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ABSTRACT

Understanding dense visual semantics remains a fundamental challenge in com-
puter vision, as semantically similar objects can exhibit drastically different visual
appearances. Recent advancements in generative text-to-image frameworks have
led to models that implicitly capture natural scene statistics. These models learn
to model complex relationships between objects, lighting, and other visual fac-
tors, enabling the generation of detailed and contextually rich images from text
captions. To advance visual semantic understanding and develop more robust and
interpretable vision models, we present StableSemantics, a large-scale dataset
composed of 224 thousand human-curated prompts, processed natural language
captions, over 2 million synthetic images, and 10 million attention maps. The
dataset provides fine-grained semantic attributions at the noun-chunk level, lever-
ages human-generated prompts that correspond to visually interesting stable dif-
fusion generations, and provides 10 generations per phrase, with cross-attention
maps corresponding to noun chunks for each image. We explore the semantic
distribution of generated images, examine the distribution of objects within images,
and benchmark captioning and open vocabulary segmentation methods on our data.
As the first diffusion dataset to include dense attention attributions, we expect
StableSemantics to catalyze advances in visual semantic understanding and provide
a foundation for developing more sophisticated and effective visual models.

1 INTRODUCTION

Dense visual scene understanding is a complex task that requires the integration of cues, context,
and prior knowledge to navigate the inherent variability and complexity of the visual world. This
complexity is particularly evident when considering the diversity of visual appearances that can
correspond to a single semantic concept. For instance, entities that correspond to “man-made
structures” can have vastly different visual appearances, ranging from sleek skyscrapers to rustic
cottages. Similarly, objects that serve the same purpose, such as “containers,” can have diverse
shapes, sizes, and materials. This disconnect between semantic meaning and visual appearance poses
a significant challenge for computer vision systems (Brust & Denzler, 2018; Duan & Kuo, 2021;
Alqasrawi, 2016; Barz & Denzler, 2020), requiring the disentanglement of the underlying semantic
structure from visual differences (Caron et al., 2021; Xu et al., 2023; Elharrouss et al., 2021; VS
et al., 2024; Hu et al., 2023; Quinn et al., 2017). To overcome this challenge, recent advances have
adopted data-driven approaches, which learn to recognize patterns and relationships in large datasets
of images and annotations. However, the reliance on large datasets of images and annotations poses a
significant challenge in the development of segmentation models. Acquiring and annotating such
datasets can be a time-consuming and resource-intensive process, requiring careful consideration of
data quality and diversity.

This limitation has sparked interest in exploring alternative approaches that can reduce the need for
large human-annotated datasets. One promising direction is the use of generative models, which have
shown impressive results in translating between semantic meaning and visual appearance (Rombach
et al., 2022; Podell et al., 2023; Song et al., 2020; Ho et al., 2022). In particular, diffusion-based text-
to-image synthesis models have demonstrated an impressive ability to generate highly realistic images
from textual descriptions, suggesting that these models must possess an implicit understanding of the
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Figure 1: Images and maps corresponding to select noun chunks from StableSemantics. Images
are generated using natural language captions derived from human generated and curated prompts.
For reproducibility, seeds are recorded for each generation. Noun chunks are extracted by performing
dependency parsing the natural language captions. Semantic maps corresponding to each noun chunk
is computed using the cross-attention maps with the DAAM Tang et al. (2022) method. Only a
single attention map is shown here for each image, please see below for additional examples. Yellow
indicates high relevance, black indicates low relevance.

semantic structure of the visual world, and have learned to associate words and phrases with specific
visual concepts. By leveraging cross-attention mechanisms, these models learn to link textual input to
visual representations and enable the generation of images that are grounded in the semantic content
of the input text (Tang et al., 2022). This in turn has led to generative media proliferating over social
media, advertisements, and news media. Although generated images may seem indistinguishable
from real images to the human eye, neural networks can still differentiate between them (Huang et al.,
2024; Aziz et al., 2024; You et al., 2024). This suggests that generated images are still quite different
from real images and that generative models are still far from perfect in accurately replicating the
real data distribution (You et al., 2024). This demonstrates that a very clear gap still exists between
generated and real data. Thus, there is a strong need for the development of more advanced generated
data to help models perform well on synthetically generated images and to address the difficulty of
gathering large-scale real data. Specifically, there are no existing large-scale generated datasets that
contribute semantic maps in addition to images and their corresponding captions.

In this work, we introduce StableSemantics, a dataset that consists of human-generated and curated
prompts, natural language captions, images generated from the captions, and attention attribution
maps corresponding to objects in the captions. Unlike prior work which sourced unfiltered human-
generated prompts, we source our prompts from a pool of images that have been evaluated by humans
for their visual appeal and interest, resulting in a dataset that mirrors the types of images people
find engaging. As the original prompts may not always reflect natural language, we employ a large
language model to paraphrase and refine them into fluent and natural-sounding captions, thereby
bridging the gap between human-generated prompts filtered for visual appeal and naturalistic language.
Each natural language caption is provided to a Stable Diffusion XL model to generate high-resolution
and reproducible images. Finally, we explicitly record the dense text-to-image cross-attention maps
used to condition the image generation process. We visualize the distribution of semantics across
images, evaluate the spatial distribution of semantic classes within images, and evaluate the alignment
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of current captioning and open-set segmentation models on our dataset. To our knowledge, our dataset
is the first to systematically record the spatial distribution of cross-attention activations corresponding
to individual noun chunks. StableSemantics can be utilized in future research on various vision tasks
such as object detection, semantic segmentation, semantically meaningful representation learning,
image-inpainting and object removal, object editing, etc.

2 RELATED WORK
Natural Scene Statistics. Natural image statistics have been a long-standing area of research
in computer vision and neuroscience. The human visual system is thought to be adapted to the
statistical properties of natural images, which are characterized by complex dependencies between
pixels (Girshick et al., 2011; van der Schaaf & van Hateren, 1996). The power law distribution of
gradient magnitude statistics is thought to be a result of the hierarchical, self-similar structure of
natural images, which arises from the presence of edges, textures, and other features at multiple
scales. Understanding natural image statistics has important implications for image recognition tasks
(Zoran, 2013; Heiler & Schnörr, 2005; Fang et al., 2012), and has inspired the development of a range
of algorithms and models that are tailored to the statistical properties of natural images (Mechrez
et al., 2019; Kleinlein et al., 2022; Hepburn et al., 2023; Xiang et al., 2024; Hepburn et al., 2021;
Talbot et al., 2023). Other work has also explored the semantic structure of visual data, seeking to
understand how higher-level categories and concepts are reflected in the statistical patterns present in
images. This work has shown that different categories of images, such as scenes and objects, exhibit
distinct statistical patterns (Torralba & Oliva, 2003; Henderson et al., 2023). These semantic statistics
have important implications for the development of models that can effectively represent and analyze
visual data.
Deep Image Generative Models. Recent progress on generative models has enabled the generation
of images, video, text, and audio (Podell et al., 2023; Song et al., 2020; Ho et al., 2022; Gupta et al.,
2023; Touvron et al., 2023; Evans et al., 2024). Models rely on a variety of different mathematical
assumptions and architectures. Variational autoencoders (Kingma & Welling, 2013; Luhman &
Luhman, 2023; Harvey et al., 2021; Razavi et al., 2019; Van Den Oord et al., 2017) and flow-based
models (Rezende & Mohamed, 2015; Tong et al., 2023; Dinh et al., 2014; Kingma & Dhariwal, 2018),
while highly efficient, tend to produce lower-quality samples. Generative Adversarial Networks
(GANs) can yield high-fidelity samples but may neglect modes in the data and can exhibit unstable
training dynamics (Goodfellow et al., 2014; Karras et al., 2019; Brock et al., 2018; Mirza & Osindero,
2014; Zawar et al., 2022). Auto-regressive methods (Huang et al., 2023; Parmar et al., 2018; Lee
et al., 2022; Ramesh et al., 2022), although capable of producing high-quality samples, typically
experience slow sampling. Recent progress in energy/score/diffusion models has given us methods
that are simultaneously stable during training and yield high-quality samples (Rombach et al., 2022;
Ramesh et al., 2022).
Visual Datasets. Deep learning models have achieved remarkable results by leveraging vast
amounts of data. There has been a significant push to collect large-scale datasets. Earlier works such
as LAION-5B (Schuhmann et al., 2022), Flickr Caption (Young et al., 2014), RedCaps (Desai et al.,
2021) and YFCC100M (Thomee et al., 2016) scrape real-world data of image-caption pairs from
web sources. COCO (Lin et al., 2014) goes a step further to also provide pixel-level segmentation
masks on top of the image-caption pairs. (Agrawal et al., 2015; Goyal et al., 2016; Marino et al.,
2019; Wang et al., 2018; Krishna et al., 2017) introduce datasets specifically for the task of VQA.
Given the difficulty of collecting real data, recently there has been a shift towards synthetic datasets.
StableRep (Tian et al., 2024) and Hammoud et al. (2024) also demonstrated the usefulness of Stable
Diffusion images in training contrastive image models. Pick-a-Pic (Kirstain et al., 2023) provides a
dataset of image-caption pairs where each sample contains a pair of diffusion-generated images and
the human preference between those images. JourneyDB (Sun et al., 2023) and DiffusionDB (Wang
et al., 2022b) are the closest works to ours that release large-scale datasets of synthetic image-caption
pairs.

3 DATA COLLECTION

In this section, we provide details on the collection and creation process of our dataset. Our data
originates from human-generated and curated prompts submitted publicly by users online for Stable
Diffusion XL. We describe our prompt collection process in section 3.1. The prompts are filtered and
transformed into natural language captions, and we describe our procedure in section 3.2. Finally, we
generate images and compute noun-chunk to image saliency maps via cross-attention in section 3.3.
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Figure 2: Data collection and generation process. (1) We collect our data from Stable Diffusion
Discord, specifically the showdown and pantheon channels which are derived from user rankings
of images generated from public prompt submissions. (2) The prompts are cleaned using regex to
remove common errors, and further processed using an LLM to generate natural language captions.
(3) The natural language captions are provided to a Stable Diffusion XL model, while we record the
attention attribution maps corresponding to noun chunks.

3.1 COLLECTING HUMAN CURATED PROMPTS

Our dataset is collected from the Stable Diffusion discord server, where users can publicly submit
prompts to generate images using a discord bot. After users submitted prompts using the /dream
command, the bot would return images corresponding to a prompt. Beyond accepting a prompt, users
could also submit negative prompts, and image styles which were achieved via a prefix/affix pattern
of text to the original prompt. These style patterns were not visible to the users.

We started our data collection after the Stable Diffusion XL 1.0 (Podell et al., 2023) candidate was
made available via bots. The data was continuously collected from July 11, 2023 (a day after SDXL
1.0 candidate bots were launched) until Feb 07, 2024 (SDXL bot shutdown). Users were allowed
to submit prompts to bot-# channels where # corresponds to a number. We observed that the
number of channels varied over time, and generally remained at slightly over 10. For each prompt,
the bot would return 2 images. Users were asked to select which image was better by clicking
on a button corresponding to an image, without explicit guidance on what ”better” meant. Our
understanding from discussions with members of staff was that these prompts and image pairs were
used for fine-tuning the SDXL candidates using RLHF/DPO (Ouyang et al., 2022; Rafailov et al.,
2024), selection of model candidates, and selection of generation hyperparameters.

Prior work has also collected user-generated prompts from discord servers for MidJourney and
Stable Diffusion (Sun et al., 2023; Wang et al., 2022b). Our work goes further by only collecting
prompts that were human-curated. The Stable Diffusion discord followed a three-tier hierarchy for
prompts, where users first submit and rate images in bot-#, with highly rated images from all bot
channels going into a single showdown channel every 15 minutes. The showdown channel was
reset every 30 minutes and had the history wiped. In the showdown channel, 2 images and their
respective prompts were placed side-by-side. Users again were asked to select the images that were
more visually appealing. Every 30 minutes, the top-ranked images and prompts would go into the
pantheon channel. The pantheon had history going back to inception May 02, 2023. We note
that strictly speaking the showdown to pantheon selection process was not fair to images that
came in at the second 15 minute slice, as they were given less time to be voted upon. Due to this, we
do not further distinguish between prompts collected from these two sources. Our data collection
process ran every 14 minutes on the showdown channels and ran once on the pantheon channel.
This was sufficient as after the initial collection date, new pantheon entries were a strict subset of
showdown prompts. Visual inspection of the generations from showdown and pantheon suggest
that these images were generally more artistic and contained more interesting visual compositions
than the bot-# channel. We collect a total of 235k unique user-generated prompts, which is further
filtered according to NSFW ratings and caption length.
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Dataset Total Images Total Captions Caption Source Human Preferred Open-set Semantics
COCO 2017 Lin et al. (2014) 123k 617k H N N

LAION-COCO Schuhmann et al. (2022) 600M 600M M N N
DiffusionDB Wang et al. (2022b) 14M 1.8M H N N

JourneyDB Sun et al. (2023) 4.7M 1.7M H+M N N
StableSemantics 2M 224k H+M Y 10.8M

Table 1: Size of the different components of StableSemantics. Our captions are selected by humans
to correspond to visually interesting images. We are the only dataset to provide dense open-set spatial
semantic maps. Our maps are derived from the cross-attention maps in Stable prompts. Note that
235k unique captions are collected, 224k remain after NSFW filtering and only 200k captions are
used for image generation after filtering for length.
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Figure 3: Histogram of dataset statistics. (a) We visualize the cosine CLIP similarities between
generated images and original captions. (b) Number of tokens in the captions. (c) NSFW scores of
the captions after LLM filtering. Scores measured by LLaMA Guard 2 for sexuality and hate.

3.2 OBTAINING NATURAL LANGUAGE CAPTIONS

As shown in Figure 4, the user-submitted prompts generally took a tag-like format, with descriptors
being separated by commas. Such prompts are convenient for users to specify and likely achieve good
results due to the use of CLIP text networks for conditioning, which can operate like bag-of-words
models (Thrush et al., 2022; Yuksekgonul et al., 2022). However, such prompts generally perform
poorly when typical NLP pipelines are used for analysis. These prompts further may not explicitly
specify needed visual relationships in the text, and instead excessively rely on the prior learned by
the diffusion model to disambiguate relationships. In order to mitigate this issue, we utilize an LLM
model to clean up the original raw user-generated prompts. We use Gemini 1.0 Pro for this
task, as it performed competitively against other models at the time of our work (Team et al., 2023)
and offered a free API. The model was instructed to take the user-generated prompts and transform
them into natural language captions. To enhance the results, we augment the prompt via in-context
learning from GPT-4 input/output pairs. To remove NSFW prompts, we record the Gemini API safety
ratings for each input prompt, and remove the prompts where a 4 out of 4 rating was given on the
axes of sexuality/hate speech/harassment, or if the model itself produced a refusal, or if the prompt
was repeatedly returned with an error (blocked by Google). Please see Figure 2 for a visualization of
the pipeline.

3.3 IMAGE GENERATION AND SEMANTIC ATTRIBUTION

To provide a fully reproducible pipeline for the images and maximize the usability of our dataset, we
generate the images ourselves using open weights and record the random seed for each generation. Im-
ages are generated using sdxl lightning 4step unet (Lin et al., 2024), a few-step distilled
version of Stable Diffusion XL. For each prompt, we perform parsing using spaCy en core web lg
to extract noun chunks. To obtain mappings from noun chunks to spatial attributions, we use Diffusion
Attentive Attribution Maps which measures the cross-attention from tokens in the language condition
to the UNet. Specifically, we used the improved DAAM-i2i guided heatmap variant (Tang et al.,
2022; Chowdhury, 2024) which improves object localization. We observe that unrelated articles like
”a”, and ”the” and possessive determiners like ”his”, ”her”, ”our”, ”their” are not typically localized
to a specific object, but rather have attribution maps diffuse over the background or various objects
in the image. While similar phenomena has been noted in ViTs (Darcet et al., 2023) and pure text
LLMs (Clark et al., 2019; Kovaleva et al., 2019; Xiao et al., 2023), our observation is novel in that
text-to-image diffusion models are encoding contextual information in these ”filler” words. For
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Portrait of a rusty suit 

of armor in a dark 
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view, style: magic the 
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Bird's-eye view of a 
small medieval castle 
after a battle, smoke 
rising from the grounds 
as night falls. Style: 
Magic the Gathering.

hospital close que to 

lockdown, hospital 

gaate wrap with a 

warning lebels.

Close-up shot of a 

hospital entrance 

wrapped with warning 

labels during 

lockdown.

blue dog, painting, 
landscape, realistic, art

Realistic painting of a 
blue dog in a 
landscape.

Figure 4: Example of SDXL generated images from the captions, raw user prompts and LLM
processed captions. Raw prompts from users often contain typos or take the form a non-natural
language tag-like format. We instruct an LLM to transform the prompts into a natural language
caption. Noun chunks (bolded and underlined) are derived from dependency parsing. Images are
generated from the captions, with diffusion attribution maps recorded for the noun chunks.

effective localization, we remove articles and possessive determiners if they are the first word of a
noun chunk.

4 EXPERIMENTS
We first evaluate the CLIP similarity between the generated images and the captions, and further
characterize the safety and length of the captions. We then explore the semantic distribution of
the images and the captions using CLIP, and visualize the spatial distribution of objects in a scene
using diffusion attribution maps. Finally, we evaluate the performance of captioning and open-set
segmentation models on our dataset. These characterizations demonstrate how StableSemantics can
be a promising dataset for advancing visual semantic understanding. The data will be released under
a CC0 1.0 license.

4.1 DATASET CHARACTERIZATION

After deduplication and LLM NSFW filtering, we have 224 thousand natural language captions. We
evaluate the similarity of the SDXL-lightning generated images and the captions in Figure 3a using
OpenAI’s CLIP ViT-B/16 (Radford et al., 2021). We find that the CLIP similarity peaks at 0.34,
which is similar to CLIP scores achieved using SDXL. These scores typically range from 0.2 to 0.5
which means that our prompts and images can be interpreted to be semantically very similar given
the higher range of scores. We visualize the token length of the captions in Figure 3b. Note that we
do not generate images for captions exceeding 77 tokens post-padding. This yields a total of 200k
captions which are used for image generation. In Figure 3c, we plot the NSFW scores of the captions
used for image generation, as evaluated using the state-of-the-art Meta Llama Guard 2 model.
We define the unsafe categories to the 3 official categories relating to sexual content, and the 1 official
category related to hate speech. The scores are the ”unsafe” softmax outputs between the ”safe” and
”unsafe” tokens. We find that the captions used for generation are overwhelmingly safe. In Figure 4,
we provide examples of the images, the original human generated prompts which may often contain
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burgers parkWalrus chef

soccer apartmentGolden retriever

Image

hat mirrorMan

dapper suit bowler hatUnique pig

Caption

A walrus chef wearing a 
toque, serving burgers 
from his food truck in the 
park

Very detailed photo of a 
golden retriever playing 
soccer in an apartment 
with a very detailed 
background

Man wearing a hat 
reflected in front of a 
mirror

“Pig’s Novelty”: A 
captivating scene 
presenting a unique pig 
strutting upright. Dressed 
in a dapper suit and a 
bowler hat, the pig walks 
confidently, garnering 
astonished glances from 
onlookers

Figure 5: Visualization of the dataset. We show example captions used for image generation, images
generated from the captions, and select noun chunks and their corresponding attention attribution
maps. We find that our dataset contains accurate localizations for different semantic concepts.

typos or tags, and the LLM output natural language prompts. Likely due to human preference, we
observe a higher ratio of images with visually interesting compositions.

(a) (b)

UMAP of dataset CLIP image embeddings UMAP of dataset CLIP text embeddings

Figure 6: UMAP visualization of dataset CLIP embeddings. We use OpenAI CLIP ViT-B/16
to compute embeddings for both the generated (a) images and the (b) text. UMAP with the cosine
metric is used to perform dimensionality reduction. We observe that images describing people, scenes,
text, and animals occur with high frequency.
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Ours
(a)

COCO

(c)

JourneyDB
Ours Ours

JourneyDB

(b)

Figure 7: UMAP visualization of CLIP embeddings of different datasets. (a) CLIP text embed-
dings of the natural language captions. (b) CLIP text embeddings of the prompts. (c) CLIP image
embeddings of StableSemantics against COCO.

Model GPT-2 Llama 3 8B
DiffusionDB 335.86 92.02
JourneyDB 241.39 94.85

StableSemantics 206.26 91.41

Figure 8: Perplexity scores for prompts

Model GPT-2 Llama 3 8B
JourneyDB 92.11 46.94

StableSemantics 87.35 43.74

Figure 9: Perplexity scores for captions

In table 8 we evaluate the prompts which are typically not natural language. For JourneyDB and
StableSemantics we use the processed prompts (with parameters removed via regex). StableSemantics
prompts consistently have lower perplexity than other datasets, likely due to human preference. A
lower perplexity score indicates the prompt can be better predicted by the model and is more similar
to natural language. Note that we do not use instruct-tuned models. Similarly, in table 9 we evaluate
the captions which are LLM-processed prompts. Note that DiffusionDB did not provide captions.
Captions from StableSemantics consistently have lower perplexity. This is likely due to using a more
powerful LLM (Gemini vs GPT-3.5) and the human preference as a source of the raw captions.

4.2 SEMANTIC EXPLORATION OF THE DATASET

In Figure 6 we visualize the semantic distribution of whole images and the captions used to generate
the images. We utilize UMAP (McInnes et al., 2018) with a cosine metric applied to CLIP embeddings
for this visualization with wizmap (Wang et al., 2023c). We find that the distribution of both images
and text exhibit peaks in concepts such as people, scenes, text, and animals (cats and dogs). These
peaks likely reflect the effect of human preference on visually interesting images.

We compare the distribution of prompts, captions, and images against JourneyDB and COCO. Figure
7a shows that our captions (natural language outputs of Gemini/GPT) are a subset of JourneyDB’s
captions. Figure 7b further shows that this cannot be due to the choice of LLM, and instead this is the
influence of human preference for visually appealing images as human preferred prompts tile the
broader prompt distribution, and do not form a linearly separable set. Figure 7c shows that image
distribution of COCO and Our dataset is different and highlights that our dataset has images with
objects in complex or imaginative scenarios not observed in real datasets.

The semantic maps we provide in our dataset help localize image regions corresponding to specific
noun chunks from the prompts. In Figure 5 we visualize the captions used from image generation,
the generated RGB image, and attention attribution masks corresponding to noun chunks shown in
bold. We find that our dataset can provide semantic attributions that are well aligned to objects in the
scene. This is likely due to the nature of Stable Diffusion, which leverages cross-attention guidance
to generate complex compositional images.

We use these maps to analyze whether our images exhibit a trend of certain concepts being generated
in specific regions on average. In Figure 10 we aggregate the masks of the top 100 noun chunks that
have the highest CLIP similarity scores with concepts of interest. We apply this similarity-based
matching to allow for inexact matching. Figure 10 clearly shows that the spatial distribution of
concepts can be highly non-uniform. This bias likely reflects the distribution of concepts in natural
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Hair Car Food

Wall Floor Sunset
Figure 10: Spatial distribution of semantic concepts. For each concept, we visualize an example
image containing the concept, as well as the spatial distribution averaged over occurrences. We utilize
CLIP text similarity to select the top-100 most similar noun chunks and average those occurrences.

a) Playground v2.5

b) Stable Diffusion 2.1 Base

c) Stable Diffusion 1.5

Figure 11: Spatial distribution of semantic concepts for other generative models.

images (Torralba & Oliva, 2003; Greene, 2013). For instance, it makes sense for the sunset to always
be on the top, the walls towards the sides, and the floor towards the bottom. It is also very common to
find human beings as the primary subjects in images which explains the placement of hair surrounding
a central region. Finally, many images exhibit food on top of a table and cars on roads. In these
scenarios, these semantic concepts typically occupy the bottom half of the visual field. Furthermore,
we compare the spatial distribution of concepts across various popular generative models in Figure 11
and find similar trends being followed with slight variations. We visualize the frequency distribution
of nouns grouped by wordnet hierarchy in Figure 12. Our dataset could be used to understand the
spatial and visual bias present in natural images.

4.3 EVALUATION OF MODELS

In this section we evaluate the performance of state-of-the-art open-vocabulary image segmentation
and captioning models on our dataset. For open-vocabulary segmentation methods, we evaluate the
standard mean Intersection over Union (mIOU), where discrete masks are computed by taking the
argmax over all noun chunks’ continuous masks for a given prompt. As these methods also produce
soft masks, we also evaluate the pearson correlation of the attribution maps from our datasets. In
Table 14, We find that recent open-vocabulary segmentation models which modify CLIP (LSeg (Li
et al., 2022), SCLIP (Wang et al., 2023a)) or leverage text-to-image diffusion models (ODISE (Xu
et al., 2023)) perform better than their peers like MaskCLIP (Dong et al., 2023) CLIPSeg (Lüddecke
& Ecker, 2022) and OVSeg (Liang et al., 2023).
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Figure 12: Frequency of nouns visualized with wordnet hierarchy. We parse the sentences and
extract the nouns. The hierarchy is from wordnet Fellbaum (2010). The circle size corresponds to
frequency.

Methods E5-Mistral ↑ BLEU ↑ CIDEr ↑
LLaVA 67.9 1.2 3.1
BLIP-2 70.9 1.9 10.2
GIT 63.3 1.0 6.8
CoCa 66.8 1.7 9.7

Figure 13: Performance comparison of caption-
ing models. We apply captioning models and
evaluate the alignment of the outputs against the
captions used to generate the images.

Method mIoU ↑ Pearson ↑
MaskCLIP 0.015 0.199
SCLIP 0.109 0.236
LSeg 0.164 0.032
CLIPSeg 0.133 0.143
ODISE 0.096 0.300
OVSeg 0.035 0.181

Figure 14: Performance comparison of open-
set segmentation models. We evaluate the IoU
and Pearson correlation for noun chunks against
model outputs.

We perform an experiment to finetune MaskCLIP (using the ViT-B/16 as backbone, initialized from
laion2b s34b b88k weights) on a subset of our dataset using a cosine distance loss between the dense
predicted output and the argmax-assigned spatial CLIP text embeddings. The training set is disjoint
from the test set. Images are only selected for training/testing if they include three or more noun
chunks. The Pearson correlation of the finetuned model increases from 0.199 (original MaskCLIP) to
0.38 (finetuned model).

We also evaluate recent vision-language models like LLaVA (Liu et al., 2024), BLIP-2 (Li et al.,
2023), GIT (Wang et al., 2022a) and CoCa (Yu et al., 2022). for image captioning in Table 13. We
evaluate the generated captions against the original captions using state-of-the-art E5-Mistral (Wang
et al., 2023b) model to evaluate cosine similarity (×100 for clarity), BLEU-4 (Papineni et al., 2002),
and CIDEr (Vedantam et al., 2015) scores. These results suggest that while the captions predicted by
models may use different wording from the original caption, they can be semantically very similar.

5 DISCUSSION

Limitations and Future Work. Our work relies on human-submitted prompts, which may exhibit
non-natural semantic co-occurrences. During the data collection process, we also observed a strong
shift in the semantic distribution of prompts and images around holidays (Thanksgiving, Christmas).
This suggests that continual data collection is required to mitigate bias.
Conclusion. We introduce StableSemantics, the first large-scale dataset that combines natural
language captions, synthetic images, and diffusion attribution maps. Our work goes beyond prior
datasets by providing spatially localized noun chunk to image region mappings. We explore the
semantic distribution of whole images and objects within an image. The availability of this dataset
will allow for the use of synthetic visual data in additional domains.
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semantic segmentation. arXiv preprint arXiv:2201.03546, 2022. 9

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023. 10

Feng Liang, Bichen Wu, Xiaoliang Dai, Kunpeng Li, Yinan Zhao, Hang Zhang, Peizhao Zhang, Peter
Vajda, and Diana Marculescu. Open-vocabulary semantic segmentation with mask-adapted clip.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
7061–7070, 2023. 9

Shanchuan Lin, Anran Wang, and Xiao Yang. Sdxl-lightning: Progressive adversarial diffusion
distillation. arXiv preprint arXiv:2402.13929, 2024. 5

Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C. Lawrence Zitnick. Microsoft coco: Common objects in context. In European
Conference on Computer Vision, 2014. URL https://api.semanticscholar.org/
CorpusID:14113767. 3, 5

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances in
neural information processing systems, 36, 2024. 10
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A APPENDIX

Sections
1. Additional dataset visualization (section A.1)
2. Visualization of object distributions (section A.2)
3. Comparison of open vocabulary segmentation methods (section A.3)
4. Prompt used for language model cleanup of raw prompts (section A.4)
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A.1 ADDITIONAL DATASET VISUALIZATION

In this section, we provide additional visualizations of the natural language captions generated using a
large language model from the raw user prompts, the RGB image, and semantic masks corresponding
to select noun chunks in the image in Figure S.1 and Figure S.2.

Female hand holding a 
seedling in the field 

against a bokeh 
background. The concept 

of forest conservation.

Female Hand Field SeedlingImageCaption

A crow perched on goat 
horns in front of a 

lightning-filled 
background.

Crow Background Goat HornsImageCaption

Pixel art of a cozy 
Brazilian small city at 

sunset. The brick streets 
and beautiful residential 

street are lined with 
perfect details. A lovely 

blue house with a 
balcony and front yard 

stands out.

Blue House Sunset BalconyImageCaption

Masterpiece painting of a 
cat sitting in an urban 

square doorway, amidst a 
blooming rose bush and 
summer morning light.

Rose Bush Doorway CatImageCaption

Figure S.1: Visualization of additional dataset examples. We show the natural language caption
used for the image generation, the image, and masks corresponding to select noun chunks.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Playful and funny 
monster waifu wearing a 

bunny fursuit with 
monster teeth, dressed as 

Alice in Wonderland, 
digging a grave in the 

forest.

Bunny Fursuit Forest GraveImageCaption

An isolated red telephone 
booth stands tall amidst a 

stormy ocean. Dark 
clouds swirl overhead, 

creating an atmosphere 
of mystery and intrigue.

Phone Booth Raging Sea Dark CloudsImageCaption

Two-story villa building 
with glass frame bathed 

in morning light. A 
vegetable garden in front 

adds greenery and a 
touch of nature.

Greenery Morning Light GardenImageCaption

A child, lost in a 
whimsical realm of cotton 

candy clouds and 
chocolate rivers. Giant 
lollipops sprout from 

marshmallow mountains, 
and joyous creatures 

born from laughter dance 
between the trees.

Child Mountains CloudsImageCaption

Figure S.2: Visualization of additional dataset examples. We show the natural language caption
used for the image generation, the image, and masks corresponding to select noun chunks.
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A.2 VISUALIZATION OF OBJECT DISTRIBUTIONS

In this section, we visualize the spatial distribution of various noun chunks in Figure S.3. We note
that several types of objects exhibit highly non-uniform spatial distributions.

Background Ball Bicycle

Cupboard Bowl Dog

Mountain Shoe Guitar

Building Grass Head

Sky Rock Smile

Figure S.3: Additional examples on the spatial distribution of concepts. We provide additional ex-
amples of images containing a concept, and the average distribution of the top-100 images containing
the most similar noun chunks as evaluated using the CLIP text model.
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A.3 COMPARISON OF OPEN VOCABULARY SEGMENTATION METHODS

In this section, we provide additional visualizations of the semantic maps from our dataset, and
segmentation outputs in Figure S.4 and Figure S.5. We note that in general, the semantic masks in
our dataset can accurately localize objects. However, there are specific cases (Lone Man) where the
attention maps corresponding to noun chunks can include other contextual objects. We believe this
occurs when the diffusion model tries to generate co-occurring scene and image parts that are not
explicitly mentioned in the caption.
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Mountain

Black Hair

Cake

Figure S.4: Comparison of semantic maps and open vocabulary segmentation methods. We
visualize the semantic attribution maps corresponding to noun chunks from our dataset, and the
segmentation maps produced by various state-of-the-art methods.
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Fog

Lanternfish

Lone Man
Figure S.5: Comparison of semantic maps and open vocabulary segmentation methods. We
visualize the semantic attribution maps corresponding to noun chunks from our dataset, and the
segmentation maps produced by various state-of-the-art methods. Note that the Lone Man illustrates
how the semantic attribution maps can be imperfect. In this case it includes additional background.
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A.4 PROMPT USED FOR LANGUAGE MODEL CLEANUP OF RAW PROMPTS

We utilize the following prompt followed by the raw user prompt to obtain a natural language caption.
Note that our raw prompts undergo simple regex based processing to remove some obvious errors
before being provided to the language model.

You are going to be provided with the description of an image.
You will transform and edit the description as needed into
a cohesive natural language sentence or sentences without
elaborating. If the original is mixed language, then your output
should also be mixed language. Do not elaborate, do not provide
information about people mentioned in the description.

Make a best effort to use ALL WORDS AND DETAILS from the original
description. DO NOT MAKE UP DETAILS unless absolutely necessary.
BE AS CONCISE AS POSSIBLE, WHILE ATTEMPTING TO INCLUDE ALL WORDS
AND DETAILS FROM THE ORIGINAL DESCRIPTION. You may only omit
details or words if they are nonsensical or form a contradiction.
Attempt to fix typos and remove invalid punctuation. Omit emojis
in your output.

When you output, use [START] before the output, and include [END]
after the output. You may retain hash tags in the output only if
hash tags were used in the original prompt. Here is the original
description:
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