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ABSTRACT

Multi-agent systems (MAS) leveraging the impressive capabilities of Large Lan-
guage Models (LLMs) hold significant potential for tackling complex tasks. How-
ever, most current MAS depend on manually designed agent roles and commu-
nication protocols. These manual designs often fail to align with the underlying
LLMs’ strengths and struggle to adapt to novel tasks. Recent automatic MAS ap-
proaches attempt to mitigate these limitations but typically necessitate a validation
set for tuning and yield static MAS designs lacking adaptability during inference,
while also removing the flexibility to reduce to simpler systems. We introduce
MAS-ZERO, the first self-evolved, inference-time framework for automatic MAS
design. MAS-ZERO employs meta-level design to iteratively design, critique, and
refine MAS configurations tailored to each problem instance, without requiring
a validation set. Critically, it enables dynamic problem decomposition and agent
composition through meta-feedback on solvability and completeness, and reduction
to simpler systems when appropriate. Experiments across reasoning (math and
graduate-level QA), coding, and agentic (search-based) benchmarks, using both
closed-source and open-source LLM backbones of varying sizes, demonstrate that
MAS-ZERO outperforms strong manual and automatic MAS baselines. It achieves
substantial average accuracy improvements of up to 16.69% on reasoning, 16.66%
on coding, and 5.45% on agentic tasks, while maintaining cost efficiency.

1 INTRODUCTION

While standalone large language models (LLMs) have demonstrated strong performance across
numerous tasks (DeepSeek-AI, 2025; Ke et al., 2025b; Vu et al., 2024), many problems remain too
intricate for a single model to solve effectively (Wang et al., 2024b; Guo et al., 2024). To tackle these
challenges, the exploration of multi-agent systems (MAS) composed of multiple LLM agents has
gained increasing traction among researchers (Ke et al., 2025a).1 These agents often assume distinct
roles, such as generator or verifier (Shinn et al., 2024), engage in debates offering varied perspectives
(Qian et al., 2025; Wang et al., 2024a), and perform assigned sub-tasks (Li et al., 2025).

A fundamental challenge in MAS lies in designing an effective connection and configuration of
these agents to solve a given problem. Initially, MAS were handcrafted, with humans designing
both agent roles and inter-agent communication protocols. However, MAS composed entirely of
such manually designed configurations have faced issues such as poor problem specification and
inter-agent misalignment (Cemri et al., 2025; Qiao et al., 2025), especially when the MAS agents are
not specifically trained with such configurations.

These shortcomings are understandable, as manually specifying a MAS is difficult when the human
designer and the underlying LLMs are not well aligned. Moreover, manual approaches do not scale
well to novel problems, especially as the problems become more complex. Recent work has explored
automatic MAS design, but they have significant limitations: (1) Most rely on a “training” phase with
labeled validation sets to tune configurations, which are often unavailable in real-world scenarios and
may not generalize. This training, based solely on outcome correctness, provides limited insight into

1Agents in a MAS can interact with external environmental tools e.g., search tools (Jiang et al., 2024), or
collaborate with other agents to address tasks requiring diverse capabilities or multiple steps (Liang et al., 2023;
Chen et al., 2024b). This work focuses on the latter scenario, where each agent within the MAS is an LLM
communicating with other LLM agents.
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Figure 1: Scatter plots comparing the Pareto fronts of various GPT-4o-based systems on three benchmarks,
including manual MAS , automatic MAS and MAS-ZERO . MAS-ZERO delivers high performance at
lower cost than comparable automatic MAS methods, establishing a new frontier for accuracy vs. cost trade-off.

the system’s internal dynamics. (2) This reliance on validation sets often yields a fixed architecture
(i.e., one for the entire problem set) which lacks per-problem adaptability at test time. (3) Even worse,
these methods eliminate critical dynamics: they cannot reduce to a simpler MAS or a single-agent
system when such strategies would be stronger (Huang et al., 2024), nor can they flexibly decompose
a problem into smaller, more manageable sub-tasks. This limitation is less apparent on simple tasks
such as GSM8K and HumanEval, which are commonly used for MAS evaluation (Hu et al., 2025b;
Zhang et al., 2025a;c) and where most methods already perform well. On more challenging tasks
(e.g., AIME24), however, the inability to revert or decompose becomes critical: as shown in Fig. 1,
many baselines show little to no improvement over simple CoT, meaning the integrated system does
not even outperform a single component.

To overcome these limitations, we argue that an effective automatic MAS should satisfy three core
desiderata: (1) be dynamic enough to both decompose complex problems into smaller sub-tasks
and reduce to a single agent or a simple MAS when a sophisticated MAS is not needed; (2) learn
the capabilities of the underlying LLMs, and automatically design MAS structures that are aligned
with those capabilities; and (3) support adaptivity at inference time, so that MAS designs can be
tailored per problem instance without relying on training or validation sets. To our knowledge, no
existing automatic MAS framework satisfies all three desiderata simultaneously. In this work, we
propose a novel automatic inference-time MAS optimization framework, called MAS-ZERO, which
designs MAS with zero supervision, while satisfying all the aforementioned desiderata. In particular,
MAS-ZERO introduces a meta-agent that iteratively learns the capabilities of individual agents and
their combinations, and refines the MAS design accordingly, thus operating at the MAS-level rather
than the agent level (hence “meta”). The meta-agent also verifies candidate answers drawn from both
refined MAS designs and simpler MAS or single-agent systems, ensuring the dynamic reduction
capability. This process operates entirely at test time, allowing for unique MAS designs per-problem.

To achieve this, MAS-ZERO tasks the meta-agent to iteratively design and critique the MAS, maintain
an experience library, refine the design based on accumulated experience, and ultimately verify the
candidate answers. Fig. 2 illustrates a conceptual overview and contrasts MAS-ZERO with both
automatic and manual MAS designs. Specifically, MAS-ZERO involves three key steps:

• Initializing building blocks (MAS-Init): MAS-ZERO starts with established single-agent (e.g.,
CoT, Self-Consistency) and simple human-designed MAS strategies (e.g., Debate, Self-Refine),
executing each to generate initial outputs that seed later steps.

• Self-evolving with iterative refinement (MAS-Evolve): The meta-agent iteratively designs
and critiques MAS configurations, guided by feedback on solvability and completeness, while
accumulating prior designs and feedback in an experience library for continual refinement.

• Selecting the best candidate with self-verification (MAS-Verify): From the pool of outputs,
including both building blocks and refined MAS iterations, the meta-agent verifies and selects the
most reliable solution, dynamically choosing between complex MAS and simpler strategies.

Evaluations across three challenging domains—reasoning (math and graduate-level QA), coding, and
agentic (search-based), using both closed-source and open-source LLM backbones of varying sizes
(including GPT-4o, 32B, and 70B models) demonstrate that MAS-ZERO consistently outperforms
strong manual and automatic MAS baselines. It achieves substantial average accuracy improvements
of up to 16.69% on reasoning, 16.66% on coding, and 5.45% on agentic tasks. It also consistently
lies on the Pareto frontier of accuracy and cost (Fig. 1). While the inference-time mechanism incurs
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Figure 2: Conceptual comparison of MAS-ZERO, with existing automatic and manual MAS designs. MAS-
ZERO avoids tuning MAS on validation set by maintaining a self-evolving process that iteratively designs and
evaluates task-specific MAS at inference time.

higher token usage during testing, it avoids expensive validation-time optimization and shifts the
design effort to the testing phase, where it can flexibly handle new tasks, and often be more effective
(Agrawal et al., 2025). Such a trade-off has demonstrated significantly improved answers in this
work and strong potential in the literature (Liu et al., 2024a). We believe that MAS-ZERO provides a
complementary alternative for the MAS community, especially in scenarios where adaptability and
generality outweigh the need for minimal token usage. In summary, our key contributions are:

• We introduce MAS-ZERO, to our knowledge, the first inference-time-only automatic MAS design
framework. It works in a fully self-evolved way by learning from the behavior of the underlying
LLM agents at inference-time, enabling per-instance adaptivity with zero supervision.

• We present a new SoTA automatic MAS system that achieves substantial performance gains
over both manually designed and strong automatic baselines, while remaining cost-efficient and
Pareto-optimal across diverse LLMs and domains.2

• We conduct a comprehensive evaluation of MAS-ZERO across diverse domains and LLMs, pre-
senting key insights. For example, single-agent or simple MAS configurations can be surprisingly
strong, in some cases even outperforming more sophisticated MAS designs. Crucially, MAS-ZERO
is the only system that can dynamically revert to these simpler yet effective strategies, ensuring that
such strengths are not overlooked.

2 RELATED WORK

Manual MAS design. Building on the success of single-agent systems (e.g., CoT (Wei et al., 2022),
self-consistency (CoT-SC) (Wang et al., 2023a)), studies have shown that grouping multiple LLM
agents into a MAS can substantially improve individual agent performance. To this end, a variety of
manual-designed MAS approaches have been proposed (Xu et al., 2025; Zheng et al., 2024; Lu et al.,
2025), including LLM debate (Du et al., 2023), and self-refine (Madaan et al., 2024). However, as
discussed previously, these manual designs often suffer from limited adaptability and scalability, and
their rigid structures may fail to align with the underlying strengths of LLMs.

Automatic MAS design. Recent work on automatic MAS design typically require validation set. We
broadly categorize them into two families: (1) val-pruning starts with a fully connected, pre-defined
graph of LLM agents or human-designed blocks and prune it based on validation performance. For
example, MASS (Zhou et al., 2025a) uses rejection sampling, and MaAS (Zhang et al., 2025a) extends
MASS with a question-wise masking mechanism to adapt subnetworks. However, their adaptability
remains limited as the core MAS structure is constrained by the pre-defined structure, which is
suboptimal for many tasks; (2) val-generation leverages a meta-agent LLM to generate MAS from

2We will open-source the data, code, and leaderboard for all components upon acceptance.
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Figure 3: MAS-ZERO overview. Purple highlights the given input and final output. Orange highlights
the components and steps in MAS-ZERO. Dashed arrows indicate the information flow within Meta-feedback.
MAS-ZERO takes as inputs the question and building blocks, and solves the task in three key steps: MAS-Init
(Sec. 3.1), MAS-Evolve (Sec. 3.2) and MAS-Verify (Sec. 3.3).

scratch, offering greater flexibility in defining novel agents and architectures compared to pre-defined
structures. However, this expanded design space presents significant learning challenges. Recent
efforts including ADAS (Hu et al., 2025b) and AFlow (Zhang et al., 2025c) frame MAS generation as
a code generation task. ADAS stores and searches historical designs based on validation performance,
while AFlow enhances this with Monte Carlo Tree Search. Our framework also represents MAS as
executable code but differs fundamentally in several ways: instead of relying on potentially unreliable
validation sets, MAS-ZERO uses a self-evolving process at inference time to learn the capabilities of
agents for meta-level design. It further integrates question decomposition into MAS design, enabling
MAS to be constructed and refined at the sub-task level. Finally, MAS-ZERO can dynamically revert
to simpler building blocks when they are sufficient. These capabilities are not supported by existing
automatic MAS systems. More methods like DyLAN (Liu et al., 2024b) are discussed in App. D.

3 MAS-ZERO FRAMEWORK

As shown in Fig. 3, MAS-ZERO first conducts MAS-Init (Sec. 3.1), where it executes each of the
given building blocks. It then takes a question, the building blocks, and the outputs of each building
block as inputs, ultimately producing the final answer. These inputs are processed by the central
meta-agent, which orchestrates both the MAS-Evolve (Sec. 3.2) and MAS-Verify (Sec. 3.3) steps.
Importantly, the whole process functions without prior knowledge or internal details of the underlying
LLM agents. All steps are implemented through prompting and require only black-box access to
LLM generation, making MAS-ZERO broadly applicable to any LLM without requiring fine-tuning
or internal modifications. The corresponding pseudocode is provided in App. A.

3.1 MAS-INIT

MAS-Init serves as the entry point of MAS-ZERO by executing a set of predefined building blocks.
These blocks correspond to established human-designed strategies (CoT, CoT-SC, Debate, and Self-
Refine in this work) implemented as executable code. Given a question, MAS-Init runs each block
to generate initial candidate solutions. These blocks and their outputs are used as: (1) input to the
meta-agent for grounding the MAS design (Sec. 3.2), and (2) candidate answers that can be selected
by the MAS-Verify (Sec. 3.3), enabling dynamic reduction to simpler MAS or single-agent systems.

3.2 MAS-EVOLVE

Given the question, the building blocks, and their outputs from MAS-Init, the meta-agent begins to
design the MAS. Initially, it has no knowledge of the underlying LLM agents’ internal capabilities and
may produce suboptimal designs. We propose an iterative process in which the meta-agent gradually
learns the strengths of the component agents and refines its designs. This process alternates between
two phases: (1) meta-design (Sec. 3.2.1), where the meta-agent decomposes the question into sub-
tasks and proposes a MAS based on the building blocks and any accumulated experience from prior

4
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iterations; (2) meta-feedback (Sec. 3.2.2), where the meta-agent reviews the proposed MAS and
sub-tasks using intermediate outputs to assess their solvability and completeness, and then generates
targeted feedback. The MAS, its intermediate outputs and feedback, are stored in an experience
library that informs subsequent iterations. Through this cycle, the meta-agent progressively adjusts
decompositions and configurations, yielding continual improvement without external supervision.

3.2.1 META-DESIGN

The goal of this phase is to design a candidate MAS for the given task, which will then be reviewed in
the next phase. Unlike existing work that tackles complex problems all at once, MAS-ZERO explicitly
decomposes the original question into manageable yet interdependent sub-tasks. This decomposition
not only breaks down complex problems into smaller parts but also creates opportunities to assign
sub-task level MAS (i.e., sub-MAS) tailored to different components of the problem. For each sub-
task, the meta-agent assigns a sub-MAS by modifying connections between given building blocks or
adjusting their parameters (e.g., temperature, number of debate rounds, etc.). This deliberate design,
informed by our preliminary experiments, balances exploration with improvement: the meta-agent is
free to analyze questions, sub-tasks and assigned sub-MAS, but it should not arbitrarily invent new
agents or blocks, nor prune the architecture without grounding in the provided building blocks.3

3.2.2 META-FEEDBACK

MAS and intermediate outputs. Given the design produced in the meta-design phase, the meta-
feedback phase reviews the MAS and generates feedback. Since a MAS is executable code, it can
be run to obtain outputs, but relying only on the final answer is often sparse and uninformative.
MAS-ZERO instead exploits the intermediate outputs, incorporating both sub-task level outputs from
sub-MAS and agent-level outputs from individual LLMs. By jointly analyzing the final answer and
these fine-grained signals, the meta-agent gains a much richer view of strengths and weaknesses
across the MAS. Concretely, with the code-based representation, each sub-MAS is executed to solve
its sub-task, producing intermediate outputs at two levels: the sub-task (sub-MAS) level and the agent
level. These outputs form the basis for evaluation against the key criteria introduced below.

Criteria. Given the above sub-task and agent level outputs, MAS-ZERO evaluates solvability and
completeness. The meta-agent is given agency in determining each metric:

• Solvability requires that each sub-task be independently and completely solvable by its sub-MAS,
ensuring that every sub-task yields reliable outputs.4

• Completeness requires that the complete set of sub-tasks covers all necessary information from
the original input, ensuring that their answers can produce a correct and comprehensive aggregated
answer to the original task. While an individual sub-task may address only part of the necessary
content, all critical information must be processed and used at some point in the MAS.

Generating feedback. Based on the solvability and completeness, the meta-agent generates targeted
natural language feedback on specific aspects of the MAS that may require revision. For example, if
a sub-task is identified as not solvable, the feedback should suggest either further decomposing it or
updating the corresponding sub-MAS in the next iteration. Conversely, if a sub-task is considered
solvable, the feedback should indicate that it and its sub-MAS remain unchanged. Similarly, if the
union of sub-tasks is found to miss necessary information, the feedback should recommend refining
the decomposition of the original problem to incorporate the missing elements. Overall, this feedback
guides subsequent meta-design iterations, allowing the overall system to iteratively converge toward
an effective decomposition and MAS.

3.2.3 STORING THE EXPERIENCE AND REFINING THE DESIGN

After the first meta-design (Sec. 3.2.1), meta-feedback is collected (Sec. 3.2.2). The MAS, its interme-
diate outputs, and the associated feedback are stored as experience in an experience library. In each
subsequent iteration, meta-design is performed again, now with experience from the library provided

3To support code generation, we provide a template with utility functions and apply sanity checks (syntax
validation and field consistency; see App. I).

4To further aid the meta-agent, we allow each agent to output a special token, [TOO HARD], if it determines
that the assigned sub-task is beyond its current capabilities.
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as additional context to drive self-evolution. Through this process, the meta-agent dynamically adapts
its decomposition strategy and sub-MAS assignments across iterations. This iterative accumulation
of experience gives MAS-ZERO a persistent memory, enabling it to leverage knowledge from past
iterations and build a stronger foundation for continual improvement.

As in many other self-evolving frameworks (Gao et al., 2025b), the meta-design and meta-feedback
signals may be imperfect and ultimately depend on the underlying LLM. Nevertheless, we find em-
pirically that MAS-ZERO allows initially imperfect designs to be progressively improved (Fig. G.1),
and that our curated instruction design produces strong feedback—outperforming a simple ensemble
alternative (Sec. 4.2). We view these results as a promising starting point and hope they inspire
further research in advancing strategies for iterative MAS refinement

3.3 MAS-VERIFY

Collecting candidate answers. At each iteration of MAS-Evolve, the MAS is executed to produce
intermediate outputs and a candidate answer (including both the chain-of-thought and the final
answer). After multiple rounds, MAS-ZERO must determine which candidate answer is the most
reliable and complete. Importantly, the pool of candidate answers includes not only those generated
in each iteration of MAS-Evolve but also the outputs of the basic building blocks from MAS-Init.
This design allows the meta-agent to select between them, leveraging the strong performance of
simple strategies when they suffice, while also exploiting the complex MAS when needed.

Verifying answers. Relying on the last iteration (or any single iteration) is suboptimal due to
stochastic LLM outputs and ongoing MAS refinement (ablations in Sec. 4.2). Instead, MAS-ZERO
formulates verification as a selection problem and tasks the meta-agent with selecting the most
coherent and correct output from the set of candidate answers, which is often more tractable than
independently scoring each output (Gu et al., 2025; Zhou et al., 2025b), especially for challenging
questions where correctness is hard to assess in isolation. Specifically, MAS-ZERO first ranks
candidates by their final answer frequency. This acts as a prior favoring majority responses, a strategy
shown to be effective in prior work (Wang et al., 2023a). It then filters out clearly invalid answers
(e.g., not among the given options). Finally, it selects the best answer from the remaining candidates.

4 EXPERIMENTS

Setup. We consider both the closed-source GPT-4o (OpenAI, 2023) (web-search version for agentic
tasks) and the open-source LLMs, Llama3.3-70B-inst (Llama, 2024) and Qwen2.5-32B-inst (Qwen,
2025). To fairly evaluate how well MAS-ZERO performs relative to the underlying LLM used to
construct the MAS, we always use the same LLM for both the meta-agent and individual agents
(heterogeneous settings in Sec. 4.2). We use the same prompt template for all the tasks (App. H and I)
and conduct 5 MAS-Evolve iterations (the maximum permitted by context-length). Together with the
4 building blocks in MAS-Init, this yields 9 candidate answers, from which the meta-agent selects
one final answer with MAS-Verify.

Benchmarks. We consider 2 reasoning benchmarks across math and science: AIME24 (AIME,
2024) and GPQA-diamond (GPQA) (Rein et al., 2023) (graduate-level QA), 1 coding benchmark
SWE-Bench-Lite-Oracle (SWE) (Jimenez et al., 2024),5 and 2 search-based agentic benchmarks:
BrowseComp (Wei et al., 2025) and Frames (Krishna et al., 2025).6 Existing automatic MAS
methods largely restrict their evaluations to relatively simple reasoning tasks. To our knowledge,
MAS-ZERO is the first to conduct evaluations on challenging reasoning, coding and agentic tasks.

Baselines. We include 2 widely used single-agent baselines: CoT (Wei et al., 2022) and self-
consistency (CoT-SC) (Wang et al., 2023a); 6 manual MAS baselines: Debate (Du et al., 2023),
Self-refine (Madaan et al., 2024), ReConcile (Chen et al., 2024b), MAD (Liang et al., 2023), SPP
(Wang et al., 2023b) and DyLAN (Liu et al., 2024b). Note that CoT, CoT-SC, Debate and Self-Refine
also serve as the building blocks in MAS-Init, allowing us to clearly observe how our system improves
upon the initial configurations. For automatic MAS, we include 3 strong methods: val-pruning
MaAS (Zhang et al., 2025a) and val-generation ADAS (Hu et al., 2025b) and AFlow (Zhang et al.,
2025c). We also include the latest training-based method MAS-GPT (Ye et al., 2025).

5Note that MAS-Verify does not apply to SWE, as correctness in SWE is determined directly by the compiler.
6Benchmark statistics and more implementation details can be found in App. B.
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LLMs GPT-4o Llama3.3-70B Qwen2.5-32B
Methods AIME24 GPQA Avg. AIME24 GPQA Avg. AIME24 GPQA Avg.
CoT 8.33 45.78 27.06↑14.91 16.67 50.60 33.63↑11.32 12.50 50.00 31.25↑9.24
CoT-SC 16.67 43.37 30.02↑11.95 29.17 51.20 40.18↑4.77 16.67 49.40 33.04↑7.46
Debate 4.17 46.99 25.58↑16.39 20.83 50.60 35.72↑9.24 8.33 49.40 28.87↑11.63
Self-Refine 4.17 46.39 25.28↑16.69 29.17 54.22 41.69↑3.26 16.67 50.60 33.64↑6.86
ReConcile 12.50 48.43 30.47↑11.50 33.33 47.17 40.25↑4.71 12.50 47.17 29.84↑10.66
MAD 13.89 52.01 32.95↑9.02 29.17 52.61 40.89↑4.07 16.67 43.57 30.12↑10.37
SPP 9.72 49.80 29.76↑12.21 26.39 46.18 36.29↑8.67 19.44 42.77 31.11↑9.39
DyLAN 11.11 46.99 29.05↑12.92 29.17 41.57 35.37↑9.59 20.83 42.57 31.70↑8.79
MaAS 12.50 43.37 27.94↑14.03 33.33 43.98 38.65↑6.30 20.83 46.99 33.91↑6.58
ADAS × 45.20 × 8.30 53.60 30.95↑14.01 12.50 47.00 29.75↑10.74
AFlow 20.83 46.99 33.91↑8.05 33.33 47.59 40.46↑4.49 33.33 46.39 39.86↑0.63
MAS-GPT 13.89 43.98 28.94↑13.03 26.39 40.00 33.20↑11.76 23.61 37.35 30.48↑10.01
MAS-ZERO 33.33 50.60 41.97 37.50 52.41 44.96 29.17 51.81 40.49

Table 1: Reasoning tasks results. “×” indicates 0% accuracy for MAS selected using the validation
set. “↑” denotes the difference (improvement) that MAS-ZERO achieves compared to the baselines. High-
lighting indicates single-agent , manual MAS,val-pruning automatic MAS , val-generation automatic MAS,
training-based automatic MAS and our method. To fairly compare with validation-based baselines, we split
each benchmark’s original test set into 20% for validation and 80% for testing. For methods do not use validation
sets (including MAS-ZERO), we evaluate on the same 80% split. Standard deviations are given in App. E.

4.1 OVERALL RESULTS

Tables 1-3 show the results for reasoning, coding and agentic tasks across applicable LLMs and
benchmarks. On average, MAS-ZERO achieves the best performance across all LLMs and domains.
Below, we summarize the additional takeaways from the comparison:

Reasoning Tasks. From Table 1, we observe that (1) MAS-ZERO consistently outperforms all
automatic MAS methods. Across all LLM backbones and benchmarks, it surpasses SoTA baselines,
exceeding the strongest baseline, AFlow, by 13.03% on average with GPT-4o as the backbone. The
only instance where it falls behind is on AIME24 with the Qwen backbone, where it underperforms
AFlow by merely one sample (out of 24 total). Notably, ADAS fails completely on AIME24 (0%
accuracy), despite having access to a validation set, underscoring the unreliability of validation-based
baselines. (2) MAS-ZERO also consistently outperforms strong single-agent and manual MAS, with
only two exceptions: GPQA with MAD using GPT-4o, and GPQA with Self-Refine using Llama.

LLMs GPT-4o Llama3.3
Methods SWE SWE
CoT 9.17↑16.66 2.92↑13.82
Debate 12.50↑13.33 6.67↑10.07
Self-Refine 11.67↑14.16 1.67↑15.07
MaAS 10.00↑15.83 5.00↑11.74
AFlow 16.25↑9.58 6.67↑10.07
MAS-ZERO 25.83 16.74

Table 2: SWE results. Methods that
cannot be adapted to SWE are not in-
cluded. Qwen is not included due to its
small maximum context length (32K).

Alarmingly, several automatic MAS baselines underperform
manual MAS across multiple benchmarks. For example, CoT
and CoT-SC consistently outperform MAS-GPT, ADAS, and
MaAS. This further highlights the necessity of MAS-Init in
MAS-ZERO, as it allows the system to dynamically revert to
simpler strategies when a sophisticated MAS is not needed.

Coding Tasks. Similar to reasoning tasks, in Table 2 we ob-
serve MAS-ZERO clearly outperforms single-agent, manual
and automatic MAS. Notably, it comes with 58% (GPT-4o) and
149% (Llama) relative gains over the strongest baseline AFlow.
These margins exceed those observed in reasoning tasks, high-
lighting the effectiveness of MAS-ZERO in challenging tasks.

LLM GPT-4o w/ search
Methods BrowseComp Frames Avg.
CoT 3.97 59.76 31.86↑5.45
CoT-SC 8.66 63.58 36.12↑1.19
Debate 3.94 70.45 37.19↑0.12
Self-Refine 5.51 67.89 36.70↑0.61
MAS-ZERO 9.45 65.18 37.31

Table 3: Results on agentic tasks.

Agentic Tasks. We use GPT-4o with search as in-
dividual agent, which can query the internet and
conduct multi-turn autonomous reasoning internally
(meta-agent is still GPT-4o). From Table 3, we see
that on average, MAS-ZERO continues to improve
upon the basic building blocks. On Frames, MAS-
ZERO underperforms Debate and Self-Refine. We
speculate that when the search agent makes mistakes,
those errors are grounded in retrieved content, mak-
ing them more difficult to detect during MAS-Verify, leading to incorrect judgments. This highlights
the importance of further strengthening the verifier in MAS-Verify (see Sec. 4.2 for more analysis).
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Cost-efficiency. Fig. 1 shows the trade-off between performance and cost for GPT-4o across three
benchmarks. Cost is computed using the official OpenAI API pricing7 and includes both “training”
(if any) and test-time usage. We observe that MAS-ZERO lies on the Pareto front across all
three datasets. It is significantly more cost-efficient than AFlow, MaAS, and ADAS, with the lone
exception of ADAS on GPQA, where the cost increase comes with a 12% accuracy improvement.
Of automatic MAS frameworks, MAS-ZERO delivers the highest performance at relatively low
cost. While it is expected that automatic MAS methods incur higher costs than manual baselines,
MAS-ZERO delivers substantially better performance, making the trade-off highly favorable.

4.2 FURTHER ANALYSIS AND ABLATIONS

While Sec. 4.1 establishes the overall effectiveness of MAS-ZERO across domains and LLMs, here we
analyze the role of the meta-agent and each of the three steps through a series of targeted ablations.
The results, detailed below, show that a capable meta-agent consistently enhances performance and
that all three steps contribute meaningfully and complementarily to the final improvements.

LLM o3-mini
Methods AIME24 GPQA Avg.
CoT 70.00 72.22 71.11↑12.27
CoT-SC 80.00 72.73 76.36↑7.02
Debate 86.67 77.78 82.22↑1.16
Self-Refine 76.67 74.24 75.45↑7.93
MAS-ZERO 90.00 76.77 83.38

Table 4: MAS-ZERO with stronger agents.

Diverse meta-agents. While MAS-ZERO shows strong
performance across various LLMs, we further examine
whether weaker or stronger LLMs can effectively serve as
meta-agents. For stronger LLM, we conduct experiments
with a reasoning LLM, o3-mini (OpenAI, 2025b). As
shown in Table 4, MAS-ZERO outperforms the consid-
ered baselines on average, indicating that the benefits of
MAS-ZERO generalize well across model strengths. For
weaker LLMs, we conduct experiments with GPT-OSS-
20B (OpenAI et al., 2025), Qwen2.5-7B (Qwen, 2025), and Qwen2.5-Coder-3B (Hui et al., 2024),
GPT-4.1-nano (OpenAI, 2025a). We find that these models are unable to reliably follow instructions
and often produce syntactically incorrect Python code, suggesting that the meta-agent role requires
sufficiently strong capabilities to handle its multiple responsibilities.

Agent Meta-agent AIME24 GPQA Avg.
GPT-4o GPT-4o 33.33 50.60 41.97
o3-mini o3-mini 90.00 76.77 83.38

GPT-4o o3-mini 36.67 60.10 48.38
o3-mini GPT-4o 83.33 73.74 78.54

Table 5: MAS-ZERO with different models.

Heterogeneous agents. The previous experiments use
the same LLM for both the meta-agent and the individual
agents and already achieved strong results. An intriguing
question is whether heterogeneous assignments can yield
additional benefits or drawbacks. Specifically, we explore
pairing a stronger LLM as the meta-agent with a weaker
LLM as the individual agent, and vice versa. As shown
in Table 5, when GPT-4o is the individual agent and the meta-agent is replaced with o3-mini,
performance improves notably but still falls short of directly using o3-mini for both roles. Conversely,
when o3-mini is the individual agent and the meta-agent is replaced with GPT-4o, performance
decreases, though it remains better than the setting where GPT-4o is the agent and o3-mini is the
meta-agent. These results suggest that while a stronger meta-agent can provide benefits, the overall
performance is ultimately constrained by the capability of the individual agent.

LLM GPT-4o
Methods AIME24 GPQA Avg.
MAS-ZERO 33.33 50.60 41.97

- MAS-Init 12.50 48.43 30.46↓11.50
- MAS-Evolve 20.00 48.73 34.37↓7.60

- meta-design 20.83 45.18 33.01↓8.96
- meta-feedback 25.00 42.17 33.59↓8.38
→ ensemble meta-feedback 16.67 46.88 31.77↓10.19

- MAS-Verify 6.70 33.83 20.27↓21.70
Table 6: Ablations on the three steps in MAS-ZERO.

MAS-Init. Table 1 suggests that building blocks
can achieve strong performance in some prob-
lems. To quantify their contribution, we ablate
MAS-Init by skipping execution of the building
blocks in the first step, letting MAS-Verify judge
solely based on the five candidate solutions pro-
duced by the five iterations of MAS-Evolve. As
shown in Table 6(-MAS-Init), this significantly
degrades performance, highlighting the impor-
tance of including MAS-Init and the ability of
MAS-ZERO to dynamically revert to building blocks.

MAS-Evolve. To evaluate its importance, we first conduct an ablation by skipping the entire MAS-
Evolve and letting MAS-Verify judge solely based on the four building block outputs from MAS-Init.
As shown in Table 6(-MAS-Evolve), the performance drops notably, indicating that MAS-Evolve

7More details are given in App. C
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GPQA

AIME24

SWE

(B) Gains with Oracle Verifier(A) Gains from MAS-Evolve Iterations

Manual MAS Automatic MAS Manual MAS Automatic MAS

Oracle-verifier

Self-verifier

Self-verifier

Oracle-verifier

Figure 4: (A) Performance gains (GPT-4o) over MAS-Evolve. (B) Performance gains (GPT-4o) given an
oracle verifier. Automatic MAS baselines cannot integrate external verifiers, yielding zero improvement.

is useful for the overall improvements. For meta-design, we modify the prompt to ask the meta-
agent to propose a MAS configuration without attempting to decompose the question into sub-tasks;
Table 6(-meta-design) shows that removing decomposition leads to a significant performance drop,
demonstrating that breaking down the task is a meaningful contributor to the effectiveness of MAS-
ZERO. For meta-feedback, we test two variants: (1) modifying the prompt so that the meta-agent
critiques the current MAS without analyzing the solvability and completeness of each sub-task or
LLM agent (-meta-feedback); (2) since meta-feedback can be noisy due to the self-evolving nature of
the system, we explore a straightforward method to improve reliability via ensembling (→ ensemble
meta-feedback). Following Du et al. (2023), we generate multiple feedback candidates (three in
our experiments) from the meta-agent and then use an additional call to the meta-agent to select
the best one. The corresponding rows in Table 6 reveal that removing meta-feedback results in a
large performance drop, confirming that it is critical to the overall effectiveness of MAS-ZERO.
Surprisingly, the ensemble approach not only fails to improve performance but even reduces it. This
counter-intuitive result suggests that the current straightforward meta-feedback is already strong, and
advancing MAS-ZERO will require designing more principled strategies for reliable feedback.

Gains from MAS-Evolve at each iteration. To further evaluate the self-evolving capability in
MAS-Evolve, we examine performance across iterations. As shown in Fig. 4(A), accuracy at
iteration 0 (before MAS-Evolve, only MAS-Init) and 1 (after the first refinement) is notably lower,
indicating that the system struggles to design effective MAS at the outset. With subsequent iterations,
however, MAS-ZERO progressively improves, demonstrating a strong ability to self-evolve through
the refinement cycle of meta-design, meta-feedback, and the accumulated experience library.

MAS-Verify. This final step determines which candidate solution is selected as the final answer. To
assess its importance, we conducted an ablation where the system simply used the last iteration as
the output, without any additional judgment. The last row in Table 6 shows a sharp performance
decline (the largest drop among all ablations). This is intuitive because, as shown earlier, the ability to
dynamically revert to building blocks is indispensable. Yet it is also revealing, since the self-evolving
nature of MAS-ZERO might suggest that the final iteration should yield the strongest solution. Instead,
the outcome highlights that iterative refinement alone is insufficient, and that effective verification is
essential to counteract the stochasticity of pure self-evolving methods without ground-truth signals.

Potential of MAS-Verify with oracle verifier. We showed that MAS-Verify is crucial, and this
highlights substantial headroom for further improvement. Unlike existing automatic MAS frame-
works, MAS-ZERO can seamlessly incorporate external verifiers, making it naturally positioned to
benefit from advances in verification techniques. Fig. 4(B) illustrates this potential: when equipped
with an oracle verifier that labels outputs as “correct” or “incorrect” using ground-truth answers,
MAS-ZERO ’s performance improves dramatically, further widening the gap over both manual and
automatic MAS and pushing GPQA close to 95%. This demonstrates that stronger verification could
unlock significant headroom for MAS-ZERO.

5 CONCLUSION

We presented MAS-ZERO, the first inference-time-only automatic MAS design framework with
zero supervision. It iteratively designs and refines MAS, decomposes complex questions, reverts to
simpler strategies when sufficient, and verifies candidate answers. Comprehensive experiments show
its strong effectiveness, cost-efficiency, and the contribution of each step.
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A MAS-ZERO ALGORITHM

In Section 3, we details the three steps of MAS-ZERO. Algorithm 1 presents the detailed algorithm.
Highlighting indicates MAS-Init , MAS-Evolve and MAS-Verify .

Algorithm 1: MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision
Input: Question Q, building blocks {M(1), . . . ,M(k)}, meta-agentA, iterations T
Output: Final Answer y∗

1 Initialize candidate answersH← [ ], experience library E← ∅;

2 Step 1: MAS-Init

3 foreach building blockM(i) do
4 Y

(i)
0 ← Execute(M(i), Q) ; // Run each building block

5 extract final answer y(i)
0 from Y

(i)
0 ;

6 append y
(i)
0 toH;

7 E ← E ∪ {(Q,M(i), y
(i)
0 )} ; // Store the answers from MAS-Init

8 Step 2: MAS-Evolve

9 (Q0,M0)← A.Meta_Design(Q, {M(i)}, E, Constraints = {M(i)});
// Decompose into sub-tasks Q0 and assign sub-MAS M0 grounded in building blocks

10 for t = 1 to T do
11 Yt ← Execute(Mt−1,Qt−1) ; // Run current MAS on sub-tasks

12 extract sub-task outputs {(xsub
j , ysub

j )} and agent outputs {(xagent
ℓ , yagent

ℓ )} from Yt;

13 (Qt,Mt, yt, ft)← A.Meta_Feedback(Q,Qt−1,Mt−1, {(xsub
j , ysub

j )}, {(xagent
ℓ , yagent

ℓ )}, E, Constraints = {M(i)});
// Assess solvability and completeness; revise decomposition and sub-MAS

14 E ← E ∪ {(Qt−1,Mt−1, Yt, ft)} ; // Store sub-tasks, sub-MAS, intermediate outputs, and feedback
15 if yt ̸= ⊥ then
16 append yt toH

17 Step 3: MAS-Verify

18 y∗ ← A.Self_Verify(H) ; // Select final answer from all candidates
19 return y∗;

B IMPLEMENTATIONS, BENCHMARKS AND BASELINES DETAILS

Implementation details. As described in Sec. 4, MAS-ZERO produces 9 candidate answers. For
fair comparison, we sample 9 independent outputs for CoT-SC and take the majority vote. Similarly,
both debate and self-refine are run for 9 rounds. All models are accessed through their respective
APIs.8 Temperature for meta-agent is set to 0.5. For baselines, we strictly use parameters found in
original papers and provided code.

Benchmarks Table B.1 shows the detailed statistics for each dataset. For BrowseComp and Frames,
we randomly sample 10% for testing, due to the large dataset size. We evaluate SWE using its official
code available at https://github.com/SWE-bench/SWE-bench/.

Split AIME24 GPQA SWE BrowseComp Frames
Validation 6 32 60 — —
Test 24 166 240 126 82

Table B.1: Data size for each split in each dataset.

Baselines details We use the official implementations of all baselines, sourced directly from their
public repositories. For manual MAS methods, this includes ReConcile (https://github.com/
dinobby/ReConcile), MAD (https://github.com/Skytliang/Multi-Agents-Debate), SPP
(https://github.com/MikeWangWZHL/Solo-Performance-Prompting), and DyLAN (https://
github.com/SALT-NLP/DyLAN). For automatic MAS methods, this includes ADAS (https://
github.com/ShengranHu/ADAS), AFlow (https://github.com/FoundationAgents/MetaGPT/
tree/main/examples/aflow), and MaAS (https://github.com/bingreeky/MaAS).

8We use TogetherAI API (https://www.together.ai/) for Llama and Qwen.
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C COST COMPUTATION

In Fig. 1, we report the cost of single-agent systems, manual MAS, automatic MAS, and MAS-
ZERO. Costs are computed using OpenAI’s official pricing as of May 2025 at https://openai.
com/api/pricing/. To ensure accuracy, we track usage directly via the official OpenAI API field
“response.usage” for all methods. As a result, the reported values reflect the actual monetary cost,
accounting for both input and output tokens.

D ADDITIONAL RELATED WORK

In Sec. 2, we briefly introduced the most important related works and highlighted their contrast
with MAS-ZERO. In this section, we provide a more detailed discussion of existing works. For
completeness, we also note that a number of training-based approaches have been proposed, but we
omit them from Sec. 2 since MAS-ZERO does not involve updating LLM parameters.

Some prior work treats prompt optimization for individual agents as part of MAS design. Examples
include PromptBreeder (Fernando et al., 2024), DsPy (Khattab et al., 2023) and Self-Discover (Zhou
et al., 2024). More recently, this idea has been extended to broader automatic MAS design, where
prompt optimization is included either as an additional design step or as part of the search space.

Manual MAS design. In addition to the approaches discussed in Sec. 2, several other methods
fall into this family. DyLAN Liu et al. (2024b) uses message passing to dynamically activate agent
compositions; Reconcile (Chen et al., 2024b) and MAD (Liang et al., 2023) employ debate and
round-table discussion, SPP (Wang et al., 2023b) leverages collaboration among multiple personas.

Automatic MAS design. We follow the categories introduced in Sec. 2 and additionally include
the training-based family.

Val-Pruning. This line of work has evolved quickly (Zhang et al., 2024; 2025b; Hu et al., 2024).
Earlier examples include GPTSwarm (Zhuge et al., 2024) which optimizes graph structures via
reinforcement learning but struggles to represent workflows with conditional state due to limitations
of static graphs. AgentSquare (Shang et al., 2024) leverages a verifier as a performance predictor to
guide the pruning.

Val-Generation. Besides the approaches introduced in Sec. 2 that employ a meta-agent to gen-
erate building block connections and configurations, another line of work uses the meta-agent to
directly generate the required agents or blocks. For example, AutoAgents (Chen et al., 2024a)
and AgentVerse (Chen et al., 2023) create specialized agents through a planner agent, while EvoA-
gent (Yuan et al., 2024) applies evolutionary algorithms to optimize this generation process. Similarly,
Symbolic-MoE (Chen et al., 2025) leverages validation signals to construct block profiles and select
the best-performing planner agent.

Training-based. More recent work attempts to explicitly train the agents or meta-agents within MAS.
For example, ReMA (Wan et al., 2025) and OWL (Hu et al., 2025a) train the agents in a manual MAS,
while MAS-GPT (Ye et al., 2025) collects data from off-the-shelf MAS and trains a meta-agent via
supervised fine-tuning (SFT). FlowReasoner (Gao et al., 2025a) builds on this by extending SFT with
reinforcement learning (RL). Puppeteer (Dang et al., 2025) directly RL trains the meta-agent in an
end-to-end manner.

E STANDARD DEVIATION FOR THE EXPERIMENTS

To confirm the statistical significance of the experimental results in Table 1, we repeat the experiment
three times, following (Zhang et al., 2025c; Liu et al., 2024b). We can see that the MAS can exhibit
high variance due to the inherent nature of multi-agent systems: the variance may be amplified by the
interactions among multiple agents (Cemri et al., 2025), and the generated temperature of the agents
is typically non-zero. Nevertheless, MAS-ZERO is significantly stronger than other baselines, with
only one exception in AIME24 and two in GPQA, as mentioned in Sec. 4.
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LLMs GPT-4o Llama3.3 Qwen2.5
CoT ±1.97 ±1.96 ±0.00
CoT-SC ±3.40 ±5.20 ±1.96
Debate ±7.08 ±7.08 ±5.20
Self-Refine ±3.93 ±1.97 ±1.97
ReConcile ±1.97 ±1.96 ±1.97
MAD ±1.96 ±3.40 ±3.40
SPP ±5.20 ±1.96 ±5.89
DyLAN ±1.96 ±0.00 ±3.93
ADAS × ±5.30 ±6.38
AFlow ±1.96 ±1.96 ±0.00
MAS-GPT ±3.54 ±1.96 ±5.20
MAS-ZERO ±5.89 ±3.15 ±5.20

Table E.1: Standard deviations for AIME24.

LLMs GPT-4o Llama3.3 Qwen2.5
CoT ±1.29 ±0.89 ±2.72
CoT-SC ±1.36 ±0.78 ±1.94
Debate ±0.41 ±0.78 ±1.07
Self-Refine ±2.08 ±2.08 ±3.01
ReConcile ±1.29 ±2.43 ±1.85
MAD ±1.28 ±1.28 ±3.08
SPP ±1.74 ±1.25 ±1.20
DyLAN ±3.44 ±0.49 ±0.75
ADAS ±3.83 ±3.83 ±3.98
AFlow ±1.70 ±2.48 ±1.77
MAS-GPT ±1.02 ±1.02 ±2.25
MAS-ZERO ±1.67 ±0.51 ±2.08

Table E.2: Standard deviations for GPQA.

F ILLUSTRATION OF MAS-EVOLVE

Fig. F.1 illustrates MAS-Evolve. Given a question and the building blocks, the meta-agent is prompted
to decompose the task and propose a MAS (see Appendix H for detailed prompts). The meta-agent
then generates a MAS in the form of code, which is executed by an external compiler to produce
intermediate and final outputs for the sub-tasks and agents.

After this meta-design and execution, the meta-feedback phase begins. In this phase, both the resulting
MAS and its intermediate outputs are provided to the meta-agent to review their solvability and
completeness. Based on this evaluation, the meta-agent generates targeted feedback. The MAS, its
intermediate outputs, and the feedback are stored in the experience library, which is then used as
additional context to refine the design in subsequent iterations.

Decompose the task and propose initial MAS based on the question and building blocks…

Meta-agent Compiler

Sub-task level outputs{(𝑥!"#, 𝑦!"#)}
Agent level outputs {(𝑥$%&'(, 𝑦$%&'()}

CoT + Answer

Update the MAS and problem decomposition based on the solvability and completeness…

Review the solvability and completeness of the MAS design based on the sub-task 
samples and agent samples…

Prompt

MAS

Question

Meta-agent

Let ABCDEF be a convex equilateral hexagon in which all pairs of opposite sides are parallel. The triangle whose sides 
are extensions of segments AB, CD, and EF has side lengths 200, 240, and 300. Find the side length of the hexagon.

Meta-agent

Prompt

Solvability: The sub-questions are not fully solvable as indicated by the [TOO_HARD]… 
Completeness: The sub-questions does not cover all necessary info…

…..
Sub-tasks

…..

…..

Prompt

Meta-Design

Candidate 1

Meta-Feedback

Meta-Design

Compiler

Candidate 2MAS
…..

Sub-tasks

…..

…..

MAS-Evolve 
Iteration 1

…
…

CoT + Answer

MAS-Evolve 
Iteration 2

Experience 
Library

Figure F.1: Illustration for the iterations in MAS-Evolve.

G EXAMPLE OF MAS PRODUCED FROM MAS-ZERO

MAS-ZERO learns to decompose a new question and assign appropriate sub-MAS to each sub-task
dynamically. This type of dynamic assignment would have been difficult to design manually. Fig. G.1
showcases the effectiveness of MAS-ZERO by demonstrating how it can construct and refine MAS
architectures on the fly, adapting complexity to the requirements of the task.

H PROMPT DETAILS

As described in Sec. 3, MAS-ZERO uses prompts to implement its three steps. In this section, we
present all detailed prompts used, including the building blocks (Fig. J.2, J.3, J.4, J.5) in MAS-Init;
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 To solve the problem, we first need to understand the configuration of 
the hexagon and the triangle formed by the extensions of its sides. 

 Since ABCDEF is a convex equilateral hexagon with opposite sides 
parallel, it can be considered as a symmetric hexagon. 

 The extensions of segments AB, CD, and EF form a triangle with 
given side lengths 200, 240, and 300. The key property of such a 
hexagon is that it can be decomposed into two congruent equilateral 
triangles and a central parallelogram. 

 The problem can be approached using the properties of such a 
hexagon and the triangle formed by the extensions. 

 The sum of the lengths of the triangle formed by the extensions of the 
sides of the hexagon is equal to the perimeter of the hexagon. 

 The perimeter of the triangle is 200 + 240 + 300 = 740. Since the 
hexagon is equilateral, its perimeter is 6 times the side length of the 
hexagon. Therefore, the side length of the hexagon is 740 / 6.

Incorrect 
Assumption!

 P1: Identify the properties of the hexagon ABCDEF. 
Specifically, determine the implications of the hexagon 
being convex, equilateral, and having pairs of opposite 
sides parallel.

 P2: Based on the output of sub-task 1, determine how 
the side lengths of the triangle relate to the side length 
of the hexagon.

 P3: Based on the output of sub-task 2, calculate the 
side length of the hexagon ABCDEF

Asked the key sub-task but 
still vague!

 P1:  Determine if the hexagon can be 
inscribed in a circle by analyzing its angles 
and symmetry

 P2:  If the hexagon is not regular, 
determine how its symmetry affects the 
relationship between the hexagon and the 
triangle formed by the extensions.

 P3:  Use vector analysis to establish a 
relationship between the triangle’s side 
lengths and the hexagon’s vertices

 P4:  Based on the relationship established 
in Sub-task 3 calculate the side length of 
the hexagon

Asked the key sub-task and 
provide explicit hint!

C	P!

C

	P"

C

A

…
… R	P# C

x 5 x 5

C	P"
C

	P#

C

A

…
…

x 5 x 2

C	P!

C

C

	P$

C

	P$

	P$

J

MAS-Zero (MAS-Evolve Iteration 1)
Debaters: 
Math Professor, 
Grad Teacher

CoT

Self-RefineCoT-SC

C	𝑃
CoT-SC

CoT

CoT

Problem: Let ABCDEF be a convex equilateral hexagon in which all pairs of opposite sides are parallel. 
The triangle whose sides are extensions of segments AB, CD, and EF has side lengths 200, 240, and 300.
Find the side length of the hexagon.

E D
C

BA

F

COT MAS-Zero (MAS-Evolve Iteration 5)

Figure G.1: An example illustrates how the MAS produced by MAS-ZERO outperforms both CoT and early
iterations. In this case, MAS-ZERO learns to decompose the task into 4 sub-tasks and dynamically assign
appropriate sub-MAS: CoT for the first two, CoT-SC (sampling 5 completions) for the third, and Debate (2
rounds with a math professor and a graduate teacher as debaters) for the fourth.

the Meta-Design (Fig. H.1) and Meta-Feedback (Fig. H.2) in MAS-Evolve; and the prompts for
MAS-Verify (Fig. H.3).

I CODE TEMPLATE

MAS-ZERO uses a code template to aid MAS code generation to filling in a specific forward
function. Fig. J.1 shows how the utility code is provided. Fig.s J.2, J.3, J.4, and J.5 show the
implementations of each building blocks.

J USAGE OF LARGE LANGUAGE MODELS

We use LLMs solely for grammar polishing.
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Prompt for Meta-Design

Overview. You are an expert machine learning researcher testing various agentic systems. You are given
a set of building blocks (e.g., CoT, CoT-SC, Self-Refine, Debate) and a question. Each building block
is represented as executable code and can contain one or more LLM agents with specialized settings
(instruction, temperature, etc.). A sub-MAS refers to one or more building blocks assigned together to
solve a specific sub-task. The overall MAS is formed by coordinating multiple sub-MAS to solve the
full problem.
Your objectives are:
• Perform task decomposition. Decompose the given question into manageable yet interdependent

sub-tasks, such that each sub-task is specific and detailed enough for a sub-MAS (formed from
building blocks) to solve. Do not solve the tasks yourself or leak the expected answer. Instead, design
the decomposition so that the sub-tasks are easier for sub-MAS to solve, and justify how they combine
to yield the final answer.
Make sure
– Each sub-task should explicitly build on the outputs of prior sub-tasks.
– The final sub-task should naturally yield the overall answer to the original question.

• Design sub-MAS assignments. Based on the resulting sub-tasks, assign one or more building blocks
to form a sub-MAS for each sub-task. You may adjust block parameters (e.g., temperature, number of
debate rounds), but you must not invent new blocks or prune the provided ones without grounding.
For example: Given available building blocks {CoT, CoT-SC, Self-Refine, Debate}, and the resulting
sub-tasks: sub-task 1, sub-task 2, sub-task 3:

– Step 1: For each sub-task, specify its sub-MAS.

* It may use a single block (e.g., Sub-task 1: CoT).
* It may use a sequential chain of blocks (e.g., Sub-task 3: CoT → Self-Refine).
* Or it may use parallel blocks inside the sub-task (e.g., Sub-task 2: {CoT ∥ Debate}, meaning

both blocks process the same input).
– Step 2: Connect the sub-tasks (sub-MAS). After defining sub-MAS, specify how the sub-tasks

depend on one another:

* Sequential connection: Sub-tasks are connected in a linear chain, where the output of one
becomes the input to the next.
Example: [CoT] (sub-task 1) → [Debate] (sub-task 2) → [CoT → Self-Refine] (sub-task 3).

* Parallel connection: Multiple sub-tasks depend on the same earlier sub-task’s output and run in
parallel.
Example: [CoT] (sub-task 1) → {[Debate] (sub-task 2), [CoT → Self-Refine] (sub-task 3)}.
Here, both sub-task 2 and sub-task 3 consume the result of sub-task 1 in parallel.

IMPORTANT: Do not collapse all decomposed sub-tasks into a single instruction handled by one
block. Each sub-task must be addressed by its own sub-MAS.

Final remark: Your aim is to design an optimal block connection that can perform well on each
sub-task. Your code should implement the existing blocks as-is. Do not propose new blocks or modify
existing ones; you may only adjust their connections and settings (e.g., instruction, temperature).

Figure H.1: Prompt for Meta-Design. Additional examples, building blocks code and output format
instruction are omitted for clarity.
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Prompt for Meta-Feedback

Overview. You are given a candidate Multi-Agent System (MAS) design, including: (i) its executable
code, (ii) the sub-task outputs from each sub-MAS, (iii) the outputs of individual agents, (iv) the final
response, and (v) experience of prior iterations. Your task is to critically evaluate this MAS and provide
feedback to guide refinement in the next iteration.

• Solvability: Assess whether all sub-tasks are solvable by the corresponding block via checking the
output answer of each sub-task.
– If the output explicitly includes [TOO_HARD], this means the sub-task is too difficult and should

be further decomposed.
– If the output is incorrect, identify whether the issue is due to

* Insufficient decomposition (the task is still too hard) or
* Some agents in the block are malfunctioning, or the underlying LLM is too weak to solve the

sub-task. This can be checked by reviewing the agent outputs: (a) If the agent itself is not
optimal (e.g., poor instruction, temperature, etc.), the settings need to be improved. (b) If the
agent architecture is not optimal, a new block should be proposed by recombining existing
blocks or adjusting their settings.

Please justify whether it is (i), the decomposition issue or (ii) the block and agent issue. It could
also be both. When proposing new sub-task, make sure

* It is specific and detailed enough to solve and to contribute to the final answer;
* All required information is carried over from previous sub-tasks or provided in the instruction;
* The outputs from related sub-tasks are correctly incorporated (e.g., added to the taskInfo list

when calling the agent);
* The connection to prior sub-tasks is explicit (e.g., instructions should state “Based on the output

of sub-task i”).
• Completeness: Do the sub-tasks include all necessary information from the original query that can

ensure the aggregation of sub-task responses can effectively yield a comprehensive answer to the
user query? Note that while a sub-task might include only part of the necessary information, it is not
allowable for any particular piece of critical information to be omitted from all sub-tasks.

– If critical information is missing, refine the decomposition to include it.
– Ensure sub-tasks are connected so that the aggregated outputs can yield a correct and comprehensive

final answer.

Now, you need to improve or revise the implementation, or implement the new proposed MAS based on
the reflection.

Figure H.2: Prompt for Meta-Feedback. Additional examples, building blocks code and output
format instruction are omitted for clarity.

Prompt for MAS-Verify

Given the problem and a list of candidate answers, carefully review the reasoning steps and final answers
to select the most reliable candidate. Do not solve the task yourself.
In your output, use the “thinking” field to compare the selected answer with each unselected answer
one by one, identify the erroneous steps in the unselected answers, and give a detailed explanation of
why they are incorrect. In the “selection” field, output the ID of the best answer.

Problem: {problem}
Answer List: {candidate answers}

Figure H.3: Prompt for MAS-Verify. The “candidate answers” have already been ranked and
filtered before being passed to the meta-agent. Additional examples and output format instructions
are omitted for clarity.
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Utility Code

# Named tuple for holding task information
Info = namedtuple('Info', ['name', 'author ', 'content ', 'prompt ', 'sub_tasks ', 'agents '

, 'iteration_idx '])

# Format instructions for LLM response
FORMAT_INST = lambda request_keys: f"Reply EXACTLY with the following JSON format .\n{

str(request_keys)}\nDO NOT MISS ANY FIELDS AND MAKE SURE THE JSON FORMAT IS
CORRECT !\n"

# Description of the role for the LLM
ROLE_DESC = lambda role: f"You are a {role}."

class LLMAgentBase ():

def __init__(self , output_fields: list , agent_name: str ,
role='helpful assistant ', model=None , temperature=None) -> None:

self.output_fields = output_fields
self.agent_name = agent_name

self.role = role
self.model = model
self.temperature = temperature
# give each instance a unique id
self.id = random_id ()

def generate_prompt(self , input_infos , instruction) -> str:
# generate prompt based on the input_infos
# ...

def query(self , input_infos: list , instruction , iteration_idx =-1) -> dict:
# call generate_prompt and the LLM to get output
# ...

def __repr__(self):
return f"{self.agent_name} {self.id}"

class AgentArchitecture:
"""
Fill in your code here.

def forward(self , taskInfo) -> Union[Info , str]:
Args:
- taskInfo (Info): Task information.

Returns:
- Answer (Info): Your FINAL Answer.

"""

Figure J.1: Utility code.
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Implementation of CoT Building Blocks

def forward(self , taskInfo):
# Instruction for the Chain -of-Thought (CoT) approach
# It is an important practice that allows the LLM to think step by step before

solving the task.
cot_instruction = self.cot_instruction

# Instantiate a new LLM agent specifically for CoT
# To allow the LLM to think before answering , we need to set an additional output

field 'thinking '.
cot_agent = LLMAgentBase (['thinking ', 'answer '], 'Chain -of-Thought Agent', model=

self.node_model , temperature =0.0)

# Prepare the inputs for the CoT agent
# The input should be a list of Info , and the first one is often the taskInfo
cot_agent_inputs = [taskInfo]

# Get the response from the CoT agent
thinking , answer = cot_agent(cot_agent_inputs , cot_instruction)
final_answer = self.make_final_answer(thinking , answer)

# Return only the final answer
return final_answer

Figure J.2: Implementation of CoT building blocks

Implementation of CoT-SC Building Blocks

def forward(self , taskInfo):
# Instruction for step -by-step reasoning
cot_instruction = self.cot_instruction
N = self.max_sc # Number of CoT agents

# Initialize multiple CoT agents with a higher temperature for varied reasoning
cot_agents = [LLMAgentBase (['thinking ', 'answer '], 'Chain -of-Thought Agent', model

=self.node_model , temperature =0.5) for _ in range(N)]

# Majority voting function to select the most common answer
from collections import Counter
def majority_voting(answers):

return Counter(answers).most_common (1) [0][0]

thinking_mapping = {}
answer_mapping = {}
possible_answers = []
for i in range(N):

thinking , answer = cot_agents[i]([ taskInfo], cot_instruction)
possible_answers.append(answer.content)
thinking_mapping[answer.content] = thinking
answer_mapping[answer.content] = answer

# Ensembling the answers from multiple CoT agents
answer = majority_voting(possible_answers)

thinking = thinking_mapping[answer]
answer = answer_mapping[answer]

final_answer = self.make_final_answer(thinking , answer)

return final_answer

Figure J.3: Implementation of CoT-SC building blocks
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Implementation of Debate Building Blocks

def forward(self , taskInfo):
# Instruction for initial reasoning
debate_initial_instruction = self.cot_instruction

# Instruction for debating and updating the solution based on other agents '
solutions

debate_instruction = "Given solutions to the problem from other agents , consider
their opinions as additional advice. Please think carefully and provide an
updated answer. Put your thinking process in the 'thinking ' field and the
updated answer in the 'answer ' field. "

# Initialize debate agents with different roles and a moderate temperature for
varied reasoning

debate_agents = [LLMAgentBase (['thinking ', 'answer '], 'Debate Agent', model=self.
node_model , role=role , temperature =0.5) for role in self.debate_role]

# Instruction for final decision -making based on all debates and solutions
final_decision_instruction = "Given all the above thinking and answers , reason over

them carefully and provide a final answer. Put your thinking process in the '
thinking ' field and the final answer in the 'answer ' field."

final_decision_agent = LLMAgentBase (['thinking ', 'answer '], 'Final Decision Agent',
model=self.node_model , temperature =0.0)

max_round = self.max_round # Maximum number of debate rounds
all_thinking = [[] for _ in range(max_round)]
all_answer = [[] for _ in range(max_round)]

# Perform debate rounds
for r in range(max_round):

for i in range(len(debate_agents)):
if r == 0:

thinking , answer = debate_agents[i]([ taskInfo],
debate_initial_instruction)

else:
input_infos = [taskInfo] + [all_thinking[r-1][i]] + all_thinking[r-1][:

i] + all_thinking[r-1][i+1:]
thinking , answer = debate_agents[i]( input_infos , debate_instruction)

all_thinking[r]. append(thinking)
all_answer[r]. append(answer)

# Make the final decision based on all debate results and solutions
thinking , answer = final_decision_agent ([ taskInfo] + all_thinking[max_round -1] +

all_answer[max_round -1], final_decision_instruction)
final_answer = self.make_final_answer(thinking , answer)

return final_answer

Figure J.4: Implementation of Debate building blocks
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Implementation of Self-Refine Building Blocks

def forward(self , taskInfo):
# Instruction for initial reasoning
cot_initial_instruction = self.cot_instruction

# Instruction for reflecting on previous attempts and feedback to improve
cot_reflect_instruction = "Given previous attempts and feedback , carefully consider

where you could go wrong in your latest attempt. Using insights from previous
attempts , try to solve the task better."

cot_agent = LLMAgentBase (['thinking ', 'answer '], 'Chain -of-Thought Agent', model=
self.node_model , temperature =0.0)

# Instruction for providing feedback and correcting the answer
critic_instruction = "Please review the answer above and criticize on where might

be wrong. If you are absolutely sure it is correct , output exactly 'True' in '
correct '."

critic_agent = LLMAgentBase (['feedback ', 'correct '], 'Critic Agent', model=self.
node_model , temperature =0.0)

N_max = self.max_round # Maximum number of attempts

# Initial attempt
cot_inputs = [taskInfo]
thinking , answer = cot_agent(cot_inputs , cot_initial_instruction , 0)

for i in range(N_max):
# Get feedback and correct status from the critic
feedback , correct = critic_agent ([taskInfo , thinking , answer],

critic_instruction , i)
if correct.content == 'True':

break

# Add feedback to the inputs for the next iteration
cot_inputs.extend ([thinking , answer , feedback ])

# Reflect on previous attempts and refine the answer
thinking , answer = cot_agent(cot_inputs , cot_reflect_instruction , i + 1)

final_answer = self.make_final_answer(thinking , answer)

return final_answer

Figure J.5: Implementation of Self-Refine building blocks
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