
Look-Ahead Selective Plasticity for
Continual Learning of Visual Tasks

Rouzbeh Meshkinnejad
Department of Computer Science

Western University
London, ON N6A3K7
{rmeshkin}@uwo.ca

Jie Mei ∗

Department of Computer Science
Western University

London, ON N6A3K7
{jie.mei}@it-u.at

Zeduo Zhang
Department of Computer Science

Western University
London, ON N6A3K7
{zzhan762}@uwo.ca

Daniel Lizotte
Department of Computer Science

Western University
London, ON N6A3K7, Canada

{dlizotte}@uwo.ca

Yalda Mohsenzadeh
Department of Computer Science

Western University
London, ON N6A3K7, Canada

{ymohsenz}@uwo.ca

Abstract

Contrastive representation learning has emerged as a promising technique for
continual learning as it can learn representations that are robust to catastrophic
forgetting and generalize well to unseen future tasks. Previous work in continual
learning has addressed forgetting by using previous task data and trained models.
Inspired by event models created and updated in the brain, we propose a new
mechanism that takes place at task boundaries, i.e., when one task ends and another
begins. By observing the redundancy-inducing ability of contrastive loss on the
output of a neural network, our method uses the first few samples of the new task to
identify and retain parameters that contribute most to the transferability of the neural
network, freeing up the remaining parts of the network to learn new features. We
evaluate the proposed methods on benchmark computer vision datasets including
CIFAR10 and TinyImagenet, and demonstrate state-of-the-art performance in
task-incremental, class-incremental, and domain-incremental continual learning
scenarios. 2

1 Introduction

Deep neural networks (DNNs) have solved a variety of computer vision tasks with high performance.
While this feat has been achieved by accessing large and diverse datasets, in many practical scenarios,
the data is not initially available in its entirety and becomes available over time, potentially containing
new unseen classes and different target distributions. When presented with a sequence of classification

∗Also affiliated with Department of Anatomy, University of Quebec in Trois-Rivieres and Interdisciplinary
Transformation University (ITU) Austria.

2The source code is available here.

Preprint.

https://github.com/Crouzbehmeshkin/LASP/tree/master

tasks to learn and remember, DNNs suffer from a well-known catastrophic forgetting problem [1],
abruptly losing their performance on previous classification datasets. To address this problem, various
continual learning algorithms have been proposed.

Regularization-based methods aim to preserve knowledge from previous tasks by applying penalties
to changes in weights or functions. Techniques like Elastic Weight Consolidation (EWC) [2], Synaptic
Intelligence (SI) [3], RWalk [4], XKFAC [5], and one similar to our work, Attention-based Structural
Plasticity [6] penalize parameter changes based on their importance to past tasks but often fail to
consider the relevance of these parameters for future tasks. Other approaches, such as ResCL [7],
AFEC [8], and [9], mitigate intransigence by renormalizing new task solutions with the old model.
Techniques like Learning without Forgetting (LwF) [10], LwM [11], FROMP [12], and DRI [13]
use knowledge distillation to apply regularization to intermediate or final outputs of the prediction
function. Methods like NPC [14] focus on network dynamics, slowing down the learning rate for
important neurons. However, despite these efforts, regularization-based methods still struggle with
forward transfer, scalability, and inter-task interference in complex scenarios.

Rehearsal-based methods such as iCaRL [15], GSS [16], GEM [17], and CLS-ER [18], among others
[19–23] store a small number of training samples from previous tasks in a memory, while other
methods such as [24–29] train a generative model to produce training samples similar to previous
tasks. During the training of the current task, the network is simultaneously trained on the current
task samples as well as samples from the memory. A key challenge in these methods is selecting a
subset of past samples that best represent all previous tasks. These subsets are often chosen through
random sampling [30, 31], by proximity to class means [15], or using more advanced, gradient-based
optimization techniques [19, 32]. In this work, we will use simple rehearsal and replay of samples as
part of our proposed method to mitigate forgetting.

While methods that use shared parameters may lead to inter-task interference, architecture-based
approaches address this by assigning separate network components through parameter isolation
[33, 34] and dynamic architectures [35–37] for different tasks. Parameter isolation methods assign
a distinct subset of the network’s parameters to each task. For instance, H2 [34] performs element-
wise parameter selection based on sensitivity measures, combined with a model search that utilizes
continuous relaxation to explore the optimal architecture. Dynamic architecture methods either
expand task-specific components as tasks increase, such as in [36], or use parallel sub-networks [37]
to separate tasks. While these approaches effectively prevent interference between tasks, they come
with significant trade-offs. Dynamic architectures, require increasing memory and thus computational
complexity as tasks accumulate which can limit scalability in real-world applications. In contrast,
fixed network architectures that isolate parameters for different tasks offer a more memory-efficient
solution but sacrifice flexibility, as they restrict the model’s ability to reuse parameters across tasks.

Recent work has advanced beyond traditional methods by leveraging self-supervised learning [31,
38, 39] and pre-trained networks [40–42] to develop robust representations, or by adjusting the
optimization process [43, 44]. Additionally, some methods [13, 45] combine different strategies
to create more effective solutions. For example, [45] applies regularization to task-specific latent
distributions and replays both past inputs and distributions. Co2L integrates supervised contrastive
learning for individual tasks with a self-supervised loss to transfer knowledge between old and new
models.

There are also promising meta-learning approaches to continual learning, such as Meta Experience Re-
play (MER) [46], Online Meta-Learning (OML) [47], the Neuromodulated Meta-Learning Algorithm
(ANML) [48], and La-MAML [49].

While the aforementioned continual learning methods are successful to some extent in mitigating
forgetting, it is not clear whether regularization or isolation of parameters, distillation, or meta-
learning will help in learning new unseen tasks. In fact, in regularization and parameter isolation
approaches, parameters are identified as important by some form of evaluation on past tasks, without
regard to whether these parameters will transfer to future tasks. Similarly, rehearsal-based approaches
rely on some form of regularization or gradient alignment with respect to past task data to achieve
good performance. While recent work [8, 9] considers features learned from new task data, they do
not encourage learning of features that generalize to all tasks seen so far and are more likely to transfer.
Similarly, recent meta-learning approaches such as La-MAML [49] use gradient-alignment heuristics
to modulate the plasticity of parameters, but pay little attention to redundancy and the contribution
of parameters to generalizability, and are computationally expensive compared to other continual

2

learning methods. Thus, there has been a general lack of attention to the transfer of continually
learned knowledge to future tasks. To our interest, the recent approach named Co2L [31] questioned
whether preserved past knowledge generalizes to future tasks and observed that contrastively learned
representations [50, 51] transfer better and forget less, compared to learning based on the cross
entropy loss.

Aiming for a continual learning approach that mitigates forgetting while learning representations that
transfer well to unseen data, we were inspired to build on the contrastive learning framework [31, 51].
In contrastive learning, we work with an encoder mapping input images to vectors (representations),
a projection head mapping representations to vectors (called embeddings) on which a contrastive
loss is defined, and a decoder (linear transformation) mapping the extracted representations to class
probabilities at inference time. We build our approach around Co2L [31], but importantly, we will
selectively regularize the produced embeddings and network parameters based on how likely they
are to transfer to future tasks. In doing so, we revisit assumptions about access to data at each
point in time, and outline our inspiration from event models theorized to enable update of context
representations in the brain.

Task Boundaries and Event Models: Events are based on how we understand the world around us.
While the world appears to be a continuous stream of twists and turns, evidence suggests that we
perceive it as discrete events at different spatiotemporal scales [52–54]. The brain has been theorized
to operate and make sense of the world by updating and maintaining representations of the current
situation, also known as event models [52–54]. Inspiring our work, event models are believed to
be updated mainly at event boundaries [52–54]. These boundaries are thought to be detected by an
increase in perceptual prediction error, i.e., when the brain’s visual model makes predictions about the
world that start to diverge from what is actually happening [52–54]. Interestingly, the said boundaries
also exist in the field of continual learning at the moment the first batch of new task data arrives (or at
any time when the model’s prediction accuracy drops significantly). We will refer to these boundaries
as task boundaries. While performing various types of computations during task boundaries is not
new in continual learning, methods that perform such computations (e.g., EWC [2]) do not make use
of all the information available at task boundaries. In the specific case of EWC [2], a regularization
strength for each network parameter is computed using the data from the previous tasks, ignoring the
first batch of data from the new task. To date, continual learning approaches have been focused on
using previous task data and models to overcome forgetting. Assuming a stream of data where the
data distribution changes, we can mark each time the model’s performance on a batch of data drops
as a task boundary and assign the data before this batch to the previous task. Consequently, the batch
of data on which the model did not perform well will belong to a new task.

Redundancy in Contrastive Learning: Recent work suggests that most continual learning methods
favor stability over plasticity, that is, they focus on not forgetting past tasks by preserving learned
parameters and sacrificing flexibility to learn new knowledge [55]. Thus, it is advantageous to
introduce less regularization into continual learning methods by retaining only parts of the learned
network that are essential for performance on previous tasks and produce highly generalizable
representations. Research on the properties of learned representations and the projection head of
networks trained by contrastive loss has shown that over-parameterized (and sufficiently wide) neural
networks learn embeddings with redundancy [56–58]. Specifically, the vector space in which the
contrastive loss is defined is thought to suffer from a dimensional collapse problem [57, 58], i.e.,
the produced embeddings are in a lower-dimensional subspace of their nominal dimensionality.
While this has been identified as an inefficiency in the normal supervised learning setting [57, 58],
it provides an opportunity for continual learning: regularization of DNN outputs can be defined
only on parts of the embeddings instead of their entirety. Similar to [56], we observe that a small
subset of contrastively learned embeddings (i.e., a subset of output neurons combined) is able to
replicate the performance of the entirety of embeddings on previous tasks. Moreover, we observe that
different subsets of the embeddings of a DNN perform differently. By sampling random subsets of
the embeddings produced by a DNN and evaluating them on previous and future tasks, we see that
the variation in performance between subsets is higher on future tasks. These observations motivated
us to define loss/regularization only on a small subset of the network’s outputs, chosen so that it’s
likely to transfer to future tasks.

To select a highly generalizable subset, we propose to evaluate the network on the first batch of
new task data (as a surrogate for unseen future data) during task boundaries. We introduce a novel
procedure to identify the parts of the embeddings that perform best (a subset), and a novel loss

3

Representations Embeddings

Nearest
Class-Mean

Classifier

MLP Projection HeadFeature Extractor

Subsets

Frozen Encoder and Projection head

Trainable M
ask

Feature Importance Module

Figure 1: At task boundaries, the feature importance module is added on top of the embeddings
to identify the salient subset. The mask marking the salient subset is trained based on a nearest
class-mean classifier and regularized to be minimal (criterion 3).

to regularize this high-performing subset. We then introduce a novel extension of the excitation
backprop [59] to measure the contribution of each network parameter in producing the identified
subset, and a novel method to modulate the gradients based on this contribution. We will describe the
details of our methods in the Methods section, followed by the experimental setup and results. In the
ablation studies, we will justify our design choices and conclude with a discussion of the methods
used and how they can be improved in the future.

2 Methods

We will use Co2L [31] as our baseline and briefly review its methods. We will then build our proposed
methods around it.

Continual Learning Settings: In continual learning,a model is trained on a sequence of tasks
T1, T2, ..., Tn. Each task is defined by its corresponding input and target datasets (Xt, Yt) which are
drawn from a task-specific distribution Dt. Continual learning is mainly studied in three settings:
task-incremental, class-incremental, and domain-incremental. In the task-incremental setting, the
samples in each task are accompanied by a task identifier. As a result, during inference, a model can
use the task identifier to drastically constrain target predictions. In the class- and domain-incremental
settings, there is no knowledge of the task identifier at inference time, and the targets to be predicted
can be any of the classes seen so far by the model. While the set of target classes in each task
is disjoint in the task- and class-incremental settings, the set of classes remains the same in the
domain-incremental setting (the Yt distribution stays the same while the Xt distribution varies).

Contrastive Learning and Co2L Overview: Supervised contrastive learning [51] generally in-
volves a feature extractor mapping input samples to representations and a projection head mapping
representations to embeddings. Formally, denoting a feature extractor parameterized by θ as fθ,
representations by r, projection head parameterized by ψ as gψ, and embeddings by e, supervised
contrastive learning [51] and Co2L [31] augment each input sample x in the minibatch twice to
get x̂1 and x̂2, known as views. Representations are generated by passing the views x̂1 and x̂2
to the feature extractor (r1 = fθ(x̂1), r2 = fθ(x̂2)). Embeddings are then created by passing the
extracted representations to the projection head (e1 = gψ(r1), e2 = gψ(r2)). Both embeddings and
representations are normalized to unit length (|r| = 1, |e| = 1). A contrastive loss is then defined on
these embeddings and used to train the network. In the specific case of Co2L [31], this loss is called
the Asymmetric Supervised Contrastive Loss (Async SupCon) and is defined as:

LSupCon
Async =

∑
i∈S

−1

|Pi|
∑
j∈Pi

log

(
exp(ei · ej/τ)∑
k ̸=i exp(ei · ek/τ)

)
where S includes the index of views in the current task, Pi holds the index of views in the minibatch
that belong to the same class as the ith view x̂i except for x̂i itself, τ is a temperature hyperparameter,
and ei is the embedding of the ith view. To facilitate comparison with previous work, we also use the
Async SupCon loss to train the network.

4

To adapt supervised contrastive learning to solve a continual learning problem and to mitigate
forgetting, Co2L [31] uses an instance-wise relation distillation loss (IRD). IRD computes a similarity
matrix by measuring the similarity of each view to other views in the minibatch (one row) for both
the old model (a snapshot of the current model taken at the start of training on the current task and
parameterized by ω) and the model currently being trained (parameterized by θ). The resulting two
similarity matrices are then regularized to be similar to each other. Formally, the similarity of the
views x̂i and x̂j is computed as follows:

Rθ,η1 [i, j] = Sim(x̂i, x̂j , η1, θ) =
exp(ei · ej/η1)∑2N
k ̸=i exp(ei · ek/η1)

(1)

where [i, j] denotes the element in the ith row and jth column of the pairwise similarity matrix, Sim
is the similarity function, η1 is a temperature hyperparameter, and N is the number of samples in the
minibatch. The IRD loss is then defined as:

LIRD =

2N∑
i=1

2N∑
j=1

−Rω,η2 [i, j] · log(Rθ,η1 [i, j]) (2)

We believe that this distillation loss is too restrictive and reduces the model’s ability to learn new
generalizable representations, since redundant parts of the embeddings are also regularized. We will
modify this distillation loss so that it is only applied to a subset of embeddings. This subset will
be identified by our novel feature importance module and regularized by the selective distillation
loss. Similar to rehearsal-based continual learning approaches, we will use a small memory to store
samples. The memory size will be similar to previous work for comparison and each class will be
assigned an equal amount of memory. In addition, we extend the excitation backprop [59] framework
to measure the contribution of individual network parameters in producing the identified salient
subset as its salience. The proposed gradient modulation method will then use these salience values
to decrease the gradients for salient network parameters. In the following sections, we will introduce
the building blocks for these methods in more detail.

Proposed Salient Subset Selection: To improve the IRD loss [31], we try to identify a subset of the
embeddings that satisfies the following criteria and refer to it as salient:

1. Transfers better to unseen data than other subsets (based on performance on unseen tasks),

2. Contains more information about past tasks compared to other subsets (based on performance
on past tasks),

3. Is minimal, i.e., has no subset that performs as well on past and future tasks.

In the general continual learning formulation, criterion 1 and 2 cannot be evaluated for a subset, since
we cannot store all the samples seen so far and future samples are yet to be seen. At a task boundary,
however, we can use the samples stored in memory M as a surrogate for past tasks, and the first batch
of new task data Bt (before the model is trained on it) as a surrogate for future tasks. We can create a
dataset DSRS to use for finding the salient subset. This dataset can be created by combining M and
Bt (the combined setting, DSRS = M∪Bt), or using memory samples only (the onlypast setting,
DSRS = M), or using the first batch only (the onlycurrent setting, DSRS = Bt). These options will
be evaluated in the ablation studies.

Identifying a salient subset of the embeddings is essentially a search problem. Here, for simplicity
and speed, we adopt an approach similar to a previous work called Neural Similarity Learning [60],
which represents which parts of the embeddings to select. Using the same notation as before, let s
be a vector of the same size as e, σ denotes the sigmoid function, and hs() be a Nearest Class Mean
Classifier (NCMC) parameterized by s that takes in embeddings and assigns them to the class with
the nearest mean embedding. Before training hs(), we need to compute the class means. Let Dc
denote the samples in the dataset DSRS that belongs to class c, then the mean of class c (denoted by
mc) can be computed as:

mc =

∑
(x,t)∈Dc

gψ(fθ(x))

|Dc|
(3)

where x is a view of an input sample and t is the class it belongs to.

5

Current
Feature
Extractor

Previous
Feature
Extractor

Previous
Representations

Previous
Embeddings

IRD

MLP Projection Head

Instance-wise
Similarity Matrix

Salient M
ask

Previous
Salient Subsets

New
Representations

New
Embeddings

New
Salient Subsets

Figure 2: The instance-wise relation distillation loss (IRD) is applied only to a subset of embeddings
deemed salient by the feature importance module.

To train hs we will minimize the following loss function:

ℓs(DSRS) =

∑
(x,t)∈DSRS

e⊙σ(s)
|e⊙σ(s)| ·

mt⊙σ(s)
|mt⊙σ(s)|

|DSRS|
+ λ|s|1 (4)

where ⊙ is the element-wise product. An ℓ1 norm loss (with λ as a hyperparameter controlling the
strength) is added to s to ensure that it marks a minimal subset (criterion 3). The size of this subset
can vary depending on the redundancy of the embeddings. After training the NCMC for a number of
randomly initialized mask vectors and selecting the best-performing mask, ŝ = σ(s) can be used to
identify which parts of the embedding should be regularized. Compared to neural similarity learning
[60], multiplying ŝ by the output of the encoder and the class means is similar to implementing a
weighted dot product, weights that are used to mask parts of the encoder’s output in our case.

Proposed Selective Distillation: Selective Distillation modifies the IRD loss so that it is only applied
only to the salient subset of the generated embeddings. By selectively applying this distillation loss,
we try to retain only parts of the embeddings that are salient, improving the model’s flexibility in
learning the new task, and promoting transfer and generalizability. Our proposed variant of IRD
forms new embeddings ê by taking parts of the embeddings where the mask vector ŝ is above a
threshold (here we simply choose 0.5):

ê =
e[̂s ≤ 0.5]

|e[̂s ≤ 0.5]|
(5)

The instance-wise similarity matrix (equation 1) is then computed using the new embeddings:

Rθ,η1 [i, j] = Sim(x̂i, x̂j , η1, θ) =
exp(êi · êj/η1)∑2N
k ̸=i exp(êi · êk/η1)

(6)

The IRD loss (equation 2) is then calculated using the new instance-wise similarity matrices.

Salient Parameter Selection: After identifying the salient subset, the computed salience can be
passed down using a novel extension of excitation backprop (EB) [59]. Normally, EB is a method
that attributes the activation of a model’s output neurons to its input. Our goal, however, is different:
we want to attribute the performance of salient neurons in the output layer to individual network
parameters given a batch of data samples.

Assuming a simple neuron computes al+1
i = ϕ(

∑
j w

l
j,i a

l
j) where al+1

i is the activation value of the
ith neuron in the (l + 1)th layer, wlj,i is the weight connecting the jth neuron in the lth layer to the
ith neuron in the (l + 1)th layer, and ϕ is a non-linear activation function. EB defines the salience
of a neuron’s activation as its winning probability P (a). To compute salience, it uses the marginal
winning probability (MWP) of a neuron, given neurons in the upper layer:

P (aj) =
∑
ai∈Pj

P (aj |ai)P (ai) (7)

6

Pj denotes the neurons in the layer above (closer to the output) aj . Under certain assumptions (see
[59], which holds when the ReLU activation function is being used), the MWP for a neuron alj can
be computed based on the salience of neurons al+1

i in the upper layer:

P (alj |al+1
i) =

{
Zia

l
jw

l
j,i ifwlj,i ≥ 0,

0 otherwise.
(8)

Where Zi is a normalization factor and is equal to 1∑
j,wl

j,i
≥0

aljw
l
j,i

. Using the MWPs computed from

Eq. 8, the salience of each neuron can be computed in top-down order based on Eq. 7.

To attribute the salience of output neurons to the model’s parameters, similar to [6] we first use EB to
compute the salience for activation maps in each layer. Next, similar to Oja’s rule [61], the salience
of each network weight can be computed using the salience of its two ends:

γ(wli,j) =
√
P (ali)P (a

l+1
j) (9)

where γ represents salience. The output of this salient parameter selection process is essentially a
salience value for each network parameter. These salience values will be used in the next step to
modulate gradients.

Gradient Modulation: Inspired by neuromodulation processes in the brain, where the plasticity of
neurons can change depending on the task at hand [62], we try to limit the change of network weights
that are considered salient. In the domain of neural networks, this means modifying gradients so that
the more salient a network weight is, the less the gradient is modified. To achieve this, we modify the
gradients as follows:

dw = dw × (1−min(1, γ(w))) (10)
where dw is the gradient with respect to parameter w. This process aims to guide the network during
training by shifting its focus on learning the task at hand using parameters that did not contribute to
the performance of the salient subset.

3 Results

Evaluating Random Subsets: We test the hypothesis that it is beneficial to use the first batch
of new task data at task boundaries. Specifically, we want to see if subsets of network-generated
embeddings have the same discrimination power with respect to past versus future tasks. At each task
boundary, we extract 10 random neurons from the network-generated embedding to form a subset.
Using only the selected subset, we first train a linear classifier to discriminate between classes in the
entirety of past tasks’ data, and then train another linear classifier using the same subset of neurons to
discriminate between classes in the entirety of unseen tasks’ data. We repeat this process 100 times
and record the accuracy of the selected subset on past and unseen task data. We then compute the
mean and variance of the subset accuracy across these 100 subsets. We observed a higher variance
when evaluating on unseen tasks (see appendix A.1 for details), suggesting that the generalizability
of subsets varies more than their captured knowledge of past tasks.

Proposed Method Results: To allow comparison with previous results [31], we conduct experiments
in the task-incremental, class-incremental, and domain-incremental settings on the CIFAR-10 [63],
TinyImageNet [64], and R-MNIST datasets [17] (see A.2 for experimental setup details). We compare
our results with rehearsal-based continual learning methods, including Co2L [31], ER [46], iCaRL
[15], GEM [17], A-GEM [65], FDR [66], GSS [16], HAL [67], DER [68], and DER++ [68]. A low
(200 samples) and a high (500 samples) memory setting were considered. Results are the average
test-set classification accuracy on all seen classes at the end of training.

We compare the results of our proposed methods with previous work in table 1. We use SD to refer to
our selective distillation method, GM to refer to our gradient modulation method when the IRD loss
is applied as in [31] rather than selectively as in SD, and SD + GM to refer to the simultaneous use of
gradient modulation and selective distillation. SD is superior to baselines and state-of-the-art for both
task and class-incremental settings on the SplitCIFAR10 and SplitTinyImageNet datasets. It also
outperforms previous work on the domain-incremental setting on the R-MNIST dataset when using
small memory. GM and SD+GM also improved the state-of-the-art on the SplitCIFAR10 dataset, but
did not outperform SD. A discussion of GM is provided in appendix A.3. These results show that SD

7

Table 1: Comparison of our proposed methods with published methods. Proposed methods were run
with the onlycurrent setting of salient subset selection and their accuracy was obtained by averaging
across 5 independent trials. The highest accuracy is in bold. ‘-’ denotes settings where evaluation
was not possible due to incompatibility or intractable training processes. Previous results listed are
based on [31]. Data are presented as mean (SD).

Memory
Size

Dataset SplitCIFAR10 SplitTinyImageNet R-MNIST

Scenario Class-IL Task-IL Class-IL Task-IL Domain-IL

200

ER 44.79 (1.86) 91.19 (0.94) 8.49 (0.16) 38.17 (2.00) 93.53 (1.15)
GEM 25.54 (0.76) 90.44 (0.94) - - 89.86 (1.23)
A-GEM 20.04 (0.34) 83.88 (1.49) 8.07 (0.08) 22.77 (0.03) 89.03 (2.76)
iCaRL 49.02 (3.20) 88.99 (2.13) 7.53 (0.79) 28.19 (1.47) -
FDR 30.91 (2.74) 91.01 (0.68) 8.70 (0.19) 40.36 (0.68) 93.71 (1.51)
GSS 39.07 (5.59) 88.80 (2.89) - - 87.10 (7.23)
HAL 32.36 (2.70) 82.51 (3.20) - - 89.40 (2.50)
DER 61.93 (1.79) 91.40 (0.92) 11.87 (0.78) 40.22 (0.67) 96.43 (0.59)
DER++ 64.88 (1.17) 91.92 (0.60) 10.96 (1.17) 40.87 (1.16) 95.98 (1.06)
Co2L 65.57 (1.37) 93.43 (0.78) 13.88 (0.40) 42.37 (0.74) 97.90 (1.92)
SD (ours) 73.72 (0.52) 96.10 (0.09) 16.02 (0.39) 44.07 (0.66) 98.80 (0.26)
GM (ours) 71.30 (1.15) 95.84 (0.25) 12.46 (0.43) 38.33 (0.90) 97.29 (0.59)
SD + GM (ours) 70.64 (0.98) 95.28 (0.46) 12.93 (0.55) 38.47 (0.68) 96.68 (0.55)

500

ER 57.75 (0.27) 93.61 (0.27) 9.99 (0.29) 48.64 (0.46) 94.89 (0.95)
GEM 26.20 (1.26) 92.16 (0.64) - - 92.55 (0.85)
A-GEM 22.67 (0.57) 89.48 (1.45) 8.06 (0.04) 25.33 (0.49) 89.04 (7.01)
iCaRL 47.55 (3.95) 88.22 (2.62) 9.38 (1.53) 31.55 (3.27) -
FDR 28.71 (3.23) 93.29 (0.59) 10.54 (0.21) 49.88 (0.71) 95.48 (0.68)
GSS 49.73 (4.78) 91.02 (1.57) - - 89.38 (3.12)
HAL 41.79 (4.46) 84.54 (2.36) - - 92.35 (0.81)
DER 70.51 (1.67) 93.40 (0.39) 17.75 (1.14) 51.78 (0.88) 97.57 (1.47)
DER++ 72.70 (1.36) 93.88 (0.50) 19.38 (1.41) 51.91 (0.68) 97.54 (0.43)
Co2L 74.26 (0.77) 95.90 (0.26) 20.12 (0.42) 53.04 (0.69) 98.65 (0.31)
SD (ours) 76.49 (0.63) 96.39 (0.20) 21.49 (0.50) 52.69 (0.45) 98.43 (0.38)
GM (ours) 74.63 (0.95) 96.15 (0.14) 17.54 (0.44) 48.21 (0.54) 97.17 (0.50)
SD + GM (ours) 73.82 (0.42) 95.67 (0.14) 19.01 (0.31) 48.06 (0.71) 96.49 (1.15)

can successfully mitigate forgetting while freeing up the remaining parts of the model to learn new
tasks. In the next section, we will analyze the choice of selecting the salient subset based only on the
new batch of data, rather than on memory samples or combined. We will also go over the effect of
the embedding size for our method (SD) as it depends on the redundant units in the output of the
projection head (embeddings).

4 Ablation Studies

Identifying the Salient Subset of Embeddings, onlycurrent, onlypast, or combined: Although
the proposed methods outperformed published methods, it was unclear which parts of our approach
contributed to the performance gain. In salient subset selection, three settings were used to generate
DSRS. The salient subset was then chosen based on the classification performance of subsets on
DSRS. Initially, we hypothesized that including the first batch of new task data would help the salient
subset selection identify parts of the embeddings that not only perform well on previous tasks but
also generalize well to unseen tasks. To examine this hypothesis, we conducted experiments (Results
in Table 2) on the SplitTinyImageNet and SplitCIFAR10 datasets in these three settings using the
selective distillation method.

For the SplitCIFAR10 dataset, the onlycurrent setting where DSRS = Bt outperformed the onlypast
and combined settings. The lower performance of the combined setting compared to the onlypast
setting can be explained by the low number of classes in the CIFAR10 dataset. Added memory
samples in the DSRS dataset may be misleading as a significant portion of memory samples will belong
to the task the model was just trained on. The performance of various parts of embeddings on the
previous task may be less informative as it measures neither resilience to forgetting nor generalizability.

8

Table 2: Comparison of SD performance for different settings of the salient subset selection process.
The onlycurrent setting uses the first batch of the new task, onlypast uses samples in the memory,
and combined uses both for identification of the salient subset in embeddings. Adding the first batch
of new task data improves SD performance in virtually all scenarios and datasets. Five independent
experiments were conducted for each case to report the mean and variance. A memory buffer of 500
samples was used in all experiments.

Dataset SplitCIFAR10 SplitTinyImageNet

Setting Class-IL Task-IL Class-IL Task-IL

onlypast 75.33 (0.53) 96.28 (0.15) 21.42 (0.25) 52.64 (0.55)
combined 75.20 (0.88) 96.29 (0.17) 22.07 (0.37) 52.78 (0.35)
onlycurrent 76.49 (0.63) 96.39 (0.20) 21.49 (0.50) 52.69 (0.45)

Experimenting on the SplitTinyImageNet dataset, we observed that both the onlycurrent and combined
settings outperformed the onlypast setting. It is worth emphasizing that the onlycurrent setting
outperformed the onlypast setting on both datasets and continual learning scenarios, suggesting that
using a batch of new task data may be useful for identifying the salient subset. Also note that all
accuracies listed in Table 2 were higher than previous state-of-the-art results [31], demonstrating that
while changing the default continual learning protocol to use the first batch of new task data may
improve model performance to some extent, the main performance gains were results of the selective
distillation (SD) method itself.

16 32 64 128 256 512
embedding_size

62

64

66

68

70

72

74

76

78

CI
_a

cc
ur

ac
y

Co2L
SD

16 32 64 128 256 512
embedding_size

90

92

94

96

TI
_a

cc
ur

ac
y

Co2L
SD

SplitCIFAR10

128 256 512
embedding_size

16

17

18

19

20

21

22

CI
_a

cc
ur

ac
y

Co2L
SD

128 256 512
embedding_size

44

46

48

50

52

54

TI
_a

cc
ur

ac
y

Co2L
SD

SplitTinyImageNet

Figure 3: Comparing SD (ours) and Co2L [31] using different embeddings sizes on the SplitCIFAR10
and SplitImagenNet datasets. The memory size is the same (500) for both methods. Shading depicts
standard deviation. Increasing embedding size and redundancy benefits SD on both datasets.

The Effect of the Embedding Size: In our first experiments, we noticed that SD outperformed
Co2L [31] on all datasets except for SplitTinyImageNet. Our hypothesis was that SD relied on
redundancy in the embeddings and when the generated embeddings were dense, it was reasonable
to apply the IRD loss on entire embeddings rather than a subset. Moreover, since in contrastive
learning the projection head is discarded after training and is generally small (MLP, 512 hidden units,
128 output units in Co2L), increasing embedding size to induce redundancy comes with virtually
no computational cost, especially at inference time. To test our hypothesis, we compared SD to
Co2L [31] with different embedding sizes on the SplitCIFAR10 and SplitTinyImageNet datasets.
For SplitCIFAR10, the embeddings seemed to be dense when the embedding size was around 16
and started to involve some redundancy starting from 32 units in the output (figure 3 left). As we
increased the embedding size starting with 32 units, we noticed that SD consistently outperforms
Co2L [31].

When testing our hypothesis on the SplitTinyImageNet dataset (which is generally more difficult
to solve with 200 classes), we noticed that embeddings appeared to be dense until an embedding
size of 256 and SD was unable to outperform Co2L [31]. However, with an embedding size of 512,
redundancy began to materialize in embeddings and SD achieved higher task- and class-incremental
accuracy (figure 3 right). We did not increase the embedding size further as it would have gotten
larger than the hidden layer’s size and could have caused complications unrelated to this ablation

9

study. Overall, these results showed that as the embedding size grows larger, SD can leverage the
increased redundancy and improve continual learning performance in both task and class-incremental
settings.

5 Conclusion and Future Work

Inspired by event models, we proposed a different way of looking at the continual learning setting,
focusing on task boundaries. We hypothesized that the first batch of new task data could be used
to identify parts of the neural network that enable generalization to unseen tasks. Observing the
redundancy-inducing effects of the contrastive loss on embeddings, we first introduced a salient subset
selection process to identify a subset that performs similarly to the full set of embeddings. Secondly,
we presented a selective distillation method that regularizes only the salient parts of the embeddings.
Thirdly, we introduced an attribution method that assigned salience to network parameters based
on their contribution to the computation of the salient subset. Fourthly, we proposed a gradient
modulation method that modified gradients according to the salience of parameters. Our methods did
not increase parameters linearly with the number of tasks, nor did they assume that additional memory
was available in the form of a second snapshot of the model or more samples in memory. Moreover,
in alignment with our hypothesis, the selective distillation method was able to leverage redundancy in
the embeddings and demonstrated superior performance compared to previous work. Further studies
on the properties of projection heads in representation learning can open new avenues for methods
like selective distillation to better separate task-specific knowledge. Additionally, modifications to our
gradient modulation technique present a promising direction. An avenue for improvement involves
adjusting gradient modulation to induce redundancy in a layer-wise manner, aligning the degree
of parameter regularization with each layer’s role in learning new tasks. Such adjustments would
enhance knowledge consolidation across the network while preserving plasticity, thereby reducing
forgetting and ultimately improving the overall performance of continual learning.

Acknowledgments and Disclosure of Funding

R.M. acknowledges support from the Vector Scholarship in Artificial Intelligence, provided through
the Vector Institute, and Western University via the Western Graduate Research Program (WGRS).
J.M. acknowledges support from a BrainsCAN Postdoctoral Fellowship Award through the Canada
First Research Excellence Fund (CFREF). Y.M. acknowledges support from BrainsCAN at Western
University through the Canada First Research Excellence Fund (CFREF) and Natural Sciences and
Engineering Research Council of Canada Discovery Grant.

References
[1] M. McCloskey and N. J. Cohen, “Catastrophic interference in connectionist networks: The

sequential learning problem,” in Psychology of learning and motivation, vol. 24, pp. 109–165,
Elsevier, 1989.

[2] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al., “Overcoming catastrophic forgetting in
neural networks,” Proceedings of the national academy of sciences, vol. 114, no. 13, pp. 3521–
3526, 2017.

[3] F. Zenke, B. Poole, and S. Ganguli, “Continual learning through synaptic intelligence,” in
International conference on machine learning, pp. 3987–3995, PMLR, 2017.

[4] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr, “Riemannian walk for incremen-
tal learning: Understanding forgetting and intransigence,” in Proceedings of the European
conference on computer vision (ECCV), pp. 532–547, 2018.

[5] J. Lee, H. G. Hong, D. Joo, and J. Kim, “Continual learning with extended kronecker-factored
approximate curvature,” in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9001–9010, 2020.

[6] S. Kolouri, N. Ketz, X. Zou, J. Krichmar, and P. Pilly, “Attention-based structural-plasticity,”
arXiv preprint arXiv:1903.06070, 2019.

10

[7] J. Lee, D. Joo, H. G. Hong, and J. Kim, “Residual continual learning,” in Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 34, pp. 4553–4560, 2020.

[8] L. Wang, M. Zhang, Z. Jia, Q. Li, C. Bao, K. Ma, J. Zhu, and Y. Zhong, “Afec: Active forgetting
of negative transfer in continual learning,” Advances in Neural Information Processing Systems,
vol. 34, pp. 22379–22391, 2021.

[9] G. Lin, H. Chu, and H. Lai, “Towards better plasticity-stability trade-off in incremental learning:
A simple linear connector,” in Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 89–98, June 2022.

[10] Z. Li and D. Hoiem, “Learning without forgetting,” IEEE transactions on pattern analysis and
machine intelligence, vol. 40, no. 12, pp. 2935–2947, 2017.

[11] P. Dhar, R. V. Singh, K.-C. Peng, Z. Wu, and R. Chellappa, “Learning without memorizing,” in
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 5138–
5146, 2019.

[12] P. Pan, S. Swaroop, A. Immer, R. Eschenhagen, R. Turner, and M. E. E. Khan, “Continual
deep learning by functional regularisation of memorable past,” Advances in neural information
processing systems, vol. 33, pp. 4453–4464, 2020.

[13] Z. Wang, L. Liu, Y. Duan, and D. Tao, “Continual learning through retrieval and imagination,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 8594–8602, 2022.

[14] I. Paik, S. Oh, T. Kwak, and I. Kim, “Overcoming catastrophic forgetting by neuron-level
plasticity control,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 5339–5346, 2020.

[15] S.-A. Rebuffi, A. Kolesnikov, G. Sperl, and C. H. Lampert, “icarl: Incremental classifier and
representation learning,” in Proceedings of the IEEE conference on Computer Vision and Pattern
Recognition, pp. 2001–2010, 2017.

[16] R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio, “Gradient based sample selection for online
continual learning,” Advances in neural information processing systems, vol. 32, 2019.

[17] D. Lopez-Paz and M. Ranzato, “Gradient episodic memory for continual learning,” Advances in
neural information processing systems, vol. 30, 2017.

[18] E. Arani, F. Sarfraz, and B. Zonooz, “Learning fast, learning slow: A general continual learning
method based on complementary learning system,” arXiv preprint arXiv:2201.12604, 2022.

[19] R. Tiwari, K. Killamsetty, R. Iyer, and P. Shenoy, “Gcr: Gradient coreset based replay buffer
selection for continual learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 99–108, 2022.

[20] L. Kumari, S. Wang, T. Zhou, and J. A. Bilmes, “Retrospective adversarial replay for continual
learning,” Advances in neural information processing systems, vol. 35, pp. 28530–28544, 2022.

[21] A. Ashok, K. Joseph, and V. N. Balasubramanian, “Class-incremental learning with cross-space
clustering and controlled transfer,” in European Conference on Computer Vision, pp. 105–122,
Springer, 2022.

[22] K. Joseph, S. Khan, F. S. Khan, R. M. Anwer, and V. N. Balasubramanian, “Energy-based latent
aligner for incremental learning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7452–7461, 2022.

[23] F.-Y. Wang, D.-W. Zhou, H.-J. Ye, and D.-C. Zhan, “Foster: Feature boosting and compression
for class-incremental learning,” in European conference on computer vision, pp. 398–414,
Springer, 2022.

[24] H. Shin, J. K. Lee, J. Kim, and J. Kim, “Continual learning with deep generative replay,”
Advances in neural information processing systems, vol. 30, 2017.

11

[25] A. Seff, A. Beatson, D. Suo, and H. Liu, “Continual learning in generative adversarial nets,”
arXiv preprint arXiv:1705.08395, 2017.

[26] X. Liu, C. Wu, M. Menta, L. Herranz, B. Raducanu, A. D. Bagdanov, S. Jui, and J. v. de Weijer,
“Generative feature replay for class-incremental learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops, pp. 226–227, 2020.

[27] F. Ye and A. G. Bors, “Learning latent representations across multiple data domains using
lifelong vaegan,” in Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK,
August 23–28, 2020, Proceedings, Part XX 16, pp. 777–795, Springer, 2020.

[28] G. Petit, A. Popescu, H. Schindler, D. Picard, and B. Delezoide, “Fetril: Feature translation for
exemplar-free class-incremental learning,” in Proceedings of the IEEE/CVF winter conference
on applications of computer vision, pp. 3911–3920, 2023.

[29] E. Hogea, A. Popescu, D. Onchis, and G. Petit, “Fetril++: Feature translation for exemplar-free
class-incremental learning with hill-climbing,” arXiv preprint arXiv:2403.07406, 2024.

[30] A. Chaudhry, M. Rohrbach, M. Elhoseiny, T. Ajanthan, P. K. Dokania, P. H. Torr, and M. Ran-
zato, “On tiny episodic memories in continual learning,” arXiv preprint arXiv:1902.10486,
2019.

[31] H. Cha, J. Lee, and J. Shin, “Co2l: Contrastive continual learning,” in Proceedings of the
IEEE/CVF International conference on computer vision, pp. 9516–9525, 2021.

[32] J. Yoon, D. Madaan, E. Yang, and S. J. Hwang, “Online coreset selection for rehearsal-based
continual learning,” arXiv preprint arXiv:2106.01085, 2021.

[33] H. Kang, R. J. L. Mina, S. R. H. Madjid, J. Yoon, M. Hasegawa-Johnson, S. J. Hwang, and C. D.
Yoo, “Forget-free continual learning with winning subnetworks,” in International Conference
on Machine Learning, pp. 10734–10750, PMLR, 2022.

[34] H. Jin and E. Kim, “Helpful or harmful: Inter-task association in continual learning,” in
European Conference on Computer Vision, pp. 519–535, Springer, 2022.

[35] Z. Wu, C. Baek, C. You, and Y. Ma, “Incremental learning via rate reduction,” in Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 1125–1133, 2021.

[36] R. Hyder, K. Shao, B. Hou, P. Markopoulos, A. Prater-Bennette, and M. S. Asif, “Incremental
task learning with incremental rank updates,” in European Conference on Computer Vision,
pp. 566–582, Springer, 2022.

[37] L. Wang, X. Zhang, Q. Li, M. Zhang, H. Su, J. Zhu, and Y. Zhong, “Incorporating neuro-inspired
adaptability for continual learning in artificial intelligence,” Nature Machine Intelligence, vol. 5,
no. 12, pp. 1356–1368, 2023.

[38] A. Gomez-Villa, B. Twardowski, K. Wang, and J. Van de Weijer, “Plasticity-optimized com-
plementary networks for unsupervised continual learning,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 1690–1700, 2024.

[39] C. I. Tang, L. Qendro, D. Spathis, F. Kawsar, C. Mascolo, and A. Mathur, “Kaizen: Practical
self-supervised continual learning with continual fine-tuning,” in Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision, pp. 2841–2850, 2024.

[40] D. Goswami, Y. Liu, B. Twardowski, and J. van de Weijer, “Fecam: Exploiting the heterogeneity
of class distributions in exemplar-free continual learning,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[41] M. D. McDonnell, D. Gong, A. Parvaneh, E. Abbasnejad, and A. van den Hengel, “Ranpac: Ran-
dom projections and pre-trained models for continual learning,” Advances in Neural Information
Processing Systems, vol. 36, 2024.

[42] D.-W. Zhou, H.-L. Sun, J. Ning, H.-J. Ye, and D.-C. Zhan, “Continual learning with pre-trained
models: A survey,” arXiv preprint arXiv:2401.16386, 2024.

12

[43] S. Dohare, J. F. Hernandez-Garcia, Q. Lan, P. Rahman, A. R. Mahmood, and R. S. Sutton, “Loss
of plasticity in deep continual learning,” Nature, vol. 632, no. 8026, pp. 768–774, 2024.

[44] Y.-S. Liang and W.-J. Li, “Loss decoupling for task-agnostic continual learning,” Advances in
Neural Information Processing Systems, vol. 36, 2024.

[45] S. Jha, D. Gong, H. Zhao, and L. Yao, “Npcl: Neural processes for uncertainty-aware continual
learning,” Advances in Neural Information Processing Systems, vol. 36, 2024.

[46] M. Riemer, I. Cases, R. Ajemian, M. Liu, I. Rish, Y. Tu, and G. Tesauro, “Learning to
learn without forgetting by maximizing transfer and minimizing interference,” arXiv preprint
arXiv:1810.11910, 2018.

[47] K. Javed and M. White, “Meta-learning representations for continual learning,” Advances in
neural information processing systems, vol. 32, 2019.

[48] S. Beaulieu, L. Frati, T. Miconi, J. Lehman, K. O. Stanley, J. Clune, and N. Cheney, “Learning
to continually learn,” arXiv preprint arXiv:2002.09571, 2020.

[49] G. Gupta, K. Yadav, and L. Paull, “Look-ahead meta learning for continual learning,” in
Advances in Neural Information Processing Systems (H. Larochelle, M. Ranzato, R. Hadsell,
M. Balcan, and H. Lin, eds.), vol. 33, pp. 11588–11598, Curran Associates, Inc., 2020.

[50] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for contrastive learning
of visual representations,” in International conference on machine learning, pp. 1597–1607,
PMLR, 2020.

[51] P. Khosla, P. Teterwak, C. Wang, A. Sarna, Y. Tian, P. Isola, A. Maschinot, C. Liu, and
D. Krishnan, “Supervised contrastive learning,” Advances in neural information processing
systems, vol. 33, pp. 18661–18673, 2020.

[52] G. A. Radvansky and J. M. Zacks, “Event perception,” Wiley Interdisciplinary Reviews: Cogni-
tive Science, vol. 2, no. 6, pp. 608–620, 2011.

[53] D. Stawarczyk, M. A. Bezdek, and J. M. Zacks, “Event representations and predictive processing:
The role of the midline default network core,” Topics in Cognitive Science, vol. 13, no. 1,
pp. 164–186, 2021.

[54] J. M. Zacks, N. K. Speer, K. M. Swallow, T. S. Braver, and J. R. Reynolds, “Event perception: a
mind-brain perspective.,” Psychological bulletin, vol. 133, no. 2, p. 273, 2007.

[55] D. Kim and B. Han, “On the stability-plasticity dilemma of class-incremental learning,” in Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20196–
20204, 2023.

[56] D. Doimo, A. Glielmo, S. Goldt, and A. Laio, “Redundant representations help generalization in
wide neural networks,” Advances in Neural Information Processing Systems, vol. 35, pp. 19659–
19672, 2022.

[57] K. Gupta, T. Ajanthan, A. v. d. Hengel, and S. Gould, “Understanding and improving the role
of projection head in self-supervised learning,” arXiv preprint arXiv:2212.11491, 2022.

[58] L. Jing, P. Vincent, Y. LeCun, and Y. Tian, “Understanding dimensional collapse in contrastive
self-supervised learning,” arXiv preprint arXiv:2110.09348, 2021.

[59] J. Zhang, S. A. Bargal, Z. Lin, J. Brandt, X. Shen, and S. Sclaroff, “Top-down neural attention by
excitation backprop,” International Journal of Computer Vision, vol. 126, no. 10, pp. 1084–1102,
2018.

[60] W. Liu, Z. Liu, J. M. Rehg, and L. Song, “Neural similarity learning,” Advances in Neural
Information Processing Systems, vol. 32, 2019.

[61] E. Oja, “Simplified neuron model as a principal component analyzer,” Journal of mathematical
biology, vol. 15, pp. 267–273, 1982.

13

[62] J. Mei, E. Muller, and S. Ramaswamy, “Informing deep neural networks by multiscale principles
of neuromodulatory systems,” Trends in Neurosciences, vol. 45, no. 3, pp. 237–250, 2022.

[63] A. Krizhevsky, G. Hinton, et al., “Learning multiple layers of features from tiny images,” 2009.

[64] Y. Le and X. Yang, “Tiny imagenet visual recognition challenge,” CS 231N, vol. 7, no. 7, p. 3,
2015.

[65] A. Chaudhry, M. Ranzato, M. Rohrbach, and M. Elhoseiny, “Efficient lifelong learning with
a-gem,” arXiv preprint arXiv:1812.00420, 2018.

[66] A. S. Benjamin, D. Rolnick, and K. Kording, “Measuring and regularizing networks in function
space,” arXiv preprint arXiv:1805.08289, 2018.

[67] A. Chaudhry, A. Gordo, P. Dokania, P. Torr, and D. Lopez-Paz, “Using hindsight to anchor
past knowledge in continual learning,” in Proceedings of the AAAI conference on artificial
intelligence, vol. 35, pp. 6993–7001, 2021.

[68] P. Buzzega, M. Boschini, A. Porrello, D. Abati, and S. Calderara, “Dark experience for general
continual learning: a strong, simple baseline,” Advances in neural information processing
systems, vol. 33, pp. 15920–15930, 2020.

[69] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document
recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[70] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778,
2016.

[71] N. Vecoven, D. Ernst, A. Wehenkel, and G. Drion, “Introducing neuromodulation in deep neural
networks to learn adaptive behaviours,” PloS one, vol. 15, no. 1, p. e0227922, 2020.

[72] J. Mei, R. Meshkinnejad, and Y. Mohsenzadeh, “Effects of neuromodulation-inspired mecha-
nisms on the performance of deep neural networks in a spatial learning task,” Iscience, vol. 26,
no. 2, 2023.

[73] T. Miconi, A. Rawal, J. Clune, and K. O. Stanley, “Backpropamine: training self-modifying neu-
ral networks with differentiable neuromodulated plasticity,” arXiv preprint arXiv:2002.10585,
2020.

[74] A. Daram, A. Yanguas-Gil, and D. Kudithipudi, “Exploring neuromodulation for dynamic
learning,” Frontiers in Neuroscience, vol. 14, p. 928, 2020.

[75] R. Hadsell, D. Rao, A. A. Rusu, and R. Pascanu, “Embracing change: Continual learning in
deep neural networks,” Trends in cognitive sciences, vol. 24, no. 12, pp. 1028–1040, 2020.

[76] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu,
R. Pascanu, and R. Hadsell, “Progressive neural networks,” arXiv preprint arXiv:1606.04671,
2016.

[77] P. Bhat, B. Zonooz, and E. Arani, “Task-aware information routing from common representation
space in lifelong learning,” arXiv preprint arXiv:2302.11346, 2023.

[78] F. Sarfraz, E. Arani, and B. Zonooz, “Error sensitivity modulation based experience replay:
Mitigating abrupt representation drift in continual learning,” arXiv preprint arXiv:2302.11344,
2023.

14

A Appendix / supplemental material

A.1 Variance in Subset Accuracy

For the purposes of this analysis only, we will deviate from the standard continual learning protocol.
Note that our main proposed methods follow the standard continual learning protocol. Training a
linear classifier on previous and upcoming task data using 100 random embedding subsets of size
10 we observed that the performance of different random subsets has a noticeable variation on both
past and future tasks, but the variance is generally higher on future tasks (table 3). Taking accuracy
on future tasks as an indicator for generalizability of a subset, this also shows that not all subsets
are equal in terms of how generalizable they are, and thus regularizing parts of the embeddings that
do not transfer well is limiting the network’s ability to learn new tasks. These results support our
decision to include the first batch of new task data to identify the salient subset.

Table 3: Mean (std) of subset accuracy on previous and upcoming tasks are evaluated at each task
boundary. The results are computed based on three independent trials on the SplitCIFAR10 dataset.
The standard deviation for these results is calculated based on trials.

Task 1 Task 2 Task 3 Task 4

Mean subset accuracy on past tasks 99.18 (0.06) 74.19 (0.34) 63.09 (4.35) 54.08 (0.97)
Mean subset accuracy on future tasks 30.50 (0.53) 38.65 (0.62) 60.56 (0.40) 76.81 (0.69)
Std of subset accuracy on past tasks 0.23 (0.01) 3.75 (0.10) 2.70 (0.40) 2.92 (0.09)
Std of subset accuracy on future tasks 2.10 (0.03) 2.54 (0.08) 3.82 (0.42) 4.99 (0.45)

A.2 Experimental Details

We conduct experiments in three common continual learning scenarios: Task-Incremental (Task-IL),
Class-Incremental (Class-IL), and Domain-Incremental (Domain-IL). For class and task-incremental
settings, CIFAR-10 [63] and TinyImageNet [64] datasets were used, while for the domain-incremental
setting, we used Rotational MNIST (R-MNIST) [17]. CIFAR-10 and TinyImageNet will be divided
across classes into 5 and 10 sub-datasets to create SplitCIFAR10 and SplitTinyImageNet respectively.
Each task will then be to solve an image classification task on 2 classes for SplitCIFAR10 and 20
classes for SplitTinyImageNet. The order of classes is the same across experiments. The R-MNIST
dataset will consist of 20 tasks, where for each task the MNIST [69] dataset is rotated using a random
degree in the range of [0, π) (uniformly sampled). Similar to [31], when training on R-MNIST, the
same digits rotated by a random degree will be treated as different classes in the Async SupCon loss.
The implementation for this work is based on the implementation of [31]. Unless otherwise stated,
all choices of optimizer, architecture, and hyperparameters were kept the same.

For training on SplitCIFAR10 and SplitTinyImageNet, we use the ResNet-18 [70] architecture while
for R-MNIST, the same smaller architecture as in [31] is employed for comparison. A two-layer
linear network is used for the projection head. Importantly, we increase the embedding size (output
of projection head) for the SplitTinyImageNet dataset. We have explained this design choice in the
ablation study 4. Evaluation is according to contrastive learning framework [31, 51] which trains a
classifier on top of the encoder using last task samples and samples in the memory (as if the classifier
was trained immediately after learning a task, according to samples available at the time). We used
two Nvidia RTX 3090 GPUs for training and evaluation. Training time for the SplitCIFAR10 dataset
was about 2 hours, for SplitTinyImageNet around 8 hours, and for R-MNIST about an hour.

A.3 Discussion on Gradient Modulation

Neuromodulation-inspired mechanisms have enabled continual adaptation in a wide range of tasks,
including navigation [71, 72], language modeling [73], and image classification [74]. Similarly, our
approach used saliency information to modify the gradients for parameters that are identified as
salient.

Our main motivation in designing gradient modulation was to find a measure of importance based on
a parameter’s contribution to formation of embeddings that transfer well. In addition to this main
motivation, we had three goals in designing GM the way we did. First, we wanted it to be biologically
plausible similar to EWC [2]. Second, unlike EWC [2] and AFEK [8] we wanted it to be aware of the

15

Representations MLP Projection Head

Feature Extractor

Salient M
ask

Passing down Salience using extended Excitation Backprop

Figure 4: Using the mask vector ŝ to pass down salience to each network weight using our extended
version of excitation backprop [59]. The computed parameter importance is then used to modulate
gradients.

structure of the neural network and regularize a parameter only if it contributes to the activation of an
important parameter in the upper layer. Third, observing that methods like EWC [2] favor stability
over plasticity [55] and are unable to learn new tasks effectively, we aimed to design a method that
limited regularization to as few parameters as possible while leaving most of the network free to learn
new generalizable knowledge. We believe that this last goal was not met as well as we aimed for,
mainly because of the interconnectedness of neural networks. Specifically, when an important subset
is identified within the embedding layer, this subset is minimal by design (see the Proposed Salient
Subset Selection section2). However, when excitation backprop is applied top-down iteratively to find
parameters that contribute to the formation of salient parameters in the upper layer, the number of
parameters identified as salient grows larger at each layer. As EB approaches the input layer, almost
all parameters contribute to the salient subset in the embedding layer in one way or another and are
identified as salient. Thus, while the method has more plasticity compared to previous work in the
layers near the output, it suffers from too much stability in layers near the input. To mitigate this,
GM should pick gradients to modulate more sparsely. To achieve this, one may need to effectively
separate knowledge and features learned within a neural network. As the changes needed become
more complex, we believe that it is better to examine them in future work.

Although our gradient modulation surpassed state-of-the-art performance on the SplitCIFAR10
dataset with or without selective distillation, it did not perform better than SD. While it may seem
that GM is not a promising technique for continual learning, it is worth noting that our extension of
the excitation backprop [59] provides useful saliency and attribution information. It can compute
for each network parameter a salience value that describes its contribution in forming a specific
subset in the embeddings. We used the parameter salience information produced by this framework
to modulate gradients to encourage learning new tasks using parts of the network that did not seem
to contribute to salient features in the embeddings. However, the parameter salience information
can be used in many different ways, e.g., identifying parameters to regularize and preserve, finding
subnetworks that are capable of performing similarly to the whole network, or finding the least salient
parameters. To our knowledge, this method is the only variant of excitation backprop [59] that can be
used in networks where the loss function is defined on representations or embeddings (representation
learning). It is also worth noting that this method can assign salience based on the performance of the
generated embeddings and representations, not just the activations of certain neurons. Overall, we
believe that GM is a multipurpose tool with use cases that go beyond continual learning.

A.4 Discussion on Memory and Compute Usage

Following the general continual learning desiderata [75] we focused on using a fixed-capacity model.
As a result, we did not include model-growing approaches such as Progressive Neural Networks
[76] and TAMiL [77] in our reported results. We also did not consider multiple memory approaches
where the memory usage goes further than a copy of the main model and a memory of samples.
These approaches include a recent promising work called CLS-ER [18] where two exponentially
averaged copies of the model are maintained. Although our approach outperforms CLS-ER on the
SplitCIFAR10 dataset, we believe methods with two memory systems should be compared with each

16

other, and single memory systems should be compared with one another for a fair comparison. A copy
of the ResNet-18 architecture is typically 40 MB in size, while each image in the TinyImageDataset is
about 3 KB. The low memory setting assumes access to memory is so limited that only 200 samples
(one per class) can be stored. The addition of a copy of a ResNet-18 model is similar to adding more
than 10,000 samples to this memory and thus gives a significant advantage compared to a method
that employs one copy only.

Furthermore, empirical results in recent work [18, 77, 78] suggest that using an exponentially averaged
model over the trajectory of learning is more robust in mitigating forgetting compared to using a
static snapshot of the model from a single point in time. However, to emphasize the robustness of our
methods, we decided to test them in a standalone manner and did not use this technique. We leave it
to future work to combine our methods with CLS-ER [18] or ESMER [78] and study the effects.

A.5 Computational Complexity of the Gradient Modulation Method

The proposed GM is implemented based on excitation backprop [59], computing importance for
weights in addition to activations. To compute the importance of activations, first, a forward pass
takes the inputs to the network and computes layer activations. EB [59] then performs a backward
pass, computing the importance of activations from top to bottom. In each layer, EB computes raw
importance values for the lower layer and then performs a mini-forward pass to normalize these
importance values. We perform an additional mini-forward and a mini-backward pass to attribute the
importance of activations to layer weights. This is independent of the layer type and works based
on Pytorch’s autograd functionality. As a result, GM performs two forward and backward passes to
compute the salience of the network parameters. Note that this computation is performed only once
during task boundaries and does not occur during training on a task.

17

	Introduction
	Methods
	Results
	Ablation Studies
	Conclusion and Future Work
	Appendix / supplemental material
	Variance in Subset Accuracy
	Experimental Details
	Discussion on Gradient Modulation
	Discussion on Memory and Compute Usage
	Computational Complexity of the Gradient Modulation Method

