
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MAS-ZERO: DESIGNING MULTI-AGENT SYSTEMS
WITH ZERO SUPERVISION

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-agent systems (MAS) leveraging the impressive capabilities of Large Lan-
guage Models (LLMs) hold significant potential for tackling complex tasks. How-
ever, most current MAS depend on manually designed agent roles and commu-
nication protocols. These manual designs often fail to align with the underlying
LLMs’ strengths and struggle to adapt to novel tasks. Recent automatic MAS ap-
proaches attempt to mitigate these limitations but typically necessitate a validation
set for tuning and yield static MAS designs lacking adaptability during inference,
while also removing the flexibility to reduce to simpler systems. We introduce
MAS-ZERO, the first self-evolved, inference-time framework for automatic MAS
design. MAS-ZERO employs meta-level design to iteratively design, critique, and
refine MAS configurations tailored to each problem instance, without requiring
a validation set. Critically, it enables dynamic problem decomposition and agent
composition through meta-feedback on solvability and completeness, and reduction
to simpler systems when appropriate. Experiments across reasoning (math and
graduate-level QA), coding, and agentic (search-based) benchmarks, using both
closed-source and open-source LLM backbones of varying sizes, demonstrate that
MAS-ZERO outperforms strong manual and automatic MAS baselines. It achieves
substantial average accuracy improvements of up to 16.69% on reasoning, 16.66%
on coding, and 5.45% on agentic tasks, while maintaining cost efficiency.

1 INTRODUCTION

While standalone large language models (LLMs) have demonstrated strong performance across
numerous tasks (DeepSeek-AI, 2025; Ke et al., 2025b; Vu et al., 2024), many problems remain too
intricate for a single model to solve effectively (Wang et al., 2024b; Guo et al., 2024). To tackle these
challenges, the exploration of multi-agent systems (MAS) composed of multiple LLM agents has
gained increasing traction among researchers (Ke et al., 2025a).1 These agents often assume distinct
roles, such as generator or verifier (Shinn et al., 2024), engage in debates offering varied perspectives
(Qian et al., 2025; Wang et al., 2024a), and perform assigned sub-tasks (Li et al., 2025).

A fundamental challenge in MAS lies in designing an effective connection and configuration of
these agents to solve a given problem. Initially, MAS were handcrafted, with humans designing
both agent roles and inter-agent communication protocols. However, MAS composed entirely of
such manually designed configurations have faced issues such as poor problem specification and
inter-agent misalignment (Cemri et al., 2025; Qiao et al., 2025), especially when the MAS agents are
not specifically trained with such configurations.

These shortcomings are understandable, as manually specifying a MAS is difficult when the human
designer and the underlying LLMs are not well aligned. Moreover, manual approaches do not scale
well to novel problems, especially as the problems become more complex. Recent work has explored
automatic MAS design, but they have significant limitations: (1) Most rely on a “training” phase with
labeled validation sets to tune configurations, which are often unavailable in real-world scenarios and
may not generalize. This training, based solely on outcome correctness, provides limited insight into

1Agents in a MAS can interact with external environmental tools e.g., search tools (Jiang et al., 2024), or
collaborate with other agents to address tasks requiring diverse capabilities or multiple steps (Liang et al., 2023;
Chen et al., 2024b). This work focuses on the latter scenario, where each agent within the MAS is an LLM
communicating with other LLM agents.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

CoT Baseline
CoT BaselineCoT Baseline

Pareto Front MAS-Zero (ours)MAS-Zero (ours)MAS-Zero (ours)

Debate

Debate Debate

CoT-SC

CoT-SC

Self-refine

Self-refine Self-refine

ADAS
ADASADAS

AFlow
AFlow AFlow

MaASMaAS

MaAS

Pareto Front
Pareto Front

Figure 1: Scatter plots comparing the Pareto fronts of various GPT-4o-based systems on three benchmarks,
including manual MAS , automatic MAS and MAS-ZERO . MAS-ZERO delivers high performance at
lower cost than comparable automatic MAS methods, establishing a new frontier for accuracy vs. cost trade-off.

the system’s internal dynamics. (2) This reliance on validation sets often yields a fixed architecture
(i.e., one for the entire problem set) which lacks per-problem adaptability at test time. (3) Even worse,
these methods eliminate critical dynamics: they cannot reduce to a simpler MAS or a single-agent
system when such strategies would be stronger (Huang et al., 2024), nor can they flexibly decompose
a problem into smaller, more manageable sub-tasks. This limitation is less apparent on simple tasks
such as GSM8K and HumanEval, which are commonly used for MAS evaluation (Hu et al., 2025b;
Zhang et al., 2025a;c) and where most methods already perform well. On more challenging tasks
(e.g., AIME24), however, the inability to revert or decompose becomes critical: as shown in Fig. 1,
many baselines show little to no improvement over simple CoT, meaning the integrated system does
not even outperform a single component.

To overcome these limitations, we argue that an effective automatic MAS should satisfy three core
desiderata: (1) be dynamic enough to both decompose complex problems into smaller sub-tasks
and reduce to a single agent or a simple MAS when a sophisticated MAS is not needed; (2) learn
the capabilities of the underlying LLMs, and automatically design MAS structures that are aligned
with those capabilities; and (3) support adaptivity at inference time, so that MAS designs can be
tailored per problem instance without relying on training or validation sets. To our knowledge, no
existing automatic MAS framework satisfies all three desiderata simultaneously. In this work, we
propose a novel automatic inference-time MAS optimization framework, called MAS-ZERO, which
designs MAS with zero supervision, while satisfying all the aforementioned desiderata. In particular,
MAS-ZERO introduces a meta-agent that iteratively learns the capabilities of individual agents and
their combinations, and refines the MAS design accordingly, thus operating at the MAS-level rather
than the agent level (hence “meta”). The meta-agent also verifies candidate answers drawn from both
refined MAS designs and simpler MAS or single-agent systems, ensuring the dynamic reduction
capability. This process operates entirely at test time, allowing for unique MAS designs per-problem.

To achieve this, MAS-ZERO tasks the meta-agent to iteratively design and critique the MAS, maintain
an experience library, refine the design based on accumulated experience, and ultimately verify the
candidate answers. Fig. 2 illustrates a conceptual overview and contrasts MAS-ZERO with both
automatic and manual MAS designs. Specifically, MAS-ZERO involves three key steps:

• Initializing building blocks (MAS-Init): MAS-ZERO starts with established single-agent (e.g.,
CoT, Self-Consistency) and simple human-designed MAS strategies (e.g., Debate, Self-Refine),
executing each to generate initial outputs that seed later steps.

• Self-evolving with iterative refinement (MAS-Evolve): The meta-agent iteratively designs
and critiques MAS configurations, guided by feedback on solvability and completeness, while
accumulating prior designs and feedback in an experience library for continual refinement.

• Selecting the best candidate with self-verification (MAS-Verify): From the pool of outputs,
including both building blocks and refined MAS iterations, the meta-agent verifies and selects the
most reliable solution, dynamically choosing between complex MAS and simpler strategies.

Evaluations across three challenging domains—reasoning (math and graduate-level QA), coding, and
agentic (search-based), using both closed-source and open-source LLM backbones of varying sizes
(including GPT-4o, 32B, and 70B models) demonstrate that MAS-ZERO consistently outperforms
strong manual and automatic MAS baselines. It achieves substantial average accuracy improvements
of up to 16.69% on reasoning, 16.66% on coding, and 5.45% on agentic tasks. It also consistently
lies on the Pareto frontier of accuracy and cost (Fig. 1). While the inference-time mechanism incurs

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

MAS
Tune on
Validation Set

Validation
Set

Verify
with Validation

Final
Outcome

80

Tuned, Fixed MAS

26

MAS-Verify

Problem: Let ABCDEF be a convex equilateral hexagon in which all pairs of opposite sides are parallel.
The triangle whose sides are extensions of segments AB, CD, and EF has side lengths 200, 240, and 300.
Find the side length of the hexagon.

Manual MAS Designs

CP

C

CP

C

A

C

C

P

C

P

P

J RP C

CoT CoT-SC

Debate Self-Refine

Existing Automatic MAS Designs
Tune on validation set
Sparse human-supervision on final outcome
Test on tuned, fixed MAS

Designed by human

12

MAS-Zero (Ours)

Candidate
Answers

LLM preference ≠ Human intuition
Hard to adapt to new tasks

No validation set needed
Meta-level self-evolution on MAS design
Inference-time only, zero supervision

E D
C

BA

F

Meta-Design

Meta-Feedback

MAS-Init

MAS-Evolve

Building
blocks

CoT
generator

Majority
aggregator

Final
judge

Reflector

Problem

Figure 2: Conceptual comparison of MAS-ZERO, with existing automatic and manual MAS designs. MAS-
ZERO avoids tuning MAS on validation set by maintaining a self-evolving process that iteratively designs and
evaluates task-specific MAS at inference time.

higher token usage during testing, it avoids expensive validation-time optimization and shifts the
design effort to the testing phase, where it can flexibly handle new tasks, and often be more effective
(Agrawal et al., 2025). Such a trade-off has demonstrated significantly improved answers in this
work and strong potential in the literature (Liu et al., 2024a). We believe that MAS-ZERO provides a
complementary alternative for the MAS community, especially in scenarios where adaptability and
generality outweigh the need for minimal token usage. In summary, our key contributions are:

• We introduce MAS-ZERO, to our knowledge, the first inference-time-only automatic MAS design
framework. It works in a fully self-evolved way by learning from the behavior of the underlying
LLM agents at inference-time, enabling per-instance adaptivity with zero supervision.

• We present a new SoTA automatic MAS system that achieves substantial performance gains
over both manually designed and strong automatic baselines, while remaining cost-efficient and
Pareto-optimal across diverse LLMs and domains.2

• We conduct a comprehensive evaluation of MAS-ZERO across diverse domains and LLMs, pre-
senting key insights. For example, single-agent or simple MAS configurations can be surprisingly
strong, in some cases even outperforming more sophisticated MAS designs. Crucially, MAS-ZERO
is the only system that can dynamically revert to these simpler yet effective strategies, ensuring that
such strengths are not overlooked.

2 RELATED WORK

Manual MAS design. Building on the success of single-agent systems (e.g., CoT (Wei et al., 2022),
self-consistency (CoT-SC) (Wang et al., 2023a)), studies have shown that grouping multiple LLM
agents into a MAS can substantially improve individual agent performance. To this end, a variety of
manual-designed MAS approaches have been proposed (Xu et al., 2025; Zheng et al., 2024; Lu et al.,
2025), including LLM debate (Du et al., 2023), and self-refine (Madaan et al., 2024). However, as
discussed previously, these manual designs often suffer from limited adaptability and scalability, and
their rigid structures may fail to align with the underlying strengths of LLMs.

Automatic MAS design. Recent work on automatic MAS design typically require validation set. We
broadly categorize them into two families: (1) val-pruning starts with a fully connected, pre-defined
graph of LLM agents or human-designed blocks and prune it based on validation performance. For
example, MASS (Zhou et al., 2025a) uses rejection sampling, and MaAS (Zhang et al., 2025a) extends
MASS with a question-wise masking mechanism to adapt subnetworks. However, their adaptability
remains limited as the core MAS structure is constrained by the pre-defined structure, which is
suboptimal for many tasks; (2) val-generation leverages a meta-agent LLM to generate MAS from

2We will open-source the data, code, and leaderboard for all components upon acceptance.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

MAS

Meta-FeedbackMeta-Design

Candidate
answer 1

Candidate
answer 2

Candidate
answer N

Final answer

Sorted by final
answer frequency

Select the best candidate answer
(multiple-choice question)

Filtered based on
final answer

Question

COT CoT-
SC

Debate Self-
refine

Building
Blocks

Meta-Agent
Iterations

MAS-Evolve

MAS-Verify

Outputs of Each
Building Blocks

MAS-Init

Experience
Library

MAS

Outputs

Feedback

….

Figure 3: MAS-ZERO overview. Purple highlights the given input and final output. Orange highlights
the components and steps in MAS-ZERO. Dashed arrows indicate the information flow within Meta-feedback.
MAS-ZERO takes as inputs the question and building blocks, and solves the task in three key steps: MAS-Init
(Sec. 3.1), MAS-Evolve (Sec. 3.2) and MAS-Verify (Sec. 3.3).

scratch, offering greater flexibility in defining novel agents and architectures compared to pre-defined
structures. However, this expanded design space presents significant learning challenges. Recent
efforts including ADAS (Hu et al., 2025b) and AFlow (Zhang et al., 2025c) frame MAS generation as
a code generation task. ADAS stores and searches historical designs based on validation performance,
while AFlow enhances this with Monte Carlo Tree Search. Our framework also represents MAS as
executable code but differs fundamentally in several ways: instead of relying on potentially unreliable
validation sets, MAS-ZERO uses a self-evolving process at inference time to learn the capabilities of
agents for meta-level design. It further integrates question decomposition into MAS design, enabling
MAS to be constructed and refined at the sub-task level. Finally, MAS-ZERO can dynamically revert
to simpler building blocks when they are sufficient. These capabilities are not supported by existing
automatic MAS systems. More methods like DyLAN (Liu et al., 2024b) are discussed in App. D.

3 MAS-ZERO FRAMEWORK

As shown in Fig. 3, MAS-ZERO first conducts MAS-Init (Sec. 3.1), where it executes each of the
given building blocks. It then takes a question, the building blocks, and the outputs of each building
block as inputs, ultimately producing the final answer. These inputs are processed by the central
meta-agent, which orchestrates both the MAS-Evolve (Sec. 3.2) and MAS-Verify (Sec. 3.3) steps.
Importantly, the whole process functions without prior knowledge or internal details of the underlying
LLM agents. All steps are implemented through prompting and require only black-box access to
LLM generation, making MAS-ZERO broadly applicable to any LLM without requiring fine-tuning
or internal modifications. The corresponding pseudocode is provided in App. A.

3.1 MAS-INIT

MAS-Init serves as the entry point of MAS-ZERO by executing a set of predefined building blocks.
These blocks correspond to established human-designed strategies (CoT, CoT-SC, Debate, and Self-
Refine in this work) implemented as executable code. Given a question, MAS-Init runs each block
to generate initial candidate solutions. These blocks and their outputs are used as: (1) input to the
meta-agent for grounding the MAS design (Sec. 3.2), and (2) candidate answers that can be selected
by the MAS-Verify (Sec. 3.3), enabling dynamic reduction to simpler MAS or single-agent systems.

3.2 MAS-EVOLVE

Given the question, the building blocks, and their outputs from MAS-Init, the meta-agent begins to
design the MAS. Initially, it has no knowledge of the underlying LLM agents’ internal capabilities and
may produce suboptimal designs. We propose an iterative process in which the meta-agent gradually
learns the strengths of the component agents and refines its designs. This process alternates between
two phases: (1) meta-design (Sec. 3.2.1), where the meta-agent decomposes the question into sub-
tasks and proposes a MAS based on the building blocks and any accumulated experience from prior

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

iterations; (2) meta-feedback (Sec. 3.2.2), where the meta-agent reviews the proposed MAS and
sub-tasks using intermediate outputs to assess their solvability and completeness, and then generates
targeted feedback. The MAS, its intermediate outputs and feedback, are stored in an experience
library that informs subsequent iterations. Through this cycle, the meta-agent progressively adjusts
decompositions and configurations, yielding continual improvement without external supervision.

3.2.1 META-DESIGN

The goal of this phase is to design a candidate MAS for the given task, which will then be reviewed in
the next phase. Unlike existing work that tackles complex problems all at once, MAS-ZERO explicitly
decomposes the original question into manageable yet interdependent sub-tasks. This decomposition
not only breaks down complex problems into smaller parts but also creates opportunities to assign
sub-task level MAS (i.e., sub-MAS) tailored to different components of the problem. For each sub-
task, the meta-agent assigns a sub-MAS by modifying connections between given building blocks or
adjusting their parameters (e.g., temperature, number of debate rounds, etc.). This deliberate design,
informed by our preliminary experiments, balances exploration with improvement: the meta-agent is
free to analyze questions, sub-tasks and assigned sub-MAS, but it should not arbitrarily invent new
agents or blocks, nor prune the architecture without grounding in the provided building blocks.3

3.2.2 META-FEEDBACK

MAS and intermediate outputs. Given the design produced in the meta-design phase, the meta-
feedback phase reviews the MAS and generates feedback. Since a MAS is executable code, it can
be run to obtain outputs, but relying only on the final answer is often sparse and uninformative.
MAS-ZERO instead exploits the intermediate outputs, incorporating both sub-task level outputs from
sub-MAS and agent-level outputs from individual LLMs. By jointly analyzing the final answer and
these fine-grained signals, the meta-agent gains a much richer view of strengths and weaknesses
across the MAS. Concretely, with the code-based representation, each sub-MAS is executed to solve
its sub-task, producing intermediate outputs at two levels: the sub-task (sub-MAS) level and the agent
level. These outputs form the basis for evaluation against the key criteria introduced below.

Criteria. Given the above sub-task and agent level outputs, MAS-ZERO evaluates solvability and
completeness. The meta-agent is given agency in determining each metric:

• Solvability requires that each sub-task be independently and completely solvable by its sub-MAS,
ensuring that every sub-task yields reliable outputs.4

• Completeness requires that the complete set of sub-tasks covers all necessary information from
the original input, ensuring that their answers can produce a correct and comprehensive aggregated
answer to the original task. While an individual sub-task may address only part of the necessary
content, all critical information must be processed and used at some point in the MAS.

Generating feedback. Based on the solvability and completeness, the meta-agent generates targeted
natural language feedback on specific aspects of the MAS that may require revision. For example, if
a sub-task is identified as not solvable, the feedback should suggest either further decomposing it or
updating the corresponding sub-MAS in the next iteration. Conversely, if a sub-task is considered
solvable, the feedback should indicate that it and its sub-MAS remain unchanged. Similarly, if the
union of sub-tasks is found to miss necessary information, the feedback should recommend refining
the decomposition of the original problem to incorporate the missing elements. Overall, this feedback
guides subsequent meta-design iterations, allowing the overall system to iteratively converge toward
an effective decomposition and MAS.

3.2.3 STORING THE EXPERIENCE AND REFINING THE DESIGN

After the first meta-design (Sec. 3.2.1), meta-feedback is collected (Sec. 3.2.2). The MAS, its interme-
diate outputs, and the associated feedback are stored as experience in an experience library. In each
subsequent iteration, meta-design is performed again, now with experience from the library provided

3To support code generation, we provide a template with utility functions and apply sanity checks (syntax
validation and field consistency; see App. I).

4To further aid the meta-agent, we allow each agent to output a special token, [TOO HARD], if it determines
that the assigned sub-task is beyond its current capabilities.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

as additional context to drive self-evolution. Through this process, the meta-agent dynamically adapts
its decomposition strategy and sub-MAS assignments across iterations. This iterative accumulation
of experience gives MAS-ZERO a persistent memory, enabling it to leverage knowledge from past
iterations and build a stronger foundation for continual improvement.

As in many other self-evolving frameworks (Gao et al., 2025b), the meta-design and meta-feedback
signals may be imperfect and ultimately depend on the underlying LLM. Nevertheless, we find em-
pirically that MAS-ZERO allows initially imperfect designs to be progressively improved (Fig. G.1),
and that our curated instruction design produces strong feedback—outperforming a simple ensemble
alternative (Sec. 4.2). We view these results as a promising starting point and hope they inspire
further research in advancing strategies for iterative MAS refinement

3.3 MAS-VERIFY

Collecting candidate answers. At each iteration of MAS-Evolve, the MAS is executed to produce
intermediate outputs and a candidate answer (including both the chain-of-thought and the final
answer). After multiple rounds, MAS-ZERO must determine which candidate answer is the most
reliable and complete. Importantly, the pool of candidate answers includes not only those generated
in each iteration of MAS-Evolve but also the outputs of the basic building blocks from MAS-Init.
This design allows the meta-agent to select between them, leveraging the strong performance of
simple strategies when they suffice, while also exploiting the complex MAS when needed.

Verifying answers. Relying on the last iteration (or any single iteration) is suboptimal due to
stochastic LLM outputs and ongoing MAS refinement (ablations in Sec. 4.2). Instead, MAS-ZERO
formulates verification as a selection problem and tasks the meta-agent with selecting the most
coherent and correct output from the set of candidate answers, which is often more tractable than
independently scoring each output (Gu et al., 2025; Zhou et al., 2025b), especially for challenging
questions where correctness is hard to assess in isolation. Specifically, MAS-ZERO first ranks
candidates by their final answer frequency. This acts as a prior favoring majority responses, a strategy
shown to be effective in prior work (Wang et al., 2023a). It then filters out clearly invalid answers
(e.g., not among the given options). Finally, it selects the best answer from the remaining candidates.

4 EXPERIMENTS

Setup. We consider both the closed-source GPT-4o (OpenAI, 2023) (web-search version for agentic
tasks) and the open-source LLMs, Llama3.3-70B-inst (Llama, 2024) and Qwen2.5-32B-inst (Qwen,
2025). To fairly evaluate how well MAS-ZERO performs relative to the underlying LLM used to
construct the MAS, we always use the same LLM for both the meta-agent and individual agents
(heterogeneous settings in Sec. 4.2). We use the same prompt template for all the tasks (App. H and I)
and conduct 5 MAS-Evolve iterations (the maximum permitted by context-length). Together with the
4 building blocks in MAS-Init, this yields 9 candidate answers, from which the meta-agent selects
one final answer with MAS-Verify.

Benchmarks. We consider 2 reasoning benchmarks across math and science: AIME24 (AIME,
2024) and GPQA-diamond (GPQA) (Rein et al., 2023) (graduate-level QA), 1 coding benchmark
SWE-Bench-Lite-Oracle (SWE) (Jimenez et al., 2024),5 and 2 search-based agentic benchmarks:
BrowseComp (Wei et al., 2025) and Frames (Krishna et al., 2025).6 Existing automatic MAS
methods largely restrict their evaluations to relatively simple reasoning tasks. To our knowledge,
MAS-ZERO is the first to conduct evaluations on challenging reasoning, coding and agentic tasks.

Baselines. We include 2 widely used single-agent baselines: CoT (Wei et al., 2022) and self-
consistency (CoT-SC) (Wang et al., 2023a); 6 manual MAS baselines: Debate (Du et al., 2023),
Self-refine (Madaan et al., 2024), ReConcile (Chen et al., 2024b), MAD (Liang et al., 2023), SPP
(Wang et al., 2023b) and DyLAN (Liu et al., 2024b). Note that CoT, CoT-SC, Debate and Self-Refine
also serve as the building blocks in MAS-Init, allowing us to clearly observe how our system improves
upon the initial configurations. For automatic MAS, we include 3 strong methods: val-pruning
MaAS (Zhang et al., 2025a) and val-generation ADAS (Hu et al., 2025b) and AFlow (Zhang et al.,
2025c). We also include the latest training-based method MAS-GPT (Ye et al., 2025).

5Note that MAS-Verify does not apply to SWE, as correctness in SWE is determined directly by the compiler.
6Benchmark statistics and more implementation details can be found in App. B.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

LLMs GPT-4o Llama3.3-70B Qwen2.5-32B
Methods AIME24 GPQA Avg. AIME24 GPQA Avg. AIME24 GPQA Avg.
CoT 8.33 45.78 27.06↑14.91 16.67 50.60 33.63↑11.32 12.50 50.00 31.25↑9.24
CoT-SC 16.67 43.37 30.02↑11.95 29.17 51.20 40.18↑4.77 16.67 49.40 33.04↑7.46
Debate 4.17 46.99 25.58↑16.39 20.83 50.60 35.72↑9.24 8.33 49.40 28.87↑11.63
Self-Refine 4.17 46.39 25.28↑16.69 29.17 54.22 41.69↑3.26 16.67 50.60 33.64↑6.86
ReConcile 12.50 48.43 30.47↑11.50 33.33 47.17 40.25↑4.71 12.50 47.17 29.84↑10.66
MAD 13.89 52.01 32.95↑9.02 29.17 52.61 40.89↑4.07 16.67 43.57 30.12↑10.37
SPP 9.72 49.80 29.76↑12.21 26.39 46.18 36.29↑8.67 19.44 42.77 31.11↑9.39
DyLAN 11.11 46.99 29.05↑12.92 29.17 41.57 35.37↑9.59 20.83 42.57 31.70↑8.79
MaAS 12.50 43.37 27.94↑14.03 33.33 43.98 38.65↑6.30 20.83 46.99 33.91↑6.58
ADAS × 45.20 × 8.30 53.60 30.95↑14.01 12.50 47.00 29.75↑10.74
AFlow 20.83 46.99 33.91↑8.05 33.33 47.59 40.46↑4.49 33.33 46.39 39.86↑0.63
MAS-GPT 13.89 43.98 28.94↑13.03 26.39 40.00 33.20↑11.76 23.61 37.35 30.48↑10.01
MAS-ZERO 33.33 50.60 41.97 37.50 52.41 44.96 29.17 51.81 40.49

Table 1: Reasoning tasks results. “×” indicates 0% accuracy for MAS selected using the validation
set. “↑” denotes the difference (improvement) that MAS-ZERO achieves compared to the baselines. High-
lighting indicates single-agent , manual MAS,val-pruning automatic MAS , val-generation automatic MAS,
training-based automatic MAS and our method. To fairly compare with validation-based baselines, we split
each benchmark’s original test set into 20% for validation and 80% for testing. For methods do not use validation
sets (including MAS-ZERO), we evaluate on the same 80% split. Standard deviations are given in App. E.

4.1 OVERALL RESULTS

Tables 1-3 show the results for reasoning, coding and agentic tasks across applicable LLMs and
benchmarks. On average, MAS-ZERO achieves the best performance across all LLMs and domains.
Below, we summarize the additional takeaways from the comparison:

Reasoning Tasks. From Table 1, we observe that (1) MAS-ZERO consistently outperforms all
automatic MAS methods. Across all LLM backbones and benchmarks, it surpasses SoTA baselines,
exceeding the strongest baseline, AFlow, by 13.03% on average with GPT-4o as the backbone. The
only instance where it falls behind is on AIME24 with the Qwen backbone, where it underperforms
AFlow by merely one sample (out of 24 total). Notably, ADAS fails completely on AIME24 (0%
accuracy), despite having access to a validation set, underscoring the unreliability of validation-based
baselines. (2) MAS-ZERO also consistently outperforms strong single-agent and manual MAS, with
only two exceptions: GPQA with MAD using GPT-4o, and GPQA with Self-Refine using Llama.

LLMs GPT-4o Llama3.3
Methods SWE SWE
CoT 9.17↑16.66 2.92↑13.82
Debate 12.50↑13.33 6.67↑10.07
Self-Refine 11.67↑14.16 1.67↑15.07
MaAS 10.00↑15.83 5.00↑11.74
AFlow 16.25↑9.58 6.67↑10.07
MAS-ZERO 25.83 16.74

Table 2: SWE results. Methods that
cannot be adapted to SWE are not in-
cluded. Qwen is not included due to its
small maximum context length (32K).

Alarmingly, several automatic MAS baselines underperform
manual MAS across multiple benchmarks. For example, CoT
and CoT-SC consistently outperform MAS-GPT, ADAS, and
MaAS. This further highlights the necessity of MAS-Init in
MAS-ZERO, as it allows the system to dynamically revert to
simpler strategies when a sophisticated MAS is not needed.

Coding Tasks. Similar to reasoning tasks, in Table 2 we ob-
serve MAS-ZERO clearly outperforms single-agent, manual
and automatic MAS. Notably, it comes with 58% (GPT-4o) and
149% (Llama) relative gains over the strongest baseline AFlow.
These margins exceed those observed in reasoning tasks, high-
lighting the effectiveness of MAS-ZERO in challenging tasks.

LLM GPT-4o w/ search
Methods BrowseComp Frames Avg.
CoT 3.97 59.76 31.86↑5.45
CoT-SC 8.66 63.58 36.12↑1.19
Debate 3.94 70.45 37.19↑0.12
Self-Refine 5.51 67.89 36.70↑0.61
MAS-ZERO 9.45 65.18 37.31

Table 3: Results on agentic tasks.

Agentic Tasks. We use GPT-4o with search as in-
dividual agent, which can query the internet and
conduct multi-turn autonomous reasoning internally
(meta-agent is still GPT-4o). From Table 3, we see
that on average, MAS-ZERO continues to improve
upon the basic building blocks. On Frames, MAS-
ZERO underperforms Debate and Self-Refine. We
speculate that when the search agent makes mistakes,
those errors are grounded in retrieved content, mak-
ing them more difficult to detect during MAS-Verify, leading to incorrect judgments. This highlights
the importance of further strengthening the verifier in MAS-Verify (see Sec. 4.2 for more analysis).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Cost-efficiency. Fig. 1 shows the trade-off between performance and cost for GPT-4o across three
benchmarks. Cost is computed using the official OpenAI API pricing7 and includes both “training”
(if any) and test-time usage. We observe that MAS-ZERO lies on the Pareto front across all
three datasets. It is significantly more cost-efficient than AFlow, MaAS, and ADAS, with the lone
exception of ADAS on GPQA, where the cost increase comes with a 12% accuracy improvement.
Of automatic MAS frameworks, MAS-ZERO delivers the highest performance at relatively low
cost. While it is expected that automatic MAS methods incur higher costs than manual baselines,
MAS-ZERO delivers substantially better performance, making the trade-off highly favorable.

4.2 FURTHER ANALYSIS AND ABLATIONS

While Sec. 4.1 establishes the overall effectiveness of MAS-ZERO across domains and LLMs, here we
analyze the role of the meta-agent and each of the three steps through a series of targeted ablations.
The results, detailed below, show that a capable meta-agent consistently enhances performance and
that all three steps contribute meaningfully and complementarily to the final improvements.

LLM o3-mini
Methods AIME24 GPQA Avg.
CoT 70.00 72.22 71.11↑12.27
CoT-SC 80.00 72.73 76.36↑7.02
Debate 86.67 77.78 82.22↑1.16
Self-Refine 76.67 74.24 75.45↑7.93
MAS-ZERO 90.00 76.77 83.38

Table 4: MAS-ZERO with stronger agents.

Diverse meta-agents. While MAS-ZERO shows strong
performance across various LLMs, we further examine
whether weaker or stronger LLMs can effectively serve as
meta-agents. For stronger LLM, we conduct experiments
with a reasoning LLM, o3-mini (OpenAI, 2025b). As
shown in Table 4, MAS-ZERO outperforms the consid-
ered baselines on average, indicating that the benefits of
MAS-ZERO generalize well across model strengths. For
weaker LLMs, we conduct experiments with GPT-OSS-
20B (OpenAI et al., 2025), Qwen2.5-7B (Qwen, 2025), and Qwen2.5-Coder-3B (Hui et al., 2024),
GPT-4.1-nano (OpenAI, 2025a). We find that these models are unable to reliably follow instructions
and often produce syntactically incorrect Python code, suggesting that the meta-agent role requires
sufficiently strong capabilities to handle its multiple responsibilities.

Agent Meta-agent AIME24 GPQA Avg.
GPT-4o GPT-4o 33.33 50.60 41.97
o3-mini o3-mini 90.00 76.77 83.38

GPT-4o o3-mini 36.67 60.10 48.38
o3-mini GPT-4o 83.33 73.74 78.54

Table 5: MAS-ZERO with different models.

Heterogeneous agents. The previous experiments use
the same LLM for both the meta-agent and the individual
agents and already achieved strong results. An intriguing
question is whether heterogeneous assignments can yield
additional benefits or drawbacks. Specifically, we explore
pairing a stronger LLM as the meta-agent with a weaker
LLM as the individual agent, and vice versa. As shown
in Table 5, when GPT-4o is the individual agent and the meta-agent is replaced with o3-mini,
performance improves notably but still falls short of directly using o3-mini for both roles. Conversely,
when o3-mini is the individual agent and the meta-agent is replaced with GPT-4o, performance
decreases, though it remains better than the setting where GPT-4o is the agent and o3-mini is the
meta-agent. These results suggest that while a stronger meta-agent can provide benefits, the overall
performance is ultimately constrained by the capability of the individual agent.

LLM GPT-4o
Methods AIME24 GPQA Avg.
MAS-ZERO 33.33 50.60 41.97

- MAS-Init 12.50 48.43 30.46↓11.50
- MAS-Evolve 20.00 48.73 34.37↓7.60

- meta-design 20.83 45.18 33.01↓8.96
- meta-feedback 25.00 42.17 33.59↓8.38
→ ensemble meta-feedback 16.67 46.88 31.77↓10.19

- MAS-Verify 6.70 33.83 20.27↓21.70
Table 6: Ablations on the three steps in MAS-ZERO.

MAS-Init. Table 1 suggests that building blocks
can achieve strong performance in some prob-
lems. To quantify their contribution, we ablate
MAS-Init by skipping execution of the building
blocks in the first step, letting MAS-Verify judge
solely based on the five candidate solutions pro-
duced by the five iterations of MAS-Evolve. As
shown in Table 6(-MAS-Init), this significantly
degrades performance, highlighting the impor-
tance of including MAS-Init and the ability of
MAS-ZERO to dynamically revert to building blocks.

MAS-Evolve. To evaluate its importance, we first conduct an ablation by skipping the entire MAS-
Evolve and letting MAS-Verify judge solely based on the four building block outputs from MAS-Init.
As shown in Table 6(-MAS-Evolve), the performance drops notably, indicating that MAS-Evolve

7More details are given in App. C

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

GPQA

AIME24

SWE

(B) Gains with Oracle Verifier(A) Gains from MAS-Evolve Iterations

Manual MAS Automatic MAS Manual MAS Automatic MAS

Oracle-verifier

Self-verifier

Self-verifier

Oracle-verifier

Figure 4: (A) Performance gains (GPT-4o) over MAS-Evolve. (B) Performance gains (GPT-4o) given an
oracle verifier. Automatic MAS baselines cannot integrate external verifiers, yielding zero improvement.

is useful for the overall improvements. For meta-design, we modify the prompt to ask the meta-
agent to propose a MAS configuration without attempting to decompose the question into sub-tasks;
Table 6(-meta-design) shows that removing decomposition leads to a significant performance drop,
demonstrating that breaking down the task is a meaningful contributor to the effectiveness of MAS-
ZERO. For meta-feedback, we test two variants: (1) modifying the prompt so that the meta-agent
critiques the current MAS without analyzing the solvability and completeness of each sub-task or
LLM agent (-meta-feedback); (2) since meta-feedback can be noisy due to the self-evolving nature of
the system, we explore a straightforward method to improve reliability via ensembling (→ ensemble
meta-feedback). Following Du et al. (2023), we generate multiple feedback candidates (three in
our experiments) from the meta-agent and then use an additional call to the meta-agent to select
the best one. The corresponding rows in Table 6 reveal that removing meta-feedback results in a
large performance drop, confirming that it is critical to the overall effectiveness of MAS-ZERO.
Surprisingly, the ensemble approach not only fails to improve performance but even reduces it. This
counter-intuitive result suggests that the current straightforward meta-feedback is already strong, and
advancing MAS-ZERO will require designing more principled strategies for reliable feedback.

Gains from MAS-Evolve at each iteration. To further evaluate the self-evolving capability in
MAS-Evolve, we examine performance across iterations. As shown in Fig. 4(A), accuracy at
iteration 0 (before MAS-Evolve, only MAS-Init) and 1 (after the first refinement) is notably lower,
indicating that the system struggles to design effective MAS at the outset. With subsequent iterations,
however, MAS-ZERO progressively improves, demonstrating a strong ability to self-evolve through
the refinement cycle of meta-design, meta-feedback, and the accumulated experience library.

MAS-Verify. This final step determines which candidate solution is selected as the final answer. To
assess its importance, we conducted an ablation where the system simply used the last iteration as
the output, without any additional judgment. The last row in Table 6 shows a sharp performance
decline (the largest drop among all ablations). This is intuitive because, as shown earlier, the ability to
dynamically revert to building blocks is indispensable. Yet it is also revealing, since the self-evolving
nature of MAS-ZERO might suggest that the final iteration should yield the strongest solution. Instead,
the outcome highlights that iterative refinement alone is insufficient, and that effective verification is
essential to counteract the stochasticity of pure self-evolving methods without ground-truth signals.

Potential of MAS-Verify with oracle verifier. We showed that MAS-Verify is crucial, and this
highlights substantial headroom for further improvement. Unlike existing automatic MAS frame-
works, MAS-ZERO can seamlessly incorporate external verifiers, making it naturally positioned to
benefit from advances in verification techniques. Fig. 4(B) illustrates this potential: when equipped
with an oracle verifier that labels outputs as “correct” or “incorrect” using ground-truth answers,
MAS-ZERO ’s performance improves dramatically, further widening the gap over both manual and
automatic MAS and pushing GPQA close to 95%. This demonstrates that stronger verification could
unlock significant headroom for MAS-ZERO.

5 CONCLUSION

We presented MAS-ZERO, the first inference-time-only automatic MAS design framework with
zero supervision. It iteratively designs and refines MAS, decomposes complex questions, reverts to
simpler strategies when sufficient, and verifies candidate answers. Comprehensive experiments show
its strong effectiveness, cost-efficiency, and the contribution of each step.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Lakshya A Agrawal, Shangyin Tan, Dilara Soylu, Noah Ziems, Rishi Khare, Krista Opsahl-Ong,
Arnav Singhvi, Herumb Shandilya, Michael J Ryan, Meng Jiang, Christopher Potts, Koushik
Sen, Alexandros G. Dimakis, Ion Stoica, Dan Klein, Matei Zaharia, and Omar Khattab. Gepa:
Reflective prompt evolution can outperform reinforcement learning, 2025. URL https://arxiv.
org/abs/2507.19457.

Team AIME. Aime problems and solutions, 2024. URL https://artofproblemsolving.com/
wiki/index.php/AIME_Problems_and_Solutions.

Mert Cemri, Melissa Z. Pan, Shuyi Yang, Lakshya A. Agrawal, Bhavya Chopra, Rishabh Tiwari,
Kurt Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, Matei Zaharia, Joseph E.
Gonzalez, and Ion Stoica. Why do multi-agent llm systems fail?, 2025. URL https://arxiv.
org/abs/2503.13657.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F. Karlsson, Jie Fu, and
Yemin Shi. Autoagents: A framework for automatic agent generation, 2024a. URL https:
//arxiv.org/abs/2309.17288.

Justin Chen, Swarnadeep Saha, and Mohit Bansal. ReConcile: Round-table conference improves
reasoning via consensus among diverse LLMs. In Proceedings of the 62nd Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), 2024b. URL https:
//arxiv.org/abs/2309.13007.

Justin Chih-Yao Chen, Sukwon Yun, Elias Stengel-Eskin, Tianlong Chen, and Mohit Bansal. Sym-
bolic mixture-of-experts: Adaptive skill-based routing for heterogeneous reasoning, 2025. URL
https://arxiv.org/abs/2503.05641.

Weize Chen, Yusheng Su, Jingwei Zuo, Cheng Yang, Chenfei Yuan, Chi-Min Chan, Heyang Yu,
Yaxi Lu, Yi-Hsin Hung, Chen Qian, Yujia Qin, Xin Cong, Ruobing Xie, Zhiyuan Liu, Maosong
Sun, and Jie Zhou. Agentverse: Facilitating multi-agent collaboration and exploring emergent
behaviors, 2023. URL https://arxiv.org/abs/2308.10848.

Yufan Dang, Chen Qian, Xueheng Luo, Jingru Fan, Zihao Xie, Ruijie Shi, Weize Chen, Cheng Yang,
Xiaoyin Che, Ye Tian, Xuantang Xiong, Lei Han, Zhiyuan Liu, and Maosong Sun. Multi-agent
collaboration via evolving orchestration, 2025. URL https://arxiv.org/abs/2505.19591.

DeepSeek-AI. Deepseek-r1: Incentivizing reasoning capability in llms via reinforcement learning,
2025. URL https://arxiv.org/abs/2501.12948.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate, 2023. URL https:
//arxiv.org/abs/2305.14325.

Chrisantha Fernando, Dylan Sunil Banarse, Henryk Michalewski, Simon Osindero, and Tim Rock-
täschel. Promptbreeder: Self-referential self-improvement via prompt evolution. In Forty-first
International Conference on Machine Learning, 2024. URL https://openreview.net/forum?
id=9ZxnPZGmPU.

Hongcheng Gao, Yue Liu, Yufei He, Longxu Dou, Chao Du, Zhijie Deng, Bryan Hooi, Min Lin,
and Tianyu Pang. Flowreasoner: Reinforcing query-level meta-agents, 2025a. URL https:
//arxiv.org/abs/2504.15257.

Huanang Gao, Jiayi Geng, Wenyue Hua, Mengkang Hu, Xinzhe Juan, Hongzhang Liu, Shilong
Liu, Jiahao Qiu, Xuan Qi, Yiran Wu, Hongru Wang, Han Xiao, Yuhang Zhou, Shaokun Zhang,
Jiayi Zhang, Jinyu Xiang, Yixiong Fang, Qiwen Zhao, Dongrui Liu, Qihan Ren, Cheng Qian,
Zhenhailong Wang, Minda Hu, Huazheng Wang, Qingyun Wu, Heng Ji, and Mengdi Wang. A
survey of self-evolving agents: On path to artificial super intelligence, 2025b. URL https:
//arxiv.org/abs/2507.21046.

Jiawei Gu, Xuhui Jiang, Zhichao Shi, Hexiang Tan, Xuehao Zhai, Chengjin Xu, Wei Li, Yinghan Shen,
Shengjie Ma, Honghao Liu, Saizhuo Wang, Kun Zhang, Yuanzhuo Wang, Wen Gao, Lionel Ni,
and Jian Guo. A survey on llm-as-a-judge, 2025. URL https://arxiv.org/abs/2411.15594.

10

https://arxiv.org/abs/2507.19457
https://arxiv.org/abs/2507.19457
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2503.13657
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2309.17288
https://arxiv.org/abs/2309.13007
https://arxiv.org/abs/2309.13007
https://arxiv.org/abs/2503.05641
https://arxiv.org/abs/2308.10848
https://arxiv.org/abs/2505.19591
https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://openreview.net/forum?id=9ZxnPZGmPU
https://openreview.net/forum?id=9ZxnPZGmPU
https://arxiv.org/abs/2504.15257
https://arxiv.org/abs/2504.15257
https://arxiv.org/abs/2507.21046
https://arxiv.org/abs/2507.21046
https://arxiv.org/abs/2411.15594

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf Wiest,
and Xiangliang Zhang. Large language model based multi-agents: A survey of progress and
challenges. arXiv preprint arXiv:2402.01680, 2024.

Mengkang Hu, Yuhang Zhou, Wendong Fan, Yuzhou Nie, Bowei Xia, Tao Sun, Ziyu Ye, Zhaoxuan
Jin, Yingru Li, Qiguang Chen, Zeyu Zhang, Yifeng Wang, Qianshuo Ye, Bernard Ghanem, Ping
Luo, and Guohao Li. Owl: Optimized workforce learning for general multi-agent assistance in
real-world task automation, 2025a. URL https://arxiv.org/abs/2505.23885.

Shengran Hu, Cong Lu, and Jeff Clune. Automated design of agentic systems. In The Thirteenth
International Conference on Learning Representations, 2025b. URL https://openreview.net/
forum?id=t9U3LW7JVX.

Yue Hu, Yuzhu Cai, Yaxin Du, Xinyu Zhu, Xiangrui Liu, Zijie Yu, Yuchen Hou, Shuo Tang, and
Siheng Chen. Self-evolving multi-agent collaboration networks for software development, 2024.
URL https://arxiv.org/abs/2410.16946.

Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying Song,
and Denny Zhou. Large language models cannot self-correct reasoning yet. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=IkmD3fKBPQ.

Binyuan Hui et al. Qwen2.5-coder: A technical report on code-specialized models. arXiv preprint
arXiv:2409.12186, 2024. URL https://arxiv.org/abs/2409.12186.

Jinhao Jiang, Jiayi Chen, Junyi Li, Ruiyang Ren, Shijie Wang, Wayne Xin Zhao, Yang Song, and
Tao Zhang. Rag-star: Enhancing deliberative reasoning with retrieval augmented verification and
refinement. arXiv preprint arXiv:2412.12881, 2024.

Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik R
Narasimhan. SWE-bench: Can language models resolve real-world github issues? In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.net/
forum?id=VTF8yNQM66.

Zixuan Ke, Fangkai Jiao, Yifei Ming, Xuan-Phi Nguyen, Austin Xu, Do Xuan Long, Minzhi Li,
Chengwei Qin, Peifeng Wang, Silvio Savarese, Caiming Xiong, and Shafiq Joty. A survey of
frontiers in llm reasoning: Inference scaling, learning to reason, and agentic systems, 2025a. URL
https://arxiv.org/abs/2504.09037.

Zixuan Ke, Yifei Ming, Xuan-Phi Nguyen, Caiming Xiong, and Shafiq Joty. Demystifying domain-
adaptive post-training for financial llms. arXiv preprint arXiv:2501.04961, 2025b.

Omar Khattab, Arnav Singhvi, Paridhi Maheshwari, Zhiyuan Zhang, Keshav Santhanam, Sri Vard-
hamanan, Saiful Haq, Ashutosh Sharma, Thomas T. Joshi, Hanna Moazam, Heather Miller,
Matei Zaharia, and Christopher Potts. Dspy: Compiling declarative language model calls into
self-improving pipelines, 2023. URL https://arxiv.org/abs/2310.03714.

Satyapriya Krishna, Kalpesh Krishna, Anhad Mohananey, Steven Schwarcz, Adam Stambler, Shyam
Upadhyay, and Manaal Faruqui. Fact, fetch, and reason: A unified evaluation of retrieval-
augmented generation, 2025. URL https://arxiv.org/abs/2409.12941.

Ao Li, Yuexiang Xie, Songze Li, Fugee Tsung, Bolin Ding, and Yaliang Li. Agent-oriented planning
in multi-agent systems, 2025. URL https://arxiv.org/abs/2410.02189.

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, Yan Wang, Rui Wang, Yujiu Yang, Shuming Shi,
and Zhaopeng Tu. Encouraging divergent thinking in large language models through multi-agent
debate. arXiv preprint arXiv:2305.19118, 2023.

Tongxuan Liu, Xingyu Wang, Weizhe Huang, Wenjiang Xu, Yuting Zeng, Lei Jiang, Hailong Yang,
and Jing Li. Groupdebate: Enhancing the efficiency of multi-agent debate using group discussion.
arXiv preprint arXiv:2409.14051, 2024a.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. A dynamic llm-powered agent network
for task-oriented agent collaboration, 2024b. URL https://arxiv.org/abs/2310.02170.

11

https://arxiv.org/abs/2505.23885
https://openreview.net/forum?id=t9U3LW7JVX
https://openreview.net/forum?id=t9U3LW7JVX
https://arxiv.org/abs/2410.16946
https://openreview.net/forum?id=IkmD3fKBPQ
https://openreview.net/forum?id=IkmD3fKBPQ
https://arxiv.org/abs/2409.12186
https://openreview.net/forum?id=VTF8yNQM66
https://openreview.net/forum?id=VTF8yNQM66
https://arxiv.org/abs/2504.09037
https://arxiv.org/abs/2310.03714
https://arxiv.org/abs/2409.12941
https://arxiv.org/abs/2410.02189
https://arxiv.org/abs/2310.02170

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Team Llama. The llama 3 herd of models, 2024. URL https://arxiv.org/abs/2407.21783.

Cong Lu, Shengran Hu, and Jeff Clune. Intelligent go-explore: Standing on the shoulders of giant
foundation models, 2025. URL https://arxiv.org/abs/2405.15143.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36, 2024.

OpenAI. Gpt-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

OpenAI. Openai gpt-4.1 nano model, 2025a. URL https://platform.openai.com/docs/models/
gpt-4.1-nano. Released April 14, 2025 via API; 1 million token context window; fastest cheapest
version in GPT-4.1 family.

OpenAI. Openai o3-mini system card, 2025b. URL https://cdn.openai.com/
o3-mini-system-card-feb10.pdf. January 31, 2025.

OpenAI, :, Sandhini Agarwal, Lama Ahmad, Jason Ai, Sam Altman, Andy Applebaum, Edwin
Arbus, Rahul K. Arora, Yu Bai, Bowen Baker, Haiming Bao, Boaz Barak, Ally Bennett, Tyler
Bertao, Nivedita Brett, Eugene Brevdo, Greg Brockman, Sebastien Bubeck, Che Chang, Kai Chen,
Mark Chen, Enoch Cheung, Aidan Clark, Dan Cook, Marat Dukhan, Casey Dvorak, Kevin Fives,
Vlad Fomenko, Timur Garipov, Kristian Georgiev, Mia Glaese, Tarun Gogineni, Adam Goucher,
Lukas Gross, Katia Gil Guzman, John Hallman, Jackie Hehir, Johannes Heidecke, Alec Helyar,
Haitang Hu, Romain Huet, Jacob Huh, Saachi Jain, Zach Johnson, Chris Koch, Irina Kofman,
Dominik Kundel, Jason Kwon, Volodymyr Kyrylov, Elaine Ya Le, Guillaume Leclerc, James Park
Lennon, Scott Lessans, Mario Lezcano-Casado, Yuanzhi Li, Zhuohan Li, Ji Lin, Jordan Liss, Lily,
Liu, Jiancheng Liu, Kevin Lu, Chris Lu, Zoran Martinovic, Lindsay McCallum, Josh McGrath,
Scott McKinney, Aidan McLaughlin, Song Mei, Steve Mostovoy, Tong Mu, Gideon Myles,
Alexander Neitz, Alex Nichol, Jakub Pachocki, Alex Paino, Dana Palmie, Ashley Pantuliano,
Giambattista Parascandolo, Jongsoo Park, Leher Pathak, Carolina Paz, Ludovic Peran, Dmitry
Pimenov, Michelle Pokrass, Elizabeth Proehl, Huida Qiu, Gaby Raila, Filippo Raso, Hongyu
Ren, Kimmy Richardson, David Robinson, Bob Rotsted, Hadi Salman, Suvansh Sanjeev, Max
Schwarzer, D. Sculley, Harshit Sikchi, Kendal Simon, Karan Singhal, Yang Song, Dane Stuckey,
Zhiqing Sun, Philippe Tillet, Sam Toizer, Foivos Tsimpourlas, Nikhil Vyas, Eric Wallace, Xin
Wang, Miles Wang, Olivia Watkins, Kevin Weil, Amy Wendling, Kevin Whinnery, Cedric Whitney,
Hannah Wong, Lin Yang, Yu Yang, Michihiro Yasunaga, Kristen Ying, Wojciech Zaremba, Wenting
Zhan, Cyril Zhang, Brian Zhang, Eddie Zhang, and Shengjia Zhao. gpt-oss-120b gpt-oss-20b
model card, 2025. URL https://arxiv.org/abs/2508.10925.

Chen Qian, Zihao Xie, YiFei Wang, Wei Liu, Kunlun Zhu, Hanchen Xia, Yufan Dang, Zhuoyun Du,
Weize Chen, Cheng Yang, Zhiyuan Liu, and Maosong Sun. Scaling large language model-based
multi-agent collaboration, 2025. URL https://arxiv.org/abs/2406.07155.

Shuofei Qiao, Runnan Fang, Zhisong Qiu, Xiaobin Wang, Ningyu Zhang, Yong Jiang, Pengjun
Xie, Fei Huang, and Huajun Chen. Benchmarking agentic workflow generation, 2025. URL
https://arxiv.org/abs/2410.07869.

Team Qwen. Qwen2.5 technical report, 2025. URL https://arxiv.org/abs/2412.15115.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof qa benchmark,
2023. URL https://arxiv.org/abs/2311.12022.

Yu Shang, Yu Li, Keyu Zhao, Likai Ma, Jiahe Liu, Fengli Xu, and Yong Li. Agentsquare: Automatic
llm agent search in modular design space. arXiv preprint arXiv:2410.06153, 2024.

Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing
Systems, 36, 2024. URL https://arxiv.org/abs/2303.11366.

Tu Vu, Kalpesh Krishna, Salaheddin Alzubi, Chris Tar, Manaal Faruqui, and Yun-Hsuan Sung.
Foundational autoraters: Taming large language models for better automatic evaluation. arXiv
preprint arXiv:2407.10817, 2024.

12

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2405.15143
https://platform.openai.com/docs/models/gpt-4.1-nano
https://platform.openai.com/docs/models/gpt-4.1-nano
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://cdn.openai.com/o3-mini-system-card-feb10.pdf
https://arxiv.org/abs/2508.10925
https://arxiv.org/abs/2406.07155
https://arxiv.org/abs/2410.07869
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2303.11366

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Ziyu Wan, Yunxiang Li, Xiaoyu Wen, Yan Song, Hanjing Wang, Linyi Yang, Mark Schmidt, Jun
Wang, Weinan Zhang, Shuyue Hu, and Ying Wen. Rema: Learning to meta-think for llms with
multi-agent reinforcement learning, 2025. URL https://arxiv.org/abs/2503.09501.

Junlin Wang, Jue Wang, Ben Athiwaratkun, Ce Zhang, and James Zou. Mixture-of-agents enhances
large language model capabilities, 2024a. URL https://arxiv.org/abs/2406.04692.

Qineng Wang, Zihao Wang, Ying Su, Hanghang Tong, and Yangqiu Song. Rethinking the bounds
of llm reasoning: Are multi-agent discussions the key?, 2024b. URL https://arxiv.org/abs/
2402.18272.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc V Le, Ed H. Chi, Sharan Narang, Aakanksha
Chowdhery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language
models. In The Eleventh International Conference on Learning Representations, 2023a. URL
https://openreview.net/forum?id=1PL1NIMMrw.

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, Tao Ge, Furu Wei, and Heng Ji. Unleashing
cognitive synergy in large language models: A task-solving agent through multi-persona self-
collaboration. arXiv preprint arXiv:2307.05300, 2023b. URL https://arxiv.org/abs/2307.
05300.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Jason Wei, Zhiqing Sun, Spencer Papay, Scott McKinney, Jeffrey Han, Isa Fulford, Hyung Won
Chung, Alex Tachard Passos, William Fedus, and Amelia Glaese. Browsecomp: A simple yet
challenging benchmark for browsing agents, 2025. URL https://arxiv.org/abs/2504.12516.

Benfeng Xu, An Yang, Junyang Lin, Quan Wang, Chang Zhou, Yongdong Zhang, and Zhendong
Mao. Expertprompting: Instructing large language models to be distinguished experts, 2025. URL
https://arxiv.org/abs/2305.14688.

Rui Ye, Shuo Tang, Rui Ge, Yaxin Du, Zhenfei Yin, Siheng Chen, and Jing Shao. Mas-gpt: Training
llms to build llm-based multi-agent systems, 2025. URL https://arxiv.org/abs/2503.03686.

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, Dongsheng Li, and Deqing Yang. Evoagent: Towards
automatic multi-agent generation via evolutionary algorithms. arXiv preprint arXiv:2406.14228,
2024.

Guibin Zhang, Yanwei Yue, Zhixun Li, Sukwon Yun, Guancheng Wan, Kun Wang, Dawei Cheng,
Jeffrey Xu Yu, and Tianlong Chen. Cut the crap: An economical communication pipeline for
llm-based multi-agent systems, 2024. URL https://arxiv.org/abs/2410.02506.

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
architecture search via agentic supernet, 2025a. URL https://arxiv.org/abs/2502.04180.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies
via graph neural networks, 2025b. URL https://arxiv.org/abs/2410.11782.

Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xiong-Hui Chen, Jiaqi Chen, Mingchen
Zhuge, Xin Cheng, Sirui Hong, Jinlin Wang, Bingnan Zheng, Bang Liu, Yuyu Luo, and Chenglin
Wu. AFlow: Automating agentic workflow generation, 2025c. URL https://openreview.net/
forum?id=z5uVAKwmjf.

Huaixiu Steven Zheng, Swaroop Mishra, Xinyun Chen, Heng-Tze Cheng, Ed H. Chi, Quoc V Le,
and Denny Zhou. Take a step back: Evoking reasoning via abstraction in large language models,
2024. URL https://arxiv.org/abs/2310.06117.

Han Zhou, Xingchen Wan, Ruoxi Sun, Hamid Palangi, Shariq Iqbal, Ivan Vulić, Anna Korhonen, and
Sercan Ö. Arık. Multi-agent design: Optimizing agents with better prompts and topologies, 2025a.
URL https://arxiv.org/abs/2502.02533.

13

https://arxiv.org/abs/2503.09501
https://arxiv.org/abs/2406.04692
https://arxiv.org/abs/2402.18272
https://arxiv.org/abs/2402.18272
https://openreview.net/forum?id=1PL1NIMMrw
https://arxiv.org/abs/2307.05300
https://arxiv.org/abs/2307.05300
https://arxiv.org/abs/2504.12516
https://arxiv.org/abs/2305.14688
https://arxiv.org/abs/2503.03686
https://arxiv.org/abs/2410.02506
https://arxiv.org/abs/2502.04180
https://arxiv.org/abs/2410.11782
https://openreview.net/forum?id=z5uVAKwmjf
https://openreview.net/forum?id=z5uVAKwmjf
https://arxiv.org/abs/2310.06117
https://arxiv.org/abs/2502.02533

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Pei Zhou, Jay Pujara, Xiang Ren, Xinyun Chen, Heng-Tze Cheng, Quoc V Le, Ed H. Chi, Denny
Zhou, Swaroop Mishra, and Steven Zheng. SELF-DISCOVER: Large language models self-
compose reasoning structures. In The Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openreview.net/forum?id=BROvXhmzYK.

Yilun Zhou, Austin Xu, Peifeng Wang, Caiming Xiong, and Shafiq Joty. Evaluating judges as
evaluators: The jetts benchmark of llm-as-judges as test-time scaling evaluators. arXiv preprint
arXiv:2504.15253, 2025b.

Mingchen Zhuge, Wenyi Wang, Louis Kirsch, Francesco Faccio, Dmitrii Khizbullin, and Jürgen
Schmidhuber. Gptswarm: Language agents as optimizable graphs, 2024. URL https://arxiv.
org/abs/2402.16823.

14

https://openreview.net/forum?id=BROvXhmzYK
https://arxiv.org/abs/2402.16823
https://arxiv.org/abs/2402.16823

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A MAS-ZERO ALGORITHM

In Section 3, we details the three steps of MAS-ZERO. Algorithm 1 presents the detailed algorithm.
Highlighting indicates MAS-Init , MAS-Evolve and MAS-Verify .

Algorithm 1: MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision
Input: Question Q, building blocks {M(1), . . . ,M(k)}, meta-agentA, iterations T
Output: Final Answer y∗

1 Initialize candidate answersH← [], experience library E← ∅;

2 Step 1: MAS-Init

3 foreach building blockM(i) do
4 Y

(i)
0 ← Execute(M(i), Q) ; // Run each building block

5 extract final answer y(i)
0 from Y

(i)
0 ;

6 append y
(i)
0 toH;

7 E ← E ∪ {(Q,M(i), y
(i)
0)} ; // Store the answers from MAS-Init

8 Step 2: MAS-Evolve

9 (Q0,M0)← A.Meta_Design(Q, {M(i)}, E, Constraints = {M(i)});
// Decompose into sub-tasks Q0 and assign sub-MAS M0 grounded in building blocks

10 for t = 1 to T do
11 Yt ← Execute(Mt−1,Qt−1) ; // Run current MAS on sub-tasks

12 extract sub-task outputs {(xsub
j , ysub

j)} and agent outputs {(xagent
ℓ , yagent

ℓ)} from Yt;

13 (Qt,Mt, yt, ft)← A.Meta_Feedback(Q,Qt−1,Mt−1, {(xsub
j , ysub

j)}, {(xagent
ℓ , yagent

ℓ)}, E, Constraints = {M(i)});
// Assess solvability and completeness; revise decomposition and sub-MAS

14 E ← E ∪ {(Qt−1,Mt−1, Yt, ft)} ; // Store sub-tasks, sub-MAS, intermediate outputs, and feedback
15 if yt ̸= ⊥ then
16 append yt toH

17 Step 3: MAS-Verify

18 y∗ ← A.Self_Verify(H) ; // Select final answer from all candidates
19 return y∗;

B IMPLEMENTATIONS, BENCHMARKS AND BASELINES DETAILS

Implementation details. As described in Sec. 4, MAS-ZERO produces 9 candidate answers. For
fair comparison, we sample 9 independent outputs for CoT-SC and take the majority vote. Similarly,
both debate and self-refine are run for 9 rounds. All models are accessed through their respective
APIs.8 Temperature for meta-agent is set to 0.5. For baselines, we strictly use parameters found in
original papers and provided code.

Benchmarks Table B.1 shows the detailed statistics for each dataset. For BrowseComp and Frames,
we randomly sample 10% for testing, due to the large dataset size. We evaluate SWE using its official
code available at https://github.com/SWE-bench/SWE-bench/.

Split AIME24 GPQA SWE BrowseComp Frames
Validation 6 32 60 — —
Test 24 166 240 126 82

Table B.1: Data size for each split in each dataset.

Baselines details We use the official implementations of all baselines, sourced directly from their
public repositories. For manual MAS methods, this includes ReConcile (https://github.com/
dinobby/ReConcile), MAD (https://github.com/Skytliang/Multi-Agents-Debate), SPP
(https://github.com/MikeWangWZHL/Solo-Performance-Prompting), and DyLAN (https://
github.com/SALT-NLP/DyLAN). For automatic MAS methods, this includes ADAS (https://
github.com/ShengranHu/ADAS), AFlow (https://github.com/FoundationAgents/MetaGPT/
tree/main/examples/aflow), and MaAS (https://github.com/bingreeky/MaAS).

8We use TogetherAI API (https://www.together.ai/) for Llama and Qwen.

15

https://github.com/SWE-bench/SWE-bench/
https://github.com/dinobby/ReConcile
https://github.com/dinobby/ReConcile
https://github.com/Skytliang/Multi-Agents-Debate
https://github.com/MikeWangWZHL/Solo-Performance-Prompting
https://github.com/SALT-NLP/DyLAN
https://github.com/SALT-NLP/DyLAN
https://github.com/ShengranHu/ADAS
https://github.com/ShengranHu/ADAS
https://github.com/FoundationAgents/MetaGPT/tree/main/examples/aflow
https://github.com/FoundationAgents/MetaGPT/tree/main/examples/aflow
https://github.com/bingreeky/MaAS
https://www.together.ai/

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C COST COMPUTATION

In Fig. 1, we report the cost of single-agent systems, manual MAS, automatic MAS, and MAS-
ZERO. Costs are computed using OpenAI’s official pricing as of May 2025 at https://openai.
com/api/pricing/. To ensure accuracy, we track usage directly via the official OpenAI API field
“response.usage” for all methods. As a result, the reported values reflect the actual monetary cost,
accounting for both input and output tokens.

D ADDITIONAL RELATED WORK

In Sec. 2, we briefly introduced the most important related works and highlighted their contrast
with MAS-ZERO. In this section, we provide a more detailed discussion of existing works. For
completeness, we also note that a number of training-based approaches have been proposed, but we
omit them from Sec. 2 since MAS-ZERO does not involve updating LLM parameters.

Some prior work treats prompt optimization for individual agents as part of MAS design. Examples
include PromptBreeder (Fernando et al., 2024), DsPy (Khattab et al., 2023) and Self-Discover (Zhou
et al., 2024). More recently, this idea has been extended to broader automatic MAS design, where
prompt optimization is included either as an additional design step or as part of the search space.

Manual MAS design. In addition to the approaches discussed in Sec. 2, several other methods
fall into this family. DyLAN Liu et al. (2024b) uses message passing to dynamically activate agent
compositions; Reconcile (Chen et al., 2024b) and MAD (Liang et al., 2023) employ debate and
round-table discussion, SPP (Wang et al., 2023b) leverages collaboration among multiple personas.

Automatic MAS design. We follow the categories introduced in Sec. 2 and additionally include
the training-based family.

Val-Pruning. This line of work has evolved quickly (Zhang et al., 2024; 2025b; Hu et al., 2024).
Earlier examples include GPTSwarm (Zhuge et al., 2024) which optimizes graph structures via
reinforcement learning but struggles to represent workflows with conditional state due to limitations
of static graphs. AgentSquare (Shang et al., 2024) leverages a verifier as a performance predictor to
guide the pruning.

Val-Generation. Besides the approaches introduced in Sec. 2 that employ a meta-agent to gen-
erate building block connections and configurations, another line of work uses the meta-agent to
directly generate the required agents or blocks. For example, AutoAgents (Chen et al., 2024a)
and AgentVerse (Chen et al., 2023) create specialized agents through a planner agent, while EvoA-
gent (Yuan et al., 2024) applies evolutionary algorithms to optimize this generation process. Similarly,
Symbolic-MoE (Chen et al., 2025) leverages validation signals to construct block profiles and select
the best-performing planner agent.

Training-based. More recent work attempts to explicitly train the agents or meta-agents within MAS.
For example, ReMA (Wan et al., 2025) and OWL (Hu et al., 2025a) train the agents in a manual MAS,
while MAS-GPT (Ye et al., 2025) collects data from off-the-shelf MAS and trains a meta-agent via
supervised fine-tuning (SFT). FlowReasoner (Gao et al., 2025a) builds on this by extending SFT with
reinforcement learning (RL). Puppeteer (Dang et al., 2025) directly RL trains the meta-agent in an
end-to-end manner.

E STANDARD DEVIATION FOR THE EXPERIMENTS

To confirm the statistical significance of the experimental results in Table 1, we repeat the experiment
three times, following (Zhang et al., 2025c; Liu et al., 2024b). We can see that the MAS can exhibit
high variance due to the inherent nature of multi-agent systems: the variance may be amplified by the
interactions among multiple agents (Cemri et al., 2025), and the generated temperature of the agents
is typically non-zero. Nevertheless, MAS-ZERO is significantly stronger than other baselines, with
only one exception in AIME24 and two in GPQA, as mentioned in Sec. 4.

16

https://openai.com/api/pricing/
https://openai.com/api/pricing/

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

LLMs GPT-4o Llama3.3 Qwen2.5
CoT ±1.97 ±1.96 ±0.00
CoT-SC ±3.40 ±5.20 ±1.96
Debate ±7.08 ±7.08 ±5.20
Self-Refine ±3.93 ±1.97 ±1.97
ReConcile ±1.97 ±1.96 ±1.97
MAD ±1.96 ±3.40 ±3.40
SPP ±5.20 ±1.96 ±5.89
DyLAN ±1.96 ±0.00 ±3.93
ADAS × ±5.30 ±6.38
AFlow ±1.96 ±1.96 ±0.00
MAS-GPT ±3.54 ±1.96 ±5.20
MAS-ZERO ±5.89 ±3.15 ±5.20

Table E.1: Standard deviations for AIME24.

LLMs GPT-4o Llama3.3 Qwen2.5
CoT ±1.29 ±0.89 ±2.72
CoT-SC ±1.36 ±0.78 ±1.94
Debate ±0.41 ±0.78 ±1.07
Self-Refine ±2.08 ±2.08 ±3.01
ReConcile ±1.29 ±2.43 ±1.85
MAD ±1.28 ±1.28 ±3.08
SPP ±1.74 ±1.25 ±1.20
DyLAN ±3.44 ±0.49 ±0.75
ADAS ±3.83 ±3.83 ±3.98
AFlow ±1.70 ±2.48 ±1.77
MAS-GPT ±1.02 ±1.02 ±2.25
MAS-ZERO ±1.67 ±0.51 ±2.08

Table E.2: Standard deviations for GPQA.

F ILLUSTRATION OF MAS-EVOLVE

Fig. F.1 illustrates MAS-Evolve. Given a question and the building blocks, the meta-agent is prompted
to decompose the task and propose a MAS (see Appendix H for detailed prompts). The meta-agent
then generates a MAS in the form of code, which is executed by an external compiler to produce
intermediate and final outputs for the sub-tasks and agents.

After this meta-design and execution, the meta-feedback phase begins. In this phase, both the resulting
MAS and its intermediate outputs are provided to the meta-agent to review their solvability and
completeness. Based on this evaluation, the meta-agent generates targeted feedback. The MAS, its
intermediate outputs, and the feedback are stored in the experience library, which is then used as
additional context to refine the design in subsequent iterations.

Decompose the task and propose initial MAS based on the question and building blocks…

Meta-agent Compiler

Sub-task level outputs{(𝑥!"#, 𝑦!"#)}
Agent level outputs {(𝑥$%&'(, 𝑦$%&'()}

CoT + Answer

Update the MAS and problem decomposition based on the solvability and completeness…

Review the solvability and completeness of the MAS design based on the sub-task
samples and agent samples…

Prompt

MAS

Question

Meta-agent

Let ABCDEF be a convex equilateral hexagon in which all pairs of opposite sides are parallel. The triangle whose sides
are extensions of segments AB, CD, and EF has side lengths 200, 240, and 300. Find the side length of the hexagon.

Meta-agent

Prompt

Solvability: The sub-questions are not fully solvable as indicated by the [TOO_HARD]…
Completeness: The sub-questions does not cover all necessary info…

…..
Sub-tasks

…..

…..

Prompt

Meta-Design

Candidate 1

Meta-Feedback

Meta-Design

Compiler

Candidate 2MAS
…..

Sub-tasks

…..

…..

MAS-Evolve
Iteration 1

…
…

CoT + Answer

MAS-Evolve
Iteration 2

Experience
Library

Figure F.1: Illustration for the iterations in MAS-Evolve.

G EXAMPLE OF MAS PRODUCED FROM MAS-ZERO

MAS-ZERO learns to decompose a new question and assign appropriate sub-MAS to each sub-task
dynamically. This type of dynamic assignment would have been difficult to design manually. Fig. G.1
showcases the effectiveness of MAS-ZERO by demonstrating how it can construct and refine MAS
architectures on the fly, adapting complexity to the requirements of the task.

H PROMPT DETAILS

As described in Sec. 3, MAS-ZERO uses prompts to implement its three steps. In this section, we
present all detailed prompts used, including the building blocks (Fig. J.2, J.3, J.4, J.5) in MAS-Init;

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

 To solve the problem, we first need to understand the configuration of
the hexagon and the triangle formed by the extensions of its sides.

 Since ABCDEF is a convex equilateral hexagon with opposite sides
parallel, it can be considered as a symmetric hexagon.

 The extensions of segments AB, CD, and EF form a triangle with
given side lengths 200, 240, and 300. The key property of such a
hexagon is that it can be decomposed into two congruent equilateral
triangles and a central parallelogram.

 The problem can be approached using the properties of such a
hexagon and the triangle formed by the extensions.

 The sum of the lengths of the triangle formed by the extensions of the
sides of the hexagon is equal to the perimeter of the hexagon.

 The perimeter of the triangle is 200 + 240 + 300 = 740. Since the
hexagon is equilateral, its perimeter is 6 times the side length of the
hexagon. Therefore, the side length of the hexagon is 740 / 6.

Incorrect
Assumption!

 P1: Identify the properties of the hexagon ABCDEF.
Specifically, determine the implications of the hexagon
being convex, equilateral, and having pairs of opposite
sides parallel.

 P2: Based on the output of sub-task 1, determine how
the side lengths of the triangle relate to the side length
of the hexagon.

 P3: Based on the output of sub-task 2, calculate the
side length of the hexagon ABCDEF

Asked the key sub-task but
still vague!

 P1: Determine if the hexagon can be
inscribed in a circle by analyzing its angles
and symmetry

 P2: If the hexagon is not regular,
determine how its symmetry affects the
relationship between the hexagon and the
triangle formed by the extensions.

 P3: Use vector analysis to establish a
relationship between the triangle’s side
lengths and the hexagon’s vertices

 P4: Based on the relationship established
in Sub-task 3 calculate the side length of
the hexagon

Asked the key sub-task and
provide explicit hint!

C	P!

C

	P"

C

A

…
… R	P# C

x 5 x 5

C	P"
C

	P#

C

A

…
…

x 5 x 2

C	P!

C

C

	P$

C

	P$

	P$

J

MAS-Zero (MAS-Evolve Iteration 1)
Debaters:
Math Professor,
Grad Teacher

CoT

Self-RefineCoT-SC

C	𝑃
CoT-SC

CoT

CoT

Problem: Let ABCDEF be a convex equilateral hexagon in which all pairs of opposite sides are parallel.
The triangle whose sides are extensions of segments AB, CD, and EF has side lengths 200, 240, and 300.
Find the side length of the hexagon.

E D
C

BA

F

COT MAS-Zero (MAS-Evolve Iteration 5)

Figure G.1: An example illustrates how the MAS produced by MAS-ZERO outperforms both CoT and early
iterations. In this case, MAS-ZERO learns to decompose the task into 4 sub-tasks and dynamically assign
appropriate sub-MAS: CoT for the first two, CoT-SC (sampling 5 completions) for the third, and Debate (2
rounds with a math professor and a graduate teacher as debaters) for the fourth.

the Meta-Design (Fig. H.1) and Meta-Feedback (Fig. H.2) in MAS-Evolve; and the prompts for
MAS-Verify (Fig. H.3).

I CODE TEMPLATE

MAS-ZERO uses a code template to aid MAS code generation to filling in a specific forward
function. Fig. J.1 shows how the utility code is provided. Fig.s J.2, J.3, J.4, and J.5 show the
implementations of each building blocks.

J USAGE OF LARGE LANGUAGE MODELS

We use LLMs solely for grammar polishing.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Prompt for Meta-Design

Overview. You are an expert machine learning researcher testing various agentic systems. You are given
a set of building blocks (e.g., CoT, CoT-SC, Self-Refine, Debate) and a question. Each building block
is represented as executable code and can contain one or more LLM agents with specialized settings
(instruction, temperature, etc.). A sub-MAS refers to one or more building blocks assigned together to
solve a specific sub-task. The overall MAS is formed by coordinating multiple sub-MAS to solve the
full problem.
Your objectives are:
• Perform task decomposition. Decompose the given question into manageable yet interdependent

sub-tasks, such that each sub-task is specific and detailed enough for a sub-MAS (formed from
building blocks) to solve. Do not solve the tasks yourself or leak the expected answer. Instead, design
the decomposition so that the sub-tasks are easier for sub-MAS to solve, and justify how they combine
to yield the final answer.
Make sure
– Each sub-task should explicitly build on the outputs of prior sub-tasks.
– The final sub-task should naturally yield the overall answer to the original question.

• Design sub-MAS assignments. Based on the resulting sub-tasks, assign one or more building blocks
to form a sub-MAS for each sub-task. You may adjust block parameters (e.g., temperature, number of
debate rounds), but you must not invent new blocks or prune the provided ones without grounding.
For example: Given available building blocks {CoT, CoT-SC, Self-Refine, Debate}, and the resulting
sub-tasks: sub-task 1, sub-task 2, sub-task 3:

– Step 1: For each sub-task, specify its sub-MAS.

* It may use a single block (e.g., Sub-task 1: CoT).
* It may use a sequential chain of blocks (e.g., Sub-task 3: CoT → Self-Refine).
* Or it may use parallel blocks inside the sub-task (e.g., Sub-task 2: {CoT ∥ Debate}, meaning

both blocks process the same input).
– Step 2: Connect the sub-tasks (sub-MAS). After defining sub-MAS, specify how the sub-tasks

depend on one another:

* Sequential connection: Sub-tasks are connected in a linear chain, where the output of one
becomes the input to the next.
Example: [CoT] (sub-task 1) → [Debate] (sub-task 2) → [CoT → Self-Refine] (sub-task 3).

* Parallel connection: Multiple sub-tasks depend on the same earlier sub-task’s output and run in
parallel.
Example: [CoT] (sub-task 1) → {[Debate] (sub-task 2), [CoT → Self-Refine] (sub-task 3)}.
Here, both sub-task 2 and sub-task 3 consume the result of sub-task 1 in parallel.

IMPORTANT: Do not collapse all decomposed sub-tasks into a single instruction handled by one
block. Each sub-task must be addressed by its own sub-MAS.

Final remark: Your aim is to design an optimal block connection that can perform well on each
sub-task. Your code should implement the existing blocks as-is. Do not propose new blocks or modify
existing ones; you may only adjust their connections and settings (e.g., instruction, temperature).

Figure H.1: Prompt for Meta-Design. Additional examples, building blocks code and output format
instruction are omitted for clarity.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Prompt for Meta-Feedback

Overview. You are given a candidate Multi-Agent System (MAS) design, including: (i) its executable
code, (ii) the sub-task outputs from each sub-MAS, (iii) the outputs of individual agents, (iv) the final
response, and (v) experience of prior iterations. Your task is to critically evaluate this MAS and provide
feedback to guide refinement in the next iteration.

• Solvability: Assess whether all sub-tasks are solvable by the corresponding block via checking the
output answer of each sub-task.
– If the output explicitly includes [TOO_HARD], this means the sub-task is too difficult and should

be further decomposed.
– If the output is incorrect, identify whether the issue is due to

* Insufficient decomposition (the task is still too hard) or
* Some agents in the block are malfunctioning, or the underlying LLM is too weak to solve the

sub-task. This can be checked by reviewing the agent outputs: (a) If the agent itself is not
optimal (e.g., poor instruction, temperature, etc.), the settings need to be improved. (b) If the
agent architecture is not optimal, a new block should be proposed by recombining existing
blocks or adjusting their settings.

Please justify whether it is (i), the decomposition issue or (ii) the block and agent issue. It could
also be both. When proposing new sub-task, make sure

* It is specific and detailed enough to solve and to contribute to the final answer;
* All required information is carried over from previous sub-tasks or provided in the instruction;
* The outputs from related sub-tasks are correctly incorporated (e.g., added to the taskInfo list

when calling the agent);
* The connection to prior sub-tasks is explicit (e.g., instructions should state “Based on the output

of sub-task i”).
• Completeness: Do the sub-tasks include all necessary information from the original query that can

ensure the aggregation of sub-task responses can effectively yield a comprehensive answer to the
user query? Note that while a sub-task might include only part of the necessary information, it is not
allowable for any particular piece of critical information to be omitted from all sub-tasks.

– If critical information is missing, refine the decomposition to include it.
– Ensure sub-tasks are connected so that the aggregated outputs can yield a correct and comprehensive

final answer.

Now, you need to improve or revise the implementation, or implement the new proposed MAS based on
the reflection.

Figure H.2: Prompt for Meta-Feedback. Additional examples, building blocks code and output
format instruction are omitted for clarity.

Prompt for MAS-Verify

Given the problem and a list of candidate answers, carefully review the reasoning steps and final answers
to select the most reliable candidate. Do not solve the task yourself.
In your output, use the “thinking” field to compare the selected answer with each unselected answer
one by one, identify the erroneous steps in the unselected answers, and give a detailed explanation of
why they are incorrect. In the “selection” field, output the ID of the best answer.

Problem: {problem}
Answer List: {candidate answers}

Figure H.3: Prompt for MAS-Verify. The “candidate answers” have already been ranked and
filtered before being passed to the meta-agent. Additional examples and output format instructions
are omitted for clarity.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Utility Code

Named tuple for holding task information
Info = namedtuple('Info', ['name', 'author ', 'content ', 'prompt ', 'sub_tasks ', 'agents '

, 'iteration_idx '])

Format instructions for LLM response
FORMAT_INST = lambda request_keys: f"Reply EXACTLY with the following JSON format .\n{

str(request_keys)}\nDO NOT MISS ANY FIELDS AND MAKE SURE THE JSON FORMAT IS
CORRECT !\n"

Description of the role for the LLM
ROLE_DESC = lambda role: f"You are a {role}."

class LLMAgentBase ():

def __init__(self , output_fields: list , agent_name: str ,
role='helpful assistant ', model=None , temperature=None) -> None:

self.output_fields = output_fields
self.agent_name = agent_name

self.role = role
self.model = model
self.temperature = temperature
give each instance a unique id
self.id = random_id ()

def generate_prompt(self , input_infos , instruction) -> str:
generate prompt based on the input_infos
...

def query(self , input_infos: list , instruction , iteration_idx =-1) -> dict:
call generate_prompt and the LLM to get output
...

def __repr__(self):
return f"{self.agent_name} {self.id}"

class AgentArchitecture:
"""
Fill in your code here.

def forward(self , taskInfo) -> Union[Info , str]:
Args:
- taskInfo (Info): Task information.

Returns:
- Answer (Info): Your FINAL Answer.

"""

Figure J.1: Utility code.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Implementation of CoT Building Blocks

def forward(self , taskInfo):
Instruction for the Chain -of-Thought (CoT) approach
It is an important practice that allows the LLM to think step by step before

solving the task.
cot_instruction = self.cot_instruction

Instantiate a new LLM agent specifically for CoT
To allow the LLM to think before answering , we need to set an additional output

field 'thinking '.
cot_agent = LLMAgentBase (['thinking ', 'answer '], 'Chain -of-Thought Agent', model=

self.node_model , temperature =0.0)

Prepare the inputs for the CoT agent
The input should be a list of Info , and the first one is often the taskInfo
cot_agent_inputs = [taskInfo]

Get the response from the CoT agent
thinking , answer = cot_agent(cot_agent_inputs , cot_instruction)
final_answer = self.make_final_answer(thinking , answer)

Return only the final answer
return final_answer

Figure J.2: Implementation of CoT building blocks

Implementation of CoT-SC Building Blocks

def forward(self , taskInfo):
Instruction for step -by-step reasoning
cot_instruction = self.cot_instruction
N = self.max_sc # Number of CoT agents

Initialize multiple CoT agents with a higher temperature for varied reasoning
cot_agents = [LLMAgentBase (['thinking ', 'answer '], 'Chain -of-Thought Agent', model

=self.node_model , temperature =0.5) for _ in range(N)]

Majority voting function to select the most common answer
from collections import Counter
def majority_voting(answers):

return Counter(answers).most_common (1) [0][0]

thinking_mapping = {}
answer_mapping = {}
possible_answers = []
for i in range(N):

thinking , answer = cot_agents[i]([taskInfo], cot_instruction)
possible_answers.append(answer.content)
thinking_mapping[answer.content] = thinking
answer_mapping[answer.content] = answer

Ensembling the answers from multiple CoT agents
answer = majority_voting(possible_answers)

thinking = thinking_mapping[answer]
answer = answer_mapping[answer]

final_answer = self.make_final_answer(thinking , answer)

return final_answer

Figure J.3: Implementation of CoT-SC building blocks

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Implementation of Debate Building Blocks

def forward(self , taskInfo):
Instruction for initial reasoning
debate_initial_instruction = self.cot_instruction

Instruction for debating and updating the solution based on other agents '
solutions

debate_instruction = "Given solutions to the problem from other agents , consider
their opinions as additional advice. Please think carefully and provide an
updated answer. Put your thinking process in the 'thinking ' field and the
updated answer in the 'answer ' field. "

Initialize debate agents with different roles and a moderate temperature for
varied reasoning

debate_agents = [LLMAgentBase (['thinking ', 'answer '], 'Debate Agent', model=self.
node_model , role=role , temperature =0.5) for role in self.debate_role]

Instruction for final decision -making based on all debates and solutions
final_decision_instruction = "Given all the above thinking and answers , reason over

them carefully and provide a final answer. Put your thinking process in the '
thinking ' field and the final answer in the 'answer ' field."

final_decision_agent = LLMAgentBase (['thinking ', 'answer '], 'Final Decision Agent',
model=self.node_model , temperature =0.0)

max_round = self.max_round # Maximum number of debate rounds
all_thinking = [[] for _ in range(max_round)]
all_answer = [[] for _ in range(max_round)]

Perform debate rounds
for r in range(max_round):

for i in range(len(debate_agents)):
if r == 0:

thinking , answer = debate_agents[i]([taskInfo],
debate_initial_instruction)

else:
input_infos = [taskInfo] + [all_thinking[r-1][i]] + all_thinking[r-1][:

i] + all_thinking[r-1][i+1:]
thinking , answer = debate_agents[i](input_infos , debate_instruction)

all_thinking[r]. append(thinking)
all_answer[r]. append(answer)

Make the final decision based on all debate results and solutions
thinking , answer = final_decision_agent ([taskInfo] + all_thinking[max_round -1] +

all_answer[max_round -1], final_decision_instruction)
final_answer = self.make_final_answer(thinking , answer)

return final_answer

Figure J.4: Implementation of Debate building blocks

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Implementation of Self-Refine Building Blocks

def forward(self , taskInfo):
Instruction for initial reasoning
cot_initial_instruction = self.cot_instruction

Instruction for reflecting on previous attempts and feedback to improve
cot_reflect_instruction = "Given previous attempts and feedback , carefully consider

where you could go wrong in your latest attempt. Using insights from previous
attempts , try to solve the task better."

cot_agent = LLMAgentBase (['thinking ', 'answer '], 'Chain -of-Thought Agent', model=
self.node_model , temperature =0.0)

Instruction for providing feedback and correcting the answer
critic_instruction = "Please review the answer above and criticize on where might

be wrong. If you are absolutely sure it is correct , output exactly 'True' in '
correct '."

critic_agent = LLMAgentBase (['feedback ', 'correct '], 'Critic Agent', model=self.
node_model , temperature =0.0)

N_max = self.max_round # Maximum number of attempts

Initial attempt
cot_inputs = [taskInfo]
thinking , answer = cot_agent(cot_inputs , cot_initial_instruction , 0)

for i in range(N_max):
Get feedback and correct status from the critic
feedback , correct = critic_agent ([taskInfo , thinking , answer],

critic_instruction , i)
if correct.content == 'True':

break

Add feedback to the inputs for the next iteration
cot_inputs.extend ([thinking , answer , feedback])

Reflect on previous attempts and refine the answer
thinking , answer = cot_agent(cot_inputs , cot_reflect_instruction , i + 1)

final_answer = self.make_final_answer(thinking , answer)

return final_answer

Figure J.5: Implementation of Self-Refine building blocks

24

	Introduction
	Related Work
	MAS-Zero Framework
	MAS-Init
	MAS-Evolve
	Meta-Design
	Meta-Feedback
	Storing the Experience and Refining the design

	MAS-Verify

	Experiments
	Overall Results
	Further Analysis and Ablations

	Conclusion
	MAS-Zero Algorithm
	Implementations, Benchmarks and Baselines Details
	Cost Computation
	Additional Related Work
	Standard deviation for the Experiments
	Illustration of MAS-Evolve
	Example of MAS produced from MAS-Zero
	Prompt Details
	Code Template
	Usage of Large Language Models

