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Abstract

In the quest to enhance the efficiency and bio-
plausibility of training deep neural networks,
Feedback Alignment (FA), which replaces the
backward pass weights with random matrices in
the training process, has emerged as an alterna-
tive to traditional backpropagation. While the
appeal of FA lies in its circumvention of com-
putational challenges and its plausible biological
alignment, the theoretical understanding of this
learning rule remains partial. This paper uncovers
a set of conservation laws underpinning the learn-
ing dynamics of FA, revealing intriguing parallels
between FA and Gradient Descent (GD). Our anal-
ysis reveals that FA harbors implicit biases akin to
those exhibited by GD, challenging the prevailing
narrative that these learning algorithms are fun-
damentally different. Moreover, we demonstrate
that these conservation laws elucidate sufficient
conditions for layer-wise alignment with feedback
matrices in ReLU networks. We further show that
this implies over-parameterized two-layer linear
networks trained with FA converge to minimum-
norm solutions. The implications of our findings
offer avenues for developing more efficient and
biologically plausible alternatives to backpropa-
gation through an understanding of the principles
governing learning dynamics in deep networks.

1. Introduction
Backpropagation, a widely successful learning rule for arti-
ficial neural networks, has been instrumental in advancing
deep learning. Nevertheless, it presents significant chal-
lenges, including the intricate backward pass mechanism,
which complicates training parallelism due to communica-
tion bottlenecks. In addition, it lacks biological plausibility,
further limiting its practical utility.
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As an alternative, Feedback Alignment (FA) offers an attrac-
tive learning rule that alleviates the computational complex-
ities and bio-plausibility issues associated with backprop-
agation (Lillicrap et al., 2016). FA replaces the backward
pass with random feedback matrices, promising a more
straightforward approach to training neural networks.

Despite its advantages, the understanding of FA’s under-
lying principles, particularly in the context of deep neural
networks, remains elusive. This gap in knowledge moti-
vates our current investigation, which seeks to unravel the
inherent laws that govern the learning dynamics under FA.

Our work makes several significant contributions. Firstly,
we establish a set of conservation laws for the learning dy-
namics under FA, elucidating the implicit bias exhibited by
this learning rule—a bias distinct from that of backprop-
agation. Secondly, these conservation laws enable us to
identify a sufficient condition for layer-wise alignment with
feedback matrices. Lastly, we provide evidence that two-
layer linear networks trained with FA converge to a global
optimum.

We believe that our results will have broad implications
for future research and practical applications. By quanti-
fying the properties of alternative learning rules like FA,
our analysis provides valuable insights that can inform both
theoretical advancements and the design of more efficient
and biologically plausible alternatives to backpropagation.

2. Related Work
The pioneering work by Stork (1989) questioned the bio-
logical plausibility of backpropagation, leading to the ex-
ploration of alternative learning rules. Feedback Alignment
(FA) emerged as a promising candidate in this regard. Lilli-
crap et al. (2016) first introduced FA as an effective learning
rule for deep neural networks. This approach was further
investigated by Nøkland (2016), who demonstrated that
random synaptic feedback weights could support error back-
propagation for deep learning.

The dynamics of learning with FA have also been the subject
of several studies (Refinetti et al., 2021; Song et al., 2021;
Launay et al., 2020; Lechner, 2020; Bordelon & Pehlevan,
2022). For instance, Refinetti et al. (2021) highlighted the
dynamics of aligning before memorizing in learning with
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FA, while a parallel line of work by Launay et al. (2020)
showcased that FA can be successfully scaled to modern
deep learning tasks and architectures. The work of Lech-
ner (2020) also shows alignment of the learning rule up-
dates with the gradient for single-output networks trained
with a variant of feedback alignment, but there are counter-
examples for the multi-output setting. There have also been
works investigating bio-plausible learning rules applied to
networks with large width (Song et al., 2021; Bordelon &
Pehlevan, 2022). Our analysis can be seen as a generaliza-
tion of the approach taken by Lillicrap et al. (2016) to in-
vestigate convergence of FA. In particular, our Theorem 5.1
is inspired by a relation satisfied by the parameter updates
used in their main convergence result for linear feedback
alignment.

Finally, our study is related to the implicit bias of models
trained with gradient descent (Vallet et al., 1989; Duin, 2000;
Du et al., 2018; Soudry et al., 2018; Belkin et al., 2019).
There is a longer history of investigating the phenomena of
gradient descent picking solutions that generalize well in
linear models (Vallet et al., 1989; Duin, 2000). However,
more recently, there has been work looking into similar
phenomena involving deep neural networks (Du et al., 2018;
Soudry et al., 2018; Belkin et al., 2019). In particular, a
related conservation law of neural networks was studied by
Du et al. (2018), where they examined the self-balancing
property of layers in deep homogeneous models. While their
work provides valuable insights into the role of conservation
laws in learning dynamics, it does not directly address the
implications on alignment as a result of these laws.

Our work diverges from this existing body of literature by
proposing a set of conservation laws specifically tailored
to the learning dynamics under FA. A unique feature of
our study is that these conservation laws yield immediate
implications on alignment as a corollary, offering a more
comprehensive understanding of the FA’s underlying prin-
ciples. To the best of our knowledge, this is the first result
establishing layer-wise alignment for a non-linear network
trained with feedback alignment, paving the way for future
research in layer-wise alignment in more general settings
such as wide neural networks or for other learning rules.

3. Basic Notation
To fully comprehend the dynamics underpinning Feedback
Alignment (FA), we first need to establish the appropriate
mathematical notation and formalism. This section will
clarify the key definitions and operations used throughout
this study. We will denote scalars and vectors by lower-
case letters (e.g., x, y, z) and matrices by uppercase letters
(e.g., A,B,C). The symbol ⊙ represents the Hadamard
(element-wise) product of two matrices or vectors of the
same dimensions. Importantly, we denote the trace of a

square matrix A by Tr(A). Finally, we note that the trace
operator can be used to compute the inner product between
two matrices A and B of the same dimension. We denote
this inner product as ⟨A,B⟩ = Tr(ATB), where AT is the
transpose of A.

4. Feedback Alignment: A Closer Look
Consider a neural network f parameterized with L layers,
where each layer is denoted as l, with l ∈ 1, 2, . . . , L. Each
layer is associated with an activation function ϕ and a weight
matrix Wl ∈ Rnl+1×nl . Here, nl refers to the number of
neurons in layer l.

For a given input x ∈ Rn0 , the pre-activation hl and the
activation al of layer l are computed recursively as follows:

hl = Wlal−1, al = ϕ(hl)

where ϕ denotes the non-linear activation function, al−1 is
the activation of the previous layer, and a0 = x.

In FA, the feedback weights, denoted as Bl ∈ Rnl×nl+1 ,
are fixed random matrices independent of Wl. The error δl
at layer l is calculated as:

δl = ϕ′(hl)⊙Bl+1δl+1, δL = ∇aL
L(f)

where L(f) is the loss function applied to the network, and
∇aL

L is the gradient of L with respect to the final layer
activation aL.

The weight update under the FA rule is then given by:

∆Wl = −η · (al)⊤δ⊤l+1

where η is the learning rate.

We note that unlike in backpropagation, the feedback matri-
ces Bl are not tied to the feedforward weights Wl. In that
setting, we would have time-dependent feedback matrices
Bl(t) = Wl(t). This introduces an alignment challenge
since there is no guarantee the feedback matrices align with
the learned weights.

5. Theoretical Analysis
Building upon the FA formalism detailed in the previous
section, we aim to present our main results and provide in-
sight on their distinctive characteristics and how they differ
from the traditional backpropagation (BP) in the context of
learning rules.

It has been previously observed that the matrices learned
through feedback alignment tend to align with their respec-
tive feedback matrices (Lillicrap et al., 2016; Nøkland, 2016;
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Figure 1. We plot the ratio ⟨W2(t),B2⟩− 1
2
∥W1(t)∥2F

⟨W2(0),B2⟩− 1
2
∥W1(0)∥2F

during training

to verify Theorem 5.1 for two-layer linear and ReLU networks.
Figure 2. We plot the loss during training for two-layer linear and
ReLU networks.

Launay et al., 2020). Our first main result concerns a conser-
vation law for the FA learning dynamics that can explain the
layer-wise alignment phenomena. Specifically, we introduce
a conserved quantity, which remains invariant throughout
the training process. This invariance holds under some gen-
eral conditions related to the activation function and the loss
function.

Theorem 5.1. Suppose that we apply feedback alignment
to a scalar output ReLU network with differentiable loss
function. Then the flow of the layer weights under feedback
alignment for all t ∈ R≥0 maintains,

1

2
∥Wi(t)∥2F − ⟨Wi+1(t), Bi+1⟩

=
1

2
∥Wi(0)∥2F − ⟨Wi+1(0), Bi+1⟩

Proof Sketch. The major technical part of the proof is to
show that we have:

⟨Ẇi,Wi⟩ = ⟨Ẇi+1, Bi+1⟩.

The trace map is linear so after an integration by parts we
have that,

⇒
∫ t

0

Tr(ẆiW
T
i )ds = Tr

[∫ t

0

ẆiW
T
i

]
ds

=
1

2
∥Wi(t)∥2F − 1

2
∥Wi(0)∥2F

Finally,∫ t

0

Tr(Ẇi+1B
T
i+1)ds = Tr

[∫ t

0

Ẇi+1B
T
i+1ds

]
= ⟨Wi+1(t), Bi+1⟩ − ⟨Wi+1(0), Bi+1⟩

The result follows.

This conservation law has several intriguing implications.
One such implication is the existence of an implicit bias
in FA that is analogous to, but distinct from, the bias in
gradient descent. This bias effectively governs the learning
trajectory of the FA rule, directing it towards certain types
of solutions over others.

The conservation law also offers an insight into the align-
ment challenge in FA. As a corollary, if we initialize
Wi+1(0) = Bi+1 such that ∥Wi(0)∥ ≤ ∥Wi+1(0)∥ then
the conservation law simplifies to,

⟨Wi+1(t), Bi+1⟩ ≥ ∥Wi+1(0)∥2F − 1

2
∥Wi(0)∥2F ≥ 0

Thus, there are general initialization schemes that guarantee
layer-wise alignment.

Lastly, we focus on the case of two-layer linear networks
trained with FA. By exploiting the conservation law, we
show that these networks are capable of converging to a
global optimum.

Theorem 5.2. Assume that we are to fit data y with
squared-loss and an over-parameterized two-layer network
fwt

(X) = Xwt = XW1(t)W2(t) with data X such
that rows are linearly-independent. Assume we may pick
w0 ∈ span(XT ) such that we have positive alignment for
all time. If we run (direct) feedback alignment flow then we
have the following,

lim
t→∞

ert · ∥y −Xwt∥2 → 0

for some r > 0. Moreover, w∞ = W1(∞)W2(∞) is the
minimum-norm solution.

Proof Sketch. We prove an auxiliary lemma that shows that
the network weights stay in the span of the input data matrix
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XT . To show this we derive the update rules in continuous
time, under the assumption that the weights are intitialized
in the span of the data. A simple option is to initialize with
W1 = 0. Following this, we show that the evolution of
the error is decreasing geometrically over time implying
that the algorithm will converge. Finally, we demonstrate
that under these conditions, the solution found by the flow
will be related to the Moore-Penrose psuedoinverse which
minimizes the norm of the solution.

This result implies that feedback-alignment applied to linear
networks in the over-parameterized regime enjoy similar
generalization properties to those of networks trained with
gradient descent. These types of results have been popular
as a way to explain why deep neural networks are able to
generalize (Belkin et al., 2019).

These theoretical findings indicate that FA shares some prop-
erties with the more traditional gradient descent approach
to learning. In particular, we also establish a connection
between initialization, layer-wise alignment, and conver-
gence with our results. This could set the stage for further
exploration of alternative learning rules that can overcome
the practical challenges associated with BP, whilst retaining
its effectiveness.

6. Experiments
In our effort to comprehend the fundamental principles gov-
erning Feedback Alignment (FA), we devised a series of
experiments to validate our theoretical assertions. We specif-
ically aimed to observe the FA learning dynamics, under-
standing its implicit bias and ultimately, its convergence to
the global optimum in over-parameterized two-layer linear
networks.

Our network design involved multi-layer configurations,
with the task of finding the global minimizers for the
squared-loss function. For the generation of training data,
we relied on a multivariate normal distribution, where the
true response variable was a noiseless linear transformation
of the input.

A crucial element of our experiments was implementing
FA to update the network weights. Theorem 5.1 predicts
that the quantity 1

2∥Wi(t)∥2F − ⟨Wi+1(t), Bi+1⟩ should re-
main invariant under the FA learning flow. Tracking this
quantity provided empirical validation of this theoretical
result. Furthermore, comparing the FA-learned weights to
the Moore-Penrose pseudoinverse solution allowed us to
observe the convergence of FA to the global optimum.

We carried out these procedures for two network architec-
tures - a two-layer linear network and a two-layer ReLU
network. To assure high-probability positive layer-wise
alignment and convergence, we initialized the first layer

weights using a distribution N (0, 1/10), and the second
layer weights with a distribution N (0, 1). We initialized the
feedback matrices to match the initialization of the second
layer weights.

6.1. Discussion of Results

The experimental results, as displayed in Figures 1 and 2,
corroborate the conservation law postulated by Theorem
5.1. The tracked quantity 1

2∥Wi(t)∥2F − ⟨Wi+1(t), Bi+1⟩
remained nearly constant across iterations which provides
empirical support to our theoretical results. This manifes-
tation of the conservation law substantiates the intriguing
parallels between FA and Gradient Descent (GD), specifi-
cally with regards to their implicit biases. In the context of
the two-layer linear network, the convergence of FA-learned
weights to the global optimal solution was observed. We
verified this convergence is identical to the minimum norm
solution up to three significant digits. This underscores the
implicit bias of feedback alignment towards solutions that
generalize well.

In particular, we find the (nearly) exact conservation of
layer-wise in non-linear networks updating with the feed-
back alignment learning rule to be compelling. While we do
not show layer-wise alignment is sufficient for convergence
in the non-linear setting, it seems plausible that such a con-
dition would become useful in the large-width setting which
has been successfully analyzed for gradient descent. Overall,
the implications of these shared similarities warrant further
investigation, potentially fostering the development of more
powerful theoretical techniques capable of distinguishing
these two learning rules. We think that research into es-
tablishing (or failing) implicit bias results for bio-plausible
learning rules could elucidate higher-level principles behind
good learning rules.

7. Conclusion
In conclusion, our findings challenge the prevailing narra-
tive that FA and GD are fundamentally different learning
algorithms. We demonstrate that, under certain conditions,
FA can mirror the behavior of GD, offering a computation-
ally efficient and biologically plausible alternative. Our
main motivation is to pave the way for developing more
efficient deep learning algorithms, better approximating the
learning dynamics in biological systems. Overall, our re-
sults connecting layer-wise alignment with convergence in
linear-models suggest that layer-wise alignment may also be
a useful tool for analyzing learning dynamics in wide neural
networks. Future work aims to extend these results to non-
linear models, facilitating the creation of more biologically
plausible models.
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A. Omitted Proofs
A.1. Proof of theorem 5.1

Theorem 5.1. Suppose that we apply feedback alignment to a scalar output ReLU network with differentiable loss function.
Then the flow of the layer weights under feedback alignment for all t ∈ R≥0 maintains,

1

2
∥Wi(t)∥2F − ⟨Wi+1(t), Bi+1⟩

=
1

2
∥Wi(0)∥2F − ⟨Wi+1(0), Bi+1⟩

Let Ai be a diagonal matrix with activations of the i-th output layer on the diagonal,

Ai = diag ◦ σ′ ◦Wi ◦ σ ◦ . . . ◦ σ ◦W1(x)

This matrix indicates if an output at the i-th layer is non-zero. Supressing composition we have,

fW (x) = xW1A1 . . . AL−1WL

First we calculate the gradient and then compare with the feedback alignment update rule.

⇒ ∇Wi
fW (x) = (xW1A1 . . .Wi−1Ai−1)

T (AiWi+1 . . . AL−1WL)
T

Feedback aligment simplifies the backward pass by replacing terms with random feedback matrices. For a (leaky) ReLU
layer network learning with a differentiable loss such as L : Rm → Rm → R≥0 where we take δL(t) = ∇aL

L as the
gradient at time t. We have the following learning dynamics for the ith and (i+ 1)th layers under feedback alignment,

Ẇi = −η · E
[
(xW1A1 . . .Wi−1Ai−1)

T δL(t)
T (AiBi+1 . . . AL−1BL)

T
]

Ẇi+1 = −η · E
[
(xW1A1 . . .WiAi)

T δL(t)
T (Ai+1Bi+2 . . . AL−1BL)

T
]

where Bi ∈ Rdi×di+1 is a random feedback operator fixed at initialization.

For the first-layer we have,
⟨Ẇi,Wi⟩ = Tr(ẆT

i Wi)

= −η · Ek [Tr((AiBi+1 . . . AL−1BL)δL(t)(xkW1A1 . . .Wi−1Ai−1)Wi)]

= −η · Ek [ϕ
′
k(t) · Tr(xkW1A1 . . .WiAiBi+1 . . . BL)δL(t)]

We are making use of the trace representation for the inner-product and the cyclic property of the trace map. Similarly, for
the next layer we obtain,

⟨Ẇi+1, Bi+1⟩ = Tr(ẆT
i+1Bi+1)

= −η · Ek [Tr((Ai+1Bi+2 . . . AL−1BL)δL(t)(xkW1A1 . . .WiAi)Bi+1)]

= −η · Ek

[
Tr(xkW1A1 . . .WiAiBi+1 . . . BL)δL(t)

T
]

The major implication is that,
⟨Ẇi,Wi⟩ = ⟨Ẇi+1, Bi+1⟩

The trace map is linear so after an integration by parts we have that,

⇒
∫ t

0

Tr(ẆiW
T
i )ds = Tr

[∫ t

0

ẆiW
T
i

]
ds

=
1

2
∥Wi(t)∥2F − 1

2
∥Wi(0)∥2F
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Finally, ∫ t

0

Tr(Ẇi+1B
T
i+1)ds = Tr

[∫ t

0

Ẇi+1B
T
i+1ds

]
= ⟨Wi+1(t), Bi+1⟩ − ⟨Wi+1(0), Bi+1⟩

The result follows. □

Remark: if we initialize Wi(0) = Wi+1(0) = 0 then the conservation law simplifies to,

⟨Wi+1(t), Bi+1⟩ =
1

2
∥Wi(t)∥2F ≥ 0

Thus, feedback alignment with the zero-initialization preserves non-negative alignment.

A.2. Proof of Theorem 5.2

There is another invariant that is useful for analyzing the type of solution we obtain from the flow of (direct) feedback
alignment.

Lemma A.1. If we have w(t) = W1(t)W2(t) ∈ span(XT ) for t = 0 then have w(t) ∈ span(XT ) for all time.

Proof. Under flow the first-layer parameters update according to,

Ẇ1(t) = −ηXT e(t)BT

W1(0) ∈ span(XT )

Observe that Ẇ1 is invariantly in the span of XT so we may conclude that W1(t) is always in the span of XT . This means
we have W1(t) = XTα0(t) for all time. Extending to W = W1W2,

Ẇ (t) = Ẇ1W2 +W1Ẇ2

= −η(XT eBTW2 +W1W
T
1 XT e)

= −η(XTα1(t) +XTα2(t)) ∈ span(XT )

We can calculate an iteration for the error vector as,

⇒ e(t+ 1) = XW1(t+ 1)W2(t+ 1)− y

= X
(
W1(t)− ηXT e(t)BT

) (
W2(t)− ηW1(t)

TXT e(t)
)
− y

= X
(
W1(t)W2(t)− η(XT e(t)BTW2(t) +W1(t)W1(t)

TXT e(t)) + η2XT e(t)BTW1(t)
TXT e(t)

)
− y

= e(t)− η(XXT e(t)BTW2(t) +XW1(t)W1(t)
TXT e(t)) + η2

(
XXT e(t)BTW1(t)

TXT e(t)
)

=
(
I − η((BTW2(t))XXT +XW1(t)W1(t)

TXT )
)
e(t) + η2

(
XXT e(t)BTW1(t)

TXT e(t)
)

≃ (I − ηF )e(t)

In the last step we observe that BTW2(t) is an inner-product. We can fix this quantity positive for all time using proper
initialization and Lemma 1 and so we have F ≻ 0. Taking the limit η → 0 yields the flow,

ė = −F (t)e

which will decrease to zero at a geometric rate.

So under the flow we’ll suppose the parameters update according to,

ẇ = −ηXT e

w(0) = 0
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Observe that ẇ is invariantly in the span of XT so we may conclude that w(t) is always in the span of XT . Generically, any
solution in the over-parameterized setting is a global optimizer such that Xw = y. This means that the limit of the flow can
be written as w∗ = XTα for some coefficient vector with the constraint that Xw∗ = y. After some manipulations we find
that,

y = Xw∗ = XXTα

⇒ α = (XXT )−1y

⇒ w∗ = XT (XXT )−1y = X+y

This means that the solution X+ picked from gradient flow is the Moore-Penrose psuedoinverse. This can be defined as the
matrix,

X+ = lim
λ→0+

XT (XXT + λI)−1

Also observe that there is a unique minimizer for the regularized problem,

min
w

L(w) + λ∥w∥22

with value wλ = XT (XXT + λI)−1y. Perhaps, Xw = y has a set of solutions, but it is clear this set is convex so there
is a unique minimum norm solution. On the other hand, each wλ corresponds to a best solution with norm below the
minimum. However, we have w∗ = limλ→0+ wλ from continuity. Since w∗ is an exact solution it can’t have less than the
minimum-norm and it is clear w∗ can’t have above the minimum-norm either since this is not the case for any of the wλ. We
conclude that gradient descent does indeed find the minimum norm solution.
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