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Abstract

Although Large Language Models (LLMs) have demonstrated remarkable progress,
their proficiency in graph-related tasks remains notably limited, hindering the
development of truly general-purpose models. Previous attempts, including pre-
training graph foundation models or employing supervised fine-tuning, often face
challenges such as the scarcity of large-scale, universally represented graph data.
We introduce G1, a simple yet effective approach demonstrating that Reinforcement
Learning (RL) on synthetic graph-theoretic tasks can significantly scale LLMs’
graph reasoning abilities. To enable RL training, we curate Erdős, the largest graph
reasoning dataset to date comprising 50 diverse graph-theoretic tasks of varying
difficulty levels, 100k training data and 5k test data, all drived from real-world
graphs. With RL on Erdős, G1 obtains substantial improvements in graph reason-
ing, where our finetuned 3B model even outperforms Qwen2.5-72B-Instruct (24x
size). RL-trained models also show strong zero-shot generalization to unseen tasks,
domains, and graph encoding schemes, including other graph-theoretic bench-
marks as well as real-world node classification and link prediction tasks, without
compromising general reasoning abilities. Our findings offer an efficient, scalable
path for building strong graph reasoners by finetuning LLMs with RL on graph-
theoretic tasks, which combines the strengths of pretrained LLM capabilities with
abundant, automatically generated synthetic data, suggesting that LLMs possess
graph understanding abilities that RL can elicit successfully. Our implementation
is open-sourced at https://github.com/PKU-ML/G1, with models and datasets
hosted on Hugging Face collections PKU-ML/G1 for broader accessibility.

1 Introduction

Large Language Models (LLMs) have achieved widespread success [2, 13] but exhibit notable
limitations in reasoning about graph-structured data, a critical capability for achieving general-
purpose intelligence. Proficient graph reasoning is essential for numerous applications, yet even
state-of-the-art LLMs like OpenAI’s o1 [30] demonstrate significant deficiencies, with reported
accuracies as low as 58.49% on graph connectivity tests [54].

Initial efforts to enhance LLMs’ graph understanding explored various natural language encoding
schemes [11, 5, 9], but these yielded only modest improvements. Alternative strategies have involved
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Table 1: An overview of 50 graph-theoretic tasks in our dataset Erdős (100k train, 5k test), alongside
with the difficulty distribution, and the accuracy of the base model Qwen2.5-7B-Instruct and our
RL-trained G1-7B model. A complete description of tasks are in Appendix N.2.

Difficulty Tasks Ratio Base Model Acc G1 Acc

Easy
Node Number, Dominating Set, Common Neighbor, Edge Num-
ber, Neighbor, BFS, Has Cycle, DFS, Minimum Spanning Tree,
Edge Existence, Is Regular, Degree, Is Tournament, Density

29.16% 57.16% 95.07%

Medium
Adamic Adar Index, Clustering Coefficient, Connected Compo-
nent Number, Bipartite Maximum Matching, Local Connectivity,
Jaccard Coefficient, Min Edge Covering, Is Eularian, Degree
Centrality, Is Bipartite, Resource Allocation Index

22.91% 42.55% 88.91%

Hard

Max Weight Matching, Closeness Centrality, Traveling Sales-
man Problem, Strongly Connected Number, Shortest Path, Cen-
ter, Diameter, Barycenter, Radius, Topological Sort, Periphery,
Betweenness Centrality, Triangles, Average Neighbor Degree,
Harmonic Centrality, Bridges

33.33% 18.87% 50.44%

Challenging
Isomophic Mapping, Global Efficiency, Maximal Independent
Set, Maximum Flow, Wiener Index, Hamiltonian Path, Min Ver-
tex Cover

14.58% 3.29% 23.57%

instruction tuning [27, 52] or preference tuning [3, 41] on curated graph datasets. Others attempted
to build specialized graph foundation models through pretraining [28, 21, 26]; however, these are
often limited by the lack of large-scale, universal graph representations suitable for diverse graph
types. Different from prior work, we believe LLMs pretrained on Internet-scale data already possess
graph reasoning ability, and we can elicit it through their own trial and error without human data.

In this work, we are the first to explore the use of Reinforcement Learning (RL) to solve graph
reasoning tasks. We chose graph-theoretic problems as a testbed as they allow direct verification
of generated answers to produce rule-based rewards for RL training, which is shown to be key
for the success of DeepSeek R1 in math and coding problems [13]. We collect the largest-to-date
graph-theoretic problem set, Erdős, spanning a wide spectrum of difficulty levels, as shown in Table
N.2. Through RL training, our model G1 achieves substantial performance improvements on the
Erdős benchmark, with gains of up to 46% over baseline models. Notably, our G1-7B model attains
competitive performance with state-of-the-art reasoning models like OpenAI’s o3-mini, and G1-3B
easily rivals Qwen2.5-72B-Instruct by noticeable margins. Notably, textttG1 models exhibit strong
zero-shot generalization on unseen graph tasks and domains, improving base models’ performance
on other graph-theoretic benchmarks and real-world graphs without deteriorating general reasoning
ability, indicating a synergetic improvement of LLMs’ graph reasoning abilities through RL. We
also study various aspects of the training process, such as the influence of data mixture, supervised
initialization, and the use of chain-of-thought [44].

G1 charts a data-efficient and scalable course for developing LLMs with strong graph reasoning. By
demonstrating that RL can unlock latent graph understanding within general-purpose LLMs using
synthetic data, our work suggests a possible paradigm shift away from reliance on heterogeneous
real-world graphs to build graph foundation models. This paves the way for more versatile AI systems
capable of sophisticated reasoning across diverse data modalities.

2 Erdős: A Comprehensive Collection of Graph-theoretic Reasoning Tasks
on Real-world Graphs

To facilitate rule-based Reinforcement Learning of LLMs (aka. Reinforcement Learning from Verifi-
able Rewards (RLVR)) on graphs, we construct a diverse, large-scale collection of graph-theoretic
reasoning tasks. We name it Erdős to remember Paul Erdős, a seminal figure with diverse contribu-
tions to graph theory. Compared to real-world graph tasks, these graph-theoretic tasks allow clear
rule-based determination of rewards for the answers sampled from LLMs. We categorize these tasks
into Easy, Medium, Hard, and Challenging, based on their inherent problem complexity as well as
current LLMs’ ability to solve them (see a full list in Table 1). For the training split, there are a total
of 100,000 question-answer pairs, evenly distributed across tasks with 2,000 examples each. We also
reserve 5,000 test pairs with different questions for evaluation. We include a detailed comparison of
Erdős with other graph reasoning benchmarks in Appendix N.1. Erdős can serve as a dataset for
training LLMs as well as a benchmark for evaluating LLMs on graph-theoretic tasks.
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Specifically, we curate 50 graph-theoretic reasoning tasks available on NetworkX [14], one of the
most widely used libraries for graph processing, and construct, as we know, the most comprehensive
collection so far. The tasks vary in difficulty level and cover a wide range of answer types, including
boolean, integer, float, node list, edge list, and node mapping. For answer generation., we utilize
the default solvers of NetworkX to automatically solve the problem. If there are multiple solutions
to each question, we use NetworkX-based programs to verify the correctness, avoiding both costly
human labeling and potential bias of LLM judges. For graph sources., we utilize the real-world
graphs from the Network Repository [33], the largest network repository with thousands of donations
in 30+ domains. We downsample the graphs by random walk with a restart strategy, generating
subgraphs with sizes from 5 to 35 nodes, following common settings in previous work [40, 54, 37].
For language encoding, we choose to describe the graph structure in a unified edge list format, e.g.,
(1, 2), (2, 3), . . .. In later experiments of Section 4.2, we show that our model trained on a single
graph description method can even positively transfer to other formats. Details about benchmark
construction are provided in Appendix B.

3 Training LLMs to Reason on Graphs

In this section, we introduce the training pipeline that we explored for training G1. We design proper
rule-based rewards for different graph tasks, while intentionally keeping the RL algorithm general
and consistent with previous work. Similar to DeepSeek R1 [13], the training of G1 is very simple: it
consists of a Reinforcement Learning phase for rewarding correct rollouts with the GRPO algorithm
[36], and an optional SFT phase for warming up the model in the beginning (without which we call
G1-Zero). We find that the SFT phase is generally beneficial for learning more challenging tasks,
whose initial accuracy with the base model is close to zero.

RL Algorithm. Following common practice [13], we use the Group Relative Policy Optimization
(GRPO) [36] algorithm for RL training. We design the following rule-based outcome reward model
(ORM) for our training on graph-theoretic tasks, with a combination of value match, set matching,
and algorithmic verification for different problems:

• Strict value matching. For tasks that have a unique ground truth value, e.g., node counting,
the policy receives a reward of +1 only when the generated answer is identical to the ground
truth in terms of numerical value, e.g., 0.5 and 1/2, otherwise it receives a reward of 0.

• Jaccard Index for set matching. For problems whose answer is not a single value ŝ but an
unordered set, e.g., common neighbors of two nodes, the reward is defined as the Jaccard
Index between the generated set ŝ and the ground truth s, i.e., |s ∩ ŝ|/|s ∪ ŝ|. In this way,
the model can receive intermediate rewards for imperfect solutions.

• Algorithmic verification. Lastly, for problems that have multiple correct solutions (e.g.,
shortest paths) and it is not feasible to enumerate all of them, we implement algorithmic
verifiers to check the correctness of the proposed solutions. For instance, we determine the
validness of a Hamiltonian path proposed by the policy by checking whether all the edges in
the path exist and each node is visited exactly once.

Optional Warm-up with Supervised Fine-tuning. During RL training, we have noticed that for
some challenging tasks like isomorphic mapping (see Table 1), the initial accuracy of the base model
is often so low that we frequently end up with only incorrect rollouts, producing no useful signal for
RL training. We find that introducing a short warm-up phase with supervised fine-tuning effectively
improves overall learning efficiency. Specifically, we consider two types of supervised fine-tuning:
(1). Direct-SFT: the first is direct supervised fine-tuning on question-answer pairs (q, a), where q is
the textual description of the problem and a is the final answer without any intermediate reasoning
steps. (2). CoT-SFT: we collect reasoning trajectories via sampling (q, c, a) triplets from another
model [53], where c represents the Chain-of-Thought (CoT) reasoning steps in natural language that
lead to the final answer a, and use them to fine-tune the base model.

4 Experiments

4.1 Benchmarking G1 on Graph-theoretic Reasoning Tasks

Setup. As shown in Table 2, in the interest of academic compute budgets, we focus on comparing
relatively small models. We include strong proprietary models (of unknown sizes) like GPT-4o-mini
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Table 2: Test accuracy (%) comparison of different LLMs of varying sizes on our Erdős benchmark
tasks. In all experiments we use Qwen2.5-Instruct models as our base model (marked below). We
report the average accuracy across all tasks in the Average column, and full results for each task are
provided in Appendix L.4.

Model Easy Medium Hard Challenging Average
Proprietary (Unknown Parameters)

GPT-4o-mini 76.20 72.07 28.81 3.34 47.60
OpenAI o3-mini (w/ tool use) 74.83 83.49 59.28 43.22 64.90

3B Parameters

Llama-3.2-3B-Instruct 36.50 21.45 6.81 1.14 17.32
Qwen2.5-3B-Instruct (base model) 45.71 30.18 9.44 1.29 22.72
Direct-SFT-3B (Ours) 74.43 75.27 43.69 14.43 53.78
CoT-SFT-3B (Ours) 65.57 67.64 29.44 4.57 43.56
G1-3B (Ours) 94.86 84.64 41.25 7.57 59.76 (+37.04)

7B Parameters

Llama-3.1-8B-Instruct 49.21 30.45 13.69 1.43 25.10
Qwen2.5-7B-Instruct (base model) 57.36 42.55 18.87 3.29 32.06
Qwen2.5-Math-7B-Instruct 52.79 39.64 14.82 2.46 28.94
DeepSeek-R1-Distill-Qwen-7B 71.79 73.73 39.12 16.57 51.64
GraphWiz-7B-RFT 14.57 13.73 1.38 0.47 7.70
GraphWiz-7B-DPO 20.36 19.09 1.44 0.78 10.59
Direct-SFT-7B (Ours) 73.57 75.91 39.12 10.71 51.76
CoT-SFT-7B (Ours) 72.57 75.73 38.50 11.00 51.34
G1-7B (Ours) 95.07 88.91 50.44 23.57 66.16 (+34.10)

70B Parameters

Llama-3.1-70B-Instruct 68.07 55.45 31.87 4.44 42.28
Qwen2.5-72B-Instruct 71.71 67.81 33.37 8.22 47.16

(non-reasoning) and OpenAI o3-mini (state-of-the-art reasoning), open-source instruction models like
Qwen2.5-Instruct series (3B, 7B, 72B) [32], Qwen2.5-Math-Instruct [51], LLaMA-3 series (3B, 8B,
70B) [12], and a strong baseline DeepSeek-R1-Distill-Qwen-7B [13] that is distilled from DeepSeek
R1 with 671B parameters. Additionally, for reference, we incorporate previous training strategies
for graph reasoning tasks such as GraphWiz-RFT and GraphWiz-DPO [3]. We finetune our model
from Qwen2.5-Instruct models (3B and 7B) for 300 steps with batch size 512 on a cluster of 8×A800
GPUs, using our dataset Erdős. More experimental details can be found in Appendix D.

Performance. As shown in Table 2, our proposed model G1-7B consistently outperforms most
proprietary, open-source, and graph training counterparts by significant margins across all difficulty
levels. With a notable average accuracy of 66.16%, G1-7B outperforms GPT-4o-mini (47.60%) by
18.56%, reaching competitive performance to a cutting-edge reasoning model like o3-mini (64.90%)
that underwent much heavier training. Notably, our small variant G1-3B, delivers a strong average
performance of 59.76%, surpassing open-source models including Qwen2.5-72B-Instruct (47.16%)
and Llama-3.1-70B-Instruct (42.28%) with 20× parameters. We also evaluate the GPT-4o model
on a randomly sampled subset of Erdős due to the cost budget. As shown in Appendix Table 13,
G1-7B surpasses GPT-4o across all difficulty levels, exceeding it by over 10% on average (65.29% vs.
55.13%), further validating the strong graph reasoning capabilities of the G1 models. In Appendix J,
we provide a robustness test where G1 variants demonstrate consistently small standard deviations
among multiple runs and phrasing changes.

Robustness Analysis. To rigorously evaluate robustness, we conducted 32 repeated runs with
different random seeds. The results in Appendix Table 16 demonstrate consistently small standard
deviations (<1% across all models and difficulty levels), confirming the stability of our method
against potential randomness in LLM outputs. For prompt robustness, we rigorously test prompt
sensitivity by having GPT-4o generate three semantically equivalent prompt variants. Appendix Table
17 shows minimal performance variance (<1.5% standard deviation) across all models and difficulty
levels, confirming our benchmark’s stability to phrasing changes.

Scaling G1 to 32B. To demonstrate the scalability of our approach, we extended the training method-
ology to develop G1-Zero-32B from Qwen2.5-32B-Instruct. As shown in Table 14, G1-Zero-32B
achieves a 27.96% improvement in average accuracy (from 47.10% to 75.06%), with particularly
notable gains in harder categories: +31.87% on Hard problems and +26.43% on Challenging prob-
lems. Furthermore, Appendix Table 15 demonstrates that G1-Zero-32B not only preserves but slightly
enhances mathematical performance on standard benchmarks, which shows modest improvements on
both GSM8K (+0.08%) and MATH (+4.00%).
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Scaling G1 to larger graphs. To verify the transferability of G1 to larger graphs, we construct a new
test set of 5,000 graphs with 36-100 nodes, with other settings kept the same, which ensures there
is no overlap between training and test data. Appendix Table 11 shows that both G1-3B and G1-7B
achieve strong zero-shot generalization to these larger graphs without additional training, significantly
outperforming the baselines across difficulty levels. These results demonstrate our method’s effective
scalability beyond the original training distribution. For larger graphs with thousands of nodes, G1 is
bottlenecked by the context window limit of underlying LLMs, detailed in Appendix G.

Table 3: Test accuracy (%) of G1-Zero-32B and Qwen2.5-32B-Instruct on Erdős.

Easy Medium Hard Challenging Average

Qwen2.5-32B-Instruct 70.57 68.73 33.38 9.00 47.10

G1-Zero-32B 97.79 93.00 65.25 35.43 75.06

4.2 Transferability of G1 to Unseen Tasks and Domains

In this section, we evaluate zero-shot generalization of G1 to unseen domains, tasks, and data formats.
Detailed benchmark description and complete evaluation setups are provided in Appendix E.

4.2.1 G1’s Transferability to Other Graph Reasoning Benchmarks

Setup. We consider two additional graph reasoning benchmarks, GraphWiz [3] and GraphArena [37],
which bring three major shifts that challenge our model: 1) different distributions of the underlying
graphs 2) tasks unseen during training 3) unfamiliar graph encoding formats, e.g., the GraphArena
benchmark represents nodes with human names instead of integers.

Results. The performance across models is reported in Table 4 and Table 5. On the GraphWiz
benchmark, G1-7B achieves the highest overall accuracy (57.11%) among all models, outperforming
DeepSeek-R1-Distill-Qwen-7B (51.86%) and even models specifically trained on GraphWiz data such
as GraphWiz-7B-RFT (49.61%). The smaller variant G1-3B also achieves comparable performance
with DeepSeek-R1-Distill-Qwen-7B. Similar results can be found on the GraphArena benchmark
(Table 5) with a different graph encoding scheme. These results demonstrate that G1 has strong
zero-shot generalization ability to unseen graph encoding methods, graph distributions, and graph
tasks. Full results for GraphWiz and GraphArena are shown in Appendix L.1 and Appendix L.3.

4.2.2 G1 on Real-world, Non-graph-theoretic Graph-reasoning Tasks

Baseline. For real-world graph tasks, we consider two standard problems: node classification and
link prediction. We adopt the benchmarks introduced by Wang et al. [43], which are constructed
by subsampling from the widely used Cora and PubMed citation graphs. Each instance includes a
description of the target node (or node pair) containing the paper ID and title, along with the textual
and structural information of neighboring nodes. These benchmarks emphasize the model’s ability to
leverage both local graph structure and textual attributes for effective prediction.

Results. As shown in Table 6, our model G1 significantly outperforms both open-source and distilled
baselines across tasks and model sizes. In the 3B model category, G1-3B surpasses the base model
(Qwen2.5-3B-Instruct) by a large margin—especially in link prediction on Cora (+16.82%) and node
classification on PubMed (+8.8%). In the 7B model category, G1-7B achieves the highest average
score of 87.29%, ranking first on PubMed dataset in both node classification and link prediction tasks.
Overall, G1 consistently demonstrates strong generalization across real-world graph tasks where
graph-text reasoning is required.

4.2.3 G1’s Reasoning Ability beyond Graphs

Setup. We next extend our investigations of G1’s abilities beyond graph-based tasks. We consider two
mathematics benchmarks, GSM8K [7] and MATH [16]. Additionally, we include MMLU-Pro [42],
which is a massive multi-task benchmark covering disciplines such as chemistry, economics, and
computer science. We believe the three benchmarks collectively provide a comprehensive assessment
of G1’s reasoning capabilities.
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Table 4: Test accuracy (%) by computational com-
plexity on the GraphWiz benchmark.

Model Linear Poly NP-Complete Avg.

Llama-3.2-3B-Instruct 29.80 3.00 2.50 19.80

Qwen2.5-3B-Instruct (base) 40.25 9.58 69.12 36.44

G1-3B 58.06 26.75 69.12 50.08

Llama-3.1-8B-Instruct 54.00 5.67 32.12 33.03

DeepSeek-R1-Distill-Qwen-7B 57.69 31.42 70.88 51.86

GraphWiz-7B-RFT 67.56 29.83 43.38 49.61

GraphWiz-7B-DPO 63.88 36.25 39.50 49.25

Qwen2.5-7B-Instruct (base) 49.06 17.92 76.12 44.69

G1-7B 68.00 32.25 72.62 57.11

Table 5: Test accuracy (%) by computational
complexity on the GraphArena benchmark.

Model Poly-Time NP-Complete Avg.
Easy Hard Easy Hard

Llama-3.2-3B-Instruct 22.25 6.75 8.00 0.66 8.40

Qwen2.5-3B-Instruct (base) 31.50 14.50 17.33 1.50 14.85

G1-3B 57.50 26.75 24.66 1.83 24.80

Llama-3.1-8B-Instruct 47.00 21.25 22.00 2.16 20.90

DeepSeek-R1-Distill-Qwen-7B 66.0 22.75 34.83 1.50 28.65

GraphWiz-7B-RFT 2.25 0.75 0.83 0.00 0.85

GraphWiz-7B-DPO 0.25 1.00 0.66 0.16 0.49

Qwen2.5-7B-Instruct (base) 62.00 35.75 28.83 2.16 28.84

G1-7B 77.50 44.25 47.33 8.50 41.10

Table 6: Test accuracy (%) on Node Classification
and Link Prediction benchmarks.

Model Node Link Avg.
Cora PubMed Cora PubMed

Llama-3.2-3B-Instruct 68.77 75.20 60.40 57.60 64.79

Qwen2.5-3B-Instruct (base) 70.83 75.08 62.15 58.38 65.66

CoT-SFT-3B 75.97 81.47 75.70 71.52 75.12

G1-3B 77.25 83.88 78.97 69.75 75.16

Llama-3.1-8B-Instruct 70.90 75.00 50.60 46.10 59.53

DeepSeek-R1-Distill-Qwen-7B 76.50 81.25 68.03 78.72 78.80

Qwen2.5-7B-Instruct (base) 79.30 85.35 88.22 88.67 85.50

CoT-SFT-7B 73.20 83.25 64.70 68.12 73.17

G1-7B 79.20 86.20 87.98 91.88 87.29

Table 7: Test accuracy (%) on reasoning bench-
marks beyond graph-related tasks.

Model GSM8K MATH MMLU-pro

Llama-3.2-3B-Instruct 71.03 42.40 13.50

Qwen2.5-3B-Instruct (base) 81.95 62.20 38.53

CoT-SFT-3B 75.36 56.00 34.85

G1-3B 79.30 61.80 37.11

Llama-3.1-8B-Instruct 74.45 44.80 32.02

DeepSeek-R1-Distill-Qwen-7B 86.03 87.20 37.21

Qwen2.5-7B-Instruct (base) 86.27 69.80 45.75

CoT-SFT-7B 83.85 65.80 44.79

G1-7B 87.49 71.80 48.56

Results. In table 7, we first notice that the CoT-SFT training on graph reasoning trajectories
leads to a non-negligible degradation in general abilities, which could be attributed to the fact that
SFT memorizes pattern instead of incentivizing truly generalizable skills [4]. Remarkably, the
subsequent reinforcement learning stage—despite being trained exclusively on graph tasks—restores
the reasoning abilities of both the 3B and the 7B model. G1-7B even surpasses the performance of
the initial Qwen-7B checkpoint in all of the three benchmarks (87.49% v.s. 86.27% for GSM8K,
72.8% v.s. 69.8% for MATH, and 48.56% v.s. 45.75% for MMLU-pro). Interestingly, G1-7B also
outperforms Qwen-7B-Instruct on several non-STEM tasks like Economy (68.76 v.s. 46.87), which
are intuitively less related to graph reasoning (see Appendix L.2 for full MMLU-Pro results). We
further provide a detailed analysis on the transferability of G1 to mathematics tasks in Appendix K,
showing G1 mainly improves the numerical calculation and utilization of known information.

4.3 Training Analysis

In this section, we further analyze the influence of two training factors on G1’s reasoning performance.
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Figure 1: Test accuracy comparison of G1-
3B and G1-Zero-3B on our benchmark. We
include results for -7B in Appendix F.

Data Mixture. In Table 2, we observe that although
G1-3B achieves strong overall performance, it is out-
performed by Direct-SFT-3B on the Hard and Chal-
lenging subsets. We hypothesize that this gap arises
from imbalanced reward signals across different diffi-
culty levels during RL training. Since correct rollouts
are much easier to obtain on simpler tasks, the policy
tends to allocate more of its constrained probabil-
ity ratios as well as KL budget to optimize for Easy
and Medium tasks, thereby maximizing the overall
rewrad. To test this hypothesis, we introduce G1-
Hard-3B, which is trained exclusively on Hard and
Challenging tasks during RL. As shown in Table 8,
this model achieves the highest accuracy on Hard
(48.50%) and Challenging (17.43%) tasks, surpassing both G1 and Direct-SFT. These results support
our claim, suggesting that the suboptimal performance of G1-3B on challenging tasks is a natural
consequence of the uniformly weighted reward function, rather than a shortcoming of G1 training
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Table 8: Test accuracy (%) on our benchmark. ⋆ denotes the tasks are excluded in model training.
G1-Hard-3B is only RL-trained on Hard and Challenging tasks.

Category Model Easy Medium Hard Challenging Average

Base Model Qwen2.5-3B-Instruct 45.71 30.18 9.44 1.29 22.72

Ours
Direct-SFT-3B 74.43 75.27 43.69 14.43 53.78

G1-3B 94.86 84.64 41.25 7.57 59.76
G1-Hard-3B 69.36⋆ 70.64⋆ 48.50 17.43 53.30

pipeline. Notably, despite being trained only on hard tasks, G1-Hard-3B also generalizes to Easy and
Medium tasks (69.36% and 70.64%), far exceeding the baseline Qwen2.5-3B-Instruct. This indicates
that learning to solve difficult tasks confers transferable reasoning skills that benefit performance
on simpler problems. To better balance the optimization process across difficulty levels, we further
explore reward-weighting strategies in Appendix M.

SFT Warmup. We study the role of SFT as a cold-start mechanism for RL, evaluating its impact
on both performance and response behavior. To isolate the effect of SFT, we compare two variants:
G1-Zero-3B that is directly trained from the base model Qwen2.5-3B-Instruct with RL, and G1-3B
that initializes RL from the CoT-SFT checkpoint. As shown in Figure 1, training RL directly from
the base model achieves surprisingly strong performance, aligning with recent findings in Deepseek-
R1-Zero [13]. Meanwhile, initializing RL with CoT-SFT provides clear and consistent improvements
across all difficulty levels, with an average accuracy of 59.8% compared to 50.1% of G1-Zero-3B.
Besides, we notice that relative improvements become larger as the difficulty increases. In addition
to performance gains, we also observe that models initialized by CoT-SFT present more precise
reasoning patterns, illustrated by the case study in the following section.

4.4 Understanding the Benefits of RL Training for Graph Reasoning

To understand how RL training helps graph reasoning, we take shortest path (a Hard task) as a case
study. Specifically, we study the behaviors of three models: Qwen2.5-3B-Instruct (base), G1-Zero-3B
(RL only), and G1-3B (SFT & RL). We identify three primary approaches adopted by the models to
solve the problem: 1) Breadth-First Search (BFS), 2) Dijkstra’s algorithm, and 3) Intuitive deductions.
Figure 2a shows the distribution of these approaches alongside their corresponding accuracies for
Qwen2.5-3B-Instruct. On unweighted graphs, BFS is the most efficient method and yields the highest
performance. In contrast, Dijkstra’s algorithm is best suited for weighted graphs, where it correctly
accounts for edge costs. However, its reliance on a min-priority queue and a distance list introduces
computational complexity, which appears to challenge Qwen2.5-3B-Instruct and results in its lowest
observed accuracy. For example, as shown in Appendix Figure 3 (left), the model falsely states that
node 4 has no edges (node 4 is connected to node 7) while updating the distance list. Interestingly,
intuitive approaches—where the model attempts to visually estimate or heuristically trace paths—can
also produce correct answers by a noticeable accuracy, particularly on small graphs.
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Figure 2: Reasoning patterns for the shortest path task.

We proceed by observing that RL training
significantly reshapes the models’ graph
reasoning strategies: RL-trained models
largely abandon Dijkstra and prefer a com-
bination of BFS and intuitive search. As
shown in Figure 2b and Appendix Fig-
ure 3 (middle), G1-Zero-3B navigates the
graph in a manner akin to human heuris-
tics—sequentially checking neighbors and
adjusting paths dynamically. G1-3B primar-
ily adopts a neat BFS-style algorithm as in
Figure 2b and Appendix Figure 3 (right),
executing it with high precision, occasion-
ally resorting to intuitive strategies for sim-
ple graphs. To conclude, our case study highlights how RL training enhances graph reasoning by
guiding LLMs toward more model-aware strategies that are adaptive to their inherent capabilities [46].
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A Related Work

Graph Reasoning. Graph reasoning problems fall into two categories: domain-specific, which
require understanding both graph structures and node/link attributes, e.g., node classification, link
prediction, and knowledge-based QA [15, 55, 18]; and domain-agnostic, also called graph-theoretic
problems, which focus solely on structural reasoning but find a lot of practical uses in various domains,
e.g., shortest paths, Hamiltonian paths, graph isomorphism [49, 35]. For the latter problems that we
study in this paper, people have studied the use of RL [29, 39] or unsupervised learning [19], often in
conjunction with Graph Neural Networks (GNNs) [20, 48] that align with the solution structure [50].
Yet these models are often built to solve each problem alone. Recently, Sanford et al. [34] prove
and validate the priority of the transformer models compared to GNNs on complex graph reasoning
tasks requiring long-range dependencies. In this work, we focus on building general-purpose graph
reasoners that could solve a range of graph-theoretic problems by exploiting the strength of LLM
pretraining, and find that the ability also generalizes to the former domain-specific graph tasks.

Benchmarking LLMs on Graph Reasoning. There is a growing interest in evaluating LLMs’ graph
reasoning abilities. NLGraph [40] evaluate LLMs on graph-theoretic tasks and discover preliminary
yet brittle reasoning abilities in the face of spurious correlations and large graphs. Later, GraphArena
[37] and GraCoRe [54] include a broader task coverage and recently released LLMs, finding that even
OpenAI o1-mini struggles a lot with complex tasks. Moreover, GraphEval2000 [45] and ProGraph
[23] emphasize code-oriented problem solving using library-based prompts, and GraphOmni [47]
unify varying graph types, encodings, and prompt styles for a comprehensive evaluation. Overall,
these benchmarks suggest that LLMs overall demonstrate moderate success on simple tasks but
struggle with abstraction, generalization, and larger or more complex graph instances. Nevertheless,
these datasets are either too small (e.g., thousands of examples) or not diverse enough (e.g., 8 tasks in
NLGraph) for training general-purpose graph reasoners, which motivates the design of Erdős.

Improving LLMs on Graph Reasoning. A major concern when using LLMs for graph tasks is the
mismatch of data structure: LLMs take text sequences as input, while graphs have no natural order.
Fatemi et al. [11] analyzed different graph encoding schemes for LLMs, such as adjacency lists and
real-name networks, revealing that no single strategy proved universally optimal across all tasks and
models. Subsequent explorations with different linearization orders [5], graph embeddings [31], or
input modalities [9] have generally resulted in only modest improvements. Another thread of research
proposes post-training LLMs using instruction tuning [27, 52] or preference tuning [3, 41, 38] on
curated datasets of graph problems. However, the creation of diverse, high-quality instruction datasets
at scale is challenging and expensive and requires extra supervision. Furthermore, models trained via
distillation may only learn to memorize patterns and overfit to graph tasks [4]; in Section 4.2, we
show that previous instruction-tuned models exhibit dramatic failures when generalizing to other data
formats and reasoning tasks, while our RL training yields consistently better performance.

Reinforcement Learning for LLMs Reasoning. Recent advances have demonstrated that LLMs
can attain strong reasoning abilities in math and coding domains through RL, with representative
work like OpenAI o1 [30] and DeepSeek R1 [13]. However, as discussed above, even o1 struggles a
lot with graph reasoning tasks [54] and it is thus yet unclear whether RL can reliably and scalably
improve LLMs’ graph reasoning abilities. Our findings on G1 first confirm the effectiveness of RL on
graph reasoning as well and suggest that applying RL to diverse graph-theoretic tasks with verifiable
rewards is a scalable path for eliciting generalizable graph reasoning abilities of LLMs.

B Benchmark Details

To facilitate rule-based Reinforcement Learning of LLMs (aka. Reinforcement Learning from Verifi-
able Rewards (RLVR)) on graphs, we construct a diverse, large-scale collection of graph-theoretic
reasoning tasks. We name it Erdős to remember Paul Erdős, a seminal figure with diverse contribu-
tions to graph theory. Compared to real-world graph tasks, these graph-theoretic tasks allow clear
rule-based determination of rewards for the answers sampled from LLMs. We categorize these tasks
into Easy, Medium, Hard, and Challenging, based on their inherent problem complexity as well as
current LLMs’ ability to solve them (see a full list in Table 1). For the training split, there are a total
of 100,000 question-answer pairs, evenly distributed across tasks with 2,000 examples each. We also
reserve 5,000 test pairs with different questions for evaluation. We include a detailed comparison of
Erdős with other graph reasoning benchmarks in Appendix N.1. Erdős can serve as a dataset for
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training LLMs as well as a benchmark for evaluating LLMs on graph-theoretic tasks. Below is a
more detailed description of the data collection process.

Graph-theoretic Tasks. We curate 50 graph-theoretic reasoning tasks available on NetworkX [14],
one of the most widely used libraries for graph processing, and construct, as we know, the most
comprehensive collection so far. In the difficulty level, the tasks vary from easy determination
of graph attributes like node number counting, to well-known NP-hard problems like the traveling
salesman problem. This collection includes both tasks for general graphs and tasks specific to directed
graphs or weighted graphs, and covers a wide range of answer types, including boolean, integer, float,
node list, edge list, and node mapping.

Answer Generation. To generate the golden answer for each problem, we utilize the default solvers
of NetworkX to automatically solve the problem. If there are multiple solutions to each question, we
use NetworkX-based programs to verify the correctness of each generated solution. The procedure
ensures rigorous rewarding attribution, avoiding both costly human labeling and potential bias and
hacking brought by LLM judges.

Graph Sources. Most previous graph-theoretic datasets or benchmarks [40, 27, 3] consider random
graphs, following Erdős-Rényi model [10] or Barabási–Albert model [1]. However, these random
graph models are often far from graphs encountered in real-world practice. To mitigate this gap, we
utilize the real-world graphs from the Network Repository [33], the largest network repository with
thousands of donations in 30+ domains. As these graphs can be very large and infeasible for LLMs,
we downsample the graphs by random walk with a restart strategy, generating subgraphs with sizes
from 5 to 35 nodes, following common settings in previous work [40, 54, 37].

Language Encoding. There are multiple ways to translate the graph structure into languages that
LLMs can understand. Previous works explore serialized formats such as adjacency matrix, edge
list, or graph embeddings [11, 8, 52], but fail to find a consistently good method. Here, we choose to
describe the graph structure in a unified edge list format, e.g., (1, 2), (2, 3), . . .. In later experiments of
Section 4.2, we show that our model trained on a single graph description method can even positively
transfer to other formats.

C Understanding the Benefits of RL Training for Graph Reasoning

We identify three primary approaches adopted by the models to solve the problem: 1) Breadth-First
Search (BFS), 2) Dijkstra’s algorithm, and 3) Intuitive deductions. Figure 2a shows the distribution of
these approaches alongside their corresponding accuracies for Qwen2.5-3B-Instruct. On unweighted
graphs, BFS is the most efficient method and yields the highest performance. In contrast, Dijkstra’s
algorithm is best suited for weighted graphs, where it correctly accounts for edge costs. However,
its reliance on a min-priority queue and a distance list introduces computational complexity, which
appears to challenge Qwen2.5-3B-Instruct and results in its lowest observed accuracy. For example,
as shown in Figure 3 (left), the model falsely states that node 4 has no edges (node 4 is connected
to node 7) while updating the distance list. Interestingly, intuitive approaches—where the model
attempts to visually estimate or heuristically trace paths—can also produce correct answers by a
noticeable accuracy, particularly on small graphs.

D Training Details

D.1 Rejection Sampling

We randomly extract a subset with 100 examples per task from the training dataset, and use Qwen2.5-
32B-Instruct to sample on the subset for k = 8 times with a temperature of 1.0. We filter the responses
by keeping the reasoning steps that lead to the right answer. If the task is difficult and the filtered
responses are insufficient, we resample the subset with a different random seed and repeat the process
above. In the end, we obtain around 4,500 training examples (∼90 per task) for the SFT phase.

D.2 Supervised Fine-tuning

The detailed training configurations of Naive SFT and RFT are presented in Table 9.
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We can use Dijkstra's algorithm to find the shortest path. 
Let's start by initializing the distances from node 4 to all 
other nodes and setting the distance to the starting node 
(node 4) to 0. The distance to all other nodes is initially set 
to infinity.


1. Initialize distances:

   - Distance to 4: 0 ......

   - Distance to 7: ∞


2. Select the node with the smallest distance (node 4) and 
update the distances to its neighbors:

   - Node 4 has no neighbors. .......


8. Select the next smallest distance node (node 7), update 
the distances to its neighbors: .…..


Since we have reached node 4 and the distance to it is 5, 
we can now trace back the path:


- From node 7 to node 4: distance is 2 (edge (7, 4)) ……


The shortest path from node 6 to node 4 is: [6, 5, 2, 3, 7, 4]


Therefore, the final answer is: $\boxed{[6, 5, 2, 3, 7, 4]}$.

To determine the shortest path between node 6 and 
node 4, we will analyze the given graph step by step.


First, let's list the nodes and their connections:

- Node 1 is connected to nodes 3, 6, and 5. ......


We need to find the path from node 6 to node 4. Let's 
start from node 6 and see which nodes we can reach 
next.

1. Node 6 is connected to node 1.

2. Node 1 is connected to nodes 3, 6, and 5.

3. Since we are already at node 6, we can try to reach 
other nodes from here. Node 1 is connected to node 3, 
so let's see if  we can get to node 4 from there.


Now, let's look at the connections from node 3: ……


Now, let's look at the connections from node 7:

1. Node 7 is connected to nodes 3 and 4.

2. Since we are already at node 7, we can reach node 
4 directly from here.


So, the path from node 6 to node 4 is:

\[ 6 \to 1 \to 3 \to 7 \to 4 \]


Therefore, the final answer is: \boxed{[6, 1, 3, 7, 4]}.

To find the shortest path between node 6 and node 4 
in the given undirected graph, we can use a graph 
traversal method such as Breadth-First Search (BFS).


Let's represent the graph as an adjacency list for 
easier visualization: - Node 1: connected to 3, 6, 5 .....


Starting from node 6, we will perform a BFS to find 
the shortest path to node 4.


1. Initialize the queue with the starting node 6.

2. Keep track of  visited nodes to avoid revisiting.

3. Track the path by backtracking from the end node 
to the start node.


Let's execute the BFS:

- Start at node 6.

- Explore neighbors of  6: the only neighbor is 1.

- From node 1, explore its neighbors: 3, 5, 6 (but 6 is 
already visited)……

- From node 7, explore its neighbors: 4 (this is the 
target node).


Thus, the shortest path found is: 6 -> 1 -> 3 -> 7 -> 4.


Therefore, the final answer is: $\boxed{[6, 1, 3, 7, 4]}$

Query: The task is to determine the shortest path between two nodes. Here is an undirected graph 
containing nodes from 1 to 7. The edges are: (1, 3), (1, 6), (1, 5), (3, 2), (3, 7), (5, 2), (7, 4). Question: 
What is the shortest path between node 6 and node 4?


Ground Truth: [6, 1, 3, 7, 4]

6

1 3

5 2

7

4

Qwen2.5–3B–Instruct G1–Zero–3B G1–3B

Question Graph

Figure 3: An intuitive illustration of the differences in solution strategies employed by Qwen2.5-3B-
Instruct, G1-Zero-3B, and G1-3B for a shortest path problem.

Table 9: Training configurations of Naive-SFT and RFT. In this table, batch size is abbreviated to
BSZ, Max-Length refers to the maximum response length during training and Data Num. reports the
number of training examples.

Setting LR Weight Decay BSZ Max-Length Data Num. Epoch
Naive-SFT 1e-5 w/ 1% warm-up 1e-2 64 512 98.7k 1
RFT 1e-5 w/ 1% warm-up 1e-2 64 3072 4.4k 2

D.3 Reinforcement Learning

Configurations for training and evaluation. Our experiments primarily adopt Qwen-2.5-3B/7B-
Instruct [32] for their moderate sizes and strong reasoning performance. For GRPO training, we set
ϵ to be 0.02, β to be 0.001, group size G to be 5, and context length to be 4096 unless otherwise
specified. We additionally incorporate an entropy loss of weight 0.001 to encourage the policy to
explore. Lastly, we train the models on 8xA800 GPUs with batch size of 512. During evaluation,
we use the vLLM [22] engine for efficient inference. For DeepSeek-R1-Distill-Qwen-7B, we set the
maximum token generation length to 4096 tokens except for DeepSeek-R1-Distill-Qwen-7B, which
is extended to 30768 for its prolonged thinking process. Sampling is configured with a temperature
of 0.6, top-p of 0.95, and top-k of 30.

The detailed RL training configurations are presented in Table 10.

Table 10: Training configurations for Naive-SFT and RFT. For abbreviation, we refer the coefficient
for entropy loss as Ent. in this table. We report (batch size)/(number of gradient accumulation steps)
in the BSZ column, and the temperature for on-policy sampling as T .

Model LR ϵ |G| β γ T Ent. BSZ Max-Length Data Num. Steps
RL-3B 1e-6 0.2 5 1e-3 1.0 1.0 1e-3 512/4 4096 98.7k 300
SFT-RL-3B 1e-6 0.2 5 1e-3 1.0 1.0 1e-3 512/4 4096 98.7k 300
SFT-RL-Hard-3B 1e-6 0.2 16 5e-4 1.0 1.0 5e-4 512/8 8192 49.3k 150
SFT-RL-7B 1e-6 0.2 5 1e-3 1.0 1.0 1e-3 512/8 4096 98.7k 300
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E Evaluation Details

E.1 Benchmark Introduction

GraphWiz [3]. GraphWiz employs the Erdős-Rényi (ER) model to generate random graphs and
describe graphs in the edge-list formation like (u, v). The tasks include four linear complexity tasks,
Connectivity, Cycle Detection, Bipartite Graph Checking, and Topological Sort; three polynomial
complexity tasks, Shortest Path, Maximum Triangle Sum, and Maximum Flow; and two NP-Complete
tasks: Hamilton Path and Subgraph Matching. A prompt example is shown in the following:

Maximum Triangle Sum Example in GraphWiz

Find the maximum sum of the weights of three interconnected nodes. In an undirected graph,
[i, k] means that node i has the weight k. (i,j) means that node i and node j are connected
with an undirected edge. Given a graph, you need to output the maximum sum of the weights
of three interconnected nodes. Q: The nodes are numbered from 0 to 4, weights of nodes are:
[0, 8] [1, 5] [2, 3] [3, 6] [4, 3], and the edges are: (0, 4) (0, 3) (0, 1) (1, 3) (1, 2) (3, 4). What
is the maximum sum of the weights of three nodes?

Node Classification and Link Prediction [43]. We adopt the benchmarks introduced by Wang et al.
[43], which are constructed by subsampling from the widely used Cora and PubMed citation graphs.
Each instance includes a description of the target node (or node pair) containing the paper ID and title,
along with the textual and structural information of neighboring nodes. For node classification, we
consider two cases that the description includes the attributes of the target node and those of its 2-hop
neighbors, with or without labels. For link prediction, we consider two cases where target nodes are
described using their own node attributes along with those of their 2-hop neighbors (excluding the
other targeting node), with or without titles. For each task, we randomly sample 2,000 examples per
case from the benchmark and report the average performance. A representative example for node
classification is shown below:

Node Classification Example

You are a good graph reasoner. Give you a graph language that describes a graph structure
and node information from pubmed dataset. You need to understand the graph and the task
definition and answer the question.

## Target node: Paper id: 10695 Title: Haplotype structures and large-scale association
testing of the 5’ AMP-activated protein kinase genes PRKAA2, PRKAB1, and PRKAB2
[corrected] with type 2 diabetes.

Known neighbor papers at hop 1 (partial, may be incomplete):
Paper id: 1155 Title: Computational disease gene identification: a concert of methods
prioritizes type 2 diabetes and obesity candidate genes. Label: Type 2 diabetes

Known neighbor papers at hop 2 (partial, may be incomplete):
Paper id: 9816 Title: Mitochondrial dysfunction and type 2 diabetes. Label: Type 2 diabetes
Paper id: 1683 Title: A genome-wide search for type II diabetes susceptibility genes in
Chinese Hans. Label: Type 2 diabetes
Paper id: 9916 Title: Genomewide search for type 2 diabetes-susceptibility genes in French
whites: evidence for a novel susceptibility locus for early-onset diabetes on chromosome
3q27-qter and independent replication of a type 2-diabetes locus on chromosome 1q21-q24.
Paper id: 3793 Title: Association of amino acid variants in the activating transcription factor
6 gene (ATF6) on 1q21-q23 with type 2 diabetes in Pima Indians. Label: Type 2 diabetes
Paper id: 4788 Title: Altered glycolytic and oxidative capacities of skeletal muscle contribute
to insulin resistance in NIDDM. Label: Type 2 diabetes

Please predict the most likely type of the Target node. Your answer should be chosen from:
Type 1 diabetes Type 2 diabetes Experimentally induced diabetes
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GraphArena [37]. GraphArena samples subgraphs from real-world graphs, including knowledge
graphs, social networks, and molecular structures. The tasks include four polynomial-time tasks,
Common Neighbor, Shortest Distance, Connected Component, Graph Diameter, and six NP-complete
tasks, Maximum Clique Problem (MCP), Maximum Independent Set (MIS), Minimum Vertex Cover
(MVC), Maximum Common Subgraph (MCS), Graph Edit Distance (GED), and Traveling Salesman
Problem (TSP). Each problem is contextualized within the real-world setting of the graph with an
example presented as below:

Connected Component Example in GraphArena

You are required to identify all connected components in the given social network and output
one representative node from each component. Within a connected component, any node
can be reached from any other node through the edges in the graph. Different connected
components are isolated from each other.

**Problem to Solve**
- Names in the network: Veronica Garcia, Katherine Brennan, Angel Chavez, Steven Martin,
Brett Johnson, Megan Banks, Julia Dominguez, Rachel Mitchell - Fiendship connections:
Veronica Garcia to Brett Johnson, Veronica Garcia to Megan Banks, Katherine Brennan to
Brett Johnson, Katherine Brennan to Megan Banks, Angel Chavez to Megan Banks, Angel
Chavez to Rachel Mitchell, Steven Martin to Megan Banks, Brett Johnson to Megan Banks,
Megan Banks to Julia Dominguez, Megan Banks to Rachel Mitchell.

Identify all connected components in this network. Note that for each connected component,
you should only output one of its nodes. Present your answer in the following format: [UserA,
UserB, UserC, UserD, ...]

GSM8K [6]. GSM8K is a dataset of 8.5K high quality linguistically diverse grade school math word
problems created by human problem writers. We report the accuracies on the 1K test problems and
the dataset is downloaded via https://huggingface.co/datasets/openai/gsm8k.

Example in GSM8K

Natalia sold clips to 48 of her friends in April, and then she sold half as many clips in May.
How many clips did Natalia sell altogether in April and May?

MATH500. The dataset contains a subset of 500 problems from the MATH benchmark that OpenAI
created in their Let’s Verify Step by Step paper [25]. We download the dataset via https://
huggingface.co/datasets/HuggingFaceH4/MATH-500.

Example in MATH500

Let z = 2 +
√
2 − (3 + 3

√
2)i, and let c = 2 − 3i. Let w be the result when z is rotated

around c by π
4 counter-clockwise.

[asy]
unitsize(0.6 cm);
pair C, W, Z;
Z = (2 + sqrt(2), -3 - 3*sqrt(2));
C = (2,-3);
W = rotate(45,C)*(Z);
draw(Z–C–W);
dot("c", C, N);
dot("w", W, SE);
dot("z", Z, S);
label("π

4 ", C + (0.6,-1));
[/asy]
Find w.

MMLU-Pro. MMLU-Pro is enhanced version of the Massive Multitask Language Understanding
benchmark. It covers a wide range of disciplines, including Math, Law, Engineering, Health,
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Phycology, etc. We download the dataset via https://huggingface.co/datasets/TIGER-Lab/
MMLU-Pro/viewer/default/test?q=Health&row=5903.

Health Example in MMLU-pro

Question: Food supplements, including trace minerals and vitamins are frequently advertised
with promising health benefits. Which of the following substance could be consumed in
excess, i.e. well above the recommended daily requirement?

Options: [ "Vitamin C", "Vitamin D", "Zinc", "Vitamin A" ]

E.2 Inference Configuration

For inference, we adopt the vLLM framework [22]. We set the temperature to be 0.06 and the context
window to be 4096 for our evaluations unless otherwise specified.

E.3 Prompt and Answer Extraction

To facilitate answer extraction, we adopt the prompt shown in E.3 to guide the models to reason step
by step and place their answers within \boxed{}. We extract the last \boxed{} shown in the model
responses and do necessary format normalizations to retrieve the answer, which includes operations
like converting LaTeX-style fraction numbers to float numbers.

Problem Instructions

{Question Description}
Approach the problem methodically. Ensure all conclusions are based on precise calculations
and logical deductions. Feel free to explore various solution methods and cross-check results for
consistency. Maintain dynamic thinking and always verify each step of your reasoning.
Present the final answer in \boxed{} format, like this: $\boxed{ANSWER}$, where ANSWER
is the final result or expression.
Think carefully and break down the problem step by step.

F Comparison between G1-Zero-7B and G1-7B
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Figure 4: Test accuracy comparison of G1-7B
and G1-Zero-7B on our benchmark.

In Section 4.3, we study the role of SFT as a cold-start
mechanism for RL by comparing two variants: G1-
Zero-3B that is directly trained from the base model
Qwen2.5-3B-Instruct with RL, and G1-3B that initial-
izes RL from the CoT-SFT checkpoint. We observe
that G1-Zero-3B already achieves surprisingly strong
performance, while G1-3B presents clear and consis-
tent improvements across all difficulty levels. Here,
we provide additional results for comparing G1-Zero-
7B and G1-7B. As shown in Figure 4, for Easy and
Medium tasks, the benefit brought by CoT-SFT initial-
ization is marginal, with G1-Zero-7B (96.9%) even
surpassing G1-7B (95.1%) on Easy tasks. However,
on Hard and Challenging tasks, CoT-SFT as a preliminary step has definite benefits by improving
G1-Zero-7B from 13.7% to 23.6% on Challenging tasks. This observation agrees with the case in -3B.
Moreover, the average gap between G1-Zero-7B and G1-7B is less than -3B case, indicating G1-7B
can possibly be further improved with CoT-SFT generated by a stronger teacher model rather than
Qwen2.5-32B-Instruct. We leave this exploration for further work.

G Transferability of G1 to Larger Graphs

To verify the transferability of G1 to larger graphs, we construct a new test set of 5,000 graphs with
36-100 nodes, with other settings kept the same, which ensures there is no overlap between training
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and test data. Table 11 shows that both G1-3B and G1-7B achieve strong zero-shot generalization
to these larger graphs without additional training, significantly outperforming the baselines across
difficulty levels. These results demonstrate our method’s effective scalability beyond the original
training distribution.

Currently, we limit our analysis to smaller graphs because of the context window limit of underlying
LLMs (e.g., Qwen2.5-7B-Instruct). The token count scales quadratically with the number of nodes.
As shown in Table 12, a 200-node graph often exceeds 32k tokens, surpassing the maximum effective
context window of many open-source LLMs [17]. Long-context understanding is actively studied in
the LLM literature, and there are some cutting-edge proprietary variants (e.g., OpenAI’s GPT-4.1)
supporting inputs of over 1M tokens (though graphs of 2000 nodes need 4M). Due to computational
constraints (demanding a huge GPU memory), it is hard for us to evaluate on a very long context. We
believe our approach can be scaled to larger graphs with the rapid progress of long-context studies.

Table 11: Zero-shot generalization (accuracy in percentage) of G1 to larger graphs with 36-100 nodes.

Easy Medium Hard Challenging Average

Qwen2.5-3B-Instruct 27.98 28.53 5.26 0.29 16.74

G1-3B 79.39 65.66 18.46 3.74 44.29
Qwen2.5-7B-Instruct 37.86 41.56 9.17 1.17 23.94

G1-7B 76.65 70.67 23.16 5.22 46.46

Table 12: Token numbers of graph with different node sizes. We generate random graphs by
Erdős–Rényi model with an edge probability of 0.2. For each node number, we generate 10 graphs
and report the mean of the token numbers. For tokenization, we utilize the tokenizer of Qwen2.5-
Instruct.

Node Number 30 50 100 200 500 1000 2000

Token Number 641.4 1941.5 7842.8 ∼35k ∼230k ∼1M ∼4M

H GPT-4o Results on Erdős

Due to the cost budget, we randomly sample 20 examples per task from Erdős’s evaluation set to
construct a subset of 1,000 samples. As shown in Table 13, G1-3B performs comparably to GPT-4o on
average (57.37% vs. 55.13%), while G1-7B surpasses GPT-4o across all difficulty levels, exceeding it
by over 10% on average. This comparison further validates the strong graph reasoning capabilities of
the G1 models.

Table 13: Test accuracy%) of GPT-4o and G1 variants on a subset of Erdős.

Easy Medium Hard Challenging Average

GPT-4o-2024-11-20 82.50 81.82 44.06 12.14 55.13

G1-3B 96.43 85.45 41.88 5.71 57.37

G1-7B 96.43 88.64 52.50 23.57 65.29

I Results of G1-Zero-32B

To demonstrate the scalability of our approach, we extended our training methodology to develop
G1-Zero-32B from Qwen2.5-32B-Instruct. The results showcase substantial improvements across all
difficulty levels while maintaining computational efficiency. As shown in Table 14, G1-Zero-32B
demonstrates remarkable improvements on the Erdősbenchmark across all difficulty categories.
The model achieves a 27.96% improvement in average accuracy (from 47.10% to 75.06%), with
particularly notable gains in harder categories: +31.87 points on Hard problems and +26.43 points
on Challenging problems. These results indicate that our method scales effectively to larger models
while maintaining consistent performance improvements across varying problem complexities.
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Furthermore, Table 15 demonstrates that G1-Zero-32B not only preserves but slightly enhances
mathematical performance on standard benchmarks. The model shows modest improvements on both
GSM8K (+0.08 points) and MATH (+4.00 points), confirming that our reasoning-focused training
does not compromise existing mathematical capabilities and may even provide synergistic benefits.
The training process is completed in 40 hours on 32×A100 GPUs, demonstrating the practical
feasibility of scaling our approach to larger model architectures without prohibitive computational
costs.

Table 14: Test accuracy (%) of G1-Zero-32B and Qwen2.5-32B-Instruct on Erdős.

Easy Medium Hard Challenging Average

Qwen2.5-32B-Instruct 70.57 68.73 33.38 9.00 47.10

G1-Zero-32B 97.79 93.00 65.25 35.43 75.06

Table 15: Test accuracy (%) of G1-Zero-32B and Qwen2.5-32B-Instruct on math tasks.

GSM8K MATH

Qwen2.5-32B-Instruct 90.67 76.80

G1-Zero-32B 90.75 80.80

J Experiments for Robustness Verification

J.1 Multi-runs Robustness

To rigorously evaluate robustness, we conducted 32 repeated runs with different random seeds. The
results in Table 16 demonstrate consistently small standard deviations (<1% across all models and
difficulty levels), confirming the stability of our method against potential randomness in LLM outputs.

Table 16: Test accuracy (%) for 32 runs with different random seeds.

Easy Medium Hard Challenging

Qwen2.5-3B-Instruct 45.65 ± 0.51 30.88 ± 0.36 10.36 ± 0.21 1.54 ± 0.29

G1-3B 94.96 ± 0.32 83.22 ± 0.24 41.48 ± 0.40 7.96 ± 0.64

Qwen2.5-7B-Instruct 57.50 ± 0.13 44.92 ± 0.03 19.90 ± 0.31 3.45 ± 0.22

G1-7B 95.66 ± 0.12 88.89 ± 0.16 50.76 ± 0.53 24.46 ± 0.84

J.2 Prompt Robustness

For prompt robustness, we rigorously test prompt sensitivity by having GPT-4o generate three
semantically equivalent prompt variants. Table 17 shows minimal performance variance (<1.5%
standard deviation) across all models and difficulty levels, confirming our benchmark’s stability to
phrasing changes.

K Analysis of G1’s Transferbility to Mathematics Tasks

We compare the generation results of G1-7B and Qwen2.5-7B-Instruct on the math benchmarks case
by case. As a summary, G1-7B improves over Qwen2.5-7B-Instruct on more accurate numerical
calculation (Instance 1) and more comprehensive utilization of the given information (Instance 2).
It’s reasonable since the training of G1 includes complex numerical calculations (e.g., shortest path)
and careful processing of questions (e.g., traversing the whole graph descriptions to find key edges).

In fact, the transferability between different reasoning domains has also been observed in other
works and is actively under research. For example, Chu et al. [5] demonstrates that reinforcement
learning exhibits strong generalization even under distribution shifts, as it encourages models to learn
robust, task-agnostic reasoning strategies rather than overfitting to surface-level patterns. Additionally,
RL training has been shown to foster mutual reinforcement across seemingly distinct tasks, e.g.,
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Table 17: Test accuracy (%) on different prompts, mean and standard deviation reported.

Easy Medium Hard Challenging

Qwen2.5-3B-Instruct 44.26 ± 0.63 30.52 ± 1.08 10.71 ± 0.41 1.24 ± 0.07

G1-3B 94.86 ± 0.69 83.03 ± 0.42 41.08 ± 1.35 9.67 ± 1.05

Qwen2.5-7B-Instruct 56.48 ± 1.17 56.48 ± 1.17 18.81 ± 0.79 3.10 ± 0.18

G1-7B 95.48 ± 0.18 88.39 ± 0.67 51.27 ± 0.13 25.14 ± 1.04

optimizing on puzzles can help reasoning on math [24]. Similarly, due to the similarity between math
and graph problems, they would also require similar reasoning skills (such as guessing, backtracking,
and verification). Therefore, solving graph problems could have positive transferability to math
domains.

Instance 1 (Calculation Correctness)

Question: Toula went to the bakery and bought various types of pastries. She bought 3 dozen
donuts, which cost 68 dollars per dozen, 2 dozen mini cupcakes, which cost 80 dollars per dozen,
and 6 dozen mini cheesecakes for 55 dollars per dozen. How much was the total cost?

Ground Truth: 694

Answer of Qwen2.5-7B-Instruct: - Calculate the cost of the donuts: Toula bought 3 dozen
donuts. The cost per dozen donuts is 68 dollars. Therefore, the total cost for the donuts is:
3 dozen × 68 dollars/dozen = 180 dollars.
- Calculate the total cost: Add the costs of the donuts, mini cupcakes, and mini cheesecakes:
180 dollars + 160 dollars + 330 dollars = 670 dollars.

Answer of G1-7B: - Cost of Donuts: Toula bought 3 dozen donuts. The cost per dozen donuts is
68 dollars. - Therefore, the total cost for the donuts is: 3 dozen × 68 per dozen = 3× 68 = 204.
- Now, we add up the costs of all the pastries to find the total cost: $204 (donuts) +
$160 (mini cupcakes) + $330 (mini cheesecakes) = $694.

Instance 2 (Utilization of Known Conditions)

Question: On Mondays, Wednesdays, and Fridays, college student Kimo has three 1-hour classes
each day. On Tuesdays and Thursdays, he has two 2-hour classes each day. In one semester,
there are 16 weeks of school. In one semester, how many hours does Kimo spend attending classes?

Ground Truth: 272

Answer of Qwen2.5-7B-Instruct: - Calculate the number of hours Kimo spends in classes
each week: On Mondays, Wednesdays, and Fridays, Kimo has 3 classes, each lasting 1 hour.
3 classes × 1 hour/class = 3 hours. On Tuesdays and Thursdays, Kimo has 2 classes, each
lasting 2 hours. 2 classes × 2 hours/class = 4 hours. Therefore, the total number of hours
Kimo spends in classes each week is: 3 hours + 4 hours = 7 hours. - Calculate the number of
hours Kimo spends in classes in one semester: There are 16 weeks in the semester. The total
number of hours Kimo spends in classes in one semester is: 7 hours/week×16 weeks = 112 hours.

Answer of G1-7B: - Step 1: Calculate Weekly Class Hours. - Mondays, Wednesdays, and
Fridays: Each day, Kimo has 3 classes, each lasting 1 hour. Therefore, for each of these days,
the total class time is: 3 classes/day × 1 hour/class = 3 hours/day. Since there are 3 days
(Monday, Wednesday, Friday): 3 hours/day × 3 days = 9 hours. - Tuesdays and Thursdays:
Each day, Kimo has 2 classes, each lasting 2 hours. Therefore, for each of these days, the total
class time is: 2 classes/day × 2 hours/class = 4 hours/day. Since there are 2 days (Tuesday,
Thursday) 4 hours/day × 2 days = 8 hours. - Total Weekly Class Hours: Adding the hours from
all the days: 9 hours + 8 hours = 17 hours/week. - Step 2: Calculate Total Class Hours in One
Semester. There are 16 weeks in the semester. Therefore, the total class hours in one semester is:
17 hours/week × 16 weeks = 272 hours.
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L Detailed Experimental Results

L.1 Detailed Results for GraphWiz

We present the test accuracy for each task in the GraphWiz benchmark in Table 18. G1-7B achieves the
highest overall accuracy (57.11%) among all models and reaches the top in 5/7 tasks. It outperforms
DeepSeek-R1-Distill-Qwen-7B (51.86%) and even models specifically trained on GraphWiz data
such as GraphWiz-7B-RFT (49.61%). Moreover, the smaller variant G1-3B ranks first on all tasks
among models of similar parameters, surpassing the base model (Qwen2.5-3B-Instruct) by 13.64%
on average and achieves comparable performance with DeepSeek-R1-Distill-Qwen-7B. The results
in the GraphWiz benchmark verify the strong zero-shot generalization ability of our G1 models.

Table 18: Test accuracy (%) on the GraphWiz benchmark.

Model cy
cle

co
nn

ec
t

bip
art

ite

top
olo

gy

sh
ort

est

tri
an

gle

flow ha
milto

n

su
bg

rap
h

Avg
.

Llama-3.2-3B-Instruct 32.00 53.75 25.75 7.50 2.75 3.75 2.50 38.25 12.00 19.80

Qwen2.5-3B-Instruct (base) 58.00 60.50 38.50 4.00 5.75 15.50 7.50 75.00 63.25 36.44

G1-3B (Ours) 91.00 64.00 64.25 13.00 14.00 23.25 43.00 96.00 42.25 50.08
GraphWiz-RFT-7B 88.00 90.25 72.25 19.75 28.00 36.75 24.75 2.50 84.25 49.61

GraphWiz-DPO-7B 86.50 82.25 71.75 15.00 26.75 37.00 45.00 0.00 79.00 49.25

Llama-3.1-8B-Instruct 64.75 81.00 58.75 11.50 3.50 4.25 9.25 19.25 45.00 33.03

DeepSeek-R1-Distill-Qwen-7B 87.00 90.00 42.75 11.00 18.25 36.00 40.00 84.75 57.00 51.86

Qwen2.5-7B-Instruct (base) 79.00 72.25 40.75 4.25 13.50 28.75 11.50 91.25 61.00 44.69

G1-7B (Ours) 92.00 80.00 75.75 24.25 21.00 29.50 46.25 95.25 50.00 57.11

L.2 Detailed Results for MMLU-Pro

We present the detailed results for our evaluations on MMLU-Pro in Table 19. We first notice that
although G1 models share close accuracies with their base model on average, they excel at notably
different disciplines: G1-3B does the best in Physics (56.18%) while G1-7B is good at CS (53.32%).
Interestingly, RL training on graph problems in some cases improves G1over Qwen on non-STEM
subjects such as Health (53.0% v.s. 37.65%) for 3B models and Business (62.76% v.s. 53.91%) for
7B models.

Table 19: Test accuracy (%) on the MMLU-Pro benchmark.

Model Phy
sic

s

Che
m.

Eco
n.

Othe
r

M
ath

Phil
o.

Hist
ory

Bus
i.

Psy
ch

o.

Law Eng
in.

Hea
lth

CS Bio. Avg
.

Llama-3.2-3B-Instruct 7.18 14.79 15.91 13.39 6.50 13.69 18.54 11.28 23.91 15.40 9.89 14.03 13.25 9.71 13.51

Qwen2.5-3B-Instruct (base) 38.49 31.18 46.21 37.34 58.92 31.06 31.23 45.25 46.24 18.07 19.40 37.65 41.22 54.25 38.54
CoT-SFT-3B 35.70 13.99 32.25 38.72 53.29 34.41 25.65 30.04 18.16 42.71 28.08 39.22 36.34 46.03 34.23

G1-3B (Ours) 56.18 42.46 16.26 43.73 37.78 44.55 36.10 31.80 41.46 20.95 34.42 53.00 28.86 30.18 37.12

Llama-3.1-8B-Instruct 28.79 17.13 33.96 34.03 32.28 41.83 24.91 18.80 43.89 46.45 35.28 36.10 31.75 28.26 32.02

DeepSeek-R1-Distill-Qwen-7B 39.75 11.72 19.20 49.81 40.80 19.95 23.35 25.65 47.39 30.30 72.76 36.84 34.59 49.51 37.21

Qwen2.5-7B-Instruct (base) 44.17 48.53 46.87 55.89 65.80 21.44 54.53 53.91 27.04 49.50 42.64 53.66 33.27 35.96 45.75

CoT-SFT-7B 44.36 55.51 44.61 29.82 51.08 64.84 45.97 41.45 46.42 37.01 33.87 45.61 21.44 52.01 44.54

G1-7B (Ours) 46.43 51.19 68.76 40.94 47.70 53.90 32.40 62.76 25.61 49.88 51.50 51.71 53.32 36.07 48.56

L.3 Detailed Results for GraphArena

We report the detailed results for evaluations on the easy/hard problems from GraphArena in Table
20 and Table 21 respectively. We observe that G1 models perform equally or better compared to the
other models on all tasks but Distance, in which G1 performs slightly worse than the Qwen models.

L.4 Detailed Results for Erdős

In Table 22, we show the performance for each task in Erdősfor our models and baselines in detail.
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Table 20: Test accuracy (%) on the easy problems from the GraphArena benchmark.

Model Con
ne

cte
d

Diam
ete

r

Dist
an

ce

Neig
hb

or

GED
TSP

M
CP

M
CS

M
IS

M
VC

Llama-3.2-3B-Instruct 8.00 16.00 15.00 50.00 9.00 2.00 15.00 10.00 7.00 5.00

Qwen2.5-3B-Instruct (base) 20.00 11.00 47.00 48.00 37.00 17.00 3.00 41.00 4.00 2.00

G1-3B (Ours) 52.00 42.00 47.00 89.00 30.00 17.00 27.00 20.00 32.00 22.00
LLaMA2-7B-RFT 0.00 7.00 1.00 1.00 4.00 0.00 0.00 1.00 0.00 0.00

LLaMA2-7B-DPO 0.00 1.00 0.00 0.00 3.00 0.00 0.00 1.00 0.00 0.00

Llama-3.1-8B-Instruct 33.00 29.00 45.00 81.00 24.00 14.00 32.00 18.00 24.00 20.00

DeepSeek-R1-Distill-Qwen-7B 77.00 41.00 64.00 82.00 22.00 30.00 44.00 40.00 56.00 17.00

Qwen2.5-7B-Instruct (Ours) 79.00 15.00 70.00 84.00 22.00 22.00 39.00 41.00 28.00 21.00

G1-7B (Ours) 86.00 63.00 62.00 99.00 30.00 38.00 52.00 51.00 50.00 63.00

Table 21: Test accuracy (%) on the hard problems from the GraphArena benchmark.

Model Con
ne

cte
d

Diam
ete

r

Dist
an

ce

Neig
hb

or

GED
TSP

M
CP

M
CS

M
IS

M
VC

Llama-3.2-3B-Instruct 0.00 1.00 7.00 19.00 3.00 0.00 0.00 0.00 0.00 1.00

Qwen2.5-3B-Instruct (base) 4.00 4.00 28.00 22.00 7.00 0.00 1.00 0.00 0.00 1.00

G1-3B (Ours) 19.00 12.00 25.00 51.00 3.00 0.00 0.00 0.00 1.00 7.00
LLaMA2-7B-RFT 0.00 2.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

LLaMA2-7B-DPO 0.00 3.00 0.00 1.00 1.00 0.00 0.00 0.00 0.00 0.00

Llama-3.1-8B-Instruct 8.00 4.00 19.00 54.00 3.00 1.00 2.00 0.00 0.00 7.00

DeepSeek-R1-Distill-Qwen-7B 18.00 4.00 33.00 36.00 1.00 0.00 3.00 0.00 1.00 4.00

Qwen2.5-7B-Instruct (base) 27.00 4.00 44.00 68.00 2.00 0.00 5.00 0.00 1.00 5.00

G1-7B (Ours) 31.00 27.00 35.00 84.00 3.00 0.00 3.00 0.00 6.00 39.00
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M Discussion on Reward Weighting

In Section 4.3, we analyze the factor of data mixture by introducing a model G1-Hard-3B trained
exclusively on Hard and Challenging tasks. We observe that G1-Hard-3B effectively improves
performance on hard tasks, while on easier tasks still lags behind G1-3B (Table 23).

In this section, we further explore a soft data mixture strategy that scales the reward for each task
according to its difficulty. In detail, we fix the scaling factor s as 0.2, 0.4, 0.6, and 0.8 for Easy,
Medium, Hard and Challenging tasks, respectively, and name the resulting model as G1-Soft-3B.
As shown in Table 23, G1-Soft-3B achieves a balance between G1-3B and G1-Hard-3B. On easy
tasks, G1-Soft-3B largely surpasses G1-Hard-3B and is on par with G1-3B which applies uniform
scaling across all tasks. For hard tasks, G1-Soft-3B outperforms G1-3B (e.g., 11.71% v.s 7.57%
for Challenging tasks), but there is still a gap to G1-Hard-3B. The results show the soft scaling
method take effects, but the RL optimization remains dominated by easy tasks. This suggests that
further reducing the reward scaling factor for easy tasks or a dynamic weighting strategy could be
beneficial—a direction we leave for future work.

Table 23: Test accuracy (%) on our benchmark. ⋆ denotes the tasks are excluded in model training.
G1-Hard-3B is only RL-trained on Hard and Challenging tasks. G1-Soft-3B is trained on all tasks but
with different reward scaling factors based on the task difficulty.

Category Model Easy Medium Hard Challenging Average

Base Model Qwen2.5-3B-Instruct 45.71 30.18 9.44 1.29 22.72

Ours

Direct-SFT-3B 74.43 75.27 43.69 14.43 53.78

G1-3B 94.86 84.64 41.25 7.57 59.76

G1-Hard-3B 69.36⋆ 70.64⋆ 48.50 17.43 53.30

G1-Soft-3B 96.07 83.55 40.88 11.71 60.38

N Detailed Description of Erdős

N.1 Comparing Erdős with Other Graph Reasoning Benchmarks for LLMs

There is a growing interest in evaluating LLMs’ graph reasoning abilities. NLGraph [40] evaluate
LLMs on graph-theoretic tasks and discover preliminary yet brittle reasoning abilities in the face of
spurious correlations and large graphs. Later, GraphArena [37] and GraCoRe [54] include a broader
task coverage and recently released LLMs, finding that even OpenAI o1-mini struggles a lot with
complex tasks. Moreover, GraphEval2000 [45] and ProGraph [23] emphasize code-oriented problem
solving using library-based prompts, and GraphOmni [47] unify varying graph types, encodings,
and prompt styles for a comprehensive evaluation. Overall, these benchmarks suggest that LLMs
overall demonstrate moderate success on simple tasks but struggle with abstraction, generalization,
and larger or more complex graph instances. Nevertheless, these datasets are either too small (e.g.,
thousands of examples) or not diverse enough (e.g., 8 tasks in NLGraph) for training general-purpose
graph reasoners, which motivates the design of Erdős. We show the detailed comparison of existing
graph reasoning benchmarks for LLM with our Erdősin Table 24.

Table 24: Comparison of existing graph-theoretic reasoning benchmarks for LLM with our Erdős.

Benchmark #Tasks # Q-A Samples Graph Types Node Size

NLGraph [40] 8 5,902 Synthetic 5 to 35

GraphWiz [3] 9 3,600 Synthetic 2 to 100

GraphArena [37] 10 10,000 Real-world 4 to 50

GraCoRe [54] 19 5,140 Synthetic & Real-world 8 to 30

GraphOmni [47] 6 241,726 Synthetic 5 to 30

Erdős(ours) 50 100,000 Real-world 5 to 35
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N.2 Full list of tasks in Erdős

Table 25: Benchmark exmaples

Task Prompt Answer
adamic adar
index

The task is to determine the Adamic-Adar index of two nodes in
a graph.
The Adamic-Adar index is the sum of the inverse logarithm of
the degrees of the common neighbors of the two nodes.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 9. The
edges are: (1, 5), (1, 4), (1, 8), (1, 2), (1, 3), (1, 7), (5, 2), (5, 3),
(5, 4), (5, 9), (5, 6), (4, 8), (4, 9), (4, 7), (8, 2), (8, 3), (8, 6), (8,
7), (8, 9), (2, 3), (2, 7), (2, 6), (3, 9), (3, 7), (7, 6), (7, 9).
Question: What is the Adamic-Adar index between node 4 and
node 6?
You need to format your answer as a float number.

1.5859

avg neighbor
degree

The task is to determine the average degree of the neighbors of a
node in the graph.
Here is an undirected graph containing nodes from 1 to 8. The
edges are: (1, 7), (1, 8), (1, 4), (7, 8), (8, 5), (2, 3), (2, 6), (3, 5).
Question: What is the average neighbor degree of node 2 in the
graph?
You need to format your answer as a float number.

1.5

barycenter The task is to determine the barycenter of a graph.
The barycenter of a graph is also called the median. It includes
the node that minimizes the sum of shortest path lengths to all
other nodes.
The input graph is guaranteed to be connected.
Here is an undirected graph containing nodes from 1 to 7. The
edges are: (1, 2), (1, 6), (1, 5), (1, 7), (1, 4), (2, 6), (2, 5), (2, 7),
(2, 4), (6, 4), (6, 5), (6, 7), (7, 3), (7, 4).
Question: What is the barycenter of the graph?
You need to format your answer as a list of nodes in ascending
order, e.g., [node-1, node-2, ..., node-n].

[1, 2, 6,
7]

betweenness
centrality

The task is to determine the betweenness centrality of a node in
the graph.
Betweenness centrality of a node *u* is the sum of the fraction
of all-pairs shortest paths that pass through *u*.
Here is an undirected graph containing nodes from 1 to 9. The
edges are: (1, 6), (1, 4), (1, 8), (1, 9), (6, 2), (6, 7), (4, 7), (4, 5),
(8, 3), (8, 5), (8, 7), (9, 3), (9, 5), (2, 7).
Question: What is the betweenness centrality of node 5 in the
graph?
You need to format your answer as a float number.

0.0679

bfs The task is to determine the breadth-first search (BFS) traversal
order given a starting node.
Stop when the BFS cannot be continued.
Here is an undirected graph containing nodes from 1 to 7. The
edges are: (1, 2), (1, 5), (2, 3), (2, 4), (5, 3), (5, 4), (3, 4), (4, 7),
(7, 6).
Question: What is the breadth-first search (BFS) traversal order
for the starting node 1?
You need to format your answer as a list of edges, e.g., [(u1, v1),
(u2, v2), ..., (un, vn)].

[(1, 2), (1,
5), (2, 3),
(2, 4), (4,
7), (7, 6)]

26



Continuing table 25
Task Prompt Answer
bipartite
maximum
matching

The task is to determine the maximal matching in a bipartite
graph.
The input graph is guaranteed to be a bipartite graph.
Here is an undirected graph containing nodes from 1 to 4. The
edges are: (1, 3), (1, 4), (2, 3), (2, 4).
Question: What is the bipartite maximal matching of the bipar-
tite graph?
You need to format your answer as a list of edges in ascending
dictionary order, e.g., [(u1, v1), (u2, v2), ..., (un, vn)].

[(1, 3), (2,
4)]

bridges The task is to find all bridges of a graph.
A bridge is an edge in a graph whose removal increases the
number of connected components.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 5. The
edges are: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5).
Question: What are the bridges of the graph?
You need to format your answer as a list of edges in ascending
dictionary order, e.g., [(u1, v1), (u2, v2), ..., (un, vn)].

[]

center The task is to determine the center of a graph.
The center of a graph includes the node that minimizes the maxi-
mum distance to any other nodes in the graph.
The input graph is guaranteed to be connected.
Here is an undirected graph containing nodes from 1 to 6. The
edges are: (1, 5), (5, 2), (2, 6), (6, 4), (3, 4).
Question: What is the center of the graph?
You need to format your answer as a list of nodes in ascending
order, e.g., [node-1, node-2, ..., node-n].

[2, 6]

closeness cen-
trality

The task is to determine the closeness centrality of a node in the
graph.
For a node *u*, closeness centrality is the reciprocal of the
average shortest path distance to *u* over all *n-1* reachable
nodes. For directed graphs, it computes the incoming distance
to *u*.
Here is an undirected graph containing nodes from 1 to 8. The
edges are: (1, 3), (3, 6), (2, 8), (2, 6), (8, 6), (8, 7), (4, 7), (7, 5).
Question: What is the closeness centrality of node 2 in the
graph?
You need to format your answer as a float number.

0.4667

clustering
coefficient

The task is to compute the clustering coefficient for a given
node.
For unweighted graphs, the clustering of a node is the fraction
of possible triangles through that node that exist.
Here is an undirected graph containing nodes from 1 to 7. The
edges are: (1, 4), (1, 5), (1, 3), (4, 2), (4, 3), (4, 5), (4, 6), (4, 7),
(5, 2), (5, 3), (5, 6), (5, 7), (2, 6), (2, 7), (6, 7).
Question: What is the clustering coefficient of node 6?
You need to format your answer as a float number.

1.0

common
neighbor

The task is to determine common neighbors between two nodes
in the graph.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 7. The
edges are: (1, 7), (1, 6), (1, 4), (1, 5), (7, 2), (7, 3), (6, 2), (4, 3),
(5, 3).
Question: What are the common neighbors between node 2 and
node 3?
You need to format your answer as a list of nodes in ascending
order, e.g., [node-1, node-2, ..., node-n].

[7]
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Continuing table 25
Task Prompt Answer
connected
component
number

The task is to determine the number of connected components
in an undirected graph.
A connected component is a subgraph where any two nodes are
connected to each other by paths.
Here is an undirected graph containing nodes from 1 to 10. The
edges are: (1, 4), (1, 7), (1, 5), (1, 9), (1, 10), (1, 6), (1, 2), (4, 2),
(4, 3), (4, 8), (4, 5), (4, 9), (4, 10), (7, 2), (7, 3), (7, 5), (7, 6), (7,
8), (7, 9), (5, 2), (5, 3), (5, 8), (5, 9), (5, 10), (9, 2), (9, 3), (9, 6),
(9, 8), (9, 10), (10, 2), (10, 3), (10, 8), (6, 2), (6, 3), (6, 8), (2, 8),
(2, 3).
Question: How many connected components are there in the
graph?
Your answer should be an integer.

1

degree The task is to determine the degree of a node in the graph.
For the undirected graph, you should count the edge between
two nodes only once.
Here is an undirected graph containing nodes from 1 to 6. The
edges are: (1, 6), (6, 5), (2, 3), (2, 4), (3, 5).
Question: What is the degree of node 6 in the graph?
Your answer should be an integer.

2

degree cen-
trality

The task is to determine the degree centrality of a node in the
graph.
Degree centrality for a node is the fraction of nodes it is con-
nected to.
Here is an undirected graph containing nodes from 1 to 7. The
edges are: (1, 2), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (2, 6), (4, 3),
(4, 5), (4, 7), (5, 3).
Question: What is the degree centrality of node 3 in the graph?
You need to format your answer as a float number.

0.5

density The task is to determine the density of the graph.
Density is defined as the ratio of the number of edges in the
graph to the number of possible edges.
Here is an undirected graph containing nodes from 1 to 5. The
edges are: (1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5).
Question: What is the density of the graph?
You need to format your answer as a float number.

0.7

dfs The task is to determine the depth-first search (DFS) traversal
order given a starting node.
Stop when the DFS cannot be continued.
Here is an undirected graph containing nodes from 1 to 9. The
edges are: (1, 2), (1, 3), (1, 6), (3, 9), (4, 8), (4, 5), (8, 7).
Question: What is the depth-first search (DFS) traversal order
for the starting node 1?
You need to format your answer as a list of edges, e.g., [(u1, v1),
(u2, v2), ..., (un, vn)].

[(1, 2), (1,
3), (3, 9),
(1, 6)]

diameter The task is to determine the diameter of a graph.
The diameter of a graph is the longest shortest path between any
two nodes in the graph.
The input graph is guaranteed to be connected.
Here is an undirected graph containing nodes from 1 to 7. The
edges are: (1, 5), (1, 7), (1, 4), (5, 6), (2, 6), (2, 3).
Question: What is the diameter of the graph?
You need to format your answer as a float number.

5
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dominating
set

The task is to determine the dominating set of a graph.
A dominating set is a subset of nodes such that every node in
the graph is either in the set or adjacent to a node in the set.
For directed graphs, any node not in the dominating set must be
a successor of a node within the set.
Here is an undirected graph containing nodes from 1 to 7. The
edges are: (1, 2), (1, 5), (1, 6), (1, 7), (2, 3), (2, 4), (5, 6), (7, 3),
(7, 4).
Question: What is the dominating set of the graph?
You need to format your answer as a list of nodes in ascending
order, e.g., [node-1, node-2, ..., node-n].

[1, 3, 4]

edge exis-
tence

The task is to determine if there is an edge connecting two
nodes.
For an undirected graph, determine if there is an edge between
nodes *u* and *v*. For a directed graph, determine if there is
an edge from *u* to *v*.
Here is an undirected graph containing nodes from 1 to 8. The
edges are: (1, 2), (1, 6), (3, 8), (3, 4), (8, 4), (8, 5), (8, 7), (4, 7),
(4, 5), (7, 5).
Question: Is there an edge between node 5 and node 3?
Your answer should be Yes or No.

No

edge number The task is to determine the number of edges in the graph.
For the undirected graph, you should count the edge between
two nodes only once.
Here is an undirected graph containing nodes from 1 to 10. The
edges are: (1, 10), (1, 8), (10, 7), (8, 6), (2, 5), (2, 4), (2, 6), (5,
4), (5, 9), (4, 3), (4, 9), (3, 7).
Question: How many edges are there in the graph?
Your answer should be an integer.

12

global effi-
ciency

The task is to determine the global efficiency of a graph.
Global efficiency is the average efficiency of all pairs of nodes.
The efficiency of a pair of nodes is the multiplicative inverse of
the shortest path distance between the nodes.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 7. The
edges are: (1, 5), (1, 4), (5, 2), (2, 7), (7, 3), (3, 6).
Question: What is the global efficiency of the graph?
You need to format your answer as a float number.

0.5310

hamiltonian
path

The task is to return a Hamiltonian path in a directed graph.
A Hamiltonian path is a path in a directed graph that visits each
vertex exactly once.
The input graph is guaranteed to be directed and tournable.
Here is a directed graph containing nodes from 1 to 8. The
edges are: (2, 1), (2, 4), (2, 5), (2, 6), (2, 7), (1, 3), (1, 4), (1, 7),
(3, 2), (3, 7), (3, 8), (4, 3), (4, 5), (4, 7), (5, 1), (5, 3), (5, 8), (6,
1), (6, 3), (6, 4), (6, 5), (7, 5), (7, 6), (8, 1), (8, 2), (8, 4), (8, 6),
(8, 7).
Question: Return a Hamiltonian path in the graph.
You need to format your answer as a list of nodes, e.g., [node-1,
node-2, ..., node-n].

[2, 1, 4, 5,
3, 8, 7, 6]
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harmonic
centrality

The task is to determine the harmonic centrality of a node in the
graph.
Harmonic centrality of a node *u* is the sum of the reciprocal
of the shortest path distances from all other nodes to u.
Here is a directed graph containing nodes from 1 to 8. The
edges are: (6, 2), (6, 1), (6, 4), (6, 5), (6, 3), (7, 8).
Question: What is the harmonic centrality of node 3 in the
graph?
You need to format your answer as a float number.

1.0

has cycle The task is to determine if the graph has a cycle.
Here is an undirected graph containing nodes from 1 to 9. The
edges are: (1, 2), (1, 4), (1, 5), (2, 4), (2, 5), (4, 9), (5, 3), (3, 6),
(3, 8), (6, 8), (9, 7).
Question: Does the graph have a cycle?
Your answer should be Yes or No.

Yes

is bipartite The task is to determine if the graph is bipartite.
A bipartite graph is a graph whose nodes can be divided into
two disjoint sets such that no two graph vertices within the same
set are adjacent.
Here is an undirected graph containing nodes from 1 to 6. The
edges are: (1, 4), (4, 3), (2, 5), (2, 3), (5, 6), (3, 6).
Question: Is the graph bipartite?
Your answer should be Yes or No.

Yes

is eularian The task is to determine if the graph is Eulerian.
An Eulerian graph is a graph that contains an Eulerian circuit,
which is a cycle that visits every edge exactly once.
Here is an undirected graph containing nodes from 1 to 6. The
edges are: (1, 5), (1, 3), (1, 2), (1, 4), (5, 2), (3, 2), (3, 4), (3, 6),
(2, 4), (4, 6).
Question: Is the graph Eulerian?
Your answer should be Yes or No.

Yes

is regular The task is to determine if the graph is regular.
A regular graph is a graph where every node has the same de-
gree.
Here is an undirected graph containing nodes from 1 to 10. The
edges are: (1, 5), (1, 7), (1, 10), (5, 2), (5, 10), (7, 8), (7, 10), (3,
9), (3, 8), (3, 4), (9, 4), (4, 6).
Question: Is the graph regular?
Your answer should be Yes or No.

No

is tournament The task is to determine if the graph is a tournament.
A tournament is a directed graph where every pair of nodes is
connected by a single directed edge.
The input graph is guaranteed to be directed.
Here is a directed graph containing nodes from 1 to 10. The
edges are: (1, 2), (2, 1), (2, 4), (4, 2), (4, 3), (3, 1), (5, 2), (5, 4),
(6, 2), (6, 5), (7, 8), (8, 6), (9, 7), (10, 7).
Question: Is the graph a tournament?
Your answer should be Yes or No.

No
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isomophic
mapping

Given a pair of isomorphic graphs, determine the node corre-
spondence between the two graphs.
The first graph is: G describes an undirected graph among 0, 1,
2, 3, 4, 5, and 6. In this graph: Node 0 is connected to nodes 6,
3, 4. Node 1 is connected to nodes 4, 5, 6. Node 2 is connected
to nodes 3, 4. Node 3 is connected to nodes 0, 2, 5. Node 4 is
connected to nodes 0, 1, 2. Node 5 is connected to nodes 1, 3.
Node 6 is connected to nodes 0, 1.
The second graph is: G describes an undirected graph among
102, 106, 105, 101, 103, 100, and 104. In this graph: Node 100
is connected to nodes 106, 101. Node 101 is connected to nodes
102, 105, 100. Node 102 is connected to nodes 104, 101, 103.
Node 103 is connected to nodes 102, 106, 105. Node 104 is
connected to nodes 102, 106. Node 105 is connected to nodes
101, 103. Node 106 is connected to nodes 103, 100, 104.
Provide a node matching dictionary such as {Graph1 #Node1:
Graph2 #Node1, Graph1 #Node2: Graph2 #Node2, ...}

{0: 102,
3: 101,
2: 105,
4: 103,
1: 106,
5: 100, 6:
104}

jaccard coeffi-
cient

The task is to determine the Jaccard coefficient of two nodes in
a graph.
The Jaccard coefficient is the size of the intersection divided by
the size of the union of the neighbors of the two nodes.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 5. The
edges are: (1, 2), (1, 3), (2, 5), (2, 3), (3, 5), (5, 4).
Question: What is the Jaccard coefficient between node 2 and
node 4?
You need to format your answer as a float number.

0.3333

local connec-
tivity

The task is to determine the local connectivity of two nodes in
the graph.
Local connectivity is whether there exists at least one path be-
tween the two nodes.
Here is a directed graph containing nodes from 1 to 7. The
edges are: (1, 7), (7, 6), (3, 1), (4, 3), (5, 4), (6, 2).
Question: What is the local connectivity between node 7 and
node 4 in the graph?
Your answer should be Yes or No.

No

max weight
matching

The task is to determine the maximum weight matching of a
graph.
A matching is a set of edges without common vertices. A max-
imal matching cannot add more edges and still be a matching.
The weight of a matching is the sum of the weights of its edges.
If not specified, all edges have equal edge weights.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 7. The
edges are: (1, 7), (7, 5), (2, 4), (2, 5), (4, 3), (3, 6).
Question: What is the maximum weight matching of the graph?
You need to format your answer as a list of edges in ascending
dictionary order, e.g., [(u1, v1), (u2, v2), ..., (un, vn)].

[(2, 4), (5,
7), (6, 3)]
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maximal in-
dependent
set

The task is to determine the maximal independent set guaran-
teed to contain a given node in the graph.
An independent set is a set of nodes such that the subgraph
induced by these nodes contains no edges. A maximal indepen-
dent set is an independent set such that it is not possible to add a
new node and still get an independent set.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 6. The
edges are: (1, 2), (1, 6), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (4, 5).
Question: What is the maximal independent set that includes
node 4 of the graph?
You need to format your answer as a list of nodes in ascending
order, e.g., [node-1, node-2, ..., node-n].

[3, 4, 6]

maximum
flow

The task is to determine the value of the maximum flow for the
given source node and sink node.
The maximum flow is the greatest amount of flow that can be
sent from the source to the sink without violating capacity con-
straints.
Here is a directed graph containing nodes from 1 to 5. The
edges are: (2, 5, 8), (3, 1, 9), (3, 5, 3), (4, 2, 4). (u ,v, w) denotes
the edge from node *u* to node *v* has a capacity of *w*.
Question: What is the value of the maximum flow from node 3
to node 2?
You need to format your answer as a float number.

0.0

min edge cov-
ering

The task is to determine the minimum edge covering of a graph.
An edge cover is a set of edges such that every vertex in the
graph is incident to at least one edge in the set. The minimum
edge cover is the edge cover with the smallest number of edges.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 9. The
edges are: (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (2, 5), (3, 4), (3, 6),
(3, 7), (3, 8), (3, 5), (4, 7), (4, 8), (5, 6), (5, 7), (6, 7), (6, 9), (7,
9).
Question: What is the minimum edge covering of the graph?
You need to format your answer as a list of edges in ascending
dictionary order, e.g., [(u1, v1), (u2, v2), ..., (un, vn)].

[(2, 1), (5,
2), (7, 4),
(8, 3), (9,
6)]

min vertex
cover

The task is to determine the minimum vertex cover of a graph.
A vertex cover is a set of nodes such that every edge in the
graph is incident to at least one node in the set.
Here is an undirected graph containing nodes from 1 to 5. The
edges are: (1, 2), (2, 3), (3, 5), (5, 4).
Question: What is the minimum vertex cover of the graph?
You need to format your answer as a list of nodes in ascending
order, e.g., [node-1, node-2, ..., node-n].

[2, 5]

minimum
spanning tree

The task is to determine the minimum spanning tree of a graph.
A minimum spanning tree is a subset of the edges that connects
all vertices in the graph with the minimum possible total edge
weight. If not specified, all edges have equal edge weights.
The input graph is guaranteed to be undirected and connected.
Here is an undirected graph containing nodes from 1 to 9. The
edges are: (1, 2), (1, 8), (1, 5), (1, 6), (1, 4), (1, 7), (1, 9), (2, 5),
(2, 6), (2, 4), (2, 7), (2, 3), (8, 3), (8, 4), (8, 6), (8, 7), (5, 3), (5,
4), (5, 6), (5, 7), (5, 9), (6, 3), (6, 4), (6, 7), (6, 9), (4, 3), (4, 7),
(4, 9), (7, 9), (9, 3).
Question: What is the minimum spanning tree of the graph?
You need to format your answer as a list of edges in ascending
dictionary order, e.g., [(u1, v1), (u2, v2), ..., (un, vn)].

[(1, 2), (1,
4), (1, 5),
(1, 6), (1,
7), (1, 8),
(1, 9), (2,
3)]
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neighbor The task is to determine the neighbors of a node in the graph.

For directed graph, you should return the successors of the
node.
Here is an undirected graph containing nodes from 1 to 10. The
edges are: (1, 3), (1, 9), (1, 6), (1, 7), (3, 2), (3, 8), (3, 9), (6, 7),
(2, 10), (10, 8), (4, 5).
Question: What are the neighbors of node 2 in the graph?
You need to format your answer as a list of nodes in ascending
order, e.g., [node-1, node-2, ..., node-n].

[3, 10]

node number The task is to determine the number of nodes in the graph.
Here is an undirected graph containing nodes from 1 to 10. The
edges are: (1, 10), (1, 3), (10, 6), (10, 8), (3, 7), (3, 4), (2, 7), (2,
5), (2, 9), (5, 9), (5, 8), (9, 4), (8, 6).
Question: How many nodes are there in the graph?
Your answer should be an integer.

10

periphery The task is to determine the periphery of a graph.
The periphery of a graph is the set of nodes with the maximum
eccentricity. The eccentricity of a node is the maximum distance
from this node to all other nodes in the graph.
The input graph is guaranteed to be connected.
Here is an undirected graph containing nodes from 1 to 6. The
edges are: (1, 3), (3, 2), (3, 4), (3, 5), (3, 6).
Question: What is the periphery of the graph?
You need to format your answer as a list of nodes in ascending
order, e.g., [node-1, node-2, ..., node-n].

[1, 2, 4, 5,
6]

radius The task is to determine the radius of a graph.
The radius of a graph is the minimum eccentricity of any node
in the graph. The eccentricity of a node is the maximum dis-
tance from this node to all other nodes in the graph.
The input graph is guaranteed to be connected.
Here is an undirected graph containing nodes from 1 to 5. The
edges are: (1, 2), (2, 3), (3, 4), (3, 5), (4, 5).
Question: What is the radius of the graph?
You need to format your answer as a float number.

2

resource allo-
cation index

The task is to determine the resource allocation index of two
nodes in a graph.
The resource allocation index of two nodes is the sum of the
inverse of the degrees of the common neighbors of the two
nodes.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 5. The
edges are: (1, 2), (1, 3), (2, 3), (3, 4), (3, 5), (4, 5).
Question: What is the resource allocation index between node 1
and node 4?
You need to format your answer as a float number.

0.25

shortest path The task is to determine the shortest path between two nodes.
The input nodes are guaranteed to be connected.
Here is an undirected graph containing nodes from 1 to 6. The
edges are: (1, 2), (1, 3), (2, 4), (2, 3), (2, 5), (3, 4), (3, 5), (4, 6).
Question: What is the shortest path between node 1 and node 6?
You need to format your answer as a list of nodes, e.g., [node-1,
node-2, ..., node-n].

[1, 2, 4,
6]

33



Continuing table 25
Task Prompt Answer
strongly con-
nected num-
ber

The task is to determine the number of strongly connected com-
ponents in a directed graph.
A strongly connected component is a maximal subgraph where
every node is reachable from every other node.
Here is a directed graph containing nodes from 1 to 6. The
edges are: (2, 5), (5, 1), (3, 4), (6, 2).
Question: How many strongly connected components are there
in the graph?
Your answer should be an integer.

6

topological
sort

The task is to determine the topological sort of a directed
acyclic graph (DAG).
Here is a directed graph containing nodes from 1 to 6. The
edges are: (1, 6), (1, 5), (1, 4), (1, 3), (1, 2).
Question: What is the topological sort of the directed acyclic
graph (DAG)?
You need to format your answer as a list of nodes, e.g., [node-1,
node-2, ..., node-n].

[1, 6, 5, 4,
3, 2]

traveling
salesman
problem

The task is to determine the minimal cost of the Traveling Sales-
man Problem (TSP).
The Traveling Salesman Problem asks for the shortest possible
route that visits each vertex exactly once and returns to the
starting vertex.
The input graph is guaranteed to be a complete graph.
Here is an undirected graph containing nodes from 1 to 8. The
edges are: (1, 2, 9), (1, 3, 3), (1, 4, 6), (1, 5, 8), (1, 6, 7), (1, 7,
4), (1, 8, 9), (2, 3, 10), (2, 4, 11), (2, 5, 5), (2, 6, 11), (2, 7, 1), (2,
8, 9), (3, 4, 11), (3, 5, 1), (3, 6, 9), (3, 7, 2), (3, 8, 9), (4, 5, 8), (4,
6, 3), (4, 7, 4), (4, 8, 8), (5, 6, 3), (5, 7, 3), (5, 8, 10), (6, 7, 8),
(6, 8, 1), (7, 8, 10). (u ,v, w) denotes the edge from node *u* to
node *v* has a weight of *w*.
Question: What is the minimal cost of the Traveling Salesman
Problem on the graph?
You need to format your answer as a float number.

27.0

triangles The task is to find the number of triangles that include a specific
node as one vertex.
A triangle is a set of three nodes that are all connected to each
other.
The input graph is guaranteed to be undirected.
Here is an undirected graph containing nodes from 1 to 8. The
edges are: (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (1, 8), (2, 3),
(2, 4), (2, 5), (2, 6), (2, 7), (2, 8), (3, 4), (3, 5), (3, 6), (3, 7), (3,
8), (4, 5), (4, 6), (4, 7), (4, 8), (5, 6), (5, 7), (5, 8), (6, 7), (6, 8),
(7, 8).
Question: How many triangles include node 1 in the graph?
Your answer should be an integer.

21
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weighted min-
imum span-
ning tree

The task is to determine the minimum spanning tree of a
weighted graph.
A minimum spanning tree is a subset of the edges that connects
all vertices in the graph with the minimum possible total edge
weights. If not specified, all edges have equal edge weights.
The input graph is guaranteed to be undirected and connected.
Here is an undirected graph containing nodes from 1 to 5. The
edges are: (1, 4, 5), (2, 4, 11), (2, 3, 10), (3, 4, 2), (3, 5, 2). (u ,v,
w) denotes the edge from node *u* to node *v* has a weight of
*w*.
Question: What is the minimum spanning tree of the weighted
graph?
You need to format your answer as a list of edges in ascending
dictionary order, e.g., [(u1, v1), (u2, v2), ..., (un, vn)].

[(1, 4), (2,
3), (3, 4),
(3, 5)]

weighted
shortest path

The task is to determine the shortest path between two nodes of
a weighted graph.
The input nodes are guaranteed to be connected.
Here is a directed graph containing nodes from 1 to 8. The
edges are: (1, 2, 5), (1, 4, 3), (1, 7, 9), (2, 3, 10), (2, 4, 10), (3, 1,
11), (3, 4, 2), (3, 5, 6), (4, 1, 1), (4, 2, 4), (4, 6, 8), (4, 8, 2), (5, 1,
7), (5, 2, 11), (5, 6, 2), (5, 7, 5), (5, 8, 11), (6, 1, 7), (6, 2, 11), (6,
3, 4), (6, 5, 1), (6, 8, 11), (7, 1, 3), (7, 2, 8), (7, 4, 7), (7, 6, 6), (7,
8, 3), (8, 1, 11), (8, 2, 7), (8, 4, 5), (8, 7, 5). (u ,v, w) denotes the
edge from node *u* to node *v* has a weight of *w*.
Question: What is the shortest path between node 1 and node 5?
You need to format your answer as a list of nodes, e.g., [node-1,
node-2, ..., node-n].

[1, 4, 6,
5]

wiener index The task is to determine the Wiener index of a connected graph.
The Wiener index of a graph is the sum of the shortest-path
distances between each pair of reachable nodes. For pairs of
nodes in undirected graphs, only one orientation of the pair is
counted.
In the input graph, all node pairs are guaranteed to be reachable.
Here is an undirected graph containing nodes from 1 to 5. The
edges are: (1, 2), (1, 4), (2, 3), (4, 5), (3, 5).
Question: What is the Wiener index of the graph?
You need to format your answer as a float number.

15.0

O Discussion

In this paper, we explored the use of Reinforcement Learning to improve LLMs’ reasoning abilities
on graph reasoning and demonstrate significant improvements across a spectrum of tasks with various
difficulty levels, showing that graph reasoning of LLMs can be elicited via RL training (even with
only 300 steps). We also comprehensively evaluate the transferability of RL-trained models to
unseen graph reasoning tasks, real-world graph tasks, and general reasoning tasks, observing strong
zero-shot generalization. These results support our hypothesis that training LLMs on diverse synthetic
graph-theoretic tasks via RL offers a scalable, generalizable path toward robust graph reasoning. As
a first step, this approach may guide the development of efficient, general-purpose graph reasoners.

In future work, we aim to explore dynamic difficulty scheduling during RL training to address the
sample inefficiency issue. On a broader scale, we also plan to extend our approach to the following
scenarios: (1) Handling larger graphs with thousands of nodes, aligning with the long-context
reasoning challenges. (2) Incorporating visual inputs (e.g., images depicting graphs) to enhance
real-world applicability. (3) Adapting G1 to more practical domains such as logistics, knowledge
graph reasoning, and tabular problem-solving, where structured reasoning is critical.
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