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Abstract

In this paper, we propose a novel optimizer state compression algorithm, namely
π-Quant, which leverages the properties of irrational numbers (e.g., π) for memory-
efficient training. The core idea is based on our mathematical findings, which show
that a pair of parameters can be represented by a single rotation angle using
the complex rotation scheme. Building on this insight, we map the parameters
into a complex space and perform quantization using the corresponding rotation
angles. To efficiently integrate it into optimization process, we develop an efficient
system of geometric equations that computes the precise rotation angles with linear
complexity. We evaluate π-Quant on a wide range of tasks. Our experiments
show that it can reduce the bit-width of parameters to 3.32-bit, achieving a 41.8%
decrease in GPU memory usage, all while maintaining full accuracy. The code is
provided at https://github.com/RUCAIBox/Pi-Quant.

1 Introduction

The rapid growth of large-scale AI models (e.g., large language models [1]) has led to significant im-
provements in various tasks. However, larger models often require substantially more computational
power and memory resources to train. Typically, most models are trained with momentum-based
optimizers such as Adam [2], which require the storage of one or two optimizer momentum for each
individual parameter. As the parameter scale increases, the optimizer states consume the majority
of memory, with first-order and second-order momentum tensors in the Adam accounting for 66%
of parameter usage [3]. Therefore, finding a solution to develop a memory-efficient optimizer is a
critical challenge.

Considering the above issues, a number of studies [4, 3] propose using lower-precision representations
for the optimizer states, as shown in Table 1. They primarily analyze the frequently occurring values
of the optimizer states, and then use binary search to quantize all state elements to these values. While
previous attempts have demonstrated the promise of this approach, two major challenges remain.
First, most deep learning frameworks (e.g., Pytorch [5], TensorFlow [6]) do not support such search
quantization operations, these methods require additional compilation of GPU-supported operators.
As a result, these methods are not directly compatible with devices other than GPUs (e.g., CPU or
TPU). Second, these methods are specifically designed for certain bit-width quantization, making it
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difficult to adapt them to other bit-widths. Since these predefined precisions may not be well-suited
to all tasks, they can lead to performance degradation in certain cases.

Table 1: Comparing different quantization methods, where n is the parameter size, and m is the precision size.
Metric Bnb (2021) Lpmm (2023) π-Quant (ours)

Bit-width 8 4 3.32
Complexity O(n logm) O(n logm) O(n)

Full Acc. " % "

To address these issues, we aim to develop a precise and theoretically-guaranteed compres-
sion algorithm that can flexibly reduce the memory usage of optimizer states within a typical
model optimization framework. Our key idea is grounded in an important mathematical property:
∀{(x, y)|x2 + y2 ≤ 4},∃θ ∈ R, x+ iy → eiθ + eiπθ. This enables the precise representation of a
parameter pair (x, y) with a single complex rotation angle (i.e., θ), by harnessing the properties of
irrational numbers (i.e., π). As a result, the parameter scale is halved with no loss of precision. Further,
we can quantize the rotation angles to achieve even greater memory reduction. To implement our idea,
a fundamental challenge is integrating the proposed complex rotation scheme into the optimization
process. Since the optimizers are often designed for real-valued parameters, they are not directly
compatible with our complex transformation. Further, it is also difficult to find an efficient solution
for accurately computing the rotation angles of the corresponding parameters during optimization.

Motivated by our mathematical findings, in this paper, we propose a novel optimizer state compression
approach with irrational complex rotation, named π-Quant. The major contribution of π-Quant is
the introduction of a precise theoretical framework for parameter compression, resulting in lower
memory costs during model training. Specifically, π-Quant involves two key techniques. First, it
develops a new representation mechanism that maps the parameters in a complex space. On this basis,
the complex-valued parameters are transformed into single rotation angles according to our proposed
mathematical formula, which precisely halves the parameter scale. Notably, it employs an efficient
system of geometric equations that can compute the precise rotation angles with linear complexity.
Second, it features an effective quantization algorithm that reduces the precision of the rotation angles
during training, all while preserving full accuracy. Our theoretical framework is particularly robust
for numerically sensitive parameters, offering lower quantization errors compared to prior methods.
Generally, π-Quant can be seamlessly integrated into existing optimization pipeline, which largely
reduces the training memory footprint, with minimal impact on the training speed.

The main contributions are summarized as follows:

•We propose an effective optimizer state compression approach, named π-Quant, by introducing
a new mathematical formula. This method transforms a parameter pair into a univariate rotation
equation with irrational coefficients, enabling precise compression by halving the parameter scale. To
the best of our knowledge, we are the first to leverage the properties of irrational numbers for model
compression.

•We propose an efficient system of geometric equations for optimizing the compression process,
which is capable of computing the precise rotation angle with linear complexity. Additionally, we
develop an effective quantization algorithm that reduces the representation precision of the rotation
angles, while maintaining full accuracy.

• Experimental results show that π-Quant is an effective quantizer, capable of reducing the bit-width
of optimizer states to 3.32 bits, e.g., it can reduce the training memory of TinyLlama from 19.47 G
to 11.32 G, with comparable accuracy. Besides, it consistently outperforms several state-of-the-art
quantization methods on a wide range of tasks, highlighting the effectiveness of our approach.

2 Preliminaries

In this section, we give a brief introduction to the quantization techniques, and then describe the
complex rotation technique used in our approach.

Training-Oriented Quantization. Quantization is a compression technique that maps high-precision
values to a finite set of discrete values. Formally, given the quantization range D, quantization
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approaches typically design a mapping function [0, 2k − 1] 7→ D, where k represents the bit-width
of the quantization. The quantization methods can be generally divided into inference-oriented and
training-oriented according to their application scenarios. Typically, inference-oriented methods
often conduct post-training quantization of the backbone network (e.g., dense layers) for reducing
inference costs. However, these methods are not practical to be applied into training pipeline, since
they fail to effectively fit the non-uniform distributed parameters, they often suffer from significant
accuracy loss during optimization.

In contrast, training-oriented methods [7, 3] focus on reducing the precision of optimizer states to
achieve lower training memory. For better fitting the non-uniform parameter distributions, their basic
idea is to sample high-frequency elements to construct a non-uniform quantization range D, e.g.,
D = {0.12, 0.25, 0.5, 1.0}. Due to such non-uniformity, these methods cannot directly compute the
quantization indices and typically require a search-based method to perform the quantization, i.e.,
XINT

i = argminθ∈D ||θ − XFP32
i ||. In practice, these methods often require compiling additional

GPU kernels to perform parallel searching. Besides, the certain bit-width setting of D cannot be
extended to other bit-widths. As a training-oriented method, our approach focus on reducing the
memory of optimizers, which pushes the lowest achievable bit-width (4-bit) down to 3.32-bit, with
higher accuracy and no need for a search process.

Complex Rotation. In mathematics, complex rotation is a mathematical operation that applies a
rotation in the complex plane. It is represented by multiplying a complex number of the form i.e.,
cos θ + i sin θ, where i is the imaginary unit (i2 = −1) and θ is the rotation angle. According to
Euler’s formula, a complex number can be written as:

cos θ + i sin θ = eiθ. (1)

This equation establishes a mapping from {(x, y)|x2 + y2 = 1} to θ ∈ R. In our paper, we reveal a
more profound theorem, which shows that arbitrary pair of (x, y) can be represented by an angle θ in
this complex rotation scheme. As such, it provides a new solution to compress the parameters.

3 Methodology

In this section, we introduce the proposed π-Quant method (illustrated in Figure 1) for achieving
memory-efficient parameter optimization. Our method is grounded in a key mathematical property:
each real vector can be split into two components, which can then be uniquely represented by
a rotation angle. Building on this idea, we propose a geometric approach for performing this
transformation, enabling the computation of the rotation angle with linear complexity. Moreover, we
design a quantization pipeline to implement our method, which significantly reduces the parameter
scale and can be seamlessly integrated into existing optimization algorithms. We begin by introducing
the theoretical framework of π-Quant, followed by a description of its practical application pipeline.
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Figure 1: The overall framework of π-Quant.

3.1 Parameter Compression with Irrational Rotations

The key point of our approach is a novel data compression theorem, which enables the precise
representation of two variables using a univariate rotation equation with an irrational number as
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the coefficient. We first present the mathematical foundation behind this theorem, followed by the
instantiation of our idea.

Data Compression with Irrational Numbers. Existing machine learning frameworks typically
represent model parameters using floating-point numbers (e.g., FP32) with limited precision. In
this representation, previous work [8] often employs truncation-like methods to uniformly quantize
high-precision parameters to a lower precision. The underlying assumption is that the parameters
follow a uniform distribution within the quantization range. However, due to the mismatch between
this assumption and the actual distribution of the parameters, most quantization methods encounter
significant errors, as parameters are more likely to follow a non-uniform distribution (e.g., Gaussian
distribution). In contrast to prior approaches, we introduce a novel data compression technique
that compresses parameters from the perspective of irrational numbers. Formally, we present the
following theorem:
Theorem 3.1. Given a complex number z = x+ iy ∈ C that satisfies ∥z∥ ≤ 2. For any deviation
ϵ > 0, there exists an angle θ ∈ R, such that

∥∥z − (
eiθ + eiπ̄θ

)∥∥ ≤ ϵ. (2)

where i is the imaginary unit, and π̄ denotes any irrational number (e.g., the circle ratio π).

Specifically, it shows that any vector of two real values x and y can be represented by a real-valued
angle θ in this complex scheme. This property extends to any parameter tensor T, which can be split
and linearized into two equal-sized matrices, i.e., (X,Y ) = Split(T), corresponding to the real part
and imaginary part, respectively. In this manner, we can represent T by a specific angle vector Θ,
using half the number of real values. A proof of this theorem is provided in Appendix A.

Geometric Solutions. Finding the exact solution to Eq. (2) is the key challenge of our approach.
Intuitively, one might consider using a search-based method (e.g., KDTree), where the x and y values
corresponding to all θ angles within the desired precision are stored in a cached array, and the array
is then searched for the coordinates closest to the target (x, y). However, this approach often incurs
O(n logm) complexity and presents challenges in performing parallel searches on a GPU. As shown
in Figure 1, to efficiently solve the Eq. (2), we propose a geometric solution that enables faster
implementation:
Lemma 3.2. Given the input complex number x+ iy, the solution θ of Eq. (2) can be given by the
following system of geometric equations:

α = arctan(y/x),

β = arccos(
√
x2 + y2/2)

θ = α− β + 2mπ, m ∈ Z
π̄θ = α+ β + 2kπ, k ∈ Z

(3)

We prove this lemma in Appendix B. As such, the task of finding the exact value of θ is transformed
into: given (x, y), determine the specific value of the integer m, such that there exists an integer k
satisfying the above system of equations. By further simplifying the system of Eqs. (3), our main
objective becomes solving the following equation:

{mπ̄} = {Ω}, (4)

Ω =
α(1− π̄) + β(1 + π̄)

2π
, (5)

where {·} returns the fractional part of a input number. Here, we can first compute the exact value
of Ω with linear complexity. However, directly solving Eq. (4) is very difficult. Intuitively, we can
enumerate all possible values of m and then search for the longest match with the fractional part of
the target Ω. Nevertheless, the time complexity of the search process is still extremely high and not
practical. As our solution, we selectively mask certain digits of π. Specifically, the value of π̄ in our
approach is constructed as:

π̄ = 0. 000 · · ·︸ ︷︷ ︸
λ−1 times

1 0000 · · ·︸ ︷︷ ︸
λ times

3589793238 · · ·︸ ︷︷ ︸
same as π

, (6)
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where λ is a quantization hyper-parameter. We can guarantee that π̄ is still an irrational number, as it
can be obtained by adding π to some rational numbers. In this way, we can approximate m to the
first λ decimal places of Ω:

m ≈ ⌊{Ω} × 10λ⌋ (7)
where ⌊·⌋ represents the floor function. We give an intuitive explanation of our construction in
Appendix E. This solution guarantees that the error does not exceed 10−λ. The entire process
maintains linear complexity.

3.2 Optimization with Rotation Quantization

In the previous section, we discussed how to compress a pair of real-value parameters using a single
rotation variable θ. To further reduce the memory usage, we aim to use a low-precise representation
for quantizing the corresponding θ. Next, we will introduce the details of our framework.

Quantize the Rotation Angles. As introduced in Section 3.1, our approach use the complex rotation
scheme to represent parameter pairs. One limitation of this method is that it requires the magnitudes
of x and y (i.e., ||x2 + y2||) to be no more than 4. To address this, we first scale and normalize the
parameters to ensure they lie within the representable range. Formally, given the split input matrices
(X,Y ) = Split(T), the scaled tensor can be computed by a simple method:

X̃ = X/w, Ỹ = Y /w (8)
where w is the maximum absolute value of the numbers in both X and Y . Using this method,
the value ranges of X̃ and Ỹ are both transformed to [−1, 1], satisfying the mapping conditions in
Theorem 3.1. Note that we can also constrain them to a larger range (e.g., [−

√
2,
√
2]) by multiplying

w by a coefficient. Empirically, this setting has already achieved a good trade-off in quantization
deviation, which we will discuss in Section 3.3. Afterwards, we compress the X̃ and Ỹ to a unique
Θ, following the method introduced in Section 3.1. For further quantizing θ, we retain λ decimal
places of α− β (See Eq. (3)), with 10−λ as the interval:

θ̃ =
θ

2π10−λ
= m · 10λ + g,

g = ⌊α− β

2π
× 10λ⌋

(9)

In this way, we can represent each θ with 2λ digits, where the first λ digits correspond to the m
and the remaining λ digits correspond to the g. As such, we can set varied λ to achieve different
bit-widths. Since the λ is set based on the decimal system, on average, each parameter requires
λ · log2 10 ≈ 3.32λ bits for storage. In particular, the entire process remains linear complexity and
supports parallel computation on GPUs, making it practical in the large scale model optimization.
We present a detailed procedure for the quantization process in Algorithm 1.

Through the rotation transformation (Eq. (2)), the parameter scale is reduced by half. After quantiza-
tion, the precision of the angle representation can be further reduced. In practice, we can compress
the precision of an angle into an integer ranging from 0 to 99, achieving the same quantization effect
as 3.32-bit (See Table 3). Next we discuss how to apply our algorithm during the training process.

Optimization. The main advantage of our algorithm lies in its ability to reduce the optimization
memory. Since only a small part of parameters necessitate immediate computation during training [3],
we only restore this subset of parameters, while the remainder continues to reside in memory in their
angular representation. As shown in Figure 1, in our framework, the parameters stored in memory
are Θ and the corresponding w (See Algorithm 1). When the parameters are involved in computing,
we apply the inverse operations of the quantization process to activate them:

θ = θ̃ × 2π10−λ,

x̃ = cos θ + cos π̄θ, ỹ = sin θ + sin π̄θ,

x = x̃ · w, y = ỹ · w.
(10)
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Algorithm 1: Quantization of the Rota-
tion Angles

1: Input: Parameter T, size: n
2: Split T into two tensors: X and Y
3: Compute w = max(|X,Y |)
4: Scale X and Y according to Eq. (8)
5: Compute α and β using Eq. (3)
6: Compute Ω according to Eq. (4)
7: Compute m based on Eq. (7)
8: Calculate Θ from Eq. (9)
9: Output: Quantized parameter Θ, size:

n/2; Scale Factor w, size: 1

Algorithm 2: Adam with π-Quant (Dif-
ferences highlighted)

1: Input: learn rate α, decay rates β1, β2, ϵ
2: Initialize: m0 = Quant(0),

v0 = Quant(0), t = 0 {using Alg. 1}
3: for each iteration t = 1, 2, . . . , T do
4: Compute gradient ∇θt
5: mt−1 ← Restore(mt−1) {Eq. (10)}
6: mt ← β1mt−1 + (1− β1)∇θt
7: vt−1 ← Restore(vt−1) {Eq. (10)}
8: vt ← β2vt−1 + (1− β2)(∇θt)2
9: m̂t ← mt

1−βt
1

, v̂t ← vt

1−βt
2

10: θt ← θt−1 − α m̂t√
v̂t+ϵ

11: mt ← Quant(mt) {Alg. 1}
12: vt ← Quant(vt) {Alg. 1}
13: end for
14: Output: Optimized parameters θT

In this way, we can easily recover the parameter tensor X,Y before quantization, and we then
concatenate them to reconstruct the original T = Concat(X,Y ). Similar to existing quantization
works [3, 7], the activated parameters maintain high precision to ensure the accuracy of the gradients
and predictions. Since only a small subset of parameters is involved in computation most of the time,
the temporary storage overhead incurred by these high-precision activated parameters is negligible.
The detailed algorithm is presented in Algorithm 2.

Like most training-oriented quantization methods [7, 3], π-Quant introduces additional “Quant” and
“Restore” computations for each iteration, which results in higher latency compared to the original
Adam. Specifically, given the parameter size n, the additional complexity of π-Quant is O(n) per
iteration, which can be negligible compared to the overall time complexity.

3.3 Discussion

In this part, we discuss the advantage of π-Quant and compare our work with existing work.

Model Merits. Our method has the following merits:

• Quantization Precision. We analyze the quantization accuracy in π-Quant, and demonstrate its
superiority over traditional approaches. Specifically, the main deviation of our method comes from
the approximation of the m and g in Eq. (7) and Eq. (9), respectively. Formally, given the deviation
of ∆θ in Eq. (9), the upper bound of quantization error for a specific point (x, y) is given by:

||∆x|| < ∆θ
∣∣∣∣∣∣(1− π̄) sin θ′ + π̄y′|| < ∆θ,

||∆y|| < ∆θ
∣∣∣∣∣∣(1− π̄) cos θ′ + π̄x′

∣∣∣∣∣∣ < ∆θ,
(11)

where θ′ ∈ [θ, θ +∆θ]. We give a proof in Appendix C. It indicates that our method can reduce the
quantization error in the corresponding angle θ. Further, given the precision width λ, the average
quantization error can be given by:

E(∆x) = E(∆y) = O(2 · (1 + π̄) · 10−λ/π). (12)

The proof is in Appedix D. This indicates that the quantization error increases as the bit width
decreases. Note that 2 · (1+ π̄) < π, which further demonstrates that our method has a lower average
quantization error compared to traditional methods (i.e., 10−λ). In practice, we reduce the bit-width
of optimizer states down to 3.32-bit, while maintaining full accuracy (See Section 4.1).

• Non-uniformity. Non-uniformity is an essential property that ensures the accuracy of quantization
for optimization, as the parameters of neural networks typically exhibit a non-uniform distribution
(e.g., Gaussian distribution). In Figure 2, we plot the quantization error distribution between traditional
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Figure 2: The error (top) and precision distribution
(bottom) between π-Quant and traditional methods.

Table 2: Comparison of different quantization meth-
ods.

Methods Bit-width Search Distribution Unit

LinearQuant Flexible No Uniform Single
Bnb.Adam 8 Yes Non-Uniform Single
Lpmm.Adam 4 Yes Non-Uniform Single
π-Quant (ours) 3.32 (Flexible) No Non-Uniform Pair

quantization methods and our approach. As shown, the errors of traditional methods are uniformly
distributed across the parameter space. In contrast, our method produces smaller errors near the zero
point, with larger errors at the periphery. Additionally, we plot the accuracy distribution for both
traditional methods and our approach. It is evident that our method allocates more precision around
the zero point to better capture the parameters, while assigning less precision to the range of larger
values. Since most parameters and momentum in large models follow a standard distribution with a
mean close to zero, our method is more effective at quantizing these parameters.

Novelty and Differences. In Table 2, we compare our method with optimizer state quantization
methods. To the best of knowledge, it is the first attempt that leverages the properties of irrational
numbers for data compression, grounded in a new mathematical formula. This approach transforms a
complex-valued parameter into a single rotation angle, which can precisely halve the parameter scale
of a wide range of modules such as optimizer states and model weights. By the proposed system of
geometric equations, our approach only requires linear-complexity calculations, possessing superior
theoretical properties (e.g., non-uniformity), with no need of complicated search process. In contrast
to traditional quantization methods [3, 7], which perform numerical compression for each single
element, we propose to conduct the quantization for each pair unit of parameters, by reducing the
precision of the rotation angles. As such, it provides a way to better capture the correlations between
different elements, making it possible to further reduce precision to lower bit-widths. In practice,
π-Quant can reduce the precision of optimizer states to 3.32-bit, which can be flexibly extended
into variable bit-widths, with minimal impact on the training speed (See Table 3). In general, our
method provides a precise and theoretically-grounded solution for compressing the parameter scale
for optimization.

4 Experiment

4.1 Language Modeling Evaluation Under Different Bit-Widths

Experimental Settings. We compare our approach with state-of-the-art training-oriented quantization
methods, including Linear-Quant [9] with different bit-widths, 8bit-Adam (Bnb) [4], 4bit-Adam
(Lpmm) [3], and standard FP32 precision. Following the previous work [10], we continually pre-train
the TinyLlama-1.1B checkpoint [11] for 400 steps on the PG-19 [12] dataset, chunked into 64k
segments, with a context window of 2048. We report the test perplexity in the Proof-pile dataset, and
evaluate the trained LLM across four public benchmarks from Huggingface [13], i.e., ARC-Challenge,
Hellaswag, Lambada and PIQA. The training settings are provided in Appendix F.

Results. As shown in Table 3, we can observe that Linear-Quant [9] exhibits the poorest performance
among all compared methods, with its training process being highly unstable and frequently resulting
in catastrophic failures. Besides, Bnb [7] exhibits remarkable robustness, achieving performance
metrics on par with the full-precision baseline. However, Lpmm Adam [3] shows a notable degrada-
tion in performance metrics, even though its training loss is not much different from full precision.
Notably, π-Quant achieves lossless performance in both 13.28-bit and 6.64-bit settings, with metrics
even surpassing those of the full-precision baseline. Remarkably, our method reduces state bit-widths
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Table 3: Validation of effectiveness under different bandwidths (enclosed in parentheses“()”). The backbone
model is TinyLLama. “N/A” denotes the “nan loss” (training collapse). Error bar is provided in Table 6. Results
of more LM backbone are reported in Table 8.

Type Approach Memory / Step Time Train Loss ↓ Test PPL ↓ ARC-c ↑ Hellaswag ↑ Lambada ↑ PIQA ↑ Avg.

Full FP32 (32) 19.47 GB / 9.77 s 2.423 5.17 32.51 58.65 56.55 73.18 55.22

High
FP16 (16) 15.53 GB / 8.93 s > 104 105.36 24.57 24.52 17.19 49.02 28.83

Linear-Quant (16) 15.53 GB / 9.79 s N/A N/A N/A N/A N/A N/A N/A

π-Quant (13.28) 15.40 GB / 11.95 s 2.420 5.15 33.02 58.78 56.76 73.23 55.45

Medium
Linear-Quant (8) 13.44 GB / 14.97 s N/A N/A N/A N/A N/A N/A N/A

Bnb.Adam (8) 13.44 GB / 10.47 s 2.421 5.14 33.02 58.64 56.51 73.19 55.34

π-Quant (6.64) 13.58 GB / 11.70 s 2.421 5.16 33.02 58.75 56.76 73.06 55.40

Low Lpmm.Adam (4) 12.30 GB / 10.66 s 2.422 5.41 31.23 58.47 55.19 72.85 54.44

π-Quant (3.32) 11.32 GB / 10.56 s 2.422 5.14 33.53 58.45 56.05 73.34 55.34

to 3.32 bits while maintaining similar convergence trend (Figure 3) and performance metrics. These
results show that our rotation-based quantization method can effectively reduce the quantization loss,
serving as a robust replacement for full-precision optimizers.

Besides, we report the training memory usage and the optimization step time in Table 3. As for
training memory, we can observe that Bnb achieves a 30.8% reduction in memory usage compared to
the FP32 Adam; Lpmm can further reduce memory usage due to its lower precision representation.
In comparison, our method consumes the least memory, achieving a 41.9% reduction in memory
usage. As for training speed, quantization-based methods introduce additional quantization and
de-quantization operations during training, leading to relatively higher latency. Notably, Bnb and
Lpmm Adam have compiled GPU binary search kernels, achieving comparable quantization latency.
Since our method requires calculating parameter angles during Quant and Restore stages, resulting in
additional computational overhead, which is a limitation of our approach.

4.2 Experimental Analysis

4.2.1 Accuracy on Other Downstream Tasks

Experimental Settings. We evaluate π-Quant on five tasks on long-range-arena (LRA) bench-
mark [14], including Listops [15], Text classification on IMDb review dataset [16], Document
Retrieval on AAN dataset [17], Pathfinder [18], and Image classification on CIFAR-10 [19]. Besides,
we introduce two Seq2Seq tasks, including text summarization on the Samsum [20] and sequential
recommendation on the Movielens [21]. Follow the work [22], we use the 2-layer transformer as the
backbone, and the training settings are provided in Appendix F. We report the accuracy for the LRA
tasks, and report the belu scores and recommendation metrics for the other tasks.

Results. The experimental results are shown in Table 4. We can observe that Bnb [4] shows significant
accuracy drops on Image, Retrieval, Listops, Summary and RecSys tasks, but surpasses full-precision
on Text and PathFinder tasks. Besides, Lpmm [3] shows suboptimal performance across most tasks,
with only comparable results on PathFinder. These results suggest that the predefined quantization
precision in these methods is not always optimal across different tasks. In comparison, we observe
that π-Quant outperforms the original Adam across all tasks, suggesting that the rotation quantization
may represent a superior choice in optimization settings.

4.2.2 Ablation Study

We conduct ablation studies to explore the impact of π̄ settings. As introduced in Section 3.1, the
design of π̄ influences the accuracy of solving for θ using Eq. (7). To verify this, we change the value
of π̄ as two forms: (1) as a truncated rational number, i.e., π̄1 = 0.001 and (2) setting its integer
part to other values, e.g., π̄2 = 3.00100035.... Specifically, we focus on analyzing quantization
errors for two distributions: Gaussian (i.e., N (0, 1)) and uniform distributions (i.e., U(0, 1)). As
shown in Figure 4, our method achieves lower error in fitting Gaussian distributions, revealing its
non-uniform fitting capability. In addition, π̄ has a lower error than π̄1 as its decimal portion provides
error compensation. Besides, we find that setting the integer part of π̄ to zero yields minimal error.
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Table 4: Performance on other learning tasks. The
error bar is presented in Table 7.

Task Metric Adam Bnb Lpmm π-Quant

Text Acc. ↑ 64.63 64.68 64.14 64.68
Loss ↓ 0.634 0.630 0.635 0.631

Image Acc. ↑ 40.13 39.71 39.92 41.22
Loss ↓ 1.896 1.763 1.771 1.745

Retrieval Acc. ↑ 80.70 79.92 79.19 80.79
Loss ↓ 43.61 45.21 45.93 44.32

Listops Acc. ↑ 38.21 37.30 37.30 38.51
Loss ↓ 1.780 1.715 1.741 1.646

PathFinder Acc. ↑ 69.15 70.83 72.05 71.92
Loss ↓ 55.13 53.91 49.91 58.57

Text
Summary

Blue-1 ↑ 14.42 13.34 13.71 14.32
Blue-2 ↑ 8.30 7.68 7.95 8.72
Blue-3 ↑ 4.03 3.87 3.99 4.74
Blue-4 ↑ 1.54 1.61 1.57 2.02

RecSys

Recall@10 ↑ 28.19 27.75 28.01 28.76
Ndcg@10 ↑ 15.51 15.34 15.41 15.85
Mrr@10 ↑ 11.66 11.58 11.53 11.94
Hit@10 ↑ 28.19 27.75 28.01 28.76
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Figure 4: Ablation Study of the π setting.
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Figure 5: Visualizing the optimization process.

4.2.3 Visualizing the Gradient Update Process

To have an intuitive understanding of our approach, we visualize our approach’s gradient descent
through a simple task: minimizing the Himmelblau’s function (f(x, y) = (x2+y−11)2+(x+y2−
7)2). As shown in Figure 5, we establish multiple starting points and compared the training processes
across different optimizers, including Adam with varying bit-widths, SGD, and our proposed method.
We can observe that Adam’s path is typically shorter than SGD’s, showing that Adam’s momentum
can accelerate convergence. Our method achieves the shortest paths across all initialization points,
particularly at start point 4 where it successfully finds the correct minimum while Adam becomes
trapped in a local saddle point. These findings show that our rotation method can enhance convergence
speed in gradient descent and facilitates escape from local minima and saddle points.

5 Related Work

Model Quantification. LLMs [1] have achieved outstanding performance across various tasks.
However, the extensive parameters in LLMs results in substantial memory usage, significantly
increasing the cost of deploying them in real-world scenarios. To this end, a number of quantization
methods [23] have been proposed for reducing the deployment cost. Typically, there are two classes of
approaches, namely inference-oriented quantization and training-oriented quantization. Among them,
inference-oriented work [24–30] primarily focuses on quantizing the neural weights for achieving
faster inference. Through extensive experiments on LLaMA, their approach demonstrates promising
results for weight and activation quantization. Despite the progress, these approaches are not suitable
to be applied for the training phase, as their precision uniformly across the quantization range,
which cannot adapt the non-uniformly distributed parameters. Unlike inference-oriented approaches,
training-oriented quantization methods [7, 3] focus on compressing the optimizer states for achieving
low training memory. Specifically, they propose to sample the high-frequency elements and then use
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a search-based approach to quantize the optimizer states to these values. However, these predefined
elements cannot adapt well to all tasks, which may lead to degraded performance in certain tasks.

Optimization with Complex Rotations. Traditional neural networks are typically modeled in
a real vector space, which exhibits certain constraints when conducting mathematical operations
such as exponentiation and vector rotations. To enhance the capability of representation learning, a
number of approaches [31–36] have proposed conducting representation learning in complex vector
space. Typically, rotation techniques in complex space have been widely applied in the modeling of
language models. Specifically, RoPE [34] employ complex rotation to inject the position information
into the attention mechanism; xPos [37] employs a two-dimensional pairwise rotation technique
to enhance the positional embeddings in Transformers. Unlike these work, we attempt to utilize
complex rotations based on irrational numbers for quantization, allowing it to exhibit a non-uniform
distribution for parameter optimization.

6 Conclusion

In this paper, we proposed a novel optimizer state compression approach π-Quant. Different from
prior work, π-Quant compressed the parameters using a complex rotation scheme, by leveraging
the properties of irrational numbers according to our proposed mathematical findings. In π-Quant,
the two dimensional parameter pairs were efficiently converted into a single rotation angle with our
proposed system of geometric equations, which precisely halved the parameter scale with linear
complexity. Further, π-Quant introduced an effective quantization algorithm, which reduced the
precision of the rotation angles, all while maintaining full accuracy. In principle, π-Quant possessed
lower quantization error and demonstrated a non-uniform precision distribution, which served as an
effective replacement of full precision optimizers. As the further work, we will consider reducing the
quantization complexity, and testing the capacity of π-Quant in more compression scenarios, e.g.,
KV cache compression in the large language models.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: [Yes]
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

17

paperswithcode.com/datasets


Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

Justification: [Yes]

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [Yes]
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Justification: [Yes]
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Proof of Theorem 3.1.

Similar to the original proof, to approximate z = x + iy, we construct geometric relationships
following Figure 6, thereby deriving the system of geometric equations in Eq. (3):


α = arctan(y/x), β = arccos(

√
x2 + y2/2)

θ = α− β + 2mπ, m ∈ Z
π̄θ = α+ β + 2kπ, k ∈ Z

(13)

Similarly, we can obtain the Ω to be fitted as:

Ω =
α(1− π) + β(1 + π)

2π
(14)

Within this geometric framework, the proof of the original theorem can be transformed into proving
that for given ϵ > 0, there exists an integer m satisfying |{mπ} − {Ω}| < ϵ.

Let M = 1− ⌊log10 ϵ⌋. We only need to find the integer m such that the first M decimal digits of
the fractional parts of mπ and Ω are identical. In fact, if we take π as a normal irrational number
(normal number means that any numerical pattern can be found in the digits of π).

Remark T = ⌊{Ω} × 10M⌋ and S = Fπ(T ), where the function Fπ : Z+ → N maps a digit
sequence to its first occurrence index in π’s decimal expansion. For example, π = 3.1415926535...,
the mapped values is shown as the following:

T (Digit Sequence) Fπ(T ) Positions
1 1 3.[1]415...
5 4 3.141[5]92...
41 2 3.1[41]592...
159 3 3.14[159]265...

In this way, we set m = 10S−1, which ensures that the first M decimal digits of the fractional parts
of mπ and Ω are identical, i.e.,

|{mπ} − {Ω}| < 10−M < ϵ/10 < ϵ. (15)

B Proof of Lemma 3.2.

𝒆𝒊𝜽

𝒆𝒊𝝅𝜽

(𝒙, 𝒚)

𝜽 𝝅𝜽

𝜷

𝜶

𝑋-axis

𝑌-axis

𝒍𝟏

𝒍𝟐

Figure 6: Geometric relationship in x+ iy = eiθ + eiπθ
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As shown in Figure 6, according to the definition of tangent function, we have:

α = arctan(
y

x
). (16)

Furthermore, since the magnitudes of eiθ and eiπθ are both 1, according to the cosine theorem, we
have:

β = arccos(
x2 + y2 + 1− 1

2 ·
√
x2 + y2 · 1

) = arccos(

√
x2 + y2

2
). (17)

In particular, we also know that the triangle formed by eiθ, eiπθ, and Oxy is an isosceles triangle.
According to the angular relationship, we can easily deduce that:

α− β = θ + 2mπ, m ∈ Z. (18)

Additionally, since l1 and l2 are parallel, we have:

α+ β = πθ + 2kπ, k ∈ Z. (19)

Therefore, Lemma 3.2 is proved by combing Eq. (16) Eq. (19).

C Proof of Eq. (11).

Recall that x = cos θ + cos π̄θ, and we have:

||∆x|| = || cos(θ +∆θ)− cos θ + cos(π̄(θ +∆θ))− cos π̄θ||

=
∣∣∣∣∣∣ ∫ θ+∆θ

θ

(sin θ + π̄ sin π̄θ)dθ
∣∣∣∣∣∣

≤
∫ θ+∆θ

θ

∣∣∣∣∣∣(sin θ + π̄ sin π̄θ)
∣∣∣∣∣∣dθ

Let θ′ = argmaxθ
∣∣∣∣∣∣(sin θ + π̄ sin π̄θ)

∣∣∣∣∣∣, we have:

∆x < ∆θ
∣∣∣∣∣∣ sin θ′ + π̄ sin π̄θ′

∣∣∣∣∣∣
= ∆θ

∣∣∣∣∣∣(1− π̄) sin θ′ + π̄(sin θ′ + sin π̄θ′)
∣∣∣∣∣∣

= ∆θ
∣∣∣∣∣∣(1− π̄) sin θ′ + π̄y′

∣∣∣∣∣∣
(20)

Since ||y′|| < 1 (See Eq. (8)), thus we have:

∆x < ∆θ
∣∣∣∣∣∣(1− π̄) + π̄

∣∣∣∣∣∣ = ∆θ (21)

Similarly, we can prove that ∆y < ∆θ
∣∣∣∣∣∣(1− π̄) cos θ′ + π̄x′

∣∣∣∣∣∣ < ∆θ.

D Proof of Eq. (12).

Note that the angle space is [0, 2π10λ], remark M = 2π10λ, and we have:
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E(∆x) =
1

M

∫ M

0

10−λ|| sin θ + π̄ sin π̄θ||dθ

<
10−λ

M
(

∫ M

0

|| sin θ||dθ +
∫ M

0

π̄|| sin π̄θ||dθ)

=
10−λ

M
(
2 ·M
π

+
2 ·M · π̄

π
)

=
2 · (1 + π̄) · 10−λ

π

(22)

Similarly, we have:

E(∆y) =
1

M

∫ M

0

10−λ|| cos θ + π̄ cos π̄θ||dθ

<
10−λ

M
(

∫ M

0

|| cos θ||dθ +
∫ M

0

π̄|| cos π̄θ||dθ)

=
10−λ

M
(
2 ·M
π

+
2 ·M · π̄

π
)

=
2 · (1 + π̄) · 10−λ

π

(23)

E Explanation of Eq. (7).

Note that π̄ can be written as: π̄ = 10−λ + 10−2λ · 0.3589793238:

π̄ = 0. 000 · · · 1︸ ︷︷ ︸
10−λ

0000 · · ·︸ ︷︷ ︸
10−2λ

3589793238 · · ·︸ ︷︷ ︸
same as π

. (24)

Since m retains the first λ decimal places of Ω, we have:

m · π̄ = m · 10−λ︸ ︷︷ ︸
first λ decimal of Ω

+m · 10−2λ · 0.3589793238︸ ︷︷ ︸
compensation part

. (25)

In this setting, we can guarantee that the difference between m · π̄ and Ω does not exceed
10−λ. To further understand the construction of m, we present an illustrative example with
Ω = 1.97525751858 · · · . If we set λ = 4, then m = ⌊{Ω} × 104⌋ = 9752 (first 4 decimal of
Ω). We have:

m · π̄ = 0. 9752︸︷︷︸
m·10−λ

350076636569︸ ︷︷ ︸
compensation part

≈ {Ω}. (26)

The error is 0.000022510916....

F More Experimental Results
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Table 5: Hyper-parameter setting of the training pipeline.

Dataset PG19 LRA Samsum MovieLens

Learning Rate 2e-5 1e-4 3e-5 1e-3
Learning Rate Schedule Linear Linear Linear -
Weight Decay 0.0 0.0 0.0 0.0
Batch size 64 256 4 2048
β1 0.9 0.9 0.9 0.9
β2 0.95 0.95 0.95 0.95

Table 6: Standard Deviations of LM task
Metric ARC-c Hellaswag Lambada PIQA
Std (±) 1.37 0.49 0.69 1.04

Table 7: Standard Deviations of Other Machine Learning Tasks
Task Text Acc Image Acc Retrieval Acc Listops Acc PathFinder Acc BLEU-1 BLEU-2
Std (±) 0.0531 0.0604 0.0410 0.1352 0.3272 0.0640 0.0862

Task BLEU-3 BLEU-4 Recall@10 NDCG@10 MRR@10 Hit@10
Std (±) 0.0780 0.0462 0.3585 0.2927 0.1716 0.3585

Table 8: Model Comparison of Other Backbone LMs
Model Method Memory (GB) Step Time (s) ARC-c Hellaswag Lambada PIQA

GPT-2

FP32 6.34 5.22 22.95 31.14 32.56 62.51
Bnb.Adam (8-bit) 4.58 5.86 23.05 31.14 32.06 62.37
Lpmm.Adam (4-bit) 3.39 5.37 21.67 30.82 33.02 60.14
π-Quant (3.32-bit) 3.07 6.14 22.83 31.14 32.75 62.23

RoBERTa

FP32 4.93 1.61 – 23.49 – 50.27
Bnb.Adam (8-bit) 4.22 1.67 – 23.40 – 50.30
Lpmm.Adam (4-bit) 3.79 1.64 – 22.73 – 48.53
π-Quant (3.32-bit) 3.57 1.83 – 23.37 – 50.27

LLaMA-7B

FP32 55.11 19.27 50.51 76.21 73.55 79.16
Bnb.Adam (8-bit) 42.71 19.44 50.55 75.95 73.55 78.96
Lpmm.Adam (4-bit) 36.42 19.35 48.63 74.99 73.02 77.36
π-Quant (3.32-bit) 32.87 20.15 50.32 76.48 73.40 79.07

Note: Full reproducibility details are in the supplementary code, ’–’ denotes the NaN encountered in the output.
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