
START: Self-taught Reasoner with Tools

Anonymous ACL submission

Abstract

Large Reasoning Models (LRMs) have demon-001
strated remarkable capabilities in complex rea-002
soning through long chain-of-thought, yet they003
struggle with precise computations and algo-004
rithmic operations. Integrating computational005
tools with LRMs remains challenging, particu-006
larly in activating and enhancing models’ tool-007
use capabilities without compromising their008
reasoning strengths. We address these chal-009
lenges through START (Self-taught Reasoner010
with Tools), introducing two key innovations:011
(1) Hint-infer, a training-free approach that012
activates LRMs’ latent tool-use capabilities013
through artificial hints, enabling test-time per-014
formance scaling; (2) Hint-RFT, a self-training015
framework that enables models to learn ef-016
fective tool utilization through diverse hint017
patterns and rejection-based data synthesis.018
Experiments show that START significantly019
improves state-of-the-art LRMs across chal-020
lenging benchmarks, including competition-021
level mathematics (AMC23: 95.0%, AIME24:022
75.6%) and graduate-level science questions023
(GPQA: 64.6%). Our analysis reveals that024
START not only enhances accuracy but also025
improves reasoning efficiency through strategic026
tool utilization, demonstrating broad applica-027
bility in complex reasoning scenarios.028

1 Introduction029

Large Reasoning Models (LRMs) have achieved030

breakthrough progress in complex reasoning tasks,031

demonstrating human-like thinking paradigm in-032

cluding iterative reflection, task decomposition,033

and dynamic strategy shifting in long chain-034

of-thought (Wei et al., 2022; OpenAI, 2024b;035

DeepSeek-AI, 2025). However, despite these036

achievements, current LRMs face fundamental lim-037

itations when confronted with tasks requiring pre-038

cise numerical computations, symbolic manipula-039

tion, or complex program execution. (Gou et al.,040

2024). Computational tools, such as code inter-041

preters (CI), provide LRMs with a paradigm be- 042

yond text reasoning, enabling enumeration, precise 043

computation, and algorithm execution through tool 044

interaction (Gou et al., 2024; OpenAI, 2025). By 045

leveraging these capabilities, LRMs can expand 046

their reasoning search space and reduce hallucina- 047

tions caused by complex calculations. 048

Integrating computational tools into LRMs re- 049

mains an open scientific challenge that raises fun- 050

damental questions about model capabilities and 051

training strategies. Specifically, we investigate: (1) 052

whether LRMs trained solely on text reasoning data 053

retain the potential for code interpreter utilization; 054

(2) how to synthesize high-quality bootstrapping 055

data for training models with robust tool-use abili- 056

ties. These questions are crucial for understanding 057

the relationship between language reasoning and 058

computational tool use, as well as developing effi- 059

cient training paradigms for tool-integrated LRMs. 060

To address these questions, we present START 061

(Self-taught Reasoner with Tools). Our initial 062

investigation reveals that state-of-the-art LRMs 063

like QwQ-32B-Preview (Qwen Team, 2024) and 064

DeepSeek-R1-Distill-Qwen-32B (DeepSeek-AI, 065

2025) struggle to follow instructions for incorpo- 066

rating code interpreter during reasoning. A possi- 067

ble reason is that LRMs typically focus solely on 068

problem-solving during training for complex rea- 069

soning tasks, resulting in a loss of generalization 070

in instruction following. To tackle this challenge, 071

we propose a training-free framework named Hint- 072

infer that activates models’ latent tool-use capabil- 073

ities. Specifically, by injecting artificial hints such 074

as "Wait, I can use Python to check if my approach 075

is correct and refine it, if necessary.“‘python" at the 076

end of the thinking process, models spontaneously 077

generate Python code to interact with code inter- 078

preters for further verification and computation. 079

While Hint-infer provides a way to synthesize 080

data with CI calls in long CoT reasoning, it is lim- 081

ited in terms of both the positioning and function- 082

1

ality of tool usage. To enhance the diversity of CI083

utilization in synthetic data, we propose Hint-RFT084

(rejection fine-tuning (Yuan et al., 2023; Dong et al.,085

2023)). Specifically, we summarize six types of086

hints based on long CoT reasoning patterns (Mar-087

janović et al., 2025) and the role of CI in mathe-088

matical reasoning (Gou et al., 2024). Beyond the089

end of thinking process, we identify "Wait" and090

"Alternatively" as two high-frequency discourse091

markers that signal cognitive shifts like (Li et al.,092

2025a), serving as additional insertion points for093

hints. To ensure the effectiveness of hint insertion,094

we employ rejection sampling to retain only the095

data where hints lead to a significant improvement096

in reasoning accuracy. Furthermore, by scaling up097

the training data through another round of RFT, we098

achieve additional performance gains.099

On five challenging mathematical benchmarks,100

both QwQ-32B-Preview and DeepSeek-R1-Distill-101

Qwen-32B demonstrate significant performance102

improvements with Hint-infer, showing test-time103

scaling capabilities as the number of hint inser-104

tions increases. Hint-RFT further enhances model105

performance through training, achieving average106

accuracy improvements of 8.6% and 4.4% respec-107

tively across these benchmarks. Notably, our meth-108

ods generalize well to out-of-domain tasks, as evi-109

denced by performance gains on benchmarks like110

GPQA. When extending to coding tasks, QwQ-111

32B-Preview shows a 5.9% improvement on Live-112

CodeBench, demonstrating the broad applicability113

of our approach.114

In summary, our contributions are threefold:115

1. We propose a training-free approach called116

Hint-infer that activates LRMs’ latent tool-use117

capabilities through artificial hints, enabling118

test-time performance scaling through multi-119

ple hint insertions.120

2. We introduce Hint-RFT, a self-training frame-121

work that enables LRMs to teach themselves122

effective tool utilization through diverse hint123

patterns and rejection-based data synthesis.124

3. We demonstrate the effectiveness and gener-125

alizability of our methods through extensive126

experiments across mathematical, scientific,127

and coding tasks, achieving competitive per-128

formance with state-of-the-art models.129

2 Methodology 130

Our method consists of three key components: (1) 131

Hint-infer, a training-free approach that enables 132

and scales tool usage through artificial hints during 133

inference; (2) Hint-RFT, a data synthesis frame- 134

work that combines diverse hint patterns with rejec- 135

tion sampling for model fine-tuning; and (3) RFT, 136

a further refinement stage that scales up training 137

data for additional performance gains. We detail 138

each component in the following subsections, with 139

a primary focus on Hint-infer and Hint-RFT as our 140

main technical contributions. 141

2.1 Hint-infer 142

We observe that models like QwQ-32B-Preview 143

and DeepSeek-R1-Distill-Qwen-32B struggle to 144

activate their CI capabilities through direct prompt- 145

ing. Instead, we explore intervening in their rea- 146

soning process. Our initial investigation focuses on 147

whether CI can provide performance gains while 148

preserving models’ complete thinking process. 149

Specifically, we intercept the model’s output at 150

either the thinking termination point or the last oc- 151

currence of "wait" if no explicit termination exists. 152

We then append a hint, such as "Wait, I can use 153

Python to check if my approach is correct and re- 154

fine it, if necessary.“‘python" (more details in D). 155

This process can be repeated N times after each 156

reasoning completion, enabling multiple rounds of 157

tool-assisted verification and refinement. 158

2.2 Hint-RFT 159

Construct Hint We summarize six types of hints 160

based on long CoT reasoning patterns (Marjanović 161

et al., 2025) and the role of CI in mathematical rea- 162

soning (Gou et al., 2024): (1) complex calculations 163

hint for direct computations, (2) self-reflection hint 164

for verification, (3) check logic hint for deduction 165

validation, (4) alternative method hint for explor- 166

ing different approaches, (5) general hint for basic 167

tool usage, and (6) deeper think hint for thorough 168

analysis. Since mathematical reasoning with tools 169

can be quite complex, these diverse hints enable 170

the model to adopt different strategies based on 171

the specific situation it encounters. For each hint 172

type, we generate multiple alternative expressions 173

using Qwen-2.5-72B (Yang et al., 2025) to increase 174

linguistic diversity. Some typical hints are list in 175

Figure 2. 176

Data Curation For mathematical reasoning data 177

curation, we first identify two strategic insertion 178

2

Math & Code Problems START-0

input

c) RFT

infer

𝑫𝐒𝐓𝐀𝐑𝐓

START

SFT

𝑫𝐒𝐓𝐀𝐑𝐓

score filter modify

a) Hint-infer

𝑫𝐬𝐞𝐞𝐝Hint-infer

score

filter

START-0
QwQ-32B-Preview

𝑫𝐬𝐞𝐞𝐝

SFT

b) Data Selection and SFT

Figure 1: Training framework for START. Our framework consists of three components: (a) Hint-infer: a
training-free approach that injects context-aware hints to activate tool usage during inference, illustrated with
QwQ-32B-Preview; (b) Hint-RFT: processes Hint-infer outputs to create seed dataset Dseed for initial fine-tuning,
producing START-0; (c) RFT: uses START-0 to generate expanded dataset DSTART for final model training. See
cases in Appendix G and Appendix I.

points for hints: (1) at the end of thinking pro-179

cess, and (2) during the thinking process. To main-180

tain reasoning coherence, we specifically target181

insertions after conjunctions like Alternatively and182

Wait, as these tokens naturally indicate potential183

shifts in reasoning or consideration of alternative184

approaches, similar to (Li et al., 2025a).185

To ensure the effectiveness of hint insertion, in-186

spired by (Lightman et al., 2024), we adopt an ac-187

tive learning idea. Specifically, we only retain data188

samples where the inserted hints lead to successful189

problem-solving for previously incorrect cases, en-190

suring that each hint insertion makes meaningful191

contributions to the reasoning process. We verify192

this robustness through multiple sampling itera-193

tions for each hint. Additionally, we filter out re-194

sponses containing repetitive patterns or incorrect195

code execution.196

RFT To efficiently scale up our training data, we197

first annotate our training set to obtain a startup198

dataset Dseed containing 10K mathematical reason-199

ing samples. To reduce computational cost, we fine-200

tune QwQ-32B-Preview on Dseed to obtain START-201

0, which serves as an intermediate model for fur-202

ther data generation. We then employ START-0203

to perform rejection fine-tuning (RFT), resulting204

in a larger dataset DSTART with 40,000 mathemat- 205

ical reasoning samples. Finally, we fine-tune the 206

base model on DSTART to obtain our final model, 207

START. 208

3 Experiment 209

3.1 Training data 210

Our training data consists of math problems 211

sourced from previous AIME problems 1(before 212

2024), MATH (Hendrycks et al., 2021), and 213

Numina-MATH (LI et al., 2024). We apply the de- 214

contamination method as described in (Yang et al., 215

2024) to the training set in order to minimize po- 216

tential test data leakage risks. There are a total 217

of 40K math problems, and the specific quantity 218

distribution can be referred to in Appendix A. 219

3.2 Benchmarks 220

We evaluate our method on both in-domain and 221

out-of-domain benchmarks that require complex 222

reasoning with computational tools. 223

In-domain Mathematical Benchmarks We se- 224

lect competition-level mathematics datasets in- 225

1https://huggingface.co/datasets/gneubig/
aime-1983-2024

3

https://huggingface.co/datasets/gneubig/aime-1983-2024
https://huggingface.co/datasets/gneubig/aime-1983-2024

Figure 2: Some typical hints. Code generation tasks: Debug hint guides test case review and local code validation.
The code template is in D. Math reasoning: Domain-specific hints (e.g., Complex Calculations, Self-Reflection,
Logic Check, Alternative Methods) steer code-aided reasoning behaviors.

cluding AMC23 2, AIME24 3, AIME25 4, and226

MATH500 (Lightman et al., 2024). These bench-227

marks cover various mathematical topics like al-228

gebra, calculus, number theory, probability, and229

geometry.230

Out-of-domain Scientific Benchmark We use231

GPQA (Rein et al., 2023), which contains 448232

graduate-level multiple-choice questions in biology,233

physics, and chemistry. This benchmark is particu-234

larly challenging, with domain experts achieving235

less than 75% accuracy (OpenAI, 2024b).236

3.3 Baselines237

We compare START with state-of-the-art lan-238

guage models including general-purpose LLMs239

(GPT-4o (OpenAI, 2024a), Llama3.3-70B (Dubey240

et al., 2024), DeepSeek-V3-671B (DeepSeek-AI241

et al., 2024)) and specialized reasoning models242

(o1 (OpenAI, 2024b) DeepSeek-R1 (DeepSeek-AI,243

2025), QwQ-32B-Preview (Qwen Team, 2024)),244

DeepSeek-R1-Distill-Qwen-32B (DeepSeek-AI,245

2https://huggingface.co/datasets/AI-MO/
aimo-validation-amc

3https://huggingface.co/datasets/AI-MO/
aimo-validation-aime

4https://huggingface.co/datasets/TIGER-Lab/
AIME25

2025),s1 (Muennighoff et al., 2025a),Qwen-2.5- 246

MATH-72B-TIR (Yang et al., 2024), rStar-Math- 247

7B (Guan et al., 2025). 248

3.4 Implementation 249

We select QwQ-32B-Preview and DeepSeek-R1- 250

Distill-Qwen-32B as our base models, produc- 251

ing START-Preview and START-R1 respectively 252

through START frame work in Figure 1. For de- 253

tailed training hyperparameters, please refer to H. 254

During inference, we use a maximum sequence 255

length of 32,768, limit tool usage to 6 times, and 256

set topp=0.95 and temperature=0.6 for decoding. 257

3.5 Main Results 258

Table 1: Scores on GPQA in various subjects.

Model Physics Chemistry Biology

QwQ-32B-Preview 73.8 41.9 68.4
Search-o1 77.9 47.3 78.9
START 80.0 47.3 68.4

Table 2 presents the comprehensive evaluation 259

results of START against various baseline models. 260

Our key findings are as follows: 261

4

https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-amc
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/AI-MO/aimo-validation-aime
https://huggingface.co/datasets/TIGER-Lab/AIME25
https://huggingface.co/datasets/TIGER-Lab/AIME25

Table 2: Performance comparison. Pass@1 results are reported for all benchmarks, with AIME24, AIME25, and
AMC23 averaged over 16 samples, and MATH500 over 1 sample. * indicates results from official releases. For
unofficial results, we evaluate models locally using the same inference settings as START.

Model Tool-Use In-domain Out-of-domain

AIME24 AIME25 AMC23 MATH500 GPQA Avg

Baselines

GPT-4o* ✗ 9.3 - - 60.3 50.6 -
DeepSeek-V3-671B* ✗ 39.2 - - 90.2 59.1 -
Llama3.3-70B ✗ 36.7 - 47.5 70.8 43.4 -
Qwen-2.5-MATH-72B-TIR* ✓ 40.0 - 70.0 88.1 - -
rStar-Math-7B ✓ 26.7 - 47.5 78.4 - -
search-o1-32B* ✓ 56.7 - 85.0 86.4 63.6 -
DeepSeek-R1-671B* ✗ 79.8 70.0 - 97.3 71.5 -
s1-32B* ✗ 50.0 33.3 - 93.0 59.6 -

Improvement

QwQ-32B-Preview ✗ 50.0 40.0 80.0 90.6 58.1 63.7
START-32B-Preview ✓ 64.8 (+14.8) 47.1 (+7.1) 94.0 (+14.0) 94.4 (+3.8) 63.6 (+5.5) 72.3 (+8.6)
DeepSeek-R1-32B ✗ 72.3 54.2 88.9 94.3 61.6 74.3
START-32B-R1 ✓ 75.6 (+3.3) 63.3 (+9.1) 95.0 (+6.1) 95.1 (+0.8) 64.6 (+3.0) 78.7 (+4.4)

In-domain Performance START demonstrates262

consistent improvements across all mathematical263

benchmarks. Specifically, START-32B-Preview264

achieves significant gains over its base model265

QwQ-32B-Preview, with improvements of +14.8%,266

+7.1%, +14.0%, and +3.8% on AIME24, AIME25,267

AMC23, and MATH500 respectively. Similarly,268

START-32B-R1 enhances the performance of269

DeepSeek-R1-32B, achieving state-of-the-art re-270

sults on AMC23 (95.0%) and competitive perfor-271

mance on other benchmarks.272

Out-of-domain Generalization On GPQA,273

START-32B-Preview shows a significant improve-274

ment of 5.5% over its base model, matching the275

performance of search-o1-32B. As detailed in276

Table 1, START achieves the highest score in277

Physics (80.0%), while search-o1-32B(based on278

START-32B-Preview) excels in Biology. This279

pattern aligns with the nature of different disci-280

plines: Physics problems often require extensive281

computational reasoning where Python-based282

tools excel, while Biology questions rely more283

on knowledge-based reasoning where search284

capabilities prove more beneficial. Beyond our285

main experiments, we further evaluate START’s286

generalization capabilities on diverse reasoning287

tasks (detailed results in Appendix F).288

3.6 Generalization to Code Task289

To explore the generalization capability of our290

START framework, we extend our approach to pro-291

gramming tasks using QwQ-32B-Preview as the292

Table 3: Scores on questions of different difficulty levels
on LiveCodeBench.

Model Easy Medium Hard

QwQ-32B-Preview 92.3 46.0 10.2
START-Preview 92.3 84.6 12.2

base model. We design specialized code hints (de- 293

tailed in Appendix E) that promote self-debugging 294

capabilities, encouraging models to verify solutions 295

against test cases and make necessary adjustments. 296

The model is trained on programming datasets 297

from Codeforces 5, code contests 6 and Live- 298

CodeBench (before July 2024) (Jain et al., 2024). 299

We evaluate on 112 problems from LiveCodeBench 300

(August-November 2024). As shown in Table 3, 301

START-Preview maintains the strong performance 302

on easy problems (92.3%) while achieving substan- 303

tial improvements on medium-difficulty problems 304

(+38.6%). The improvement on hard problems 305

is modest (+2.0%), suggesting that while our ap- 306

proach effectively enhances code debugging capa- 307

bilities, solving complex programs remains chal- 308

lenging. 309

3.7 Analysis of Hint-infer 310

We analyze the effectiveness of Hint-infer through 311

two perspectives: its direct impact on base models 312

and its test-time scaling capabilities. 313

5https://codeforces.com/problemset
6https://github.com/google-deepmind/code_

contests

5

https://codeforces.com/problemset
https://github.com/google-deepmind/code_contests
https://github.com/google-deepmind/code_contests

3k 5k 7k 9k
Average Thinking Time (tokens)

75

80

85

90

95

Ac
cu

ra
cy

 (
%

)

AMC23

9k 11k 13k 15k
Average Thinking Time (tokens)

45

50

55

60

65

70

75

80
AIME24

7k 9k 11k 13k 15k
Average Thinking Time (tokens)

35

40

45

50

55

60

65

70
AIME25

QwQ-32B-Preview
START-Preview

DeepSeek-R1-Distill-Qwen-32B
START-R1

Figure 3: Test time scaling for QwQ-32B-Preview,START-Preview, DeepSeek-R1-Distill-Qwen-32B and START-R1
on challenge math bench marks via Hint-infer.

Hint-infer vs. Fine-tuned Models Our exper-314

iments reveal that while base models like QwQ-315

32B-Preview possess latent tool-use capabilities,316

these abilities are difficult to activate through stan-317

dard prompting. Figure 3 (left) shows that Hint-318

infer significantly improves QwQ-32B-Preview’s319

performance across all benchmarks, with notable320

gains on AMC23 (+12.5%), AIME24 (+10.0%),321

and AIME25 (+13.3%). Notably, both base mod-322

els achieve these improvements while requiring323

fewer average tokens, demonstrating that tool us-324

age enhances not only accuracy but also reasoning325

efficiency. However, these improvements are mod-326

erate compared to the fine-tuned START-Preview,327

suggesting that while Hint-infer can effectively ac-328

tivate tool usage, fine-tuning through Hint-RFT329

better unlocks the model’s full potential.330

Test-time Scaling Analysis A key advantage of331

Hint-infer is its ability to enable test-time perfor-332

mance scaling. As shown in Figure 3, multi-333

ple rounds of hint insertion lead to consistent per-334

formance improvements while increasing think-335

ing time. Unlike previous approaches that sim-336

ply extend reasoning through additional "wait" to-337

kens (Muennighoff et al., 2025a), Hint-infer ac-338

tively promotes tool utilization at each step. In-339

terestingly, this scaling effect is more pronounced340

in base models than in fine-tuned ones. For in-341

stance, QwQ-32B-Preview shows steady accuracy342

improvements with increased thinking time across343

all benchmarks, while START-Preview quickly344

plateaus. This suggests that fine-tuned models may345

have already internalized the hint patterns during346

training, reducing the marginal benefit of additional 347

hints during inference. 348

3.8 Ablation Study 349

Ablation on Hints To investigate the effective- 350

ness of different hint types, we conduct ablation 351

studies using QwQ-32B-Preview as the base model. 352

We randomly sample 5000 math training examples 353

for each hint type while ensuring consistent data 354

volume across experiments. Table 4 shows the per- 355

formance of different hint variants. 356

Results demonstrate that all hint types contribute 357

positively to model performance, with average im- 358

provements ranging from +1.8% to +6.1%. Among 359

single hint types, self-reflection hints achieve the 360

best average performance (71.3%), showing partic- 361

ularly strong improvements on AIME25 (+8.2%) 362

and AMC23 (+9.6%). Deeper thinking hints and 363

alternative method hints also demonstrate strong 364

performance, especially on complex problems like 365

AIME24. The mixed approach, which combines all 366

hint types, achieves the best overall performance 367

(72.4%), suggesting that diverse hint patterns help 368

cover different aspects of mathematical reasoning. 369

Notably, even when trained with only self- 370

reflection hints, the model exhibits diverse tool 371

usage behaviors in testing. Using DeepSeek-V3 372

as a Python functionality classifier, we observe 373

varied hint pattern distributions: complex calcula- 374

tion (2.5%), self-reflection (66.6%), logic checking 375

(6.3%), alternative method (3.1%), general usage 376

(20.5%), and deeper thinking (2.3%). This suggests 377

that hint-infer does not overfit to a single behavior 378

pattern. While this work demonstrates the effec- 379

6

Table 4: Ablation study on different hint types. Results show the performance of QwQ-32B-Preview with
different hint variants on mathematical benchmarks. Mixed approach combines all hint types while maintaining the
same total data volume.

Method MATH500 AIME24 AIME25 AMC23 Avg

QwQ-32B-Preview 90.6 50.0 40.0 80.0 65.2

Complex calculation hint 91.5 52.3 41.2 83.2 67.0
Self-reflection hint 92.8 54.6 48.2 89.6 71.3
Check logic hint 92.4 53.3 43.7 86.9 69.1
Alternative method hint 93.1 55.5 45.6 87.5 70.4
General hint 91.8 51.6 42.6 83.2 67.3
Deeper thinking hint 93.1 58.4 44.4 85.5 70.3
Mixed 93.4 56.8 47.8 91.5 72.4

tiveness of simple handcrafted hints with random380

insertion, developing more sophisticated hint de-381

sign and insertion strategies remains a promising382

direction for future research.383

Ablation on Active Learning We investigate384

the effectiveness of active learning in Hint-RFT385

by comparing two data collection strategies (with386

same data amount): (1) recalling all samples387

with correct final answers, and (2) only retaining388

samples where hint insertion leads to successful389

problem-solving for previously incorrect cases. Us-390

ing QwQ-32B-Preview as the base model, we con-391

duct experiments on mathematical benchmarks, as392

shown in Table 5.393

Results show that while both strategies improve394

over the baseline, the active learning approach395

leads to better performance across all benchmarks.396

START-0-Preview with active learning achieves an397

average improvement of +3.8% over the baseline,398

compared to +2.4% without active learning, demon-399

strating the importance of selective data curation in400

tool-augmented reasoning.401

Ablation on Data Format To isolate the im-402

pact of tool usage from data quantity, we con-403

duct an ablation study comparing pure reasoning404

and tool-augmented reasoning approaches. Using405

the same training data , we fine-tune QwQ-32B-406

Preview through standard text-based RFT (QwQ-407

32B-Preview-RFT) and our tool-augmented ap-408

proach (START-Preview). As shown in Table 6,409

QwQ-32B-Preview-RFT achieves similar perfor-410

mance to the base model (65.2% vs. 65.2% average411

accuracy), while START-Preview shows substantial412

improvements (+9.9% average accuracy). These re-413

sults suggest that the performance gains of START414

primarily stem from its tool-use capabilities rather 415

than the expanded training data, highlighting the 416

importance of integrating computational tools in 417

complex reasoning tasks. 418

4 Related Work 419

Large Reasoning Models Large Language Mod- 420

els have demonstrated remarkable capabilities 421

in complex reasoning through Chain-of-Thought 422

(CoT) prompting (Wei et al., 2022). This has been 423

further enhanced by Long Chain-of-Thought (Ope- 424

nAI, 2024b; DeepSeek-AI, 2025; Team et al., 2025; 425

Qwen Team, 2024), where models exhibit ad- 426

vanced cognitive behaviors such as reflection, veri- 427

fication, and multi-path exploration. Recent works 428

have successfully scaled these capabilities through 429

various approaches: QwQ-32B-Preview (Qwen 430

Team, 2024), DeepSeek-R1 (DeepSeek-AI, 2025), 431

and InternThinker (Cai et al., 2024) leverage fine- 432

tuning and reinforcement learning to enhance 433

reasoning abilities, while Open-R1 (Hugging- 434

face, 2025), S1 (Muennighoff et al., 2025b), and 435

LIMO (Ye et al., 2025) demonstrate the effective- 436

ness of distillation for smaller models. However, 437

these text-based reasoning approaches often strug- 438

gle with precise numerical computations and com- 439

plex algorithmic operations, leading to potential 440

hallucinations and accuracy issues in mathemati- 441

cal and scientific reasoning tasks. This limitation 442

highlights the need for integrating computational 443

tools with language models while preserving their 444

sophisticated reasoning capabilities. 445

Tool-integrated Reasoning To address compu- 446

tational inaccuracies in LLMs, recent works have 447

explored integrating external tools into the reason- 448

ing process. Studies have demonstrated the benefits 449

7

Table 5: Ablation study on active learning strategy. Results compare QwQ-32B-Preview with START-0-Preview
trained with and without active learning (ac). Active learning retains only samples where hint insertion improves
model performance.

Method MATH500 AIME24 AIME25 AMC23 Avg

QwQ-32B-Preview 90.6 50.0 40.0 80.0 65.2
START-0-Preview w/o ac 91.3 52.3 41.2 85.5 67.6
START-0-Preview 92.3 53.1 42.7 87.8 69.0

Table 6: Ablation study on data format. Comparison between pure reasoning (RFT) and tool-augmented reasoning
(START) using the same training data, demonstrating the importance of tool usage rather than data quantity.

Method MATH500 AIME24 AIME25 AMC23 Avg.

QwQ-32B-Preview 90.6 50.0 40.0 80.0 65.2
QwQ-32B-Preview-RFT 91.8 53.3 33.3 82.5 65.2
START-Preview 94.4 64.8 47.1 94.0 75.1

of code-based pre-training (Shao et al., 2024) and450

post-training (Chen et al., 2023; Gou et al., 2024;451

Liao et al., 2024; Li et al., 2024). Formal verifi-452

cation tools like Lean have also shown promise in453

mathematical proof verification (Xin et al., 2024;454

Wu et al., 2024).455

Additionally, while rStar (Guan et al., 2025) fo-456

cuses on concatenating short CoTs into long CoTs457

and integrating tool usage through process rewards458

model and MCTS, START builds upon o1-style459

long CoT to internalize complex human reasoning460

processes within the CoT framework itself. These461

approaches are relatively orthogonal and could po-462

tentially be complementary in future research.463

Concurrent Work Concurrent with our work,464

several studies have explored related directions in465

tool-augmented reasoning. Works like ToRL (Li466

et al., 2025b), AutoCode4Math (Wang et al., 2025),467

and ZTRL (Mai et al., 2025) investigate zero-shot468

reinforcement learning approaches for tool utiliza-469

tion. While these studies demonstrate promising470

results, they differ fundamentally from START in471

that they train from base models rather than enhanc-472

ing existing LRMs, potentially missing out on the473

sophisticated reasoning capabilities already present474

in state-of-the-art reasoning models.475

Recent works like Retool (Feng et al., 2025)476

and STILL3 (Chen et al., 2025) focus on address-477

ing cold-start challenges in generating long code-478

integrated reasoning data. While these approaches479

make valuable contributions to data generation480

strategies, START’s hint-based approach offers a481

unique perspective by directly activating and im-482

proving latent tool-use capabilities in existing mod- 483

els. 484

5 Conclusion 485

We present START, a framework that effectively 486

activates and enhances LLMs’ tool-use capabilities 487

through two key components: Hint-infer and Hint- 488

RFT. Our approach demonstrates that large reason- 489

ing models possess latent tool-use abilities that can 490

be activated without training through strategically 491

placed hints, and these capabilities can be further 492

enhanced through targeted fine-tuning with rejec- 493

tion sampling. Through extensive experiments, we 494

show that START achieves substantial improve- 495

ments across various benchmarks, surpassing state- 496

of-the-art models on several mathematical and sci- 497

entific reasoning tasks. Our analysis reveals sev- 498

eral key findings: (1) the framework’s effective- 499

ness stems primarily from enhanced tool utilization 500

rather than increased data exposure, as evidenced 501

by our ablation studies comparing pure reasoning 502

and tool-augmented approaches; (2) hint-based ac- 503

tivation enables test-time performance scaling with- 504

out additional training, allowing models to achieve 505

better performance through multiple rounds of tool 506

interaction; and (3) strategic tool usage leads to 507

more efficient reasoning with reduced token con- 508

sumption, demonstrating that computational tools 509

can serve as effective external memory and verifica- 510

tion mechanisms. These insights not only validate 511

our approach but also suggest promising directions 512

for future research, such as developing more so- 513

phisticated hint design strategies. 514

8

6 Limitations515

While START demonstrates strong performance516

across various reasoning tasks, we acknowledge517

several limitations of our current work. First, the518

computational overhead of tool usage, while offset519

by improved reasoning efficiency, may need to be520

considered in resource-constrained scenarios. Our521

current implementation requires additional compu-522

tation for code execution, though this is typically523

balanced by the reduced number of reasoning steps524

and improved accuracy. Additionally, while our525

hint insertion methodology proves effective, there526

might be room for more systematic approaches to527

optimize insertion points and frequencies. For in-528

stance, developing adaptive strategies for determin-529

ing optimal hint insertion timing based on problem530

complexity and reasoning progress could poten-531

tially further improve efficiency. Future work could532

explore these directions while maintaining the core533

benefits of our framework, potentially leading to534

even more efficient tool-augmented reasoning sys-535

tems.536

References537

Zheng Cai, Maosong Cao, Haojiong Chen, Kai Chen,538
Keyu Chen, Xin Chen, Xun Chen, Zehui Chen,539
Zhi Chen, Pei Chu, Xiaoyi Dong, Haodong Duan,540
Qi Fan, Zhaoye Fei, Yang Gao, Jiaye Ge, Chenya541
Gu, Yuzhe Gu, Tao Gui, Aijia Guo, Qipeng Guo,542
Conghui He, Yingfan Hu, Ting Huang, Tao Jiang,543
Penglong Jiao, Zhenjiang Jin, Zhikai Lei, Jiaxing Li,544
Jingwen Li, Linyang Li, Shuaibin Li, Wei Li, Yin-545
ing Li, Hongwei Liu, Jiangning Liu, Jiawei Hong,546
Kaiwen Liu, Kuikun Liu, Xiaoran Liu, Chengqi Lv,547
Haijun Lv, Kai Lv, Li Ma, Runyuan Ma, Zerun Ma,548
Wenchang Ning, Linke Ouyang, Jiantao Qiu, Yuan549
Qu, Fukai Shang, Yunfan Shao, Demin Song, Zi-550
fan Song, Zhihao Sui, Peng Sun, Yu Sun, Huanze551
Tang, Bin Wang, Guoteng Wang, Jiaqi Wang, Ji-552
ayu Wang, Rui Wang, Yudong Wang, Ziyi Wang,553
Xingjian Wei, Qizhen Weng, Fan Wu, Yingtong554
Xiong, Chao Xu, Ruiliang Xu, Hang Yan, Yirong555
Yan, Xiaogui Yang, Haochen Ye, Huaiyuan Ying, Jia556
Yu, Jing Yu, Yuhang Zang, Chuyu Zhang, Li Zhang,557
Pan Zhang, Peng Zhang, Ruijie Zhang, Shuo Zhang,558
Songyang Zhang, Wenjian Zhang, Wenwei Zhang,559
Xingcheng Zhang, Xinyue Zhang, Hui Zhao, Qian560
Zhao, Xiaomeng Zhao, Fengzhe Zhou, Zaida Zhou,561
Jingming Zhuo, Yicheng Zou, Xipeng Qiu, Yu Qiao,562
and Dahua Lin. 2024. Internlm2 technical report.563
Preprint, arXiv:2403.17297.564

Wenhu Chen, Xueguang Ma, Xinyi Wang, and565
William W. Cohen. 2023. Program of thoughts566
prompting: Disentangling computation from reason-567
ing for numerical reasoning tasks. Trans. Mach.568
Learn. Res., 2023.569

Zhipeng Chen, Yingqian Min, Beichen Zhang, Jie Chen, 570
Jinhao Jiang, Daixuan Cheng, Wayne Xin Zhao, 571
Zheng Liu, Xu Miao, Yang Lu, Lei Fang, Zhongyuan 572
Wang, and Ji-Rong Wen. 2025. An empirical study 573
on eliciting and improving r1-like reasoning models. 574
Preprint, arXiv:2503.04548. 575

DeepSeek-AI. 2025. Deepseek-r1: Incentivizing rea- 576
soning capability in llms via reinforcement learning. 577

DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingx- 578
uan Wang, Bochao Wu, Chengda Lu, Chenggang 579
Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, 580
Damai Dai, Daya Guo, Dejian Yang, Deli Chen, 581
Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, 582
Fuli Luo, Guangbo Hao, Guanting Chen, Guowei 583
Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng 584
Wang, Haowei Zhang, Honghui Ding, Huajian Xin, 585
Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, 586
Jianzhong Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, 587
Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie 588
Qiu, Junlong Li, Junxiao Song, Kai Dong, Kai Hu, 589
Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean 590
Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, 591
Litong Wang, Liyue Zhang, Meng Li, Miaojun Wang, 592
Mingchuan Zhang, Minghua Zhang, Minghui Tang, 593
Mingming Li, Ning Tian, Panpan Huang, Peiyi Wang, 594
Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu 595
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, 596
Ruisong Zhang, Ruizhe Pan, Runji Wang, Runxin 597
Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao 598
Lu, Shangyan Zhou, Shanhuang Chen, Shaoqing Wu, 599
Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu 600
Wang, Shuang Zhou, Shuiping Yu, Shunfeng Zhou, 601
Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, 602
W. L. Xiao, Wangding Zeng, Wanjia Zhao, Wei An, 603
Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, 604
Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, 605
Xiao Bi, Xiaodong Liu, Xiaohan Wang, Xiaojin Shen, 606
Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, 607
Xiaotao Nie, Xiaowen Sun, Xiaoxiang Wang, Xin 608
Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, 609
Xinnan Song, Xinxia Shan, Xinyi Zhou, Xinyu Yang, 610
Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li, 611
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yan- 612
hong Xu, Yanhong Xu, Yanping Huang, Yao Li, Yao 613
Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, 614
Yi Zheng, Yichao Zhang, Yifan Shi, Yiliang Xiong, 615
Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yix- 616
uan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, 617
Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue 618
Gong, Yuheng Zou, Yujia He, Yukun Zha, Yunfan 619
Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo, Yuxi- 620
ang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. 621
Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, 622
Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan 623
Zhang, Zhewen Hao, Zhibin Gou, Zhicheng Ma, Zhi- 624
gang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, 625
Zhongyu Zhang, Zhuoshu Li, Zihui Gu, Zijia Zhu, 626
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi 627
Gao, and Zizheng Pan. 2024. Deepseek-v3 technical 628
report. Preprint, arXiv:2412.19437. 629

Hanze Dong, Wei Xiong, Deepanshu Goyal, Yihan 630
Zhang, Winnie Chow, Rui Pan, Shizhe Diao, Jipeng 631

9

https://arxiv.org/abs/2403.17297
https://arxiv.org/abs/2503.04548
https://arxiv.org/abs/2503.04548
https://arxiv.org/abs/2503.04548
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://github.com/deepseek-ai/DeepSeek-R1/blob/main/DeepSeek_R1.pdf
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437
https://arxiv.org/abs/2412.19437

Zhang, Kashun Shum, and Tong Zhang. 2023. RAFT:632
reward ranked finetuning for generative foundation633
model alignment. Trans. Mach. Learn. Res.634

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,635
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,636
Akhil Mathur, Alan Schelten, Amy Yang, Angela637
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang,638
Archi Mitra, Archie Sravankumar, Artem Korenev,639
Arthur Hinsvark, Arun Rao, Aston Zhang, Aurélien640
Rodriguez, Austen Gregerson, Ava Spataru, Bap-641
tiste Rozière, Bethany Biron, Binh Tang, Bobbie642
Chern, Charlotte Caucheteux, Chaya Nayak, Chloe643
Bi, Chris Marra, Chris McConnell, Christian Keller,644
Christophe Touret, Chunyang Wu, Corinne Wong,645
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Al-646
lonsius, Daniel Song, Danielle Pintz, Danny Livshits,647
David Esiobu, Dhruv Choudhary, Dhruv Mahajan,648
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,649
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova,650
Emily Dinan, Eric Michael Smith, Filip Radenovic,651
Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Geor-652
gia Lewis Anderson, Graeme Nail, Grégoire Mialon,653
Guan Pang, Guillem Cucurell, Hailey Nguyen, Han-654
nah Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov,655
Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan656
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan657
Geffert, Jana Vranes, Jason Park, Jay Mahadeokar,658
Jeet Shah, Jelmer van der Linde, Jennifer Billock,659
Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,660
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu,661
Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph662
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia,663
Kalyan Vasuden Alwala, Kartikeya Upasani, Kate664
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and665
et al. 2024. The Llama 3 herd of models. CoRR,666
abs/2407.21783.667

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang,668
Yujia Qin, Baoquan Zhong, Chengquan Jiang, Jinxin669
Chi, and Wanjun Zhong. 2025. Retool: Reinforce-670
ment learning for strategic tool use in llms. Preprint,671
arXiv:2504.11536.672

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong Shen,673
Yujiu Yang, Minlie Huang, Nan Duan, and Weizhu674
Chen. 2024. Tora: A tool-integrated reasoning agent675
for mathematical problem solving. In The Twelfth In-676
ternational Conference on Learning Representations,677
ICLR 2024, Vienna, Austria, May 7-11, 2024.678

Xinyu Guan, Li Lyna Zhang, Yifei Liu, Ning Shang,679
Youran Sun, Yi Zhu, Fan Yang, and Mao Yang.680
2025. rstar-math: Small llms can master math rea-681
soning with self-evolved deep thinking. Preprint,682
arXiv:2501.04519.683

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul684
Arora, Steven Basart, Eric Tang, Dawn Song, and685
Jacob Steinhardt. 2021. Measuring mathematical686
problem solving with the MATH dataset. In NeurIPS687
Datasets and Benchmarks.688

Huggingface. 2025. Open r1.689

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia 690
Yan, Tianjun Zhang, Sida Wang, Armando Solar- 691
Lezama, Koushik Sen, and Ion Stoica. 2024. Live- 692
CodeBench: Holistic and contamination free eval- 693
uation of large language models for code. CoRR, 694
abs/2403.07974. 695

Chengpeng Li, Guanting Dong, Mingfeng Xue, 696
Ru Peng, Xiang Wang, and Dayiheng Liu. 2024. 697
Dotamath: Decomposition of thought with code assis- 698
tance and self-correction for mathematical reasoning. 699
CoRR, abs/2407.04078. 700

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, 701
Roman Soletskyi, Shengyi Costa Huang, Kashif 702
Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan 703
Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume 704
Lample, and Stanislas Polu. 2024. Numina- 705
math. [https://github.com/project-numina/ 706
aimo-progress-prize](https://github.com/ 707
project-numina/aimo-progress-prize/blob/ 708
main/report/numina_dataset.pdf). 709

Xiaoxi Li, Guanting Dong, Jiajie Jin, Yuyao Zhang, 710
Yujia Zhou, Yutao Zhu, Peitian Zhang, and Zhicheng 711
Dou. 2025a. Search-o1: Agentic search-enhanced 712
large reasoning models. Preprint, arXiv:2501.05366. 713

Xuefeng Li, Haoyang Zou, and Pengfei Liu. 2025b. 714
Torl: Scaling tool-integrated rl. Preprint, 715
arXiv:2503.23383. 716

Minpeng Liao, Chengxi Li, Wei Luo, Jing Wu, and Kai 717
Fan. 2024. MARIO: math reasoning with code in- 718
terpreter output - A reproducible pipeline. In ACL 719
(Findings), pages 905–924. Association for Compu- 720
tational Linguistics. 721

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harri- 722
son Edwards, Bowen Baker, Teddy Lee, Jan Leike, 723
John Schulman, Ilya Sutskever, and Karl Cobbe. 724
2024. Let’s verify step by step. In The Twelfth In- 725
ternational Conference on Learning Representations, 726
ICLR 2024, Vienna, Austria, May 7-11, 2024. 727

Xinji Mai, Haotian Xu, Xing W, Weinong Wang, Yingy- 728
ing Zhang, and Wenqiang Zhang. 2025. Agent rl 729
scaling law: Agent rl with spontaneous code exe- 730
cution for mathematical problem solving. Preprint, 731
arXiv:2505.07773. 732

Sara Vera Marjanović, Arkil Patel, Vaibhav Adlakha, 733
Milad Aghajohari, Parishad BehnamGhader, Mehar 734
Bhatia, Aditi Khandelwal, Austin Kraft, Benno Kro- 735
jer, Xing Han Lù, Nicholas Meade, Dongchan Shin, 736
Amirhossein Kazemnejad, Gaurav Kamath, Marius 737
Mosbach, Karolina Stańczak, and Siva Reddy. 2025. 738
Deepseek-r1 thoughtology: Let’s think about llm rea- 739
soning. Preprint, arXiv:2504.07128. 740

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi- 741
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke 742
Zettlemoyer, Percy Liang, Emmanuel Candès, and 743
Tatsunori Hashimoto. 2025a. s1: Simple test-time 744
scaling. 745

10

https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2504.11536
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2501.04519
https://arxiv.org/abs/2501.04519
https://github.com/huggingface/open-r1
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://github.com/project-numina/aimo-progress-prize](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2501.05366
https://arxiv.org/abs/2503.23383
https://arxiv.org/abs/2505.07773
https://arxiv.org/abs/2505.07773
https://arxiv.org/abs/2505.07773
https://arxiv.org/abs/2505.07773
https://arxiv.org/abs/2505.07773
https://arxiv.org/abs/2504.07128
https://arxiv.org/abs/2504.07128
https://arxiv.org/abs/2504.07128
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393

Niklas Muennighoff, Zitong Yang, Weijia Shi, Xi-746
ang Lisa Li, Li Fei-Fei, Hannaneh Hajishirzi, Luke747
Zettlemoyer, Percy Liang, Emmanuel Candès, and748
Tatsunori Hashimoto. 2025b. s1: Simple test-time749
scaling. Preprint, arXiv:2501.19393.750

OpenAI. 2024a. Hello GPT-4o.751

OpenAI. 2024b. Learning to reason with LLMs.752

OpenAI. 2025. Openai o3-mini.753

Qwen Team. 2024. QwQ: Reflect deeply on the bound-754
aries of the unknown.755

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase,756
and Yuxiong He. 2020. Zero: Memory optimizations757
toward training trillion parameter models.758

David Rein, Betty Li Hou, Asa Cooper Stickland, Jack-759
son Petty, Richard Yuanzhe Pang, Julien Dirani, Ju-760
lian Michael, and Samuel R. Bowman. 2023. GPQA:761
A graduate-level Google-proof Q&A benchmark.762
CoRR, abs/2311.12022.763

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu,764
Junxiao Song, Mingchuan Zhang, Y. K. Li, Y. Wu,765
and Daya Guo. 2024. Deepseekmath: Pushing the766
limits of mathematical reasoning in open language767
models. CoRR, abs/2402.03300.768

Kimi Team, Angang Du, Bofei Gao, Bowei Xing,769
Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun770
Xiao, Chenzhuang Du, Chonghua Liao, Chuning771
Tang, Congcong Wang, Dehao Zhang, Enming Yuan,772
Enzhe Lu, Fengxiang Tang, Flood Sung, Guangda773
Wei, Guokun Lai, Haiqing Guo, Han Zhu, Hao774
Ding, Hao Hu, Hao Yang, Hao Zhang, Haotian Yao,775
Haotian Zhao, Haoyu Lu, Haoze Li, Haozhen Yu,776
Hongcheng Gao, Huabin Zheng, Huan Yuan, Jia777
Chen, Jianhang Guo, Jianlin Su, Jianzhou Wang,778
Jie Zhao, Jin Zhang, Jingyuan Liu, Junjie Yan, Jun-779
yan Wu, Lidong Shi, Ling Ye, Longhui Yu, Meng-780
nan Dong, Neo Zhang, Ningchen Ma, Qiwei Pan,781
Qucheng Gong, Shaowei Liu, Shengling Ma, Shu-782
peng Wei, Sihan Cao, Siying Huang, Tao Jiang,783
Weihao Gao, Weimin Xiong, Weiran He, Weixiao784
Huang, Wenhao Wu, Wenyang He, Xianghui Wei,785
Xianqing Jia, Xingzhe Wu, Xinran Xu, Xinxing786
Zu, Xinyu Zhou, Xuehai Pan, Y. Charles, Yang Li,787
Yangyang Hu, Yangyang Liu, Yanru Chen, Yejie788
Wang, Yibo Liu, Yidao Qin, Yifeng Liu, Ying Yang,789
Yiping Bao, Yulun Du, Yuxin Wu, Yuzhi Wang, Zaida790
Zhou, Zhaoji Wang, Zhaowei Li, Zhen Zhu, Zheng791
Zhang, Zhexu Wang, Zhilin Yang, Zhiqi Huang, Zi-792
hao Huang, Ziyao Xu, and Zonghan Yang. 2025.793
Kimi k1.5: Scaling reinforcement learning with llms.794
Preprint, arXiv:2501.12599.795

Haozhe Wang, Long Li, Chao Qu, Fengming Zhu, Weidi796
Xu, Wei Chu, and Fangzhen Lin. 2025. Learning au-797
tonomous code integration for math language models.798
Preprint, arXiv:2502.00691.799

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten800
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,801

et al. 2022. Chain-of-thought prompting elicits rea- 802
soning in large language models. Advances in Neural 803
Information Processing Systems, 35:24824–24837. 804

Zijian Wu, Suozhi Huang, Zhejian Zhou, Huaiyuan 805
Ying, Jiayu Wang, Dahua Lin, and Kai Chen. 2024. 806
Internlm2.5-stepprover: Advancing automated theo- 807
rem proving via expert iteration on large-scale LEAN 808
problems. CoRR, abs/2410.15700. 809

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, 810
Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li, and 811
Xiaodan Liang. 2024. Deepseek-prover: Advancing 812
theorem proving in llms through large-scale synthetic 813
data. CoRR, abs/2405.14333. 814

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, 815
Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu, 816
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jian- 817
hong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang, 818
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, 819
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng 820
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tian- 821
hao Li, Tianyi Tang, Tingyu Xia, Xingzhang Ren, 822
Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, 823
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and 824
Zihan Qiu. 2025. Qwen2.5 technical report. Preprint, 825
arXiv:2412.15115. 826

An Yang, Beichen Zhang, Binyuan Hui, Bofei Gao, 827
Bowen Yu, Chengpeng Li, Dayiheng Liu, Jian- 828
hong Tu, Jingren Zhou, Junyang Lin, et al. 2024. 829
Qwen2.5-Math technical report: Toward mathemat- 830
ical expert model via self-improvement. CoRR, 831
abs/2409.12122. 832

Yixin Ye, Zhen Huang, Yang Xiao, Ethan Chern, Shijie 833
Xia, and Pengfei Liu. 2025. Limo: Less is more for 834
reasoning. Preprint, arXiv:2502.03387. 835

Zheng Yuan, Hongyi Yuan, Chengpeng Li, Guanting 836
Dong, Keming Lu, Chuanqi Tan, Chang Zhou, and 837
Jingren Zhou. 2023. Scaling relationship on learning 838
mathematical reasoning with large language models. 839
Preprint, arXiv:2308.01825. 840

11

https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://arxiv.org/abs/2501.19393
https://openai.com/index/hello-gpt-4o/
https://openai.com/index/learning-to-reason-with-llms/
https://openai.com/index/openai-o3-mini/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://qwenlm.github.io/blog/qwq-32b-preview/
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2501.12599
https://arxiv.org/abs/2502.00691
https://arxiv.org/abs/2502.00691
https://arxiv.org/abs/2502.00691
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2502.03387
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825
https://arxiv.org/abs/2308.01825

A Training set of START841

Table ?? presents the composition of our train-842

ing dataset. For mathematical reasoning, we col-843

lect problems from three main sources: AIME844

problems before 2024 (890 samples), MATH845

dataset (Hendrycks et al., 2021) (7,500 samples),846

and Numina-MATH (LI et al., 2024) (28,505 sam-847

ples). This combination provides a diverse range of848

mathematical problems spanning various difficulty849

levels and topic areas.850

For programming tasks, we incorporate data851

from Codeforces (7,505 problems), code contests852

(2,011 problems), and LiveCodeBench before July853

2024 (Jain et al., 2024) (558 problems). These854

sources offer a comprehensive coverage of coding855

challenges with different complexity levels. In to-856

tal, our training set consists of 49,969 problems,857

with approximately 74% focusing on mathematical858

reasoning and 26% on programming tasks.859

B More results about Hint-infer860

Building upon the observed trends, the detailed re-861

sults in Table B further underscore the efficacy of862

the QwQ-Hint-infer and START-Hint-infer meth-863

ods across diverse challenging reasoning tasks.864

Specifically, for datasets such as aime24, aime25,865

gpqa, amc23, MATH500, and LiveCodeBench,866

QwQ-32B-Preview consistently demonstrates per-867

formance enhancements with each subsequent868

round of hint insertion. For instance, aime24869

improves from 50.0% in Round 0 to 60.0% in870

Round 3, and MATH500 shows a marginal yet871

steady increase from 90.6% to 92.4% over the same872

rounds. This consistent upward trend highlights the873

method’s ability to incrementally refine the model’s874

reasoning capabilities through iterative hint integra-875

tion.876

In contrast, the START-Hint-infer approach ex-877

hibits a more varied performance across different878

datasets. While there are improvements in some879

areas, such as AIME25, where the Pass@1 metric880

reaches 60.0% by Round 3 and LiveCodeBench881

sees an increase from 47.3% to 50.0%, other882

datasets like GPQA and LiveCodeBench show rel-883

atively modest gains and even no gains. This dis-884

parity suggests that the effectiveness of Hint-infer885

may be contingent on the inherent characteristics886

of the dataset and the nature of the reasoning tasks887

involved.888

C Prompting Methods for Data 889

annotation 890

We investigated three common methods to trigger 891

existing reasoning LLMs to generate long CoT with 892

Python tool calls in mathematical reasoning tasks. 893

The first method is "direct prompt"(Please inte- 894

grate natural language reasoning with programs 895

to solve the problem.), which instructs the model 896

to directly use Python tools during reasoning. The 897

second method, "well-designed prompt" is derived 898

from search-o1 (Li et al., 2025a) and provides de- 899

tailed instructions on how to use the tools; this 900

prompt successfully triggers the model to gener- 901

ate special tokens for browser calls in search-o1. 902

The third method is "in-context prompt"(Give some 903

demonstrations in the prompt) which leverages ex- 904

amples to guide the model in generating data in 905

the same format. We do not use general LLMs, as 906

they typically cannot produce long CoTs. For the 907

o1 series, we can only assess whether the summary 908

includes Python tool invocation. As a result, we 909

found that neither QwQ-32B-Preview, DeepSeek- 910

R1, nor o1-mini could successfully generate long 911

CoTs with code interpreter calls using the three 912

prompt-based methods. In contrast, the hint-infer 913

method was able to trigger the model to produce 914

Python code with 100% success. 915

D Hint-infer for test time scaling 916

The three rounds hints of GPQA and MATH for 917

Hint-infer are: Wait, I can use Python to check 918

if my approach is correct and refine it, if neces- 919

sary.“‘python, Wait, I need to utilize Python code 920

again to meticulously check to make sure I un- 921

derstand the question correctly as well as rea- 922

soning correctly.“‘python and Wait, I can think 923

more deeply about this problem through python 924

tools.“‘python. 925

E Code Task Hints 926

For code problem with starter code, the code tem- 927

plate is 928

{startcoder} 929

Test the example inputs 930

solution = Solution() 931

Example input1 932

test_input1 = ... 933

Example input2 934

test_input2 = ... 935

Print output 936

12

Table 7: Sources of Dataset D

Source Quantity

AIME problems (before 2024) 890
MATH (Hendrycks et al., 2021) 7500
Numina-MATH (LI et al., 2024) 28505

Code Data
Codeforces 7505
Code contests 2011
LiveCodeBench (before July 2024) (Jain et al., 2024) 558

Total 49969

Table 8: Comparison of QWQ-Hint-infer and START-Hint-infer on challenging reasoning tasks, including PhD-level
science QA, math, and code benchmarks. We report Pass@1 metric for all tasks.

Dataset QwQ-32B-Preview START
Round
0

Round
1

Round
2

Round
3

Round
0

Round
1

Round
2

Round
3

aime24 50.0% 53.3% 56.7% 60.0% 66.7% 66.7% 66.7% 70.0%
aime25 40.0% 47.1% 47.1% 53.3% 47.1% 47.1% 60.0% 60.0%
gpqa 58.5% 58.6% 59.6% 59.6% 63.6% 61.6% 60.6% 61.6%
amc23 80.0% 85.0% 90.0% 92.5% 95.0% 92.5% 95.0% 95.0%
MATH500 90.6% 92.0% 92.0% 92.4% 94.4% 95.0% 95.6% 95.2%
LiveCodeBench 41.4% 42.0% 42.0% 42.0% 47.3% 48.2% 50.0% 50.0%

print(solution.function_name(test_input1))937

print(solution.function_name(test_input2))938

Check the output939

'''940

'''output941

[...]942

For code problem without starter code, the code943

template is944

def function_name(parameters):945

#Implementation\n946

Test the example inputs947

solution = Solution()948

Example input1949

test_input1 = ...950

Example input2951

test_input2 = ...952

Print output953

print(solution.function_name(test_input1))954

print(solution.function_name(test_input2))955

...(same as above)956

F More Experiments on Generalization 957

START shows consistent improvements across log- 958

ical reasoning (LogicBench: +1.5%), theoretical 959

computer science (TheoremQA: +2.4%), and tabu- 960

lar math word problems (TabMWP: +1.1%). These 961

results suggest that the benefits of our framework 962

extend beyond the primary evaluation domains, 963

demonstrating the general applicability of tool- 964

augmented reasoning. 965

Table 9: START’s generalization to additional rea-
soning tasks.

Model LogicBench TheoremQA∗ TabMWP

QwQ-32B-Preview 50.6 49.3 95.1
START 52.1 51.7 96.2

Improvement (+1.5) (+2.4) (+1.1)

13

G Case Study For START966

G.1 A case form AMC23967

A case form AMC23

Problem:
In the state of Coinland, coins have values 6, 10, and 15 cents. Suppose x is the value in cents of
the most expensive item in Coinland that cannot be purchased using these coins with exact change.
What is the sum of the digits of x?
Solution:
So I’ve got this problem from the state of Coinland, where they have coins worth 6, 10, and 15
cents. The question is asking for the value of the most expensive item that you can’t buy using
these coins with exact change. Then, I need to find the sum of the digits of that value.
First off, I need to understand what this is asking. It seems like a problem related to the concept
of the Frobenius coin problem, which is about finding the largest amount that cannot be obtained
using given coin denominations. In the classic case, with two coprime denominations, there’s a
formula to find this number, but here we have three denominations: 6, 10, and 15 cents.
I know that for two coprime numbers, a and b, the largest number that can’t be expressed as a
non-negative integer combination of a and b is ab− a− b. But here, we have three numbers, and
they aren’t all pairwise coprime. For instance, 6 and 10 share a common factor of 2, and 6 and 15
share a common factor of 3. So, the standard Frobenius number formula doesn’t directly apply.
Maybe I should start by looking at the greatest common divisor (GCD) of these numbers. Let’s
find the GCD of 6, 10, and 15.
The GCD of 6 and 10 is 2.
The GCD of 2 and 15 is 1.
So, the overall GCD is 1. That means that eventually, any sufficiently large number can be
expressed as a combination of these coins, since their GCD is 1.
But, there might be some gaps before we reach a certain point where all numbers can be expressed.
Perhaps I should look for the Frobenius number for these three denominations. However, I recall
that for more than two denominations, there isn’t a general formula for the Frobenius number. So,
I might need to approach this problem differently.
One approach could be to consider the possible combinations of these coins and see which numbers
can be expressed. Maybe I can start by listing out the possible sums.
Let’s list out some combinations:
- 0 coins: 0 cents
- 1 coin: 6, 10, or 15 cents
- 2 coins: 6 + 6 = 12, 6 + 10 = 16, 6 + 15 = 21, 10 + 10 = 20, 10 + 15 = 25, 15 + 15 = 30
cents
- 3 coins: 6+6+6 = 18, 6+6+10 = 22, 6+6+15 = 27, 6+10+10 = 26, 6+10+15 = 31,
6+15+15 = 36, 10+10+10 = 30, 10+10+15 = 35, 10+15+15 = 40, 15+15+15 = 45
cents
- And so on...
This could take a while, and I might miss some numbers. Maybe there’s a better way.
Another thought: since the GCD is 1, I know that every number greater than or equal to a certain
number can be expressed as a combination of these coins. I need to find the largest number that
cannot be expressed this way.
Perhaps I can look at the problem in terms of modulo arithmetic. For example, since 6 is divisible
by 3, 10 is not, and 15 is divisible by 3, I can consider how these combine in terms of modulo 3.
Wait, but that might not be directly helpful. Let me think differently.
I’ve heard of the concept of the "Frobenius number" for two coins, but for three or more, it’s more
complicated. Maybe I can reduce this problem to a combination of smaller problems.

968

14

Let me consider pairs of these denominations and find their Frobenius numbers, then see how that
helps.
First, consider only 6 and 10 cent coins. Since GCD(6, 10) = 2, which is greater than 1, the
Frobenius number for these two is not defined because you can’t make all even numbers greater
than a certain point with just 6 and 10. Wait, no. Actually, since their GCD is 2, you can make any
even number greater than or equal to a certain value.
Wait, the Frobenius number formula ab− a− b applies only when a and b are coprime. Here, 6
and 10 are not coprime, so that formula doesn’t apply.
Similarly, for 6 and 15, GCD(6, 15) = 3, which is greater than 1.
And for 10 and 15, GCD(10, 15) = 5.
So, none of the pairs are coprime.
This complicates things.
Alternatively, maybe I can look at the problem in terms of linear combinations.
I need to find the largest x such that there are no non-negative integers a, b, c satisfying 6a+10b+
15c = x.
This seems tricky. Maybe I can look for a pattern in the possible sums.
Let me try to list out the possible sums in order:
0, 6, 10, 12, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 30, etc.
Wait, I can use Python to generate specific examples that fit the problem’s conditions.

Python Code

from itertools import product
def can_be_paid(x, coins):

for a in range(x//coins[0] + 1):
for b in range(x//coins[1] + 1):

for c in range(x//coins[2] + 1):
if a*coins[0] + b*coins[1] + c*coins[2] == x:

return True
return False

coins = [6, 10, 15]
max_x = 100
arbitrary upper limit to search for the largest x that cannot be paid
possible_x = []
for x in range(1, max_x):

if not can_be_paid(x, coins):
possible_x.append(x)

print((max(possible_x), sum(int(digit) for digit in str(max(possible_x)))))

Output

(29, 11)

From the code, I found that the largest value that cannot be purchased using coins of 6, 10, and 15
cents is 29 cents. The sum of the digits of 29 is 2 + 9 = 11.
So, the answer is 11.
Final Answer

11
969

15

G.2 A case form AIME24970

A case form AIME24

Problem:
Let p be the least prime number for which there exists a positive integer n such that n4 + 1 is
divisible by p2. Find the least positive integer m such that m4 + 1 is divisible by p2.
Solution:

I’m trying to solve this problem. It says: Let p be the least prime number for which there exists a
positive integer n such that n4 + 1 is divisible by p2. Find the least positive integer m such that
m4 + 1 is divisible by p2.
First, I need to find the smallest prime p such that there’s some positive integer n making n4 + 1
divisible by p2. Then, using that p, I have to find the smallest positive integer m where m4 + 1 is
divisible by p2.
So, to start, I need to understand when n4 + 1 is divisible by p2. That means p2 divides n4 + 1, or
in other words, n4 ≡ −1 (mod p2).
I know that for primes, certain properties hold due to Fermat’s Little Theorem and Euler’s Theorem,
but I’m not sure how to apply them here directly because we’re dealing with p2, not just p.
Maybe I should look at the equation n4 ≡ −1 (mod p2). This implies that n8 ≡ 1 (mod p2),
because if n4 ≡ −1, then squaring both sides gives n8 ≡ 1 (mod p2).
So, the order of n modulo p2 divides 8, meaning the order is 1, 2, 4, or 8. But since n4 ≡ −1
(mod p2), the order can’t be 1, 2, or 4, because in those cases, n4 would be 1, not -1. Therefore,
the order must be 8.
This means that 8 divides the order of the multiplicative group modulo p2, which is ϕ(p2) =
p(p− 1), where ϕ is Euler’s totient function.
So, 8 divides p(p− 1). Since p is prime, there are a few cases to consider:
1. p = 2
2. p is an odd prime, and 8 divides p− 1
Let’s consider p = 2 first.
If p = 2, then p2 = 4. We need to check if there exists an n such that n4 + 1 is divisible by 4.
Let’s compute n4 + 1 modulo 4:
- If n is even, n4 is divisible by 16, so n4 ≡ 0 (mod 4), thus n4 + 1 ≡ 1 (mod 4), which is not
divisible by 4.
- If n is odd, n4 ≡ 1 (mod 4), so n4 + 1 ≡ 2 (mod 4), which is also not divisible by 4.
Therefore, there is no positive integer n such that n4 + 1 is divisible by 4. So, p = 2 is not a valid
choice.
Next, consider odd primes where 8 divides p− 1. That is, p ≡ 1 (mod 8).
The smallest such primes are 17, 41, 73, etc.
Alternatively, there could be other primes where p divides n4 + 1, but for p2 to divide n4 + 1, it’s
more restrictive.
Wait a minute, maybe I should consider quadratic residues or higher power residues.
Alternatively, perhaps I should look for primes where −1 is a fourth power residue modulo p2.
I recall that for primes, −1 is a quadratic residue if p ≡ 1 (mod 4), but here we’re dealing with
fourth powers.
Maybe I should consider the Legendre symbol or higher power residues.
Alternatively, perhaps I can use Hensel’s Lemma to lift solutions from modulo p to modulo p2.
First, I need to find primes p such that there exists an n with n4 ≡ −1 (mod p), and then check if
that solution can be lifted to modulo p2.
So, start by finding primes p for which n4 ≡ −1 (mod p) has a solution.
This is equivalent to saying that −1 is a fourth power residue modulo p.

971

16

The multiplicative group modulo p is cyclic of order p− 1, so n4 ≡ −1 (mod p) has a solution
if and only if there exists an integer k such that 4k ≡ (p−1)

2 (mod p − 1), since −1 is a square
modulo p if p ≡ 1 (mod 4).
Wait, I can use Python to automate these extensive calculations.

Python Code

def find_least_p():
p = 3 # Start with the smallest odd prime
while True:

if any(pow(n, 4, p) == p - 1 for n in range(1, p)):
Check if n^4 = -1 mod p has a solution
for n in range(1, p):

if (n**4) % p == p - 1:
Now check if there exists m such that m^4 = -1 mod p^2

p_squared = p * p
for m in range(1, p_squared):

if (m**4) % p_squared == p_squared - 1:
return p, m

p = next_prime(p)

def next_prime(p):
Implement a function to get the next prime after p
if p == 2:

return 3
candidate = p + 2
while not is_prime(candidate):

candidate += 2
return candidate

def is_prime(num):
Implement a function to check if a number is prime
if num <= 1:

return False
if num == 2:

return True
if num % 2 == 0:

return False
for i in range(3, int(num**0.5) + 1, 2):

if num % i == 0:
return False

return True

Find the least prime p and the least m
p, m = find_least_p()
print((p, m))

Output

SyntaxError: invalid syntax

972

17

It seems there was a syntax error in the code due to the way the condition was written. Let’s correct
the code and try again.
I need to ensure that the condition for checking if n4 ≡ −1 (mod p) is properly implemented.
Also, I need to make sure that the function to find the next prime is correctly defined.
Let’s fix the code accordingly.

Python Code

def find_least_p():
p = 3 # Start with the smallest odd prime
while True:

Check if there exists n such that n^4 = -1 mod p
found_n = False
for n in range(1, p):

if (n**4) % p == p - 1:
found_n = True
break

if found_n:
Now check if there exists m such that m^4 = -1 mod p^2
p_squared = p * p
for m in range(1, p_squared):

if (m**4) % p_squared == p_squared - 1:
return p, m

p = next_prime(p)

def next_prime(p):
Implement a function to get the next prime after p
if p == 2:

return 3
candidate = p + 2
while not is_prime(candidate):

candidate += 2
return candidate

973

18

Python Code

def is_prime(num):
Implement a function to check if a number is prime
if num <= 1:

return False
if num == 2:

return True
if num % 2 == 0:

return False
for i in range(3, int(num**0.5) + 1, 2):

if num % i == 0:
return False

return True

Find the least prime p and the least m
p, m = find_least_p()
print((p, m))

Output

(17, 110)

The code has determined that the least prime p for which there exists a positive integer n such that
n4 + 1 is divisible by p2 is p = 17, and the least positive integer m such that m4 + 1 is divisible
by 172 = 289 is m = 110.
To verify this, let’s check if 1104 + 1 is indeed divisible by 289.
First, compute 1104:

1102 = 12100

1104 = 121002 = 146, 410, 000

Then, 1104 + 1 = 146, 410, 001.
Now, divide by 289:

146, 410, 001÷ 289

Let’s perform the division:

289× 506, 613 = 289× 500, 000 = 144, 500, 000

289× 6, 613 = 289× 6, 000 = 1, 734, 000

289× 613 = 289× 600 = 173, 400

289× 13 = 3, 757

Adding them up:
974

19

144, 500, 000 + 1, 734, 000 = 146, 234, 000

146, 234, 000 + 173, 400 = 146, 407, 400

146, 407, 400 + 3, 757 = 146, 411, 157

Wait, that’s higher than 146,410,001. Maybe I miscalculated the multiplication.
Alternatively, perhaps I should compute 146, 410, 001− 146, 411, 157 = −1, 156, which is not
zero, indicating that 289 does not divide 146,410,001.
This suggests that there might be an error in the code’s result.
Alternatively, maybe I need to double-check the calculation.
Alternatively, perhaps there is a better mathematical approach to find p and m.
Let’s consider that n4 ≡ −1 (mod p2), which implies that n8 ≡ 1 (mod p2). So, the order of n
modulo p2 divides 8.
As earlier, the order must be 8 because smaller exponents wouldn’t satisfy n4 ≡ −1.
The multiplicative group modulo p2 has order p(p− 1), so 8 must divide p(p− 1).
Since p is prime, and greater than 2, p− 1 is even, and for 8 to divide p(p− 1), either:
- p ≡ 1 (mod 8), or
- p ≡ 3 (mod 4) and p− 1 is divisible by 4, but 8 divides p(p− 1), which would require p− 1 to
be divisible by 8.
Wait, actually, since p is odd (as p = 2 doesn’t work), p− 1 is even, and for 8 to divide p(p− 1),
since p is odd, p− 1 must be divisible by 8.
Therefore, p ≡ 1 (mod 8).
So, the smallest primes p to check are 17, 41, 73, etc.
Earlier, the code suggested p = 17, but the verification seems off.
Let me try to compute m = 110, p = 17, p2 = 289, and check 1104 + 1 modulo 289.
Compute 110 mod 17:
110÷ 17 = 6× 17 = 102, remainder 8, so 110 ≡ 8 (mod 17).
Wait, but we need modulo 289.
Alternatively, perhaps I can compute 1104 + 1 modulo 289 directly.
Let’s compute 1102 mod 289:
1102 = 12100.
12100÷ 289:
289 × 41 = 11849.
12100 - 11849 = 251.
So, 1102 ≡ 251 (mod 289).
Now, 1104 = (1102)2 ≡ 2512 (mod 289).
Compute 2512:
2512 = 63001.
Now, 63001÷ 289:
289 × 217 = 289 × 200 = 57,800; 289 × 17 = 4,913; total 57,800 + 4,913 = 62,713.
63,001 - 62,713 = 288.
So, 2512 ≡ 288 (mod 289).
Therefore, 1104 ≡ 288 (mod 289), so 1104 + 1 ≡ 288 + 1 = 289 ≡ 0 (mod 289).
So, indeed, m = 110 is a solution for p = 17.
Therefore, the least prime p is 17, and the least positive integer m such that m4 + 1 is divisible by
172 = 289 is 110.
Final Answer

110
975

20

G.3 A case form AIME25 976

A case form AIME25

Problem:

The set of points in 3-dimensional coordinate space that lie in the plane x+ y + z = 75 whose
coordinates satisfy the inequalities x− yz < y− zx < z− xy forms three disjoint convex regions.
Exactly one of those regions has finite area. The area of this finite region can be expressed in the
form a

√
b, where a and b are positive integers and b is not divisible by the square of any prime.

Find a+ b.
Solution:
So I’ve got this problem here. It’s about finding the area of a specific region in 3-dimensional
space defined by some equations and inequalities. Let me try to wrap my head around it.
First, there’s a plane given by the equation x+ y+ z = 75. So, all the points we’re considering lie
on this plane. Then, there are these inequalities: x− yz < y − zx < z − xy. The problem says
that these conditions define three disjoint convex regions on the plane, and exactly one of them has
finite area. We need to find the area of that finite region, and it’s expressed in the form a

√
b, where

b is square-free, and then find a+ b.
Okay, let’s start by understanding the inequalities. They are:

x− yz < y − zx < z − xy

This is a chain of inequalities, so actually, there are two inequalities here:
1. x− yz < y − zx
2. y − zx < z − xy
I need to manipulate these inequalities to get a better understanding of the regions they define.
Let’s work on the first inequality:

x− yz < y − zx

Let’s bring all terms to one side:

x− yz − y + zx < 0

Factor terms:

x(1 + z)− y(1 + z) < 0

Factor out (1 + z):

(x− y)(1 + z) < 0

So, this inequality implies that (x− y)(1 + z) < 0.
Now, the second inequality:

y − zx < z − xy

Bring all terms to one side:

y − zx− z + xy < 0

Factor terms:

y(1 + x)− z(1 + x) < 0

Factor out (1 + x):
977

21

(y − z)(1 + x) < 0

So, the second inequality is (y − z)(1 + x) < 0.
Now, combining both inequalities, we have:
1. (x− y)(1 + z) < 0
2. (y − z)(1 + x) < 0
These are the conditions that, along with the plane equation x+ y + z = 75, define the regions in
question.
Next, I need to consider the plane x + y + z = 75. Since we’re dealing with 3D space, but
constrained to this plane, it’s essentially a 2D surface. To find the area of a region on this plane, I
might need to parameterize the plane or find a way to project it onto a 2D coordinate system.
But before that, I need to understand how these inequalities divide the plane into regions.
Let’s consider the equalities corresponding to the inequalities to find the boundaries:
1. (x− y)(1 + z) = 0
2. (y − z)(1 + x) = 0
These equalities hold when either x = y or z = −1, and y = z or x = −1.
But since we’re dealing with a plane where x + y + z = 75, and presumably x, y, z are real
numbers (unless specified otherwise), I need to see how these boundaries intersect with the plane.
Wait a minute, maybe it’s better to consider substituting z = 75− x− y into the inequalities to
express everything in terms of x and y, reducing the dimensionality.
Let’s try that.
Given z = 75− x− y, substitute into the inequalities.
First inequality:

(x− y)(1 + z) < 0

Substitute z:

(x− y)(1 + 75− x− y) < 0

Simplify:

(x− y)(76− x− y) < 0

Second inequality:

(y − z)(1 + x) < 0

Substitute z:

(y − (75− x− y))(1 + x) < 0

Simplify:

(y − 75 + x+ y)(1 + x) < 0

Combine like terms:

(x+ 2y − 75)(1 + x) < 0

So now, the inequalities in terms of x and y are:
1. (x− y)(76− x− y) < 0
2. (x+ 2y − 75)(1 + x) < 0

More reasoning content are omitted here
978

22

Wait, using Python, I can experiment with a new method to tackle this challenge.

Python Code

import sympy as sp

Define variables
x, y, z = sp.symbols('x y z')

Plane equation
plane_eq = x + y + z - 75

Inequalities
ineq1 = x - y*z < y - z*x
ineq2 = y - z*x < z - x*y

Solve plane equation for z
z_expr = sp.solve(plane_eq, z)[0]

Substitute z in inequalities
ineq1_sub = ineq1.subs(z, z_expr)
ineq2_sub = ineq2.subs(z, z_expr)

Simplify inequalities
ineq1_simplified = sp.simplify(ineq1_sub)
ineq2_simplified = sp.simplify(ineq2_sub)

print((ineq1_simplified, ineq2_simplified))

Output

(x + y*(x + y - 75) < x*(x + y - 75) + y, x*y + x + y - 75 < -x*(x + y - 75) - y)

More reasoning content are omitted here
To find the area of this triangle, we can use the formula for the area of a triangle given by three
points in 3D space:

Area =
1

2
∥
−−→
BC ×

−−→
BF∥

First, let’s find the vectors
−−→
BC and

−−→
BF :

−−→
BC = C −B = (−1− 25,−1− 25, 77− 25) = (−26,−26, 52)

−−→
BF = F −B = (−1− 25, 38− 25, 38− 25) = (−26, 13, 13)

Next, compute the cross product
−−→
BC ×

−−→
BF .

Wait, I can use Python to perform complex calculations for this problem.
979

23

Python Code

import sympy as sp

Define the symbols for the components of the vectors
x1, y1, z1 = -26, -26, 52 # Components of vector BC
x2, y2, z2 = -26, 13, 13 # Components of vector BF

Create symbolic vectors
BC = sp.Matrix([x1, y1, z1])
BF = sp.Matrix([x2, y2, z2])

Compute the cross product BC x BF
cross_product = BC.cross(BF)

Print the cross product
print("Cross product BC x BF:", cross_product)

Calculate the magnitude of the cross product
magnitude = sp.sqrt(cross_product.dot(cross_product))

print(magnitude)

Output

1014*sqrt(3)

Therefore, the area of the parallelogram is 1014
√
3, and the area of the triangle is half of that:

Area =
1

2
× 1014

√
3 = 507

√
3

Hence, a = 507 and b = 3, so a+ b = 510.
Final Answer

510
980

24

G.4 A case form MATH500 981

A case form MATH500

Problem:
The function f satisfies the functional equation

f(x) + f(y) = f(x+ y)− xy − 1

for all real numbers x and y. If f(1) = 1, then find all integers n such that f(n) = n. Enter all
such integers, separated by commas.
Solution:

So I have this functional equation: f(x) + f(y) = f(x+ y)− xy − 1 for all real numbers x and
y. And I’m given that f(1) = 1. I need to find all integers n such that f(n) = n.
First, I should probably try to find a general expression for f(x). To do that, I can start by plugging
in some specific values for x and y to see if I can find a pattern or determine the form of f .
Let me try setting y = 0. Then the equation becomes:

f(x) + f(0) = f(x+ 0)− x · 0− 1

Which simplifies to:

f(x) + f(0) = f(x)− 0− 1

So:

f(0) = −1

That’s helpful. Now I know that f(0) = −1.
Next, maybe I can try setting y = 1, since I know f(1) = 1. So:

f(x) + f(1) = f(x+ 1)− x · 1− 1

Substituting f(1) = 1:

f(x) + 1 = f(x+ 1)− x− 1

Let me solve for f(x+ 1):

f(x+ 1) = f(x) + 1 + x+ 1 = f(x) + x+ 2

So, I have a recursive relation: f(x+ 1) = f(x) + x+ 2.
This seems like it could be useful for finding a pattern or for induction.
Let me try to find f(2), f(3), and so on, to see if I can find a pattern.
Starting with x = 1:

f(2) = f(1) + 1 + 2 = 1 + 1 + 2 = 4

Now x = 2:

f(3) = f(2) + 2 + 2 = 4 + 2 + 2 = 8

Wait, that doesn’t seem right. Let me check the recursive formula again.
I have f(x+ 1) = f(x) + x+ 2.
So, for x = 1:

982

25

f(2) = f(1) + 1 + 2 = 1 + 1 + 2 = 4

For x = 2:

f(3) = f(2) + 2 + 2 = 4 + 2 + 2 = 8

Wait, but if I continue this pattern, f(3) = 8, then for x = 3:

f(4) = f(3) + 3 + 2 = 8 + 3 + 2 = 13

Hmm, I’m not seeing an immediate pattern here. Maybe there’s a better way to approach this.
Alternatively, perhaps I can assume that f(x) is a quadratic function, since the functional equation
involves a term like −xy, which is linear in both variables.
Let me assume that f(x) = ax2 + bx+ c, and try to find the coefficients a, b, and c.
Substituting into the functional equation:

f(x) + f(y) = f(x+ y)− xy − 1

So:

(ax2 + bx+ c) + (ay2 + by + c) = a(x+ y)2 + b(x+ y) + c− xy − 1

Let me expand both sides.
Left side:

ax2 + ay2 + bx+ by + 2c

Right side:

a(x2 + 2xy + y2) + b(x+ y) + c− xy − 1 = ax2 + 2axy + ay2 + bx+ by + c− xy − 1

Now, set the left side equal to the right side:

ax2 + ay2 + bx+ by + 2c = ax2 + 2axy + ay2 + bx+ by + c− xy − 1

Subtract ax2 + ay2 + bx+ by from both sides:

2c = 2axy + c− xy − 1

Wait, that seems off. Let me double-check the expansion.
Actually, perhaps Python can assist in managing these detailed computations automatically.

983

26

Python Code

from sympy import symbols, Eq, solve

Define symbols
a, b, c, x, y = symbols('a b c x y')

Define f(x), f(y), and f(x + y)
f_x = a*x**2 + b*x + c
f_y = a*y**2 + b*y + c
f_x_y = a*(x + y)**2 + b*(x + y) + c

Define the functional equation
functional_eq = Eq(f_x + f_y, f_x_y - x*y - 1)

Expand both sides
lhs = f_x + f_y
rhs = f_x_y - x*y - 1

Simplify the equation
simplified_eq = Eq(lhs - rhs, 0)

Collect like terms
collected_eq = simplified_eq.expand()

Solve for coefficients a, b, c
solution = solve(collected_eq, (a, b, c))
print(solution)

Output

[(1/2, b, -1)]

From the symbolic computation, the solution for the coefficients is:

a =
1

2
, b = b, c = −1

Wait, it says b = b, which means b can be any value. That suggests that there’s some flexibility in
choosing b, but likely, there’s another condition that can help determine b.
Given that f(1) = 1, I can use this to find b.
Given f(x) = 1

2x
2 + bx− 1, and f(1) = 1:

f(1) =
1

2
(1)2 + b(1)− 1 =

1

2
+ b− 1 = b− 1

2
= 1

So:

b− 1

2
= 1 =⇒ b = 1 +

1

2
=

3

2

Therefore, the function is:

f(x) =
1

2
x2 +

3

2
x− 1

984

27

Now, I need to verify if this function satisfies the original functional equation.
Let’s plug f(x) = 1

2x
2 + 3

2x− 1 and f(y) = 1
2y

2 + 3
2y − 1 into the left side:

f(x) + f(y) =

(
1

2
x2 +

3

2
x− 1

)
+

(
1

2
y2 +

3

2
y − 1

)
=

1

2
x2 +

1

2
y2 +

3

2
x+

3

2
y − 2

Now, the right side is:

f(x+ y)− xy − 1 =

(
1

2
(x+ y)2 +

3

2
(x+ y)− 1

)
− xy − 1

Expand f(x+ y):

1

2
(x2 + 2xy + y2) +

3

2
x+

3

2
y − 1 =

1

2
x2 + xy +

1

2
y2 +

3

2
x+

3

2
y − 1

More reasoning content are omitted here
Now, I need to find all integers n such that f(n) = n.
Set f(n) = n:

1

2
n2 +

3

2
n− 1 = n

Subtract n from both sides:

1

2
n2 +

3

2
n− 1− n = 0

Simplify:

1

2
n2 +

(
3

2
− 1

)
n− 1 = 0

1

2
n2 +

1

2
n− 1 = 0

Multiply both sides by 2 to eliminate fractions:

n2 + n− 2 = 0

Now, solve for n:

n =
−1±

√
1 + 8

2
=

−1± 3

2

So, two solutions:

n =
−1 + 3

2
= 1

n =
−1− 3

2
= −2

Therefore, the integers n that satisfy f(n) = n are n = 1 and n = −2.
Final Answer

−2, 1

985

28

G.5 A case form GPQA 986

A case form GPQA

Problem:
Astronomers are studying a star with a 1.5 solar radius and 1.1 solar masses. When the star’s
surface is not covered by dark spots, its Teff is 6000K. However, when 40% of its surface is
covered by spots, the overall photospheric effective temperature decreases to 5500K.
In the stellar photosphere, when examining the ratio of the number of neutral atoms of Ti in two
energetic levels (level 1 and level 2), astronomers have observed that this ratio decreases when
the star has spots. What is the factor by which this ratio changes when the star does not have
spots compared to when it has spots? Note that the transition between the energy levels under
consideration corresponds to a wavelength of approximately 1448Å. Assume that the stellar
photosphere is in LTE.
Answer Choices: (A) ∼ 2.9
(B) ∼ 4.5
(C) ∼ 1.1
(D) ∼ 7.8
Output your final answer in boxes, such as A .
Solution:

So I’m trying to solve this astronomy problem. It’s about a star with some specific properties, and
it’s talking about how the temperature changes when there are spots on its surface. Then, it’s about
how the ratio of neutral titanium atoms in two different energy levels changes when there are spots.
It’s a bit complicated, but I’ll try to break it down step by step.
First, let’s understand what’s given:
- The star has a 1.5 solar radius and 1.1 solar masses. - When there are no spots, its effective
temperature (Teff) is 6000K. - When 40% of its surface is covered by spots, the overall Teff
decreases to 5500K. - We need to find the factor by which the ratio of neutral titanium atoms in
two energy levels changes when the star has spots compared to when it doesn’t. - The transition
between the levels corresponds to a wavelength of about 1448Å. - We’re to assume that the stellar
photosphere is in local thermodynamic equilibrium (LTE).
Okay, so the key here is to relate the change in effective temperature due to spots to the change in
the ratio of titanium atoms in different energy levels.
First, I need to recall what effective temperature is. Teff is a measure of the star’s surface tempera-
ture, and it’s related to the star’s luminosity and radius through the Stefan-Boltzmann law:

L = 4πR2σT 4
eff

Where L is luminosity, R is radius, and σ is the Stefan-Boltzmann constant.
But in this problem, the star’s radius is given, and the masses are given, but I’m not sure if I need
to use that information directly. Maybe it’s just to provide context.
The main change is in Teff, from 6000K to 5500K when 40% of the surface is covered by spots.
I need to find out how this change in Teff affects the ratio of titanium atoms in two energy levels.
First, I should recall that in LTE, the ratio of atoms in two energy levels is given by the Boltzmann
equation:

N2

N1
=

g2
g1

exp

(
−∆E

kT

)
Where:
- N2 and N1 are the number densities of atoms in energy levels 2 and 1, respectively. - g2 and g1
are the statistical weights of the two levels. - ∆E is the energy difference between the two levels. -

987

29

k is the Boltzmann constant. - T is the temperature.
In this case, since we’re dealing with the same element (titanium), and assuming that the statistical
weights don’t change, the ratio simplifies to:

N2

N1
∝ exp

(
−∆E

kT

)
So, the ratio depends exponentially on the temperature.
Now, the problem states that the ratio decreases when the star has spots. That makes sense because
spots are cooler regions on the star’s surface, so the overall Teff decreases, which would lead to a
lower ratio according to the equation above.
But the question is asking for the factor by which the ratio changes when the star does not have
spots compared to when it has spots.
So, I need to find the ratio of

N2

N1

∣∣∣∣
no spots

to
N2

N1

∣∣∣∣
with spots

.

Let’s denote:

Rno spots =
N2

N1
at Teff = 6000K

Rwith spots =
N2

N1
at Teff = 5500K

More reasoning content are omitted here
But that seems too large. Maybe using Python here is a good idea.

Python Code

\begin{verbatim}
import math
Given values
T_{\text{eff}} = 5500 \, \text{K}
T_u = 6000 \, \text{K}
\text{fraction_spots} = 0.4
\text{fraction_unspotted} = 0.6
Calculate T_{\text{eff}}^4
T_{\text{eff_4}} = T_{\text{eff}}^{4}
Calculate T_u^4
T_{u_4} = T_u^{4}
Calculate T_s^4
T_{s_4} = \frac{T_{\text{eff_4}} - \text{fraction_unspotted} \cdot
T_{u_4}}{\text{fraction_spots}}
Calculate T_s
T_s = T_{s_4}^{1/4}
print(T_s)

Output

4305.574037901423

988

30

Wait, according to the calculation, Ts ≈ 4305.57K, which is lower than the unspotted temperature
of 6000K, as expected for spots.
I must have made a mistake in my earlier manual calculation. So, the temperature of the spots is
approximately 4305.57K.
Given that, and considering that the answer choices are discrete, option C) ∼ 1.1 is the closest.
Alternatively, perhaps there is a miscalculation in ∆E/k.
Let me double-check that with Python code.

Python Code

import numpy as np

Constants
h = 6.626e-34 # Planck's constant in Joules second
c = 3.00e8 # Speed of light in meters per second
wavelength = 1.448e-7 # Wavelength in meters
k = 1.38e-23 # Boltzmann constant in Joules per Kelvin

Calculate the energy difference \Delta E
delta_E = (h * c) / wavelength
print(f"\\Delta E = {delta_E:.2e} J") # Output energy in scientific notation

Calculate the ratio \Delta E / k
delta_E_over_k = delta_E / k
print(f"\\Delta E / k = {delta_E_over_k:.2f} K") # Output in Kelvin

Calculate the final factor
T1 = 5500 # Temperature in Kelvin
T2 = 6000 # Temperature in Kelvin
factor = np.exp(delta_E_over_k * (1/T1 - 1/T2))
print(f"Factor = {factor:.3f}") # Output the factor

Output

∆E = 1.37× 10−18 J
∆E
k = 99477.54K

Factor = 4.514

Given that, and considering the answer choices, option B) ∼ 4.5 is the closest.
Final Answer

B
989

31

G.6 A case form LiveCodeBench990

A case form LiveCodeBench

Problem:
You are given an array of positive integers nums of length n.
We call a pair of non-negative integer arrays (arr1, arr2) monotonic if:

• The lengths of both arrays are n.

• arr1 is monotonically non-decreasing, in other words, arr1[0] ≤ arr1[1] ≤ . . . ≤ arr1[n−
1].

• arr2 is monotonically non-increasing, in other words, arr2[0] ≥ arr2[1] ≥ . . . ≥ arr2[n−
1].

• arr1[i] + arr2[i] == nums[i] for all 0 ≤ i ≤ n− 1.

Return the count of monotonic pairs.
Since the answer may be very large, return it modulo 109 + 7.

Example 1:
Input: nums = [2,3,2]
Output: 4
Explanation:
The good pairs are:

• ([0, 1, 1], [2, 2, 1])

• ([0, 1, 2], [2, 2, 0])

• ([0, 2, 2], [2, 1, 0])

• ([1, 2, 2], [1, 1, 0])

Example 2:
Input: nums = [5,5,5,5]
Output: 126

Constraints:
1 ≤ n == nums.length ≤ 2000
1 ≤ nums[i] ≤ 50

You will use the following starter code to write the solution to the problem and enclose your code
within delimiters.

Python Code

class Solution:
def countOfPairs(self, nums: List[int]) -> int:

Solution:

991

32

Alright, I’ve got this problem to solve. Let’s see what it’s asking for. I’m given an array of positive
integers called nums, and I need to find the count of monotonic pairs (arr1, arr2). The conditions
are:

1. Both arr1 and arr2 have the same length as nums.

2. arr1 is monotonically non-decreasing, meaning each element is less than or equal to the next
one.

3. arr2 is monotonically non-increasing, meaning each element is greater than or equal to the
next one.

4. For every index i, arr1[i] + arr2[i] equals nums[i].

And finally, I need to return the count of such pairs, modulo 109 + 7 because the number can be
really big.
Okay, first things first, I need to understand what constitutes a valid pair (arr1, arr2). Given that
arr1 is non-decreasing and arr2 is non-increasing, and their sum at each position equals nums[i],
there must be some relationship between the possible values in arr1 and arr2.
Let me consider a simple example to get a feel for the problem. Take nums = [2, 3, 2], which is in
the example. The output is 4, and they provided four pairs that satisfy the conditions.
Let’s list them out again:

1. ([0, 1, 1], [2, 2, 1])

2. ([0, 1, 2], [2, 2, 0])

3. ([0, 2, 2], [2, 1, 0])

4. ([1, 2, 2], [1, 1, 0])

I can see that in each pair, arr1 is non-decreasing, arr2 is non-increasing, and their sums equal the
corresponding nums[i].
Now, how can I generalize this to any given nums array?
I need to find all possible arr1 and arr2 that satisfy these properties.
One approach that comes to mind is to iterate through all possible arr1 arrays that are non-
decreasing, and for each arr1, determine if the corresponding arr2 array, which is nums - arr1, is
non-increasing.
But this seems inefficient, especially since n can be up to 2000, and the numbers can be up to 50.
That means nums[i] can be up to 50, so arr1[i] and arr2[i] can range from 0 to 50.
Wait, but arr1 and arr2 are arrays of non-negative integers, and their sum is nums[i], which is at
least 1 according to the constraints. So arr1[i] can range from 0 to nums[i], and arr2[i] would be
nums[i] - arr1[i].
Given that, for each index i, arr1[i] can be any integer from 0 to nums[i], and arr2[i] is determined
once arr1[i] is chosen.
But I also have the constraints on the monotonicity of arr1 and arr2.
So, arr1 has to be non-decreasing, and arr2 has to be non-increasing.
This means that for arr1, arr1[i] ≤ arr1[i+ 1], and for arr2, arr2[i] ≥ arr2[i+ 1].
Given that arr2[i] = nums[i]− arr1[i], I can substitute this into the condition for arr2.
So,

nums[i]− arr1[i] ≥ nums[i+ 1]− arr1[i+ 1].

Simplifying this,
arr1[i+ 1]− arr1[i] ≥ nums[i+ 1]− nums[i].

992

33

Let me denote d[i] = nums[i+ 1]− nums[i].
Then,

arr1[i+ 1]− arr1[i] ≥ d[i].

Additionally, since arr1 is non-decreasing,

arr1[i+ 1]− arr1[i] ≥ 0.

Combining these,
arr1[i+ 1]− arr1[i] ≥ max(0, d[i]).

This is interesting. It means that the difference between consecutive elements in arr1 has a lower
bound based on the difference in nums.
So, to build arr1, I need to ensure that each step increases by at least max(0, d[i]), and overall, arr1
is non-decreasing.
Given that, perhaps I can model this as a series of choices for the differences between consecutive
arr1 elements.
Let me define

diff[i] = arr1[i+ 1]− arr1[i],

and
diff[i] ≥ max(0, d[i]).

Also, since arr1 is non-decreasing, diff[i] ≥ 0.
But actually, diff[i] ≥ max(0, d[i]) already ensures that diff[i] ≥ 0 when d[i] ≥ 0.
When d[i] < 0, diff[i] ≥ 0 suffices because arr1 is non-decreasing.
Wait, let’s think about d[i] being negative.
If d[i] = nums[i+ 1]− nums[i] < 0, then

arr1[i+ 1]− arr1[i] ≥ d[i],

but since d[i] is negative, and arr1 is non-decreasing, arr1[i+ 1]− arr1[i] ≥ 0 is already stronger
than arr1[i+ 1]− arr1[i] ≥ d[i].
Therefore, for all i,

diff[i] ≥ max(0, d[i]).

More reasoning content are omitted here
To ensure that my code runs correctly, I need to embed all test case inputs directly into my code
and print the corresponding output, following the sample structure below:
Debug Code Template

c l a s s S o l u t i o n :
def c o u n t O f P a i r s (s e l f , nums : L i s t [i n t]) −> i n t :

pass # Implemen t your l o g i c here
s o l u t i o n = S o l u t i o n ()
T e s t t h e example i n p u t s
t e s t _ i n p u t 1 = . . .
t e s t _ i n p u t 2 = . . .
P r i n t o u t p u t
p r i n t (s o l u t i o n . c o u n t O f P a i r s (t e s t _ i n p u t 1))
p r i n t (s o l u t i o n . c o u n t O f P a i r s (t e s t _ i n p u t 2)) # Check t h e o u t p u t

This is a template, not for execution. I need to write code that processes the actual given sample
inputs locally for the task. Alright, with this structure, I can write and execute my code in a Python
compiler using real example inputs. By comparing the actual outputs with the expected outputs, I

993

34

can initially assess the correctness of my code. If the outputs do not match, I can debug accordingly.
Recall the test cases in the problem statement.
Example 1:

• Input: nums = [2,3,2]

• Output: 4

• Explanation: The good pairs are:

– ([0, 1, 1], [2, 2, 1])
– ([0, 1, 2], [2, 2, 0])
– ([0, 2, 2], [2, 1, 0])
– ([1, 2, 2], [1, 1, 0])

Example 2:

• Input: nums = [5,5,5,5]

• Output: 126

Alright, now I can write a debug code with samples input.

Python Code

class Solution:
def countOfPairs(self, nums: List[int]) -> int:

MOD = 10**9 + 7
n = len(nums)
if n == 0:

return 0
max_num = max(nums)
dp = [[0] * (max_num + 1) for _ in range(2)]
for x in range(nums[0] + 1):

dp[0][x] = 1
for i in range(1, n):

m = max(0, nums[i] - nums[i-1])
dp[i % 2] = [0] * (max_num + 1)
prefix = [0] * (max_num + 1)
for x in range(max_num + 1):

if x - m >= 0:
dp[i % 2][x] = dp[(i-1) % 2][x - m]

else:
dp[i % 2][x] = 0

prefix[x] = (prefix[x-1] + dp[i % 2][x]) % MOD if
x >= 1 else dp[i % 2][x]

dp[(i-1) % 2] = prefix
return sum(dp[(n-1) % 2][:nums[-1]+1]) % MOD

994

35

Python Code

Test the example inputs
solution = Solution()

Example input1
test_input1 = [2,3,2]
Print output
print(solution.countOfPairs(test_input1)) # Expected Output: 4

Example input2
test_input2 = [5,5,5,5]
Print output
print(solution.countOfPairs(test_input2)) # Expected Output: 126

Output

2
6

It appears that the current implementation is not producing the correct outputs for the provided
examples. According to the explanation, the first example should yield 4, but it’s giving 2, and
the second example should yield 126, but it’s giving 6. This indicates a flaw in the logic or
implementation.
Let’s revisit the approach.
Corrected Approach

1. Initialization:

• We need to initialize a DP table where dp[i][x] represents the number of ways to form
the first i elements of arr1 such that arr1[i− 1] = x.

2. Transition:

• For each position i from 1 to n − 1, and for each possible value x that arr1[i] can
take (from 0 to nums[i]), we determine the valid range of arr1[i − 1] based on the
constraints.

• Specifically, arr1[i] ≥ arr1[i − 1] and arr2[i] ≤ arr2[i − 1], which translates to
arr1[i] ≥ arr1[i− 1] +m[i], where m[i] = max(0, nums[i]− nums[i− 1]).

3. Prefix Sums:

• Use prefix sums to efficiently compute the sum of dp[i− 1][y] for y in the valid range.

4. Final Result:

• Sum up dp[n− 1][x] for all x from 0 to nums[−1].

More reasoning content are omitted here
To fix the issues, we need to ensure that the prefix sums are correctly maintained and used in the
DP transitions. Here is the revised code:

995

36

Python Code

from typing import List

class Solution:
def countOfPairs(self, nums: List[int]) -> int:

MOD = 10**9 + 7
n = len(nums)
if n == 0:

return 0
max_num = max(nums)
dp = [[0] * (max_num + 1) for _ in range(2)]
for x in range(nums[0] + 1):

dp[0][x] = 1
prefix = [0] * (max_num + 1)
for x in range(max_num + 1):
prefix[x] = dp[0][x] if x == 0 else (prefix[x-1] + dp[0][x]) % MOD
for i in range(1, n):

m = max(0, nums[i] - nums[i-1])
current_row = i % 2
dp[current_row] = [0] * (max_num + 1)
new_prefix = [0] * (max_num + 1)
for x in range(max_num + 1):

if x - m >= 0:
dp[current_row][x] = prefix[x - m]

else:
dp[current_row][x] = 0

new_prefix[x] = (new_prefix[x-1] + dp[current_row][x]) % MOD if
x >= 1 else dp[current_row][x]

prefix = new_prefix
return sum(dp[(n-1) % 2][:nums[-1]+1]) % MOD

Test the example inputs
solution = Solution()

Example input1
test_input1 = [2,3,2]
Print output
print(solution.countOfPairs(test_input1)) # Expected Output: 4

Example input2
test_input2 = [5,5,5,5]
Print output
print(solution.countOfPairs(test_input2)) # Expected Output: 126

Output

4
126

996

37

Great! The revised code now produces the correct outputs for the provided examples. This
indicates that the approach and implementation are accurate.

More reasoning content are omitted here

Python Code

from typing import List

class Solution:
def countOfPairs(self, nums: List[int]) -> int:

MOD = 10**9 + 7
n = len(nums)
if n == 0:

return 0
max_num = max(nums)
dp = [[0] * (max_num + 1) for _ in range(2)]
for x in range(nums[0] + 1):

dp[0][x] = 1
prefix = [0] * (max_num + 1)
for x in range(max_num + 1):
prefix[x] = dp[0][x] if x == 0 else (prefix[x-1] + dp[0][x]) % MOD
for i in range(1, n):

m = max(0, nums[i] - nums[i-1])
current_row = i % 2
dp[current_row] = [0] * (max_num + 1)
new_prefix = [0] * (max_num + 1)
for x in range(max_num + 1):

if x - m >= 0:
dp[current_row][x] = prefix[x - m]

else:
dp[current_row][x] = 0

new_prefix[x] = (new_prefix[x-1] + dp[current_row][x]) % MOD if
x >= 1 else dp[current_row][x]

prefix = new_prefix
return sum(dp[(n-1) % 2][:nums[-1]+1]) % MOD

The final solution has been successfully implemented and validated with the provided test cases.
This approach ensures that we efficiently count the number of monotonic pairs while handling
the constraints and large input sizes appropriately. Explanation: - Initialization: We initialize
a DP table for the first element of nums, setting possible values for arr1[0]. - Transition: For
each subsequent element, we calculate the minimum difference and use prefix sums to efficiently
compute the number of valid sequences. - Final Calculation: We sum up the valid sequences for
the last element to get the total count of monotonic pairs.
This method ensures that we handle the constraints effectively and compute the result efficiently
even for larger input sizes.

997

38

H Implementation Details 998

We implement our framework based on two base models: QwQ-32B-Preview and DeepSeek-R1-Distill- 999

Qwen-32B. For QwQ-32B-Preview, we use a learning rate of 7e-6, while for DeepSeek-R1-Distill-Qwen- 1000

32B, we set it to 2e-6. Both models are trained for 3 epochs with a global batch size of 128 and a cosine 1001

learning rate scheduler with 3% warm-up steps. We set the maximum context length to 16,384 tokens 1002

during training and employ full-parameter fine-tuning with DeepSpeed ZeRO-3 (Rajbhandari et al., 2020) 1003

optimization. During inference, we use greedy decoding with a maximum sequence length of 32,768 1004

and limit tool usage to 6 times per reasoning process. We follow the evaluation metrics from (Yang 1005

et al., 2024) and report pass@1 performance for all benchmarks. The training process is conducted on 32 1006

NVIDIA A100 GPUs, and we maintain the same chat template as the original models for consistency. 1007

I Data Format Comparison 1008

Figure 4: Comparison between the responses generated by QwQ and START. This is a question from LiveCodeBench
with a difficulty level of "hard". QwQ employs long-chain CoT with self-reflection and trying different approaches,
yet hallucinates during complex test case analysis, leading to flawed solutions. START retains QwQ’s cognitive
framework but integrates code execution: (1) Runs code via interpreter, (2) Detects output mismatch, (3) Iteratively
analyzes and debugs, and (4) Gives the final solution. See more cases of START in Appendix G

39

	Introduction
	Methodology
	Hint-infer
	Hint-RFT

	Experiment
	Training data
	Benchmarks
	Baselines
	Implementation
	Main Results
	Generalization to Code Task
	Analysis of Hint-infer
	Ablation Study

	Related Work
	Conclusion
	Limitations
	Training set of START
	More results about Hint-infer
	Prompting Methods for Data annotation
	Hint-infer for test time scaling
	Code Task Hints
	More Experiments on Generalization
	Case Study For START
	A case form AMC23
	A case form AIME24
	A case form AIME25
	A case form MATH500
	A case form GPQA
	A case form LiveCodeBench

	Implementation Details
	Data Format Comparison

