) = ∥X1
0 (c, f, h, w)−X2

0 (c, f, h, w)∥. (10)
The discriminative mask M2 is defined as the set of position indices corresponding to the largest τ2%
values in d2, formally expressed as:

M2(c, f, h, w) = I − Mask(d2, 1− τ2) =

{
1 if d2(c, f, h, w) ∈ top largest τ2,
0 otherwise,

(11)
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where I is the identity matrix.

Combined Mask M : The final mask is the dot product of M1 and M2, retaining positions that are
both invariant (M1 = 1) and discriminative (M2 = 1):

M = M1 ⊙M2,M ∈ RC′×F ′×H′×W ′
. (12)

Positions where M = 1 (both masks are 1) are used for message embedding, ensuring robustness.

3.2.3 Embedding

On the basis of the analysis in Section 3.2.2, the steganographic capacity of LD-RoViS depends on τ1
and τ2. For a generated video Vs, assume that M1 and M2 are independent, the embedding capacity
n is given by:

n = C ′ × F ′ ×H ′ ×W ′ × τ1 × τ2, (13)

where slight variations may occur due to ties in percentile rankings. Accordingly, we embed a binary
message m of length n, and construct an embedding matrix H from m via the following rule:

H(c, f, h, w) = Transform(M,m) =

{
−1 if M(c, f, h, w) = 0, (non-embedding region)
mk if M(c, f, h, w) = 1, (embedding region)

(14)
where mk ∈ {0, 1} is the k-th bit of m, which is filled row-wise from top-left to bottom-right.

The stego latent Xs is formed by mixing X0, X1
0 , and X2

0 according to H:

Xs(c, f, h, w) = Embedding(X0, X
1
0 , X

2
0 , H) =


X0(c, f, h, w) if H(c, f, h, w) = −1,

X1
0 (c, f, h, w) if H(c, f, h, w) = 0,

X2
0 (c, f, h, w) if H(c, f, h, w) = 1.

(15)
Finally, Xs is decoded to the stego video Vs = D(Xs) for transmission.

Algorithm 1 Message Embedding Algorithm
1: Input: prompt, seed, ks, cfg, message m,

thresholds τ1, τ2
2: Output: stego video Vs

3: Shared: G, D, E
4: Sample XT from N (0, I)

5: Perform T -step denoising:
6: X0 ← Diffuse(G,XT , ks)

7: X1
0 ← Diffuse(G,X1, ks + cfg)

8: X2
0 ← Diffuse(G,X1, ks − cfg)

9: Preprocess:
10: X′

0 ← E(Noise(D(X0)))

11: M1 ← Mask(L1(X0, X′
0), τ1)

12: M2 ← I −Mask(L1(X1
0 , X

2
0 ), 1− τ2)

13: M ←M1 ⊙M2

14: Message Encoding:
15: H ← Transform(M,m)

16: Latent Mixing:
17: For each (c, f, h, w) in latent space:
18: if H(c, f, h, w) = −1 then Xs(c, f, h, w)←

X0(c, f, h, w)

19: elif H(c, f, h, w) = 0 then Xs(c, f, h, w)←
X1

0 (c, f, h, w)

20: else Xs(c, f, h, w)← X2
0 (c, f, h, w)

21: Vs ← D(Xs)

22: return Vs

Algorithm 2 Message Extraction Algorithm

1: Input: prompt, seed, ks, cfg, received video
V ′
s , thresholds τ1, τ2

2: Output: recovered message m′

3: Shared: G, D, E
4: Sample XT from N (0, I)

5: Perform T -step denoising:
6: X0 ← Diffuse(G,XT , ks)

7: X1
0 ← Diffuse(G,X1, ks + cfg)

8: X2
0 ← Diffuse(G,X1, ks − cfg)

9: Preprocess:
10: X′

0 ← E(Noise(D(X0)))

11: M1 ← Mask(L1(X0, X′
0), τ1)

12: M2 ← I −Mask(L1(X1
0 , X

2
0 ), 1− τ2)

13: M ←M1 ⊙M2

14: Stego Latent Extraction:
15: X′

s ← E(V ′
s )

16: Message Decoding:
17: Initialize empty message m′

18: For each (c, f, h, w) where M(c, f, h, w) = 1:

19: d1 ← ∥X′
s(i, j)−X1

0 (i, j)∥
20: d2 ← ∥X′

s(i, j)−X2
0 (i, j)∥

21: if d1 < d2 then append 0 to m′

22: else append 1 to m′

23: return m′
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3.3 Message Extraction

The receiver, equipped with the shared prompt and parameters (seed, ks, cfg), regenerates
X0, X

1
0 , X

2
0 , and M via the same steps (“Shared” section in Fig. 2). The received video V ′

s is
encoded to X ′

s = E(V ′
s ).

For each position (c, f, h, w) where M(c, f, h, w) = 1, the receiver compares the L1 distances
between X ′

s and X1
0 , X

2
0 to recover the message m′ = Extraction(X ′

s, X
1
0 , X

2
0 ,M):

d′1(c, f, h, w) = ∥X ′
s(c, f, h, w)−X1

0 (c, f, h, w)∥, (16)

d′2(c, f, h, w) = ∥X ′
s(c, f, h, w)−X2

0 (c, f, h, w)∥, (17)

m′
k =

{
0 if d′1(c, f, h, w) < d′2(c, f, h, w) and M(c, f, h, w) = 1,

1 if d′1(c, f, h, w) ≥ d′2(c, f, h, w) and M(c, f, h, w) = 1,
(18)

where m′
k ∈ {0, 1} is the k-th bit of m′, which is filled row-wise from top-left to bottom-right.

The embedding and extraction procedures are shown in Algorithm 1 and Algorithm 2, respectively.
According to Equations 16, 17, and 18, the accuracy of message extraction is highly dependent on
the difference between X1

0 and X2
0 . To simplify the design while maintaining this distinguishability,

we generate the two variables using symmetric CFG scales, i.e., ks + cfg and ks − cfg, where cfg is
a tunable hyperparameter controlling the modulation intensity.

4 Experiment

4.1 Experiment Setup

Our proposed LD-RoViS is built upon a deterministic latent video diffusion model. To this end,
we adopt the T2V-1.3B model from Wan2.1 [30] as our video model. This model leverages Flow
Matching sampling to efficiently produce high-quality videos. For evaluation, we use VidProM [47], a
large-scale and diverse text-to-video prompt dataset. We randomly sample 100 prompts from VidProM
and generate corresponding videos via Wan2.1. Each video has a resolution of 480×832, a duration
of 5 seconds, and a frame rate of 16 fps, resulting in 81 frames per video. All subsequent experiments
are conducted on these 100 prompts with seed = 99, ks = 5.0 and run on four NVIDIA RTX A6000
GPUs, each with 48 GB of VRAM. In our experiments, we set the hyperparameters as τ1 = 0.32,
τ2 = 0.02, and cfg = 16. Additional experiments and analysis of these hyperparameters can be found
in the Appendix A, including experiments on a non-deterministic model (LTX-Video [48]).

4.2 Evaluation Metrics

We evaluate the performance of our steganographic method via the following metrics:

Accuracy (acc, %) is defined as the ratio of correctly recovered bits in m′ to m. A higher acc
indicates greater robustness.

Peak Signal-to-Noise Ratio (PSNR, dB) measures the perceptual similarity between two images;
a higher PSNR indicates better image quality. In this work, the PSNR is computed as the average
PSNR across all frames between Vc and Vs.

BRISQUE [49] is a no-reference image quality assessment metric commonly used to evaluate the
perceptual quality of generated images. Lower BRISQUE scores correspond to higher perceptual
quality. Here, we define it as the average BRISQUE score over all frames of Vs.

Capacity refers to the total number of data bits that can be embedded in the stego video Vs.

Error Rate (PE , %) denotes the error rate in steganalysis detection. A higher PE indicates better
security of the steganographic method.

4.3 Quantitative Performance Evaluation

4.3.1 Metric Experiments

To evaluate the performance of the proposed method, we conducted experiments on 100 videos
generated from diverse prompts. As shown in Table 1, we report four metrics: PSNR, BRISQUE
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score, accuracy (acc), and embedding capacity. Each result is presented as the mean and standard
deviation over the 100 test videos. We compare our method with three recent video steganography
methods: two transform-domain methods (AQIM [12] and MEC_AQIM [13]), and a face-swapping-
based generative method (RoGVSN [42]). For a fair comparison, we set the embedding capacity of
AQIM and MEC_AQIM to 10,000 bits and tested them under the same conditions. Since RoGVSN
only supports face-related video and does not allow for adjustable capacity, we selected 10 face-related
videos from the test set for its evaluation. Additionally, the PSNR is not applicable to RoGVSN
because of its face-swapping nature, and the corresponding values are left blank. The experimental
results show that our method significantly outperforms the baselines in terms of visual quality, while
maintaining high extraction accuracy and embedding capacity.

Table 1: Comparison of performance. The results are presented as the means and standard deviations.
Method PSNR↑ BRISQUE↓ acc (%)↑ capacity↑

AQIM 34.81 ± 0.44 32.87 ± 6.06 99.44 ± 0.27 10000 (fixed)
MEC_AQIM 35.21 ± 0.47 32.71 ± 6.10 90.99 ± 5.90 10000 (fixed)
RoGVSN – 49.53 ± 4.55 99.28 ± 0.38 729 (fixed)
Ours 41.66 ± 1.52 28.90 ± 6.05 99.17 ± 0.63 11983 ± 1446

4.3.2 Security Experiments

To evaluate the resistance of our proposed LD-RoViS against steganalysis attacks, we compare it with
three baseline methods. Following the experimental setup in [12], we adopt two image steganalyzers,
CovNet [24] and LWENet [25], and one video steganalysis feature extractor, SUPERB [50] combined
with a linear classifier [51]. We test 100 generated cover-stego video pairs. For a fair comparison, the
capacity of AQIM and MEC_AQIM is set to 10,000 bits. Since the capacity of RoGVSN is fixed, we
follow its original design with a payload of 729 bits. Using ffmpeg, we decode these videos to obtain
8,100 pairs of cover and stego frames, with 4,000 used for training, 600 for validation, and 3,500 for
testing. As shown in Table 2, LD-RoViS effectively resists steganalysis attacks, achieving error rates
close to 50% (random guessing).

Table 2: PE (%,↑) of steganalysis.
Method SUPERB CovNet LWENet

AQIM 49.14 0.13 0.26
MEC_AQIM 47.32 0.01 1.07
RoGVSN 47.58 0.36 2.61
ours 49.18 49.74 48.49

Table 3: acc(%) under different compression and noise.
Method - CRF=18 CRF=23 CRF=27 noise salt&pepper brightness

AQIM 99.44 91.24 90.67 87.49 82.46 80.04 48.93
MEC_AQIM 90.99 82.83 82.29 78.87 72.83 71.60 50.31
RoGVSN 99.28 97.42 97.06 97.04 96.20 94.45 96.05
ours 99.17 95.89 93.70 91.67 92.82 98.72 99.02

4.3.3 Robustness Experiments

To evaluate the robustness of LD-RoViS against video compression and noise, we conducted the
following experiments. The most common processing method on social media platforms is H.264
compression, where the Constant Rate Factor (CRF) is a key quality control parameter, typically set
to 23. In our experiments, we tested both CRF=18 and CRF=27. Additionally, we applied common
noise perturbations: “noise” refers to Gaussian noise with a standard deviation of 0.05, “salt&pepper3”
denotes impulse noise with a probability of 0.01, and “brightness” represents an increase of 0.1 in
the HSV color space. As shown in Table 3, LD-RoViS demonstrates strong robustness to brightness
changes and salt-and-pepper noise, while maintaining over 90% extraction accuracy under other
lossy conditions. Although RoGVSN is more robust against H.264 compression and Gaussian noise,
it is important to note that its embedding capacity is only 729 bits, whereas LD-RoViS supports
approximately 12,000 bits.

4.4 Subjective performance evaluation

To evaluate the impact of steganographic embedding on video visual quality, we present several visual
examples in Fig. 3. Using FFmpeg, we decode both cover and stego videos and extract the middle

3Salt-and-pepper noise is applied in an image-level manner, where a single spatial impulse mask is shared
across frames with an overall probability of 0.01.
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Figure 3: Visual comparisons between our method and baselines. In (2)–(4), the second row shows
the pixel differences between the cover and stego frames (brightness increased by 10×), whereas in
(5)–(6), the second row shows the temporally adjacent frames.

frame (the 41st frame). In SubFig. 3 (2), (3), and (4), the top row shows the stego frames, whereas
the bottom row shows the pixel-wise differences between the stego and cover frames (brightness
enhanced 10× for better visibility). As shown, traditional transform-domain methods are sensitive
to video encoding and introduce noticeable block artifacts. In contrast, our method avoids direct
modification of video content, resulting in only minor pixel differences in texture-rich regions. In
SubFig. 3 (5) and (6), the top row shows the stego frame, whereas the bottom row displays the
subsequent frame in temporal order (i.e., the 42nd frame). Since RoGVSN embeds messages via face-
swapping, noticeable blur and distortion are observed in facial regions, leading to lower perceptual
quality. These results demonstrate that our method balances effective steganography with minimal
perceptual impact, outperforming baselines in preserving video quality for real-world applications.

4.5 Ablation Studies

To further investigate the effectiveness of the multi-mask mechanism, we conducted ablation studies
on the two masks M1 and M2. Specifically, we evaluated three different variants of the full model,
with their differences summarized in Table 4. Each variant was tested on 10 generated videos, and the
average results are reported in Table 5. The experimental results show that removing either M1 or M2

leads to a significant decrease in accuracy, confirming the effectiveness of M1 in identifying invariant
regions and M2 in identifying discriminative regions within the latent space. Their combined effect
enables the identification of robust areas in the latent space to achieve robust steganography.

Table 4: Ablation variants.
Method Mask M1 Mask M2

variant#1 × ×
variant#2 ✓ ×
variant#3 × ✓
ours ✓ ✓

Table 5: Performance of different variants.
Method acc(%)↑ PSNR(db)↑ BRISQUE↓ capacity(bits)↑

variant#1 62.67 35.39 30.55 1935111
variant#2 75.46 37.49 29.47 617913
variant#3 88.59 40.53 29.01 41132
ours 99.17 41.66 28.90 11983

5 Conclusion

In this work, we present a robust video steganography method for deterministic latent diffusion
models. Our method innovatively constructs a steganographic channel by leveraging the classifier-
free guidance (CFG) scale of diffusion models. In addition, we introduce a multi-mask mechanism
based on adversarial encoding-decoding and video compression perturbations to identify invariant and
distinguishable regions in the latent space, thereby ensuring robustness. To the best of our knowledge,
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this is the first steganographic method for deterministic latent diffusion, which achieves significant
advantages in both embedding capacity and security compared with existing video steganography
methods.
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• The answer NA means that the abstract and introduction do not include the claims
made in the paper.
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3. Theory assumptions and proofs
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by formal proofs provided in appendix or supplemental material.
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4. Experimental result reproducibility
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
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material to ensure the reproducibility of the main results.
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whether the code and data are provided or not.
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to make their results reproducible or verifiable.
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might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use the publicly available VidProM dataset [47]. The code used in our
experiments is released at https://anonymous.4open.science/r/LD-RoViS-7FB1/,
with full instructions to reproduce the main results. The code link has been anonymized.
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• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The main paper provides detailed descriptions of the experimental setup,
including data splits, training procedures, hyperparameter configurations, and other imple-
mentation details necessary to interpret the results.
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• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: For key experimental results, we report the average performance over 100
generated videos. We also include the standard deviation to quantify variability. This
information is presented in the main paper.
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• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We specify the computational environment in the experimental setup, including
the use of four NVIDIA RTX A6000 GPUs. Additional details such as timesteps and
computation times are reported in the supplementary material, ensuring reproducibility.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our research complies fully with the NeurIPS Code of Ethics. It does not
involve any human subjects, sensitive data, or practices that may raise ethical concerns.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]

16

https://neurips.cc/public/EthicsGuidelines


Justification: This paper proposes a method for secure covert communication, which has
potential positive applications in privacy protection and information security.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper does not release any models or datasets that pose potential risks of
misuse, and thus no safeguards are necessary.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: All the external datasets and models used in this work are properly cited in the
paper. Their licenses and terms of use are clearly stated and have been fully respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The new code assets introduced in this paper are thoroughly documented.
Detailed instructions on the installation, usage, and replication of results are provided
alongside the code to facilitate reproducibility.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Hyperparameter Tuning

In the LD-RoViS framework, the optimal values of three hyperparameters—τ1, τ2, and cfg—need
to be determined through experiments. We generated stego videos using 10 different prompts and
computed the average values of accuracy (acc), PSNR, BRISQUE, and capacity. The results are
summarized in Table 6, 7, 8. To evaluate τ1, we fixed τ2 = 0.02 and cfg = 16; to evaluate τ2, we
fixed τ1 = 0.32 and cfg = 16; and to evaluate cfg, we fixed τ1 = 0.32 and τ2 = 0.02.

We observe that as τ1 and τ2 increase, capacity increases, whereas acc, PSNR, and BRISQUE
decrease. Similarly, as cfg increases, acc improves, PSNR and BRISQUE decrease, and capacity
remains nearly unchanged. Our goal is to maximize capacity while maintaining acc ≥ 99%. On this
basis, we choose the combination τ1 = 0.32, τ2 = 0.02, and cfg = 16. Notably, the BRISQUE score
of the cover video is 28.83, which is very close to that of our stego videos. This finding indicates that
although there are content differences between the stego and cover videos, their perceptual quality, as
measured without reference, remains similar.

Table 6: Performance under different values of τ1.
τ1 acc(%)↑ PSNR(db)↑ BRISQUE↓ capacity(bits)↑

0.01 99.45 43.11 28.80 364
0.02 99.31 42.99 28.84 721
0.04 99.52 42.83 28.84 1464
0.08 99.42 42.56 28.83 2913
0.16 99.42 42.18 28.91 5869
0.32 99.17 41.66 28.90 11983
0.64 97.84 40.97 28.94 24995

Table 7: Performance under different values of τ2.
τ2 acc(%)↑ PSNR(db)↑ BRISQUE↓ capacity(bits)↑

0.01 99.65 42.18 28.89 5957
0.02 99.17 41.66 28.90 11983
0.04 98.53 41.01 28.96 23511
0.08 97.25 40.10 29.05 47708
0.16 94.80 39.02 29.25 100786
0.32 90.85 38.12 29.36 204572
0.64 82.90 37.57 29.48 413237

Table 8: Performance under different values of cfg.
cfg acc(%)↑ PSNR(db)↑ BRISQUE↓ capacity(bits)↑
1 60.72 43.15 28.83 12168

2 68.56 43.04 28.84 12206
4 83.72 42.84 28.84 12083

8 95.45 42.43 28.79 12105

16 99.17 41.66 28.90 11983

B Validation on Other Video Diffusion Models

To further evaluate the generalization ability of the proposed LD-RoViS, we additionally implemented
the method on another open-source text-to-video generation model, LTX-Video [48] (ltxv-2b-0.9.8-
distilled version). LTX-Video is a two-stage diffusion model. The first stage focuses on generating
high-quality image frames, while the second stage refines temporal consistency across frames. It
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adopts a DiT-based architecture and employs an EDM sampler (non-deterministic). In our imple-
mentation, we retained the first stage unchanged and inserted the steganographic module at the final
step of the second stage’s denoising process. Due to architectural and sampling differences between
Wan2.1 and LTX-Video, we re-tuned the hyperparameters using a small validation set and obtained
the following optimal values:

ks = 1.1, cfg = 1.8, τ1 = 0.32, τ2 = 0.02.

Note that LTX-Video’s generated video quality is slightly inferior to that of Wan2.1, which explains
the higher BRISQUE scores reported in Table 9. In addition, the latent size in LTX-Video is
approximately 2/5 of Wan2.1’s latent size, leading to a corresponding reduction in embedding
capacity. Experimental results demonstrate that LD-RoViS maintains stable performance under this
different architecture and sampler, confirming the adaptability of our method.

Table 9: Performance comparison of LD-RoViS on different video generation models.
Model Accuracy (%)↑ PSNR (dB)↑ BRISQUE ↓ Capacity (bits)↑

LD-RoViS (Wan2.1) 99.17 41.66 28.90 11983
LD-RoViS (LTX-Video) 99.23 41.39 34.21 4281

C Ablation on Modulation Time Step

To investigate the effect of the modulation time step in the CFG modulation strategy, we performed
ablation studies by applying the modulation at different denoising steps. Here, t denotes the reverse
denoising step counting from the last step, i.e., t = 2 corresponds to the second-to-last denoising
step. The results are shown in Table 10. When the modulation is applied at earlier denoising steps,
the resulting latent variables X1

0 and X2
0 become more uncontrollable. After several denoising

steps, the difference between X1
0 and X2

0 may either increase or decrease unpredictably. As our
message extraction relies heavily on the distinguishability between X1

0 and X2
0 , this uncertainty leads

to lower extraction accuracy with higher standard deviations. Meanwhile, PSNR, BRISQUE, and
steganalysis results remain nearly unchanged, indicating that perceptual quality and security are
preserved. Therefore, the final-step modulation is adopted in our design.

Table 10: Ablation study on different modulation time steps.
Time step t Accuracy (%)↑ PSNR (dB)↑ BRISQUE ↓ CovNet Pe(%)↑

t=1 (Ours) 99.17±0.63 41.66 28.90 49.74
t=2 98.43±1.12 41.22 29.99 49.93
t=4 95.72±2.57 41.34 28.06 49.78
t=8 94.82±3.30 41.94 29.62 49.72

D Time Consumption

The embedding time is also a critical metric for evaluating steganographic methods. Methods with
lower embedding times are generally more practical for real-world applications. To assess this,
we measured the embedding latency using Python’s time package, and the results are shown in
Table 11. Notably, since LD-RoViS performs steganographic embedding during the video generation
process, the actual embedding time should be calculated by subtracting the time required to generate
a clean video via the video model. The experimental results show that LD-RoViS introduces minimal
time overhead (30.48 s), significantly outperforms AQIM and MEC_AQIM, and achieves a runtime
comparable to that of RoGVSN.

E More Experimental Details

In this section, we provide more experimental details to ensure the reproducibility of LD-RoViS.
We adopt the T2V-1.3B model from Wan2.1 [30] as the video generation model. This model has
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Table 11: Embedding latency (in seconds) for different methods.
Method Video Model LD-RoViS RoGVSN AQIM MEC_AQIM

Additional Time (s)↓ 366.02 30.48 36.52 698.80 697.59

low memory requirements and can run on a single RTX 4090 Ti. It also offers fast generation speed,
producing a video in just 50 time steps. On average, it takes approximately 6 minutes to generate an
81-frame video at a resolution of 480×832. For steganographic tasks, the average generation time is
approximately 7 minutes per video.

Dataset: Our experiments use a dataset consisting of 100 cover videos and 100 stego videos. The
prompts for the cover and stego videos are exactly the same. The cover videos are generated via
a clean version of the Wan2.1 model, whereas the stego videos are produced via a Wan2.1 model
with the steganographic module. All prompts are randomly selected from the VidProM dataset [47].
However, some prompts from VidProM contain parameters unsupported by Wan2.1. We manually
filtered out such prompts. Table 12 lists a subset of the prompts used in our experiments.

Table 12: Example prompts used for video generation.
1 a kangaroo dancing to electronic music in a crowded nightclub.
2 a lady wandering in the enchanted woods, lost and confused.
3 aliens walking in city.
4 cars on the beach are attacked by sharks.
5 Animals working together, sharing resources, and demonstrating cooperation under the guidance

of Leo, the wise lion.
6 The black Chinese dragon opens its eyes.
7 a wolf walking in the jungle.
8 A massive storm hitting a city.
9 a wild cat running in the jungle.
10 an elephant riding a bike, masterpiece, cinematic.

F More Visual Results

In this section, we present more visual results to evaluate the impact of steganographic embedding on
video quality.

Visual Quality across Video Frames: A common challenge in traditional video steganography
is distortion drift, where embedding distortions gradually propagate across frames, resulting in
noticeable artifacts in later parts of the video. To investigate whether LD-RoViS suffers from a
similar issue, we decomposed four generated stego videos into individual frames via FFmpeg. We
then visualized the first frame, middle frame (41st), and last frame (81st) in Fig. 4. The results show
that the steganographic modifications made in the latent space by LD-RoViS do not introduce visible
distortions or artifacts. The visual quality remains stable throughout the video.

Pixel-Wise Differences between Cover and Stego Videos: In the main paper, Fig. 3 shows that the
pixel differences between cover and stego videos generated by LD-RoViS are minimal and are mostly
concentrated in regions with complex textures. In this section, we provide a deeper analysis of these
results. Fig. 5 presents additional examples of pixel-level differences. The “diff” images represent
the absolute pixel difference between the 41st frame of the cover and stego videos, with brightness
amplified by a factor of 10 for better visibility. These visualizations confirm that pixel differences are
extremely subtle and imperceptible to the human eye. Notably, most differences appear along object
contours. We hypothesize that this is due to the low weighting of the predicted noise at the final
step of the diffusion model’s reverse process. Even large modifications to this predicted noise have
minimal effects on the final output. This suggests that the last step of the diffusion process provides
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An underwater world with 
realistic fish and other 
creatures of the sea.

large field with wild flowers 
waving in a steady but 

moderate breeze.

leaves falling, slowly blinking, 
gently turning the pages, a 
girl is sitting under a tree 
with a book in her hands 

and reading it, gentle wind, 
anime style.

a student putting his phone 
aside and looking around 
with a smile on his face 
Slowmotion transition.

PSNR: 38.59 db PSNR: 39.57 db PSNR: 42.47 db PSNR: 44.69 db

Figure 4: The first frame, middle frame (41st), and last frame (81st) of a stego video generated by
LD-RoViS, along with their corresponding prompts.

a naturally robust channel for steganography—allowing hidden information to be embedded with
negligible visual degradation and strong resistance to detection.

G Limitations

Although the proposed LD-RoViS enables robust video steganography and outperforms existing
methods in terms of both security and visual quality, it also has certain limitations.

The quality of the stego video depends heavily on the performance of the video generation model.
While video generation models are rapidly improving, they still occasionally produce low-quality
outputs. As shown in Fig 6, some generated videos exhibit physically implausible deformations,
artifacts, or distorted faces. These low-quality samples may raise suspicion during transmission
between the sender and receiver, thereby reducing the practical usability of the steganographic
method.

LD-RoViS inevitably alters the video generation process. Specifically, it modifies the parameters at
the final timestep of the reverse diffusion process, which may introduce slight shifts in the distribution
of the generated videos and lead to a decrease in visual quality. However, the experimental results
show that steganalysis tools fail to detect meaningful distribution differences between the cover and
stego videos, indicating that LD-RoViS remains secure against detection. Additionally, the stego
videos maintain high PSNR and favorable BRISQUE scores, suggesting that LD-RoViS achieves
strong practicality despite the minimal distortion introduced.
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Figure 5: Cover video, stego video, and their pixel-wise difference (“diff” denotes the pixel difference,
with brightness amplified by a factor of 10 for better visibility).
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Figure 6: Examples of low-quality generated videos, where noticeable distortions and artifacts are
present in the frames.
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