
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

FAST FEEDFORWARD 3D GAUSSIAN SPLATTING COM-
PRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

With 3D Gaussian Splatting (3DGS) advancing real-time and high-fidelity ren-
dering for novel view synthesis, storage requirements pose challenges for their
widespread adoption. Although various compression techniques have been pro-
posed, previous art suffers from a common limitation: for any existing 3DGS,
per-scene optimization is needed to achieve compression, making the compres-
sion sluggish and slow. To address this issue, we introduce Fast Compression
of 3D Gaussian Splatting (FCGS), an optimization-free model that can compress
3DGS representations rapidly in a single feed-forward pass, which significantly
reduces compression time from minutes to seconds. To enhance compression ef-
ficiency, we propose a multi-path entropy module that assigns Gaussian attributes
to different entropy constraint paths for balance between size and fidelity. We
also carefully design both inter- and intra-Gaussian context models to remove re-
dundancies among the unstructured Gaussian blobs. Overall, FCGS achieves a
compression ratio of over 20⇥ while maintaining fidelity, surpassing most SOTA
per-scene optimization-based methods. Our code will be made publicly available.

1 INTRODUCTION

In recent years, 3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) has significantly advanced
the field of novel view synthesis. By leveraging fully explicit Gaussians with color and geom-
etry attributes, 3DGS facilitates efficient scene training and rendering through rasterization tech-
niques (Zwicker et al., 2001). However, the vast number of Gaussians poses a considerable storage
challenge, hindering its wider application.

To address the storage challenges associated with 3DGS, various compression methods have been
developed, as surveyed in (Bagdasarian et al., 2024). These advancements have significantly reduced
the storage requirements, bringing them to an acceptable scale. By reviewing the key developments
in this area, we identified two fundamental principles that underpin the compression of 3DGS: the
value-based and structure-based principles.

• Value-based principle. This principle assesses the importance of parameters through value-
based importance scores or similarities. Techniques like pruning and vector quantization
are employed to reduce the parameter count by retaining only the most representative val-
ues. With this principle, earlier studies (Lee et al., 2024; Niedermayr et al., 2024; Fan et al.,
2024) focused on compactly representing unorganized Gaussian primitives based on their
parameter values, and discarded less significant parameters for model efficiency.

• Structure-based principle. More recent approaches have shifted towards exploiting the
structural relationships between Gaussian primitives for improved compression (Lu et al.,
2024; Bagdasarian et al., 2024). This principle emphasizes leveraging organized structures
to systematically arrange unsorted Gaussian primitives, which helps eliminate redundan-
cies by establishing structured connections. For instance, HAC (Chen et al., 2024b) uses
the Instant-NGP (Müller et al., 2022) to organize Gaussian anchor features, SOG adopts a
self-organizing grid (Morgenstern et al., 2023), and IGS (Wu & Tuytelaars, 2024) uses a
triplane (Chan et al., 2022) structure to efficiently organize Gaussian data.

Despite the effectiveness of compression techniques for 3DGS, they share a common limitation: for
any existing 3DGS, per-scene optimization is needed to achieve compression, as illustrated in the left

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Finetune

minutes

Feedforward

seconds
Compressed
bitstream

Multi-view images
& Views

10 minutes

Optimize

Other Compression
Approaches

Our FCGS
Approach

3DGS
Time (s) PSNR (dB) Size (MB)

227

18

28.9

29.2 24.6

21.1

LightGaussian Ours
e.g., LightGaussian

Figure 1: Left: Existing compression methods require optimization of the existing 3DGS, leading
to the drawback of being time-consuming for training. Our proposed FCGS overcomes this issue
by compressing 3DGS representations in a single feed-forward pass, significantly reducing time
consumption for compression. Right: Compared to Lightgaussian (Fan et al., 2024), FCGS achieves
improved RD performance while requiring much less execution time on the DL3DV-GS dataset.

side of Figure 1. While the optimization-based compression pipeline benefits from scene-specific
training to achieve superior RD performance, it slows down the compression significantly due to the
time-consuming finetuning process.

To address this challenge, we propose a novel approach: an optimization-free compression pipeline
that enables fast compression of existing 3DGS representations through a single feed-forward pass,
which we call FCGS (Fast Compression of 3D Gaussian Splatting) from now on. Agnostic to
the source of the 3DGS (either it is from optimizaiton (Kerbl et al., 2023) or from feed-forward
models (Charatan et al., 2024; Szymanowicz et al., 2024; Chen et al., 2024c; Tang et al., 2024)),
our FCGS allows for fast compression, offering a convenient and hassle-free solution. In contrast to
previous methods that degrade the parameter values or alter the 3DGS structure, thereby requiring
additional finetuning, FCGS aims to preserve both the values and the structure integrity of 3DGS,
enabling an optimization-free design. The Multi-path Entropy Module (MEM), designed under the
value-based principle, deduces masks that determine whether attributes should be directly quantized
for compression or processed through an autoencoder. Building on the masks determined by MEM
and inspired by the structure-based principle, we propose both inter- and intra-Gaussian context
models that effectively capture structural relationships among Gaussian attributes.

It is important to highlight that both pipelines of per-scene optimization-based compression (previ-
ous methods) and generalizable optimization-free compression (our approach) are significant and
serve different purposes. The former benefits from per-scene adaptation to achieve superior RD per-
formance but suffers from slow compression speed, making it suitable for permanent data storage
or server-side encoding. In contrast, our pipeline offers a convenient and hassle-free solution, where
a single model can directly and rapidly compress various 3DGS without the need for finetuning,
making it well-suited for time-sensitive applications. To the best of our knowledge, our work is
the first to achieve a generalizable optimization-free compression pipeline for 3DGS. Although the
absence of per-scene finetuning naturally limits our RD performance, we have still achieved a com-
pression ratio exceeding 20⇥ while maintaining excellent fidelity by meticulously designing MEM
and context models. Our contributions are summarized as follows:

• We propose a pioneering fast and generalizable optimization-free compression pipeline for
3D Gaussian Splatting, named FCGS, effectively broadening the application scenarios for
3DGS compression techniques.

• To facilitate efficient compression of 3DGS representations, we introduce the MEM mod-
ule to balance size and fidelity across different Gaussians. Additionally, we meticulously
customize both inter- and intra-Gaussian context models, significantly enhancing compres-
sion performance by effectively eliminating redundancies.

• Extensive experiments across various datasets demonstrate the effectiveness of FCGS,
achieving a compression ratio of 20⇥ while maintaining excellent fidelity, even surpass-
ing most of the optimization-based methods.

2 RELATED WORK

The field of 3D scene representation for 3D scenes has seen significant advancements in recent
years. Neural Radiance Field (NeRF) (Mildenhall et al., 2021) models scene information using fully

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

implicit MLPs, which predict opacity and RGB values at 3D coordinates for ray rendering. How-
ever, these MLPs are designed to be quite large to capture all the scene-specific details, leading to
slow training and rendering times. To improve both fidelity and rendering efficiency, subsequent
works (Müller et al., 2022; Chen et al., 2022; Sun et al., 2022) have introduced learnable explicit
representations that assign scene-specific information to the input coordinates before they are pro-
cessed by the MLPs. These methods, however, increase storage requirements due to the use of
explicit representations. 3D Gaussian Splatting (Kerbl et al., 2023) takes this further by representing
the scene entirely through explicit attributed Gaussians. Using rasterization techniques, these Gaus-
sians can be quickly rendered into 2D images for a given viewpoint. Unfortunately, this fully explicit
representation significantly increases storage demands. To address the storage issues of NeRF and
3DGS, various research efforts have focused on compression techniques, which generally fall into
two main design principles: value-based and structure-based.

The value-based principle focuses on the importance scores or similarities of parameters. Using
these scores or similarities, pruning and vector quantization can be applied via thresholding or clus-
tering, allowing for compression by retaining only the most representative parameters. However,
this process often alters the original parameter values by a noticeable margin, necessitating an ad-
ditional finetuning step to recover the lost information. For NeRF, methods like VQRF (Li et al.,
2023) and Re:NeRF (Deng & Tartaglione, 2023) calculate the significance of parameters based on
opacity or gradient values and apply pruning or vector quantization, followed by a finetuning phase.
BiRF Shin & Park (2023) investigates parameters’ values and binarizes them. For 3DGS, simi-
lar value-based thresholding and clustering techniques are commonly used, as seen in works such
as Lee et al. (2024); Niedermayr et al. (2024); Navaneet et al. (2024); Fan et al. (2024); Girish et al.
(2024); Wang et al. (2024a); Ali et al. (2024); Fang & Wang (2024), which consider Gaussian val-
ues. Additionally, scalar quantization and knowledge distillation are implemented in Girish et al.
(2024) and (Fan et al., 2024), respectively.

The structure-based principle represents another major direction that investigates the structural re-
dundancies of parameters. CNC (Chen et al., 2024a) introduced a pioneering proof of concept by
applying level- and dimension-wise context models to compress hash grids for Instant-NGP (Müller
et al., 2022) in the NeRF series. This structure-based design is also evident in works like Tang et al.
(2022); Rho et al. (2023); Girish et al. (2023); Li et al. (2024). CodecNeRF (Kang et al., 2024)
investigates a feed-forward approach to generate neural radiance field for scenes and then directly
compresses them. In the case of 3DGS, structure-based compression methods have also seen notable
progress. The primary challenge is the sparse and unorganized nature of 3DGS, which makes it dif-
ficult to identify and utilize structural relationships. Grid-based sorting (Morgenstern et al., 2023)
addresses this by projecting 3D Gaussians onto 2D planes for compression while preserving spa-
tial relationships. Scaffold-GS (Lu et al., 2024) uses anchors to cluster nearby Gaussians that share
common features, and based on this, works such as Chen et al. (2024b); Liu et al. (2024); Wang et al.
(2024b) further reduce redundancies for anchors, resulting in improved compression performance.
HAC (Chen et al., 2024b) and IGS (Wu & Tuytelaars, 2024) explore relations among the organized
grids and Gaussians. SUNDAE (Yang et al., 2024) employs spectral Graph to improve pruning.

However, these approaches all require per-scene finetuning for compression on a given 3DGS, which
can be time-consuming. In this paper, we explore a novel, optimization-free pipeline for 3DGS
compression, innovatively building context models for Gaussian primitives, which are essential for
eliminating redundancy and improving compression efficiency.

3 FAST COMPRESSION OF 3D GAUSSIAN SPLATTING

Our goal is to rapidly compress a 3DGS representation in a single feed-forward pass without fine-
tuning. Inspired by image compression methods (Ballé et al., 2018), we adopt an autoencoder-based
structure, where the Gaussian attributes are encoded into a latent space for compression, as shown
in Figure 2. However, we found that treating all Gaussian parameters equally and feeding them
all into the same autoencoder could lead to a significant loss of fidelity, as some attributes were
highly sensitive to deviations. To address this, we introduce a Multi-path Entropy Module (MEM)
to effectively balance compression size and fidelity. For the context model design, we customize
both inter- and intra-Gaussian context models that effectively eliminate redundancies among param-
eters of Gaussians (Figure 3), which are lightweight and efficient. Additionally, we use a Gaussian

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

!" !"

! Q

#$ #$#
Qℎ!

AE AD

ℎ"
factorized

AE AD

&"&!

'"

H
yp
er
pr
io
r

Q' (=)

(=*

(=)( ! = '	)
or or

How to apply context models?MEM MEM

Gaussian

(

(=*

MLP!
&Binarize

Figure 2: Our approach is inspired by image compression, where the input Gaussian attributes x
is mapped into the latent space ŷ for compression after passing through an analysis transform ga
and quantization to eliminate redundancies. To compress ŷ, a hyperprior branch is introduced,
using the coarse representation ẑ to estimate the distribution parameters of ŷ under a Gaussian
distribution assumption, which aids in entropy encoding and decoding. In addition to the hyperprior,
various context models are applied to ŷ to improve the estimation of distribution probabilities. After
decoding ŷ, a synthesis transform gs projects it back to the original space as x̂. A loss function
is used to maintain high fidelity between x̂ and x using their rendered images, while minimizing
the entropy of ŷ and ẑ. AE and AD represent Arithmetic Encoding and Arithmetic Decoding,
respectively. In our paper, we implement transform networks as simple MLPs. ga and gs consist of
4 layers each, while ha and hs have 3 layers each.

Mixture Model (GMM) to estimate the probability distribution. In the following sections, we first
discuss the background and characteristics of 3DGS, and then delve into the design of our FCGS.

3.1 PRELIMINARIES AND DISCUSSIONS

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) employs a large number (e.g., 1 million) at-
tributed Gaussians to represent a 3D scene. These Gaussians are characterized by color and geome-
try parameters, and are splatted along given views using rasterization to generate rendered images.
Each Gaussian is defined by a covariance ⌃ 2 R3⇥3 and a location (mean) µg 2 R3,

G(l) = exp

✓
�1

2
(l� µg)>⌃�1(l� µg)

◆
, (1)

where l 2 R3 is a random 3D location, and ⌃ is defined by a scaling matrix S 2 R3⇥3 and a rotation
matrix R 2 R3⇥3 such that ⌃ = RSS>R>. To render a pixel value C 2 R3, the Gaussians are
first splatted to 2D, and rendering is performed as follows:

C =
X

i

ci↵i

i�1Y

j=1

(1� ↵j) (2)

where ↵ 2 R is the opacity, and c 2 R3 is the view-dependent color of each Gaussian, which is
calculated from 3-degree Spherical Harmonics (SH) 2 R48. In this paper, we design our FCGS
model based on this SH-based rendering structure of 3DGS.

Discussions. The attributes of Gaussians can be categorized into geometry and color attributes. The
geometry attributes (opacity ↵, diagonal elements of scaling S, and quaternion representation of
rotation R) determine the dependencies of the rasterization process (e.g., the coverage range of the
Gaussians or the depth to which they should be composed). Once the geometric dependencies are
established, the color attributes are used to assign colors via 3-degree SH following (Kerbl et al.,
2023). Since the geometry attributes directly influence the rasterization dependencies, they are
more sensitive to deviations than the color attributes. For brevity, we denote geometry attributes as
f geo 2 R8, color attributes as f col 2 R48, and the concat of both as f gau 2 R56. In the following
sections, unless otherwise specified, x refers to either f geo or f col.

3.2 VALUE-BASED PRINCIPLE: MULTI-PATH ENTROPY MODULE (MEM)

As shown in Figure 2, we draw inspiration from image compression and apply an autoencoder-based
compression approach with a hyperprior structure, where the Gaussian attributes x are projected into
a quantized latent space ŷ for compression. After obtaining ŷ through the arithmetic decoding, a
synthesis transform gs is employed to project it back to the original space x̂, which is the decoded

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

version. However, in 3DGS representations, Gaussians are not the final output; the actual results
are the rendered images obtained through rasterization. Unfortunately, deviations in Gaussian at-
tributes can be amplified during the rasterization process, leading to even greater deviations in the
rendered images. Some Gaussians are highly sensitive to these deviations, as they may occupy cru-
cial positions that significantly affect the rasterization process. Simply feeding all attributes into
the autoencoder does not yield satisfactory results: The forward pass of MLPs is inherently non-
invertible due to non-linear activation functions, which means projecting x into latent space via an
MLP does not allow for exact recovery of the original x from the latent. As a result, MLP-decoded
attributes x̂ cannot always align precisely with the original attributes for each Gaussian. This mis-
alignment would be amplified in rendering, leading to a significant fidelity drop in the rendered
images, as exhibited in the ablation study (Subsection 4.3).

Geometry attributes are the most sensitive to such deviations because they directly impact depen-
dencies during rasterization. For example, if the decoded opacity of a Gaussian is too large, it could
block Gaussians behind it, preventing them from contributing as they should. Similarly, deviations
in scaling and rotation can have significant effects. To address this, we remove ga and gs for all
geometry attributes f geo, ensuring that y = x. Fortunately, color attributes are less sensitive to
deviations, although they still impact the final result. For f col, as dipicted in Figure 2, we introduce
MEM to deduce a binary mask m 2 R that adaptively determines whether an x (only for f col here)
should pass through the MLPs ga and gs to eliminate redundancies, resulting in y = ga(x), or
simply bypass the MLPs, setting y = x to best preserve the original information,

x̂i = gs(Q(ga(xi)))⇥mi + Q(xi)⇥ (1�mi), mi = Sig(MLPm(f
gau
i )) > ✏m (3)

where Q represents the quantization operation: if yi is in the latent space (mi = 1), the quantization
step is 1; otherwise (mi = 0), the step becomes a trainable decimal parameter. During training,
uniform noise is added, while during testing, quantization is applied. Sig is the Sigmoid function
and ✏m is a hyperparameter that defines the threshold for binarizing the mask. Gradients of the
binarized mask m are backpropagated using STE (Bengio et al., 2013; Lee et al., 2024).

Balancing the mask rate is crucial, as it directly impacts the RD trade-off. Previous works like Lee
et al. (2024) incorporate an additional loss term with a hyperparameter �m to regulate the mask
rate. However, given that the RD loss already includes a trade-off hyperparameter � to balance
bits and fidelity, introducing another parameter, �m, would unnecessarily complicate the process of
finding the optimal RD trade-off. To resolve this, we integrate the mask information directly into the
bit consumption calculation, allowing the model to adaptively learn the optimal mask rate, thereby
eliminating �m. Please refer to Subsection 3.4 for details.

3.3 STRUCTURE-BASED PRINCIPLE: AUTOREGRESSIVE CONTEXT MODELS

To further enhance the accuracy of probability estimation, context models play a crucial role for
ŷ. Specifically, a portion of ŷ is first decoded and then used to assist in predicting the remaining
part based on contextual relationships. In image compression, where data like ŷ are arranged in
a structured grid (i.e., a feature map), designing such context models is relatively straightforward.
However, Gaussians in 3DGS are sparse and unorganized (as is ŷ), making it a challenge to design
efficient and lightweight context models. To tackle this, we analyze the unique properties of Gaus-
sians and develop customized inter- and intra-Gaussian context models, as illustrated in Figure 3.

Inter-Gaussian Context Models. 3D Gaussians collectively represent the scene, leading to inherent
relationships among them. To uncover these relationships, we refer to grid-based structures, which
are typically compact, organized, and capable of constructing spatial connections among Gaussians.
While this “grid” structure does not naturally exist within 3DGS, we propose an innovative method
to create grids from Gaussians themselves. Note that a concurrent work Wang et al. (2024b) pro-
poses structuring anchors into multiple levels to model entropy. However, its anchor location quanti-
zation process introduces deviations, which impacts fidelity and requires finetuning. Differently, our
inter-Gaussian context model overcomes this limitation by creating grids in a feed-forward manner
for context modeling, without modifying Gaussian locations, eliminating the need of finetuning.

We divide all Gaussians’ ŷ into N s batches (N s = 2 as an example in Figure 3 mid) and decode
each batch sequentially. During this process, the previously decoded ŷ 2 Y[0,ns�1] are first used to
create grids, which then provide context for the to-be-decoded ŷ 2 Y[ns] via interpolation. Here,
Y[ns] refers to the set of ŷ belonging to the ns-th batch out of N s. To generate the feature fv for a

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Intra Split

!" !"!

Gaussians (a) Split Gaussians (b) Create grid using (c) Do context for
Gaussian Mixed Model

Prob

input

#!, %!, &!
#", %", &"

##, %#, &#

To be decoded

Already decoded

'(
Q ℎ$ℎ%

In
tr

a-
G

au
ss

ia
n

C
on

te
xt

 M
od

el
In

te
r-

G
au

ss
ia

n
C

on
te

xt
 M

od
el

H
yp

er
pr

io
r

AE AD
factorized

Chunks-for-chunk context

envelope

Figure 3: Context models of FCGS. We build on the hyperprior design of image compression (top)
and introduce our inter- and intra-Gaussian context models (mid & bottom). Together, they form a
GMM that provides a more accurate estimation of the value distribution probability of ŷ (right).
voxel at position v on the grids, we investigate ŷ within v’s interpolation range. For a voxel located
at vi 2 R3 (i.e., the red point in Figure 3 mid (b)), its feature fv

i is computed as follows:

fv
i =

P
k:ŷk2Yvi

[0,ns�1]
wkŷk

P
k:ŷk2Yvi

[0,ns�1]
wk

, where wk =
Y

dim2{x,y,z}

⇣
1� |µg

k,dim � vi,dim|
⌘

(4)

where Yvi

[0,ns�1] denotes the subset of Y[0,ns�1] where ŷ fall into vi’s interpolation range (i.e., the
orange box in Figure 3 mid (a,b,c)). k is the index of ŷk, and wk represents the weight that deter-
mines the contribution of each ŷk. The closer ŷk is to vi, the greater its contribution. Regardless of
the number of ŷ within vi’s interpolation range, we can always compute a weighted average feature
fv
i for vi that integrates information for interpolation in the next step.

By conducting this calculation for all the voxels, we can create the grids, which are organized and
structured, enabling them to provide contextual information for any input coordinates via interpola-
tion. For a to-be-decoded ŷi 2 Y[ns], located at µg

i , its distribution parameters µs
i, �s

i , and ⇡s
i can

be computed from these grids using MLPs:

µs
i,�

s
i,⇡

s
i = MLPs(�[fµg

i ,emb(µg
i )]), where fµg

i =
X

k:vk2Vµ
g
i

wkf
v
k (5)

where Vµg
i represents the set of voxels forming µg

i ’s minimum bounding box (i.e., the 4 red points
in Figure 3 mid (c)), and fµg

i is the feature obtained by grid interpolation. emb and � are sin-
cos positional embedding and channel-wise concatenate operation, respectively. The calculated
parameters µs

i, �s
i , and ⇡s

i are then used to estimate the distribution of ŷi in GMM.

In practice, we use both 3D and 2D grids, designed with multiple resolutions to capture varying
levels of detail. The 3D grids effectively represent the spatial relationships between the Gaussians
and the voxels, though they are of lower resolution due to the higher dimensionality. To complement
this, we employ three 2D grids, each created by collapsing one dimension. These 2D grids provide
higher resolutions, allowing for a more precise capture of local details.

Intra-Gaussian Context Models. Beyond addressing redundancies across Gaussians, we further
utilize our FCGS to eliminate redundancies within each Gaussian. Specifically, we split each ŷi

into N c chunks, and MLPc is used to deduce the distribution parameters for each chunk from the
previously decoded ones. For path m = 1 in MEM, we split ŷ into N c = 4 chunks along channel
dimension. For path m = 0, ŷ is split into N c = 3 chunks along RGB axis to leverage redundancies
of color components. We do not apply intra-context for f geo, as its internal relations are trivial.

µc
i,�

c
i ,⇡

c
i = �Nc

nc=1{µ
c
i,nc ,�c

i,nc ,⇡c
i,nc}, where µc

i,nc ,�c
i,nc ,⇡c

i,nc = MLPc(ŷi,[0,ncc�c)) (6)
where nc and c are chunk index and channel amount per chunk, respectively. µc

i,nc ,�c
i,nc ,⇡c

i,nc are
the intermediate probability parameters for chunk nc, with a dimension size of c for each.

Gaussian Mixed Model (GMM). In addition to the context models, hyperprior also outputs a set
of distribution parameters µh

i , �h
i and ⇡h

i from ẑi. To this end, we introduce GMM to represent the

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

final probability as a combination of these 3 sets of Gaussian distribution parameters. For any ŷi at
j-th channel, its probability can be calculated as a combination of Gaussian distribution N ,

p(ŷi,j) =
X

l2{h,s,c}

�l
i,jN (ŷi,j | µl

i,j ,�
l
i,j), where �l

i,j =
exp(⇡l

i,j)P
l2{h,s,c} exp(⇡

l
i,j)

(7)

Note that for geometry attributes f geo, l 2 {h, s}. GMM adaptively weights the mixing of the
three sets of distributions, providing more accurate probability estimation. For ẑ in the hyper-
prior branch, we follow Ballé et al. (2018) to use a factorized module to estimate its p(ẑi,j).
According to information theory (Cover, 1999), bit consumption of xi can be calculated: biti =PDy

j (� log2 p(ŷi,j)) +
PDz

j (� log2 p(ẑi,j)). Dy and Dz are number of channels of ŷi and ẑi.

3.4 TRAINING AND CODING PROCESS

Training loss. After obtaining x̂ from ŷ through the synthesis transform gs, we can evaluate the
fidelity between the ground truth I and the image Î rendered from x̂. To balance the mask rate of
f col in MEM, we include the mask m directly in the bit calculation process, rather than introducing
an additional loss term. Specifically, we forward all Gaussians’ f col in both MEM paths and use
m to compute the weighted sum of the output bit from both paths, ensuring the gradients can be
backpropagated for both. The overall loss function is:

L = Lfidelity(Î, I)+�
Lentropy

N g ⇥ 56
, where Lentropy =

N gX

i=1

bitgeo
i +mibit

col|mi=1
i +(1�mi)bit

col|mi=0
i

(8)
where N g represents the amount of Gaussians, 56 is the dimension of f gau, and they collectively
represent the amount of attribute parameters. bitgeo

i and bitcol
i represents the bit consumption for a

Gaussian’s geometry and color attributes, respectively, with xi set as f geo
i or f col

i , respectively. �
is a hyperparameter controlling the trade-off between fidelity and entropy. The fidelity loss, Lfidelity
includes both MSE and SSIM metrics to evaluate the reconstruction quality of x̂. Minimizing this
loss encourages x̂ to closely resemble the original x while also reducing the bit consumption.

Encoding/decoding process. For encoding, the attributes f geo and f col are encoded using Arith-
metic Encoding (AE) (Witten et al., 1987) in the space of ŷ and ẑ given the corresponding proba-
bilities, masks m are binary and encoeded using AE based on the occurrence frequency of 1, and
Gaussian coordinates µg are 16-bit quantized and encoded losslessly using GPCC (Chen et al.,
2023). For decoding, Gaussian coordinates µg, masks m, and hyperpriors ẑ are decoded first.
Then, to decode ŷi,[ncc�c,ncc) | ŷi 2 Y[ns], its value distribution is calculated using GMM based
on: µs

i,nc , �s
i,nc , ⇡s

i,nc from ŷ 2 Y[0,ns�1] using inter-Gaussian context models (channel sliced), and
µc

i,nc , �c
i,nc , ⇡c

i,nc from ŷi,[0,ncc�c) | ŷi 2 Y[ns] using intra-Gaussian context models, and µh
i,nc ,

�h
i,nc , ⇡h

i,nc from ẑi using hyperprior (channel sliced). On obtaining GMM, it is decoded using AD.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

Implementation. Our FCGS model is implemented using the PyTorch framework (Paszke et al.,
2019) and trained on a single NVIDIA L40s GPU. The dimension of ŷ is set to 256 for color
(m = 1). For ẑ, dimensions are set to 16, 24, and 64 for geometry, color (m = 0), and color
(m = 1), respectively. Grid resolutions are {70, 80, 90} for 3D grids and {300, 400, 500} for 2D
grids. We set N s to 4, using uneven splitting ratios of { 1

6 ,
1
6 ,

1
3 ,

1
3}, with uniform random sampling.

✏m is set to 0.01. In inference, we maintain a same random seed in encoding and decoding to
guarantee consistency. The training batch size is 1 (i.e., one 3DGS scene per training step). We
adjust � from 1e� 4 to 16e� 4 to achieve variable bitrates. During training, we first train ga and gs
of m = 1 using only the fidelity loss to ensure satisfactory reconstruction quality. We then jointly
train the context models for color with m = 1, and finally, train the entire model in an end-to-end
manner. We adopt this training process because the gradient chain for the m = 0 path is shorter than
that of the m = 1 path. Without sufficient pre-training of the m = 1 path, the model is prone to
collapsing into a local minimum where all m values are zero.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

973

23.6

23.4

23.2

15 25 35 40

Navaneet*

Simon*
Light*

SOG**

EAGLES**
Lee**

Ours

20 40 60

27.6

27.2

26.8

26.4

29.0

28.5

28.0

20

Navaneet*

Simon*
Light*

SOG**

EAGLES**
Lee**

Ours

Tanks & Temples

30 35

MipNeRF360DL3DV-GS

Navaneet*

Simon*
Light*

SOG**
EAGLES**

Lee**

Ours

11/21 240120587Time (s):11/36 421195Time (s):10/18 227121546Time (s):

3DGS (372MB)

PS
N

R 
(d

B)

SIZE (MB) SIZE (MB) SIZE (MB)

3DGS (741MB) 3DGS (432MB)

15 25 30 50 20 30

1068 518 938 2391 1245 1885 1219 604 1007

Figure 4: Performance comparison. Each scene is initially trained for 30K iterations to produce
the vanilla 3DGS. Methods marked with * and circle are finetuned from this common 3DGS (our
FCGS also compresses the same 3DGS); Methods marked with ** and triangles are trained from
scratch due to their modification to structures. We also present the runtime of our method and
other approaches at the bottom of the figure (which is also reflected by the size of the marks),
where our approach requires significantly less time for compression. For our runtime, it means
using multiple/single GPUs. Thanks to our optimization-free pipeline, we divide the 3DGS into
chunks, with each chunk containing 1 million Gaussians, allowing us to easily encode these chunks
in parallel using multiple GPUs, further speeding up the process.

Ours (! = 1$ − 4) Ours (! = 16$ − 4) 3DGS Ground Truth

29.07/23.39 28.75/13.04 29.11/278.7

21.89/16.04 22.14/330.722.13/29.51

Simon* SOG**

27.85/19.54

20.92/19.40

28.75/13.45

21.85/17.75

Figure 5: Qualitative comparison. We achieve substantial size reduction while preserving high
fidelity. PSNR (dB) / SIZE (MB) are indicated in the bottom-right corner. We only present two
baseline methods for qualitative comparison here due to space limitation. Please refer to Appendix
Section N for more comprehensive qualitative comparisons.

Training Dataset. FCGS requires training on a large-scale dataset with abundant 3DGS. To achieve
that, we refer to DL3DV dataset (Ling et al., 2024), which contains approximately 7K multi-view
scenes. We train these scenes to generate their 3DGS at a resolution of 960P, which takes about
60 GPU days on NVIDIA L40s. After filtering out low-quality ones, we obtain 6770 3DGS, and
randomly split 100 for testing and the remaining for training. This dataset is referred to as DL3DV-
GS. For more details regarding DL3DV-GS, please refer to Appendix Section A.

Metrics. We assess compression performance in terms of fidelity relative to size. Herein, we present
PSNR metric to evaluate fidelity due to page constraints. For additional metrics (SSIM (Wang et al.,
2004) and LPIPS (Zhang et al., 2018)), please refer to Appendix Section F.

4.2 EXPERIMENT EVALUATION

For 3DGS from optimization, FCGS enables rapid compression. Since no prior works customize
optimization-free compression for 3DGS, direct comparisons are unavailable. This leaves us to
benchmark against optimization-based methods, a comparison that is inherently unfair to FCGS.
Nonetheless, we achieve excellent RD performance despite this lack of optimization. Furthermore,
FCGS can also compress 3DGS generated by feed-forward models (Chen et al., 2024c; Tang et al.,
2024), demonstrating its versatility.

For 3DGS from optimization, we employ DL3DV-GS, MipNeRF360 (Barron et al., 2022), and
Tank&Temples (Knapitsch et al., 2017) for evaluation. For the baseline methods, we compare those
built upon the vanilla 3DGS structure, including both finetune from existing 3DGS (Navaneet et al.,

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

3DGS from MVSplat (31.00MB)28.6

28.4

28.2
PS

N
R 

(d
B)

SIZE (MB)
100.25

28.0

27.8

27.6

SIZE (MB)

65.0

60.0

55.0

50.0

45.0

3DGS from MVSplat on ACID

Ours Ours

3DGS from LGM on Gobjaverse
70.0

3DGS from LGM (1.99MB)

PS
N

R 
(d

B)zoom in

28.35

28.50

28.45

28.40

2.0 2.41.8 2.2

Ours

100.50 100.75 101.00 101.25 101.50 10-0.4 10-0.2 10-0.0 100.240.0

0.44 0.480.42 0.46

66.0
64.0
62.0
60.0
58.0

68.0 Ourszoom in

Figure 6: Compression of 3DGS from feed-forward models. Left: MVSplat is a generalizable
reconstruction model, whose fidelity is measured between the rendered images and the ground truth.
Right: LGM is a generative model, whose fidelity is measured between images rendered from 3DGS
before and after compression, as no ground truth cannot be measured due to its generative nature.

29.2

29.0

28.8

15 20 25 30 35

PS
N

R 
(d

B)

SIZE (MB)

Ours

Ours m all 0s

DL3DV-GS

A
blation on M

EM

3DGS (372MB) 29.3

29.2

29.1

29.0

28.9

15 20 25 30 35

PS
N

R 
(d

B)

SIZE (MB)

Ours Ours w/o intra

Ours w/o intra & inter

DL3DV-GSA
blation on contexts

3DGS (372MB)

Ours m all 1s

Figure 7: Ablation studies on the DL3DV-GS dataset. Left: Setting m to all 0s results in a significant
increase in bit consumption. Conversely, setting m to all 1s leads to a drastic drop in fidelity, even
without applying quantization or entropy constraints to y. Right: Excluding the proposed context
models leads to a substantial increase in bit consumption, due to the absence of mutual dependencies.

2024; Niedermayr et al., 2024; Fan et al., 2024) or train from scratch (Morgenstern et al., 2023;
Girish et al., 2024; Lee et al., 2024). The results are in Figure 4. Although our FCGS lacks per-
scene adaptation, which naturally puts us at a disadvantage for unfair comparison, it still surpasses
most optimization-based methods, thanks to the effectiveness of MEM and context models. The
qualitative comparisons are shown in Figure 5, which exhibit high fidelity after compression. Please
refer to Appendix Section D and G to find discussions on the SoTA compression methods and the
detailed analysis on the storage size of each component, respectively.

For 3DGS from feed-forward models, we also demonstrate compression capability. To evaluate
our performance, we refer to MVSplat (Chen et al., 2024c) and LGM (Tang et al., 2024). MVSplat
is a generalizable model that reconstructs interpolated novel views given two bounded views. LGM
is a generative model that creates the 3D scenes from the 4 multi-view images. We follow LGM to
generate the remaining 3 views from the initial 1 view using (Wang & Shi, 2023), which are then
collectively input into LGM for 3DGS creation. This process results in ground-truth cannot be mea-
sured for LGM, thus we evaluate the compression fidelity by measuring the similarities of images
rendered from 3DGS before or after compression. We utilize 10 scenes from ACID (Liu et al., 2021)
and 50 scenes from Gobjaverse (Qiu et al., 2023; Deitke et al., 2022) for these two models for evalu-
ation. The results are shown in Figure 6. Although trained on 3DGS from optimization (Kerbl et al.,
2023), FCGS still generalizes in a zero-shot manner to feed-forward-based 3DGS, achieving com-
pression ratios of 15⇥ and 5⇥. Notably, when compressing 3DGS from feed-forward models, we
set mask m to all 0s for color attributes. Please refer to Appendix Section B for limitation analysis.

4.3 ABLATION STUDY

We perform ablation studies to evaluate the effectiveness of our proposed MEM and context mod-
els. First, we investigate the MEM module, which adaptively selects high-tolerance color attributes

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

30.0

29.5

29.0

28.0

PS
N

R 
(d

B)

101.0 101.5 102.0 102.5
SIZE (MB)

Deep Blending
Mini**+Ours Mini**+MSC Mini**

Trim*Trim*+ MSCTrim*+Ours

3DGS (664MB)zoom in

10 205 15 25 30

Mini**+Ours Mini**+MSC30.0

29.8

29.6
28.5

Figure 8: Building on pruning approaches,
FCGS can further boost compression perfor-
mance. The size of the compressed 3DGS us-
ing FCGS (at the highest rate) is only 40% that
of MSC with the same fidelity. When com-
bined with pruning techniques, FCGS achieves
a compression ratio of 100⇥ over the vanilla
3DGS (see Mini**+Ours). Experiments are
conducted on the Deep Blending dataset. The
x-axis uses a Log10 scale.

to eliminate redundancies via an autoencoder structure, while ensuring all geometry attributes are
directly quantized. Without MEM, we observe the following: 1) If both color and geometry at-
tributes are processed through the autoencoder, the model collapses because rasterization cannot be
performed correctly due to deviations in the geometry information. 2) Fixing the geometry attributes
to be directly quantized, we allow all color attributes to be processed by the autoencoder (i.e., all
m = 1). As shown in Fig 7 left, even without quantization or entropy constraints on y, the ren-
dered images suffer from a significant drop in fidelity due to deviations brought by MLPs. 3) On the
other hand, if all color attributes are directly quantized (i.e., all m = 0), their redundancies are not
effectively eliminated, leading to increased storage costs.

Next, we explore the impact of our context models. As demonstrated in Figure 7 right, removing
intra- and inter-Gaussian context models progressively decreases RD performance. Compared to the
full FCGS model, the bit consumption is 1.5⇥ for the base model under similar fidelity conditions.

4.4 BOOST EXISTING COMPRESSION APPROACHES

The vanilla 3DGS (Kerbl et al., 2023) sometimes struggles with densification issues, leading to
suboptimal fidelity. Pruning techniques effectively eliminate trivial Gaussians, enhancing fidelity
while reducing size, particularly evident with the Deep Blending dataset (Hedman et al., 2018). Im-
portantly, FCGS is compatible with these pruning techniques. We refer to Trimming (Ali et al.,
2024) and Mini-Splatting (Fang & Wang, 2024), both of which apply pruning to Gaussians. As
shown in Figure 8, FCGS significantly boosts their compression performance. Notably, MSC is a
straightforward optimization-free compression tool utilized in Fang & Wang (2024). We compare
the compression performance of FCGS and MSC by directly applying them to the same pruned
3DGS representations. The superior compression performance of FCGS underscores its signifi-
cance. Please refer to Appendix Section M to find the results on the other three datasets.

4.5 CODING AND RENDERING EFFICIENCY ANALYSIS

Our coding time includes GPCC (Chen et al., 2023) coding for coordinates µg and arithmetic coding
for attributes f geo and f col and masks m. On average, FCGS takes about 1 second to encode 100K
Gaussians when running on a single GPU. Please refer to Appendix Section H to find the detailed
analysis on coding time. The rendering time of the decoded 3DGS is consistent with that before
compression since FCGS does not alter the number or structure of the Gaussians. For instance, the
average FPS is 102 and 91 before and after compression (� = 1e� 4) on the MipNeRF360 dataset.

5 CONCLUSION

In this paper, we introduce a pioneering generalizable optimization-free compression pipeline for
3DGS representations and propose our FCGS model. FCGS enables fast compression of existing
3DGS without any finetuning, offering significant time savings. More importantly, we achieve im-
pressive RD performance, exceeding 20⇥ compression, through the meticulous design of the MEM
module and context models. Our approach can also boost compression performance of pruning-
based methods. Overall, this new compression pipeline has the potential to significantly enhance the
widespread application of 3DGS compression techniques due to its numerous advantages.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Muhammad Salman Ali, Maryam Qamar, Sung-Ho Bae, and Enzo Tartaglione. Trimming the fat:
Efficient compression of 3d gaussian splats through pruning. arXiv preprint arXiv:2406.18214,
2024.

Milena T. Bagdasarian, Paul Knoll, Florian Barthel, Anna Hilsmann, Peter Eisert, and Wieland
Morgenstern. 3dgs.zip: A survey on 3d gaussian splatting compression methods, 2024. URL
https://arxiv.org/abs/2407.09510.

Johannes Ballé, David Minnen, Saurabh Singh, Sung Jin Hwang, and Nick Johnston. Variational
image compression with a scale hyperprior. In International Conference on Learning Represen-
tations, 2018.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5470–5479, 2022.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello,
Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon
Wetzstein. Efficient geometry-aware 3D generative adversarial networks. In CVPR, 2022.

David Charatan, Sizhe Lester Li, Andrea Tagliasacchi, and Vincent Sitzmann. pixelsplat: 3d gaus-
sian splats from image pairs for scalable generalizable 3d reconstruction. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 19457–19467, 2024.

Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. Tensorf: Tensorial radiance
fields. In European Conference on Computer Vision, pp. 333–350. Springer, 2022.

Anthony Chen, Shiwen Mao, Zhu Li, Minrui Xu, Hongliang Zhang, Dusit Niyato, and Zhu Han. An
introduction to point cloud compression standards. GetMobile: Mobile Computing and Commu-
nications, 27(1):11–17, 2023.

Yihang Chen, Qianyi Wu, Mehrtash Harandi, and Jianfei Cai. How far can we compress instant-
ngp-based nerf? In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2024a.

Yihang Chen, Qianyi Wu, Weiyao Lin, Mehrtash Harandi, and Jianfei Cai. Hac: Hash-grid assisted
context for 3d gaussian splatting compression. In European Conference on Computer Vision,
2024b.

Yuedong Chen, Haofei Xu, Chuanxia Zheng, Bohan Zhuang, Marc Pollefeys, Andreas Geiger, Tat-
Jen Cham, and Jianfei Cai. Mvsplat: Efficient 3d gaussian splatting from sparse multi-view
images. In European Conference on Computer Vision, 2024c.

Thomas M Cover. Elements of information theory. John Wiley & Sons, 1999.

Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt, Ludwig
Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe of anno-
tated 3d objects. arXiv preprint arXiv:2212.08051, 2022.

Chenxi Lola Deng and Enzo Tartaglione. Compressing explicit voxel grid representations: fast
nerfs become also small. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, pp. 1236–1245, 2023.

Zhiwen Fan, Kevin Wang, Kairun Wen, Zehao Zhu, Dejia Xu, and Zhangyang Wang. Lightgaus-
sian: Unbounded 3d gaussian compression with 15x reduction and 200+ fps. Advances in neural
information processing systems, 2024.

Guangchi Fang and Bing Wang. Mini-splatting: Representing scenes with a constrained number of
gaussians. In European Conference on Computer Vision, 2024.

11

https://arxiv.org/abs/2407.09510


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sharath Girish, Abhinav Shrivastava, and Kamal Gupta. Shacira: Scalable hash-grid compression
for implicit neural representations. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 17513–17524, 2023.

Sharath Girish, Kamal Gupta, and Abhinav Shrivastava. Eagles: Efficient accelerated 3d gaussians
with lightweight encodings. In European Conference on Computer Vision, 2024.

Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Bros-
tow. Deep blending for free-viewpoint image-based rendering. ACM Transactions on Graphics
(ToG), 37(6):1–15, 2018.

Gyeongjin Kang, Younggeun Lee, and Eunbyung Park. Codecnerf: Toward fast encoding and de-
coding, compact, and high-quality novel-view synthesis. arXiv preprint arXiv:2404.04913, 2024.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), 2023.

Arno Knapitsch, Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Tanks and temples: Benchmarking
large-scale scene reconstruction. ACM Transactions on Graphics (ToG), 36(4):1–13, 2017.

Joo Chan Lee, Daniel Rho, Xiangyu Sun, Jong Hwan Ko, and Eunbyung Park. Compact 3d gaussian
representation for radiance field. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2024.

Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Liefeng Bo. Compressing volumetric radi-
ance fields to 1 mb. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4222–4231, 2023.

Sicheng Li, Hao Li, Yiyi Liao, and Lu Yu. Nerfcodec: Neural feature compression meets neu-
ral radiance fields for memory-efficient scene representation. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 21274–21283, 2024.

Lu Ling, Yichen Sheng, Zhi Tu, Wentian Zhao, Cheng Xin, Kun Wan, Lantao Yu, Qianyu Guo,
Zixun Yu, Yawen Lu, et al. Dl3dv-10k: A large-scale scene dataset for deep learning-based 3d
vision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 22160–22169, 2024.

Andrew Liu, Richard Tucker, Varun Jampani, Ameesh Makadia, Noah Snavely, and Angjoo
Kanazawa. Infinite nature: Perpetual view generation of natural scenes from a single image.
In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October
2021.

Xiangrui Liu, Xinju Wu, Pingping Zhang, Shiqi Wang, Zhu Li, and Sam Kwong. Compgs: Efficient
3d scene representation via compressed gaussian splatting. In ACM Multimedia, 2024.

Tao Lu, Mulin Yu, Linning Xu, Yuanbo Xiangli, Limin Wang, Dahua Lin, and Bo Dai. Scaffold-gs:
Structured 3d gaussians for view-adaptive rendering. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2024.

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. Communications
of the ACM, 65(1):99–106, 2021.

Wieland Morgenstern, Florian Barthel, Anna Hilsmann, and Peter Eisert. Compact 3d scene repre-
sentation via self-organizing gaussian grids. arXiv preprint arXiv:2312.13299, 2023.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):1–15,
2022.

KL Navaneet, Kossar Pourahmadi Meibodi, Soroush Abbasi Koohpayegani, and Hamed Pirsiavash.
Compact3d: Compressing gaussian splat radiance field models with vector quantization. In Eu-
ropean Conference on Computer Vision, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Simon Niedermayr, Josef Stumpfegger, and Rüdiger Westermann. Compressed 3d gaussian splatting
for accelerated novel view synthesis. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10349–10358, 2024.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning
on point sets in a metric space. In Advances in Neural Information Processing Systems (NeurIPS),
pp. 5099–5108, 2017.

Lingteng Qiu, Guanying Chen, Xiaodong Gu, Qi zuo, Mutian Xu, Yushuang Wu, Weihao Yuan,
Zilong Dong, Liefeng Bo, and Xiaoguang Han. Richdreamer: A generalizable normal-depth
diffusion model for detail richness in text-to-3d. arXiv preprint arXiv:2311.16918, 2023.

Daniel Rho, Byeonghyeon Lee, Seungtae Nam, Joo Chan Lee, Jong Hwan Ko, and Eunbyung
Park. Masked wavelet representation for compact neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20680–20690, 2023.

Seungjoo Shin and Jaesik Park. Binary radiance fields. Advances in neural information processing
systems, 2023.

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel grid optimization: Super-fast con-
vergence for radiance fields reconstruction. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 5459–5469, 2022.

Stanislaw Szymanowicz, Christian Rupprecht, and Andrea Vedaldi. Splatter image: Ultra-fast
single-view 3d reconstruction. In The IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2024.

Jiaxiang Tang, Xiaokang Chen, Jingbo Wang, and Gang Zeng. Compressible-composable nerf via
rank-residual decomposition. Advances in Neural Information Processing Systems, 35:14798–
14809, 2022.

Jiaxiang Tang, Zhaoxi Chen, Xiaokang Chen, Tengfei Wang, Gang Zeng, and Ziwei Liu. Lgm:
Large multi-view gaussian model for high-resolution 3d content creation. In European Conference
on Computer Vision, 2024.

Henan Wang, Hanxin Zhu, Tianyu He, Runsen Feng, Jiajun Deng, Jiang Bian, and Zhibo Chen.
End-to-end rate-distortion optimized 3d gaussian representation. In European Conference on
Computer Vision, 2024a.

Peng Wang and Yichun Shi. Imagedream: Image-prompt multi-view diffusion for 3d generation.
arXiv preprint arXiv:2312.02201, 2023.

Yufei Wang, Zhihao Li, Lanqing Guo, Wenhan Yang, Alex C Kot, and Bihan Wen. Contextgs:
Compact 3d gaussian splatting with anchor level context model. Advances in neural information
processing systems, 2024b.

Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing, 13(4):600–
612, 2004.

Ian H Witten, Radford M Neal, and John G Cleary. Arithmetic coding for data compression. Com-
munications of the ACM, 30(6):520–540, 1987.

Minye Wu and Tinne Tuytelaars. Implicit gaussian splatting with efficient multi-level tri-plane
representation. arXiv preprint arXiv:2408.10041, 2024.

Runyi Yang, Zhenxin Zhu, Zhou Jiang, Baijun Ye, Xiaoxue Chen, Yifei Zhang, Yuantao Chen, Jian
Zhao, and Hao Zhao. Spectrally pruned gaussian fields with neural compensation. arXiv preprint
arXiv:2405.00676, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable
effectiveness of deep features as a perceptual metric. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 586–595, 2018.

M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Ewa volume splatting. In Proceedings Visualiza-
tion, 2001. VIS ’01., pp. 29–538, 2001. doi: 10.1109/VISUAL.2001.964490.

14


	Introduction
	Related Work
	Fast Compression of 3D Gaussian Splatting
	Preliminaries and Discussions
	Value-Based Principle: Multi-path Entropy Module (MEM)
	Structure-Based Principle: Autoregressive Context Models
	Training and Coding Process

	Experiments
	Implementation Details
	Experiment Evaluation
	Ablation Study
	Boost existing compression approaches
	Coding and rendering efficiency analysis

	Conclusion
	Statistical Data for DL3DV-GS
	Analysis of Limitations
	Effect of Different Random Seeds on Gaussian Splitting
	Discussions on SoTA 3DGS Compression Methods
	Mask Ratio Analysis in MEM
	More Fidelity Metrics and Training Time
	Analysis of Storage Size of Different Components
	Analysis of Encoding/Decoding Time of Different Components
	Ablation on the Number of Splits in Context Models
	Visualization of Bit Allocation Using Context Models
	Ablation Studies on the Hyperprior
	Training with Less Data
	Boost Compression Performance of Pruning-based Approaches
	Additional Qualitative Comparisons

