Under review as submission to TMLR

Generative Proto-Sequence: Sequence-Level Decision Mak-
ing for Long-Horizon Reinforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

Deep reinforcement learning (DRL) methods often face challenges in environments char-
acterized by large state spaces, long action horizons, and sparse rewards, where effective
exploration and credit assignment are critical. We introduce Generative Proto-Sequence
(GPS), a novel generative DRL approach that produces variable-length discrete action se-
quences. By generating entire action sequences in a single decision rather than selecting
individual actions at each timestep, GPS reduces the temporal decision bottleneck that
impedes learning in long-horizon tasks. This sequence-level abstraction provides three key
advantages: (1) it facilitates more effective credit assignment by directly connecting state
observations with the outcomes of complete behavioral patterns; (2) by committing to co-
herent multi-step strategies, our approach facilitates better exploration of the state space;
and (3) it promotes better generalization by learning macro-behaviors that transfer across
similar situations rather than memorizing state-specific responses. Extensive evaluations
on mazes of varying sizes and complexities demonstrate that GPS consistently outperforms
leading action repetition and temporal methods, where it converges faster and achieves
higher success rates across all environments.

1 Introduction

Deep reinforcement learning (DRL) has demonstrated impressive performance across diverse applications
(Mnih et all, 2015; [Silver et al.l [2016; Levine et al., [2016). However, significant challenges remain when
dealing with environments characterized by large state spaces, long-range tasks, and sparse rewards. In such
contexts, traditional DRL methods that select actions sequentially often suffer from inefficient exploration
and poor credit assignment (Mesnard et al.| 2020; Raileanu & Rocktaschel, |2020; [Ecoffet et al.| 2021)), leading
to difficulties in learning effective policies for tasks that require coordinated, multi-step strategies. These
challenges are further exacerbated by sparse reward signals, whose limited feedback hinders the agent’s
ability to discover and reinforce successful behaviors (Arjona-Medina et al., [2019; [Hung et al.l 2019)).

Recent research efforts have attempted to address these challenges using diverse techniques such as hierar-
chical DRL (Kulkarni et al., [2016; [Xu et al. |2022)), temporal abstraction (Biedenkapp et al. 2021} |Zhang
et al} [2022b} |[Saanum et al., |2023} |[Patel & Siegelmann, 2024)), sequence modeling (Chen et al.l [2021} |Janner
et al., 2021} |Giladi & Katzl [2023), and action repetition strategies (Srinivas et al., |2017; Sharma et al.| [2017}
Dabney et al.,|2020)). By creating sub-tasks or capturing higher-level behavioral patterns (Rosete-Beas et al.,
2023} [Vezzani et al.| |2022;|Wang et al.,|2023), these techniques aim to reduce decision frequency and enhance
learning efficiency in long-horizon tasks. Although these methods offer promising results, they often require
careful sub-task design (Ajay et al., 2023), reward shaping (Liu et al., |[2022)), or complex training procedures
(Seo & Abbeel 2024b; |[Rosete-Beas et al.,|2023). While there are temporal abstraction methods that generate
multi-step action sequences, they often depend on iterative rollouts, autoregressive decoding, or model-based
simulations. These solutions introduce computational overhead and restrict the ability to efficiently generate
diverse action sequences. To our knowledge, no method supports the generation of coherent, variable-length
action sequences directly from state observations in a single decision step.

Under review as submission to TMLR

In this study, we propose Generative Proto-Sequence (GPS), a novel actor-critic architecture capable of
producing variable-length action sequences. Instead of actions, our Actor generates a proto-sequence em-
bedding, which is then decoded into a discrete action sequence using a Decoder component. The Critic
evaluates the state and the entire generated sequence jointly, with gradients flowing from the critic through
the Decoder to the Actor, facilitating end-to-end learning of strategic, multi-step action sequences. This de-
sign enables the agent to generate and execute complex exploratory behaviors in a single decision, enhancing
both generalization and long-horizon credit assignment.

We evaluated GPS on a large set of challenging maze environments with varying sizes and configurations,
including rooms, corridors, and randomly generated obstacles. Our results demonstrate that GPS consis-
tently learns more efficiently, generalizes better to novel maze layouts, and significantly outperforms leading
baselines in terms of success rate and convergence speed, particularly in large and complex mazes. Our
contributions are as follows:

o We introduce a novel architecture that enables end-to-end generation and evaluation of variable-length
discrete action sequences, facilitating improved credit assignment and exploration.

e We demonstrate that producing multi-step action sequences in a single shot leads to superior general-
ization and faster convergence, particularly in large and complex environments.

o We provide extensive empirical results on challenging maze benchmarks, showing significant improve-
ments over top-performing action repetition and temporal methods baselines in metrics such as con-
vergence speed and success rate.

2 Related Work

2.1 Temporal Abstraction Through Action Repetition

Early works in temporal abstraction explored repeating single primitive actions to extend decision horizons.
Recent research in DRL has produced various approaches for performing multiple actions as a single block.
Earlier works (Srinivas et al., |2017; |[Sharma et al.; |2017)) introduced frameworks for dynamic action selection
and repetition, though their repetition policies operated independently from chosen actions, limiting strategic
development.

DAR (Srinivas et al., [2017)) augments discrete action spaces by duplicating each base action with multiple
repetition rates. While this expansion can improve learning in environments benefiting from temporal
abstraction, it produces an inefficient representation—duplicated actions are treated as unrelated, preventing
the agent from exploiting their shared underlying behavior and leading to slower learning and imbalanced
trade-offs between coarse and fine control. FiGAR (Sharma et al.,2017)) addresses this by decoupling behavior
and repetition into two jointly trained policies; however, the repetition policy operates independently from
the chosen action, limiting the development of nuanced, action-specific repetition strategies.

The authors of Dabney et al.| (2020) proposed an exploration strategy repeating actions for random durations
to reduce inefficient dithering. Temporl (Biedenkapp et al. 2021) advanced this by enabling agents to
determine both action and repetition duration, improving learning efficiency. However, its hierarchical
structure artificially decouples action selection from duration determination. Despite showing promise, these
studies share a limitation: temporal abstraction is achieved solely through simple repetition of primitive
actions, without generating coherent, variable-length action sequences.

2.2 Multi-Step Action Sequence Generation

Beyond single-action repetition, several methods focus on generating and partially committing to multi-step
action sequences. The authors of |Zhang et al.| (2022a) introduced a generative planning method (GPM)
that produces multi-step plans. Since GPM is trained by maximizing value, the plans generated from it can
be regarded as intentional action sequences to reach high-value states and improve sample efficiency. PrAC
(Coad et al.l [2022) enables agents to generate n-step plans and commit to them while being predictable,
balancing adaptability and control stability. The work of [Saanum et al.| (2023) incentivizes compressible

Under review as submission to TMLR

action sequences by integrating sequence priors, while |Patel & Siegelmann| (2024) introduced a model-based
sequence RL framework (SRL) reducing decision frequency through action chunking.

Despite recent progress, most existing methods for generating multi-step action sequences still face major
limitations. Many rely on heavy processes such as iterative rollouts, autoregressive decoding, or model-based
simulation, which can be slow and inflexible (Li et al., |2024; [Li, 2023} [Zhang et al.;, |2025). For example,
methods like PrAC and SRL use learned environment models for both planning and training, adding extra
model-based complexity (Kumar et al., 2024} |Luo et al., 2024). To stay adaptable, some approaches also
use external switching mechanisms or mid-sequence re-planning, as seen in GPM and PrAC. This treats
long-term planning as an add-on to a step-by-step framework rather than as a core design principle. As
a result, sequence generation and evaluation are often optimized separately, which can lead to poor credit
assignment (Dai et al., |2018)). One case is the use of handcrafted regularization, such as rewarding shorter
or more “compressible” sequences (Saanum et al.| 2023|). However, when objectives are split in this way, it
becomes unclear whether failures come from a bad plan or from breaking the secondary constraint, making
end-to-end training harder and reducing stability during execution.

2.3 Temporal Abstraction Using Hierarchies and LLMs

Hierarchical methods have advanced multi-action decision-making through skill discovery and sequencing.
TACO-RL (Rosete-Beas et all 2023) learns latent skills from unstructured data for long-horizon tasks.
ASPiRe (Xu et al., [2022)) accelerated RL by combining specialized skill priors. The work of [Vezzani et al.
(2022)) introduced a skill scheduler sequencing pretrained skills, while SHRL (Wang et al., [2023)) combined
high-level policies with low-level skills for visual navigation. These approaches improve temporal abstraction
by leveraging reusable skills rather than primitive actions.

Recent works have leveraged large language models and value-based reinforcement learning methods with
action discretization for action sequence generation. CQN-AS (Seo & Abbeell 2024a) proposed a value-
based algorithm learning precise value functions from noisy action sequences. AlphaMaze (Dao & Vul 2025))
improved LLMs’ spatial reasoning by combining supervised fine-tuning with policy optimization.

Our work draws inspiration from [Dulac-Arnold et al.| (2015), who generated embedding representations of
proto-sequences mapped to discrete actions. In GPS, we propose key improvements: our approach is fully
differentiable and trainable end-to-end, unlike Dulac-Arnold et al.[(2015) whose k-nearest neighbors mapping
broke the computation graph. Additionally, by using a VAE-based decoder instead of clustering, we automat-
ically create sequence representations without manual embedding design. This enables efficient generation
of coherent, variable-length action sequences that extend beyond simple repetition or skill sequencing.

3 Method

Overview. Our proposed approach is presented in Figure GPS consists of three components: Actor,
Proto-Sequence Decoder (PSD), and Critic. The Actor receives the current state as input, and produces a
proto-sequence — an embedding-based representation of a sequence of actions. The PSD receives the proto-
sequence as input, and translates it into a discrete set of actions (e.g., a¢,aty1, ..., aryr), which are then
executed sequentially by the agent. Finally, our Critic receives the sequence and predicts the expected
cumulative reward obtained from its execution.

GPS differs from previous studies in several important aspects. First, unlike previous studies (Dulac-Arnold
et all 2015), it is end-to-end differentiable and does not require training workarounds. Secondly, our VAE
decoder produces more diverse and flexible action sequences than autoregressive or model-based approaches,
and also does so in an efficient, one-shot manner. Thirdly, sequence generation and evaluation are learned
jointly, without regularization or switching mechanisms, thus improving credit assignment. Finally, by
committing to the entire sequence (unlike the frequent re-evaluation of [Zhang et al.| (2022a))) we reduce
execution overhead and increase behavioral predictability by forcing GPS to learn robust policies.

Another important aspect of our proposed approach is its ability to generate action sequences that differ
from those on which it was trained. By creating novel sequences, GPS does not simply “memorize” a fixed

Under review as submission to TMLR

| Proto-Sequence Decoder L'
[
Actor Critic
Proto - ‘ Agsq ()
.Q A = ,OR. =) | surer
i Action . Action
Environment Sequence B Ay, Sequence S;?::I:ge
(1) @)
T Action Sequence Execution @ |
Inference
Training

Figure 1: The three components of our proposed approach: (1) The Actor encodes the current state to
produce a proto-sequence embedding. (2) The Decoder translates this latent embedding into a variable-
length discrete action sequence. (3) The Critic evaluates the state-action-sequence pair and assigns it a
Q-value representing the expected cumulative reward (3). During inference, only the actor and decoder
components are used.

set of actions, but is able to generalize to larger action spaces. We elaborate on GPS’s capacity to produce
novel sequences in Section Despite using a frozen decoder pre-trained on a limited set of sequences, GPS
can generate action sequences that differ from those in the decoder’s training data. The ability to generalize
is important to our method, since sequence memorization is not applicable to domains with large action
spaces. We elaborate on GPS’s capacity to produce novel sequences in Section

3.1 The Actor

The Actor serves as GPS’s policy network. Given a state s;, the Actor analyzes the input and outputs a
proto-sequence embedding k = g~ (s;), where ™ and 7 are the parameters of the Actor’s neural network
and the current policy, respectively. The proto-sequence k is a latent embedding of a sequence of actions,
represented as a vector in the embedding space k& € R?, where d is the dimensionality of the embedding
space. This representation provides our Actor with significant flexibility, as it can create action sequences of
varying length using a fixed-size representation.

The proto-sequence is next used by the PSD to produce a discrete sequence of actions, and this sequence is
evaluated by the Critic (Section. The parameters 0™ of the Actor are then updated using an actor-critic
approach analogous to the Deep Deterministic Policy Gradient (DDPG) algorithm (Lillicrap et al.| 2016),
leveraging the learning signal provided by the Critic. Specifically, the actor’s parameters 8™ are adjusted
to produce proto-sequence embeddings k£ that maximize the expected cumulative reward estimated by the
critic, Qge (st,a). This optimization is achieved by updating 6™ to minimize the negative Q-value provided
by the critic —Qga (¢, g« (T~ (s¢))), using backpropagated gradients from the output of the critic network
Qye. These gradients pass through the decoder network gg~ and subsequently through the actor network
o=, enabling the update of the latter’s parameters 7.

3.2 The Proto-Sequence Decoder

The goal of the PSD is to translate the latent proto-sequence k generated by the Actor into a sequence of
executable actions in the original action space {a¢, a¢41,...,ai+1,} € A. We define the PSD as a function
ggw : K — A''maz parameterized by 6%, where A’ extends A with an EOS token to handle variable-length
sequences within a fixed-length format, padding shorter sequences as needed. This function maps from the
latent proto-sequence space K to sequences of fixed length L,,q-

Under review as submission to TMLR

We use a Variational Autoencoder (VAE) (Kingma & Welling| 2013) as our PSD. We train the architecture
on a diverse set of synthetic action sequences of varying lengths. For detailed information on the generation
process of these sequences, see Appendix [M1] After training, we discard the VAE’s encoder and retain only
the learned decoder network gg.. The decoder is integrated into our agent architecture, transforming the
Actor’s latent proto-sequence embeddings into sequences of discrete actions. GPS will then execute the full
sequence, without changes or early stopping. We chose VAE for its efficiency, ability to generate complete
sequences in a single step, and its structured latent space that enables smooth interpolation and principled
probabilistic modeling.

We pre-train the PSD and keep its parameters fixed while jointly training the actor and critic. We had
several reasons for this separation: a) simplicity and robustness — separately training the Decoder reduces
the number of moving parts in our architecture, enabling faster training. Separate training also prevents a
‘moving target’ scenario, where multiple components adapt at the same time, compromising training stability
Sutton et al.|(1999); b) Diversity and prevention of mode collapse: by training the Decoder separately, we
have full control of its training set. We use a diverse training set that ensures that the Decoder can generate
action sequences of all types. In addition, by freezing the Decoder after its training, we prevent a scenario
where this component “forgets” how to generate specific actions during the other components’ training; c)
Transferability — by ensuring our Decoder can generate action sequences of all types, we can train it once and
then use it in all tasks with this particular action space. It should be noted that training GPS end-to-end
achieves comparable final results, with some differences in path optimality and efficiency (see Section |G| in
the Appendix).

3.3 The Critic

The goal of our Critic is similar to the role of the critic in an actor-critic architecture. The Critic receives the
current state s; and the one-hot encoded discrete actions sequence A = (a, aty1, ..., aryr) produced by the
PSD. It then attempts to predict Qge (s:, A), which represents the cumulative discounted reward obtained
by executing A and following the policy after the end of the sequence:

L-1

Qoa(s6,A) X Erp | Y Vresn +7 V7 (sp4r)
k=0

where V7™ is the value function under policy 7, % are the Critic’s parameters, and L = eff__len(A) denotes
the effective length of the action sequence A.

The Critic’s parameters % are updated by minimizing the Mean Squared Error (MSE) loss against a
Temporal Difference (TD) target y;:

L(QQ) = E(st,A,rewards,snext) [(Q(Stv A; GQ) - yt)z]

The target y; is constructed from the sum of discounted rewards R;(A) obtained by executing sequence A,
and the discounted value of the subsequent state s;;1,, estimated using target Actor (Actoriarget) and target
Critic (Qtarges) networks:

Yy = Ry (A) + ’YLQtarget(St—&-L; PSD(ACtortarget (5t+L)); an)

This update mechanism, which relies on TD errors and target networks, is characteristic of many actor-critic
algorithms, and shares similarities with methods such as DDPG (Lillicrap et al., 2016). While the Critic
learns to accurately predict Q(s¢, A;0%), the Actor is trained to produce proto-sequences that, when decoded
by the PSD, maximize this predicted Q-value.

3.4 Training Set Augmentation Using Sequence Subsets and Inference

To enhance learning efficiency and improve credit assignment, our training procedure leverages reward in-
formation from subsequences of each executed action sequence. For each sequence A = (ay,...,a:41)
of length L, we extract transitions corresponding to multiple contiguous subsequences (a;,...,a;) where

Under review as submission to TMLR

Table 1: The setup and properties of the mazes used in the evaluation.

Environment Dist. from Train Train Optimal Val Set Val Optimal Test Set Test Optimal
start to goal Set Size Avg. Path Size Avg. Path Size Avg. Path
8x8 [1-14] 100 5.14 100 5.49 1000 5.31
16x16 [16 - 26] 100 18.04 100 18.0 1000 17.98
16x16__obstacles__ 15% [20 - 30] 100 21.02 100 21.35 210 21.31
16x16__obstacles_ 25% [20 - 30] 100 21.63 100 21.34 400 21.54
16x16_ rooms [20 - 30] 100 20.93 100 21.01 585 21.02
16x16__corridors [10 - 30] 100 12.84 100 12.76 545 13.14
24x24 [20 - 30] 100 23.39 100 23.26 1000 23.56
24x24_ obstacles_ 15% [10 - 20] 100 15.04 100 14.58 1000 14.73
24x24_obstacles_ 25% [10 - 20] 100 15.8 100 15.05 1000 15.11

t < i< j < t+ L. For each such subsequence starting from an intermediate state s;, we calculate the
accumulated discounted reward obtained during its execution. This process effectively generates multiple
learning samples of varying temporal lengths from a single interaction sequence, enriching the training data.

The subsequence extraction strategies for these state-subsequence-reward tuples, which we add to the replay
buffer, include two primary approaches: (1) prefix extraction, which fixes the starting state while varying
the end point, and (2) suffix extraction, which fixes the goal state while varying the starting point. This
bidirectional approach diversifies the replay buffer with different time scales and enables the Critic to learn
value estimates Qga (S, (s, . . ., a;)) for sequences of different lengths concurrently. As shown in our analysis
in Section[5.2] these extraction strategies significantly accelerate learning and improve overall performance. It
is important to note that during inference (test time), our architecture does not utilize the Critic component,
since no training takes place. Instead, the Actor and PSD produce the action sequence, and the latter is
executed in full.

4 Experiments and Results

4.1 Evaluation Environment

Mazes are a foundational benchmark in DRL research, commonly used to evaluate an agent’s ability to per-
form complex sequential decision-making and navigation tasks. Their structured yet variable environments
provide a controlled setting for evaluating generalization, exploration, and memory, which are central to
DRL performance (Pasukonis et al., [2023). We use four types of mazes in our evaluation:

o« Empty. These mazes have no walls or obstacles, except for their boundaries.

o Sparse Obstacles. This setup has randomly placed obstacles in K% of the cells of each maze (e.g.,
15%).

e Rooms. This setup consists of four large rooms with small doors between them. We also add
randomly placed obstacles in 5% of open cells.

e Corridors. These mazes have only narrow corridors for the agent to navigate.

Our evaluation uses fully observable MDPs where the agent has complete visibility of the entire maze grid,
including its position, goal location, and all obstacles.

Similarly to [Dao & Vul (2025)), we use an LLM to produce the code used in our maze generation. Our code,
as well as the mazes generated for our evaluation, are available in the appendix. All information on our
generated mazes is presented in Table|ll For each maze size and type, the table presents: a) the sizes of our
training, validation, and test sets, b) the range for the distance between the start and goal positions, and c¢)
the average length of the optimal path.

4.2 Baselines & Evaluated Methods

We evaluate two versions of GPS and three discrete-action baselines: DQ@N, TempoRL, and DAR. Full
implementation details of our approach are included in the Appendix.

Under review as submission to TMLR

Empty Obstalces Rooms Corridors

Figure 2: Examples of our generated mazes (16x16). We use four maze environments (left to right):
EMPTY - open space; 15% Obstacles — random obstacle placement; ROOMS - structured rooms with
doorways; CORRIDORS — narrow paths requiring precise navigation. Red squares mark start positions,
green squares mark goals, and yellow circles show the current agent location.

GPS: Our primary approach generates action sequences using a VAE-based decoder with Gumbel-Softmax
sampling. This stochastic mechanism applies a temperature-controlled softmax to produce action distribu-
tions that maintain differentiability while approximating discrete samples. The Gumbel-Softmax technique
creates a relaxation of categorical distributions that preserves gradients for backpropagation, facilitating
end-to-end training of our actor-critic architecture.

GPS-D: A deterministic variant of our approach that uses argmax operations with a straight-through esti-
mator in the decoder instead of Gumbel-Softmax sampling. This version produces consistent, deterministic
action sequences for each proto-sequence embedding.

DQN: Deep Q-Network (Mnih et al., 2013) is a foundational model-free DRL algorithm that learns state-
action values. DQN utilizes experience replay and a target network to stabilize its learning.

DAR: Dynamic Action Repetition (Srinivas et al. [2017) extends discrete action spaces by repeating original
actions at varying rates. DAR enables the agent to select different levels of temporal control, allowing for
some action abstraction.

TempoRL: Temporal Reinforcement Learning (Biedenkapp et al., 2021)) introduces a proactive approach,
where the agent selects both an action and its duration. TempoRL employs a hierarchical structure with
a behavior policy for action selection and a skip policy for duration, enabling more fine-grained temporal
abstraction and efficient exploration.

4.3 Experimental Setup

State and action representations. We represent the state using a tensor of shape (N, M, 3), where N and
M are the height and width of the maze grid. The channels use a similar encoding to that of MiniGridLibrary
(Chevalier-Boisvert et al., [2023): a) Object type: identifies all environmental elements including walls, empty
spaces, agent position, goal location, and starting position; b) Object color: provides distinguishing colors
for the start position, goal location, and current agent position; ¢) Placeholder channel: consistently set to
0, maintaining compatibility with the MiniGrid format. Our discrete environment supports the four basic
actions — up, down, left, right — represented as a four-entry one-hot vector

Reward function. We define the reward function identically across all methods as follows:

1 if goal is reached
R =14 -1/l if a valid action is executed

—3/lmaz if an invalid action is executed

where 1,4, is the maximal start-goal distance (see Table [1)) acting as a regularizer. When GPS executes
a sequence of length L, we sum these Markovian step rewards: Riptar = ».(r¢) for ¢ = 1..L. This reward

Under review as submission to TMLR

structure encourages goal achievement while penalizing excessive steps and invalid actions, ensuring fair
comparison across all methods.

Evaluation metrics. We use three evaluation metrics:

« Average success rate (ASR): the percentage of episodes evaluated where the agent navigates
successfully from start to goal position within a predefined number of steps.

o Path efficiency ratio (PER): for successfully completed episodes, we calculate the ratio between
the episode length and the optimal (minimal) length:

PER = -l

lepisode

o Sequence Generation Frequency (SGF): This metric reflects how often the agent generates
a new action sequence. It is calculated as the average number of times the Actor is invoked per
evaluation episode. Lower values suggest the agent relies on longer-term proto-sequences before
needing to generate a new sequence. This metric is relevant to GPS, DAR, and TempoRL baselines.

These metrics are complementary, as they allow us to evaluate the policy’s effectiveness, efficiency, and
decision frequency, under identical reward optimization across all approaches.

Neural architecture setup. All models use a shared CNN feature extractor followed by method-specific
linear layers. DQN outputs Q-values for cardinal directions, DAR expands this for multiple repetition
rates, and TempoRL implements a branching architecture for action and skip duration. In GPS, actor and
critic networks use separate but identical CNN architectures. The actor produces a 16-dimensional proto-
sequence embedding, which the decoder converts into action sequences through a multi-layer network with
normalization. Full details are in the appendix.

Hyperparameters & Hardware. Unless otherwise noted for specific ablation studies, experiments were
conducted using a common set of key hyperparameters, summarized in Tables and [22|in the appendix.
We selected the values based on preliminary experiments and common practices. All experiments were
conducted on a system running Red Hat 5.14 with x86_64 architecture. We used an NVIDIA RTX 2080
GPU with 8GB of VRAM.

Training Protocol & Model Selection. We used different training setups based on maze size and
type. Detailed step counts are in Table [2] Model selection for final testing used the checkpoint from each
run yielding the highest average success rate on a held-out set of validation environments during training.
Exploration employed an e-greedy strategy, with random sequences being sampled from the same pool of
400 synthetic sequences used to train the PSD (see Appendix for generation details). This ensures
exploratory sequences follow similar structural patterns to those the decoder was trained to generate. While
GPS incurs computational overhead per decision, our analysis shows this is often offset by reduced decision
frequency and faster convergence (see Appendix [F|for detailed trade-offs).

4.4 Evaluation Results

4.4.1 Evaluating the Average Success Rate (ASR).

The results of our evaluation are presented in Table 2] GPS consistently outperforms the baselines in most
cases, with several key observations:

Ability to learn, converge quickly, and generalize. GPS demonstrates high sample efficiency and
rapid convergence. It achieved an ASR of 0.70 4 0.14 on the 16x16 empty maze with only 100K training
steps (compared to DQN’s 0.18 + 0.03), and substantially outperformed baselines with an ASR of 0.82
4+ 0.31 for 24x24 empty maze at 500k steps, while the top baseline TempoRL only reached 0.29 £+ 0.02.

Under review as submission to TMLR

Table 2: ASR Performance at Diff erent Training Steps. Values represent mean + standard deviation over
three seeds.

100k Steps 500k Steps IM Steps 15M Steps

DON aps GPSD TempoRL DAR DON aps GPSD TempoRL DAR DON aps GPSD TempoRL DAR DON aps GPSD TempoRL DAR

8x8 077 £008 0994001 0934002 084+007 057005 086+008 100400 1004001 095+004 074£003 086+008 1004+00 100£00 0954004 075004 - - -
16x16 018003 0704014 050+007 031£006 030004 072+010 100+001 0954001 083£006 062£004 075005 L0000 097001 086005 067+002 076+006 100+00 099+001 087+ 0.06
16x16_obst_15% 010 £0.05 038005 0314002 007+002 031 =002 076001 090+0.02 0.66=007 069001 066+006 0.82+002 0954003 080£009 077=003 0.80=009 085+003 095+003 083006 080+001
16x16_obst_25% 003 +0.01 008+ 002 0.04%002 003£001 003=001 051%+010 044+015 027%013 013+006 008£006 0.70%007 059012 048+008 0.62%007 011+007 073£008 0.64%017 0514014 074 % 0.09
16x16_rooms 0.04£003 0134007 0064004 003+002 002%001 055+002 056+015 0394013 0424010 0.04£002 066001 086 +006 0.67+006 060004 000002 0.66+001 0894007 0724006 068=006 014005

048 £0.09 0964003 0844007 0.60+007 0.24%014 081+002 099+001 0924001 090+0.02 046+004 081 %002 099+001 092+001 091003 060002 - - - - -

0.04 001 0254008 0174007 002+00L 005001 011+002 0824031 0734041 0204002 020£004 0.25%003 0904017 081 +028 0.51+004 026+001 0.26+003 0974006 087+021 054+006 0.26%001

5% 0.024001 0204004 009+ 0.01 - 0.04+0.01 0.10 £ 0.03 0.67 %007 036+ 0.06 - 0.06+0.01 012+ 0.01 0.7+ 0.06 042 + 0.05 - 010 £ 001 0.14 £ 0.01 0.824001 0.5+ 0.03 - 0.12 £ 0.02

The ASR for each algorithm at specific training step intervals. A gray background indicates the highest ASR achieved
for that environment across all steps and algorithms. A yellow background indicates the highest ASR within that specific step
interval (excluding any cell already marked gray). ‘-¢ indicates unavailable data.

This supports our hypothesis that modeling action sequences rather than individual actions enables more
strategic exploration. GPS primarily learns to generate sequences that move the agent in the correct general
direction toward goals, allowing progress in unseen environments even without perfectly optimized paths.
The deterministic variant, GPS-D, also shows strong performance, supporting the robustness of the proto-
sequence concept.

Scalability and superior ability to solve complex environments. The performance gap widens in
larger environments. In the empty 24x24 maze, GPS achieves almost perfect performance of 0.97 + 0.06
at 1.5M steps, whereas DQN and TempoRL only reach 0.26 + 0.03 and 0.54 + 0.06 respectively after 1.5M
steps. In complex 24 x 24 environments with 15% obstacles, our approach achieves an ASR=0.82 after 1.5M
steps, almost eight times its closest competitor. Even in the most difficult environments (24x24 with 25%
obstacles), GPS maintains a significant relative advantage (ASR=0.36 vs. 0.14 for TempoRL).

Performance on medium-sized and structured environments. In structured "rooms" environments,
GPS achieves an ASR of 0.89 £ 0.07 at 1.5M steps, significantly outperforming DQN (0.66 £ 0.01) and Tem-
poRL (0.68 + 0.06), while DAR struggles considerably (0.14 & 0.05). This demonstrates GPS’s effectiveness
in navigating complex structured layouts that require coordinated multi-step strategies. In the challenging
"16x16_obstacles_ 15%" setup for 16x16 mazes, GPS achieves strong performance with an ASR of 0.95 +
0.03, showing moderate improvements over DQN (0.85 £ 0.03), TempoRL (0.8 + 0.01), and DAR (0.84 +
0.06). In the most challenging "16x16_ obstacles_ 25%" setup, GPS achieves an ASR of 0.64 + 0.17, which
is comparable with TempoRL (0.74 £ 0.09) and DQN (0.73 + 0.08), showing that extremely dense obstacle
distributions can limit the advantages of sequence-level decision making when precise navigation is required.
The performance gap becomes most pronounced in larger 24 x24 environments, where GPS achieves excel-
lent performance (ASR of 0.97 + 0.06 for empty 24x24 and 0.82 4 0.01 for 24x24 obstacles_ 15%) compared
to much lower success rates for all baselines.

The baseline methods demonstrate varying strengths across different environments. DQN achieves com-
petitive performance in several cases, particularly in medium-complexity environments like 16x16 "obsta-
cles_ 25%" (ASR 0.73) and structured rooms (ASR 0.66). TempoRL shows strong performance in specific
configurations, excelling in corridors (ASR 0.90) and achieving solid results in obstacle environments (ASR
0.74-0.80). DAR exhibits more variable performance, performing well in some obstacle configurations (ASR
0.84 in 16x16 "obstacles_ 15%") but struggling significantly in structured environments like rooms (ASR
0.14). For both TempoRL and DAR, which might require more extensive training to converge optimally,
we observed improved performance with larger training datasets (see Table [4| in the appendix), though
computational constraints limited further exploration. While DAR also showed improvements under these
conditions, it still faced significant challenges in complex structured environments, suggesting that simple
action repetition may have inherent limitations for certain maze types. GPS’s strong performance stems
from operating in the space of action sequences rather than individual actions, enabling more strategic ex-
ploration and the discovery of long-horizon rewards that would be difficult to find using single actions or
simple repetition methods.

Under review as submission to TMLR

Table 3: Comparative Performance Analysis: Convergence Speed and Efficiency Metrics. Values represent
mean =+ standard deviation over three seeds.

) ASR Converge>0.9 Step PER SGF

Environment

DQN GPS GPS-D TempoRL DAR DQN GPS GPS-D TempoRL DAR DQN GPS GPS-D TempoRL DAR
8x8 >1M 100k 100k 200k >IM 098 +0.03 0.89+001 0.99 +0.01 080+0.01 061+002 - 3.36 005 2.87 £0.07 528+026 3.99 +0.20
16x16 >IM 200k 100k >15M >15M 091 £0.15 0844001 0.99 +0.01 0944001 079+004 - 879 £ 0.66 7.69 + 0.86 12.50 £0.97 8.10 + 0.36
16x16_obstacles_15% ~ >1.5M 500k >15M >15M >15M 0.96 + 0.07 0.74+0.03 0.96 +0.01 0.96 + 0.01 0.65+0.03 - 14.25 £ 1.08 11.04 £ 0.43 1556 + 1.35 11.23 = 0.79
16x16_obstacles_25% >1.5M >1.5M >15M >15M >15M 0.95+0.09 0.67+0.01 094+ 0.02 0.98 + 0.02 N/R - 17.63 £ 0.75 12.36 + 0.91 20.71 + 1.54 N/R
16x16_rooms >L5M 900k >15M >L5M >15M 092+ 014 0684001 093 +001 0.96 + 0.02 N/R - 1582 £ 081 13.18 + 2.8 17.56 + 4.35 N/R
16x16_corridors >IM 100k 200k 500k >IM 095 +009 0804001 0.97 +0.01 0.90+0.01 071+001 - 8.54 % 0.50 716 £0.05 940 £0.17 5.71 + 2.09
24x24 >1.5M IM >15M >15M >1.5M N/R 0.80 + 0.07 0.99 £ 0.01 0.96 + 0.01 N/R - 12040 £ 1.80 1278 £598 17.10 + 0.41 N/R

24x24_obstacles_15% >1.5M >1.5M >1.5M - >1.5M N/R 0.58 £ 0.01 N/R

N/R - 1455+ 0.34 N/R
24x24_obstacles_25% - - - -

N/R

Note: We present four key performance metrics. The first column shows training steps required to achieve a 90% success rate
(lower is better), with highlighted values indicating the fastest convergence. Path Efficiency Ratio (PER) measures trajectory
optimality (higher is better, max=1.0), with bold values showing best performance. Sequence Generation Frequency (SGF)
indicates the average number of decision points needed per episode (lower generally indicates better temporal abstraction). -’
indicates N/A and 'N/R’ for ASR < 0.5, indicating insufficient success rate for meaningful PER/SGF evaluation.

4.4.2 Evaluating the Path Efficiency Ratio (PER).

The results of our evaluation are presented in Table 3] PER is calculated at the final training checkpoint
using the total time steps per environment detailed in Table[I] We report PER for GPS, GPS-D, and two
baselines introduced in Section allowing for direct comparison across methods. A key GPS characteristic
is Self-Correction Through Sequential Decision Points. GPS can adjust its course at subsequent
decision points without requiring an initially perfect action sequence. This sequence-level closed-loop control
enables course corrections while retaining the benefits of temporal abstraction (Empirical validation of this
self-correction capability is provided in Appendix [E] demonstrating GPS’s ability to generate correction
sequences with high success rates (62.4-99.6% immediate correction) across diverse maze environments).
Leveraging this capability, GPS adopts a strategy of Trading Path Efficiency for Robust Navigation,
prioritizing directional correctness over strict path optimality. This approach develops more transferable
navigation skills—particularly evident in larger or more obstacle-dense mazes—explaining cases where PER
is lower despite higher ASR and faster convergence (see Tables [2|and .

GPS-D consistently yields higher PER than GPS in all environments. For example, in the 16 x 16 empty
maze, GPS-D’s PER is 0.99 versus GPS’s 0.84; in the 24 x 24 empty maze, PER is 0.99 for GPS-D and 0.8
for GPS. GPS’s Gumbel-Softmax sampling introduces stochasticity that enables broader exploration but can
cause path deviations. GPS-D’s deterministic argmax decoder produces more consistent trajectories, trading
exploration advantages for improved exploitation. Among the baselines, DQN and TempoRL often show
high PER, frequently achieving near-optimal paths. For instance, in 16 x 16 "obstacle_15%" maze, DQN
reached PER 0.96 and TempoRL 0.96. However, GPS often surpasses their ASR in complex environments.
DAR generally shows a lower PER.

These findings reveal a conceptual trade-off in our approach: GPS’s stochasticity boosts exploration and
rapid convergence to high ASR, while GPS-D’s determinism excels in path efficiency once a good policy is
learned. This sequence-level exploration-exploitation trade-off offers practitioners a choice between priori-
tizing solution discovery (GPS) or execution efficiency (GPS-D) based on their specific requirements.

4.4.3 Evaluating Sequence Generation Frequency (SGF).

The results are presented in Table [3] where lower values generally indicate superior temporal abstraction
due to fewer policy invocations per episode. For methods reporting SGF, our approaches GPS and GPS-D
demonstrate competitive performance across environments. In 16 x 16 empty maze, GPS-D achieves an
SGF of 7.69, outperforming DAR’s 8.10 and TempoRL’s 12.5, while GPS records 8.79. However, in the
16 x 16 corridors environment, DAR (SGF 5.71) outperform GPS-D (7.16) and GPS (8.54). Despite this
environment-dependent variation, our methods often operate with limited interventions-such as GPS-D’s
12.78 SGF in 24 x 24 empty mazes versus TempoRL’s 17.10-demonstrating effective generation of extended
proto-sequences.

10

Under review as submission to TMLR

16x16 16x16
Actor: [512,32] Actor: [512,128,32]
1.0 1.0
0.8 0.8
- 0.6 0.6
]
<
0.4 0.4
—— Prefixes_Seq: TRUE, Suffixes_Seq: TRUE —— Prefixes_Seq: TRUE, Suffixes_Seq: TRUE
0.2 Prefixes_Seq: FALSE, Suffixes_Seq: TRUE 0.2 Prefixes_Seq: FALSE, Suffixes_Seq: TRUE
—— Prefixes_Seq: TRUE, Suffixes_Seq: FALSE —— Prefixes_Seq: TRUE, Suffixes_Seq: FALSE
—— Prefixes_Seq: FALSE, Suffixes_Seq: FALSE —— Prefixes_Seq: FALSE, Suffixes_Seq: FALSE
0.0 0.0
16x16_obstacles 15% 16x16_obstacles 15%
Actor: [512,32] Actor: [512,128,32]
1.0 — — = 1.0 S e =
0.8 0.8
- 0.6 0.6
]
<
0.4 0.4 y
—— Prefixes_Seq: TRUE, Suffixes_Seq: TRUE P —— Prefixes_Seq: TRUE, Suffixes_Seq: TRUE
0.2 Prefixes_Seq: FALSE, Suffixes_Seq: TRUE 0.2 Prefixes_Seq: FALSE, Suffixes_Seq: TRUE
—— Prefixes_Seq: TRUE, Suffixes_Seq: FALSE /_/ —— Prefixes_Seq: TRUE, Suffixes_Seq: FALSE
—— Prefixes_Seq: FALSE, Suffixes_Seq: FALSE —— Prefixes_Seq: FALSE, Suffixes_Seq: FALSE
0.0 0.0
RSSO IO R I O S O AN AW RSO IO O IR I I (SO SN W
Training Steps Training Steps

Figure 3: Impact of Subsequence Buffering Strategy on Average Success Rate.

GPS-D’s generally low SGF combined with its high PER indicates capability for efficient, strategic trajectory
generation through robust behavioral patterns, making it ideal for scenarios requiring predictable execution or
constrained resources. GPS offers a compelling trade-off with competitive PER and favorable SGF compared
to TempoRL (e.g., 8.79 vs. 12.5 in 16 x 16 empty; 15.82 vs. 17.56 in 16 x 16 rooms), alongside faster Average
Success Rate convergence as discussed in Section It balances path efficiency, sequence compactness,
and learning speed effectively.

In conclusion, SGF analysis confirms our sequence-generation paradigm’s effectiveness for temporal ab-
straction. GPS-D provides efficient, long-term utility with fewer, optimal decisions, while GPS balances
competitive SGF, good PER, and rapid ASR. The choice between them depends on application priorities:
efficiency vs. predictability or adaptation vs. broader performance.

5 Analysis and Discussion

5.1 Analyzing GPS’s Ability to Generate Novel Sequences

While we provided our Decoder with a diverse training set, the latter did not include all possible trajectories.
Our reasons were twofold. First, while including all possible action combinations was feasible in our (relatively
small) action space, doing the same for larger, more complex action spaces would be infeasible or very costly.
secondly, we wanted to evaluate GPS’s ability to generalize and produce trajectories that were not in the
training set. We consider the ability to generalize important, because the lack of it may limit the usefulness
of our approach in large action spaces.

11

Under review as submission to TMLR

16x16 Mazes 24x24 Mazes
0.6 —— 16x16_obstacles_25% —— 24x24_obstacles_25%
—— 16x16_obstacles_15% —— 24x24_obstacles_15%
—— 16x16_rooms — 24x24
0.4 — 16x16
—— 16x16_corridors
0.2
[o
< 0.0 ; = — <
-0.2
-0.4
0009400509 0% 004 0%t At AN gt AN st o 00050000 a0 a0 a0 a0 A AW 2t Y e o

Training Steps

Figure 4: Impact of Actor Network Scaling on Average Success Rate (A ASR) in Mazes.

As described in Appendix the PSD was pre-trained on a set of 400 synthetic sequences generated
according to simple, common-sense heuristics for navigation tasks: a) each sequence contained at most two
distinct action types. b) Actions of the same type appeared in contiguous blocks (e.g., “up, up, left” allowed;
“up, left, up” disallowed). ¢) No immediately contrasting actions were allowed (e.g., “up, down” prohibited).
d) Maximum sequence length was capped at Ly (shorter sequences permitted). e) Avoidance of loops.
After full training, we gathered 15 action sequences by sampling states from the GPS replay buffer and
generating the corresponding action sequences through the actor and PSD. Eleven of these did not appear
in the PSD’s training set and were not fully aligned with at least one of the navigation patterns described
above. Using the encoding up—0, down—1, left—2, right—3, the novel sequences were:

[[1,2,1,1], [1,1,0], [3,1,0,1], [0,0,3,1],
[3’37 2]7 [3’0’3]’ [1’1’2’3]’ [2’ 0)1]7
[07 07 37 3’ O’ 3]’ [37 3’ 15 2]’ [27 17 15 3]}

These results show that GPS can create new action sequences not seen during training because it works in a
structured embedding space. In this space, sequences with similar structures are grouped together, making
it possible to blend known patterns and generate new ones, as shown in Figure [f]in the appendix.

5.2 Sequence Subsets Augmentation

We investigate our subsequence buffering approach (Section , implemented through prefizes (fixed start,
varying end point) and suffizes (fixed goal state, varying starting point). Figure [3| shows that the baseline
without subsequence buffering (red) consistently learns most slowly and often converges sub-optimally, while
all subsequence buffering variants substantially improve learning efficiency. Using prefixes and suffixes simul-
taneously (blue) generally produces the most rapid learning, though the suffix-only configuration (orange)
performs nearly as well, suggesting backward sampling provides particularly valuable learning signals. The
prefix-only approach (green) typically shows slower convergence than other subsequence methods. These
performance patterns remain consistent across different maze structures and actor networks.

12

Under review as submission to TMLR

5.3 Performance Under Stochastic Dynamics

Up to this point, we conducted our evaluation in a deterministic setting. We now evaluate GPS’s robustness
in two stochastic settings, which are more challenging to our approach because of its “commitment” to fully
implementing its generated trajectories:

o “Sticky” actions. We used the well established "sticky actions" mechanism [Dabney et al.| (2020)),
with 25% probability of repeating the previous action instead of executing the planned one.

« Random actions. In this setup, which is also common in the literature |[Liu et al| (2024), each
action has a 25% probability of being replaces with a random action.

These two setups introduce temporal correlations and execution uncertainty that challenge sequence-based
methods, as errors can potentially cascade throughout multi-step sequences.

Results for the sticky actions setup show that GPS maintains strong performance under the sticky actions
setup, achieving near-perfect or perfect success rates across all tested environments while preserving com-
petitive convergence times and reasonable path efficiency. In the random actions setup, which proved to be
more challenging to all evaluated algorithms (see Appendix [C|for details), GPS is again the top performer.
Moreover, while all evaluated algorithms suffer from a degradation in their performance in this setup, GPS’s
relative degradation is the smallest. This result is noteworthy, since we would expect DQN, with its single
actions, to be the most robust.

The robust performance under stochastic conditions provides evidence that GPS’s sequence generation ap-
proach may confer resilience beyond deterministic settings. Operating at the sequence level appears to
offer some natural buffering against action execution uncertainties, though comprehensive evaluation across
diverse stochastic environments would be needed to fully establish this robustness. Detailed experimental
details and quantitative results supporting this analysis are presented in Appendix [C}

5.4 Performance Under Partial Observability

Beyond stochastic dynamics, we evaluated GPS’s robustness under partial observability constraints, where
agents only perceive a 7 x 7 local view window centered on their current position rather than the full maze
structure. This setting is particularly challenging for sequence-based methods as it requires generating
multi-step action sequences without complete environmental information, testing whether our approach can
maintain effective navigation strategies when operating with limited sensory input.

Results reveal environment-dependent performance patterns under partial observability. In empty and corri-
dor environments, GPS demonstrates strong performance, maintaining clear advantages over DQN in empty
mazes throughout training (0.54 vs 0.15 at 100K steps, 0.71 vs 0.65 at convergence) and achieving com-
petitive results in corridors (0.78 vs 0.78 ASR at 1M steps), as action sequences help maintain consistent
exploration patterns despite limited visibility. However, the moderate path efficiency ratios (PER 0.50) in
these environments indicate suboptimal navigation compared to DQN’s perfect efficiency, suggesting that
while GPS reaches goals successfully, the generated sequences include unnecessary detours when operating
with incomplete information.

In contrast, GPS faces increased challenges in obstacle-dense and rooms environments. While maintaining
early advantages in obstacle mazes (0.30 vs 0.05 at 100K steps), DQN eventually surpasses GPS (0.78 vs
0.34 at 1.5M steps), and rooms environments show reduced performance (0.48 vs 0.65 ASR). We hypothe-
size these difficulties stem from GPS generating multi-step sequences without seeing upcoming barriers or
doorways, while DQN can immediately incorporate newly revealed environmental features. The increased
Sequence Generation Frequency in complex environments (16.63 in obstacles, 11.71 in empty mazes) reflects
less effective navigation with incomplete spatial knowledge. No configuration reaches 0.9 ASR within 1.5M
steps, indicating substantial sample complexity increases under partial observability compared to full observ-
ability settings where convergence typically occurs within 500K-1M steps. Complete experimental analysis
is provided in Appendix

13

Under review as submission to TMLR

5.5 Impact of Actor Network Scaling

We examined actor network size impact (small: two-layer (512, 32); large: three-layer (512, 128, 32)) on
maze navigation performance, measured by AASR (Large - Small) (see Figure . In simpler 16x16 mazes
(empty or corridor), both architectures performed similarly. With 15% obstacles, the smaller network initially
outperformed (AASR ~ —0.3 at 100K steps) before convergence at 300K steps. In denser 25% obstacles,
the smaller network significantly outperformed from 800K steps, peaking at AASR ~ —0.5 at 1.1M steps.
In larger 24x24 mazes with 15% obstacles, the small network generally led, despite the large network’s brief
advantage (500K steps). However, in the most complex 25% obstacles maze, the large network consistently
outperformed, maintaining AASR between 0.1-0.15. The 24x24 empty maze showed fluctuating performance
with occasional spikes for the larger network around 200K and 500K steps.

These results suggest a trade-off: smaller networks suffice or excel in smaller or moderately complex envi-
ronments (possibly due to better regularization or more stable sequence generation learning), while larger
networks demonstrate clear benefits in more complex environments.

5.6 Computational Complexity and Runtime

GPS introduces additional runtime overhead compared to baselines, as its Actor-Decoder pipeline makes each
decision 1.6-3.3x slower in wall-clock time. However, because GPS operates at a sequence level and makes
decisions less frequently, the effective runtime per episode is comparable to baselines in moderately complex
settings (e.g., 16x16 mazes). In larger, more difficult environments GPS shows higher normalized costs, but
this is partly because it continues to solve tasks where baselines fail. Despite the per-decision slowdown, GPS
converges to high success rates much faster overall (90% in 3.3 hours vs. DQN’s 5.83 hours), demonstrating
that its superior sample efficiency compensates for runtime overhead in practice. This makes GPS more
useful in challenging tasks where training effectiveness outweighs raw inference speed. A comprehensive
analysis is presented in Section [F]in the Appendix.

6 Conclusions, Limitations, and Future Work

GPS is a novel actor-critic method that generates variable-length action sequences in a single step. GPS
maps state observations to proto-sequences, which are decoded into discrete action sequences. This approach
enhances credit assignment and exploration in long-horizon tasks by moving beyond sequential single-action
selection. Our evaluation shows GPS consistently surpasses leading action repetition and temporal methods
in complex maze environments, achieving higher success rates and faster convergence.

Although our approach shows benefits, particularly in complex environments, several limitations should
be acknowledged. First, a new PSD needs to be trained for each unique action space, which adds to the
complexity of our approach. GPS has not been evaluated on large action spaces, so adaptations to the
decoder component may be needed. Furthermore, our analysis suggests that a partial information setting
(e.g., limited visibility) sometimes reduces the effectiveness or our proposed approach. Finally, we have not
yet adapted GPS to continuous action spaces.

Another important aspect of our approach is its suitability for domains with varying requirements. While
GPS significantly outperforms the baselines in large, long horizon setups and is able to generate solutions
rapidly, the resulting solutions are not always strictly optimal. This trade-off between solution quality and
computational efficiency is a well-documented phenomenon in deep reinforcement learning, where methods
that prioritize rapid inference may forgo perfect optimality in favor of operational practicality and respon-
siveness. Similar observations have been reported in recent DRL research |Sohaib et al. (2025); Wu et al.
(2023), highlighting how faster-converging methods frequently produce solutions that, while feasible and
effective in real-world applications, may not match the optimality of simpler, slower approaches such as
DQN.

Future work will focus on extending to more complex domains, such as those with larger action spaces or
continuous control. As part of this research direction, we plan to explore advanced initialization strategies
for our Decoder, so that our approach can more efficiently explore large action spaces. Furthermore, we will

14

Under review as submission to TMLR

aim to adapt GPS to function more effectively in partial information and stochastic settings. To this end,
we are considering the creation of a re-planning component, and mechanism that will adapt the maximal
length of the generated sequences based on the available information. Finally, we will explore modifications
to our approach that will enable us to define desired trade-offs between path optimality and success. By
doing so, our aim is to automatically adapt GPS’s strategy to match the requirements of various domains.

References

Anurag Ajay, Seungwook Han, Yilun Du, Shuang Li, Abhi Gupta, Tommi Jaakkola, Josh Tenenbaum,
Leslie Kaelbling, Akash Srivastava, and Pulkit Agrawal. Compositional foundation models for hierarchical
planning. Advances in Neural Information Processing Systems, 36:22304-22325, 2023.

Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brandstetter,
and Sepp Hochreiter. Rudder: Return decomposition for delayed rewards. Advances in Neural Information
Processing Systems, 32, 2019.

André Biedenkapp, Raghu Rajan, Frank Hutter, and Marius Lindauer. Temporl: Learning when to act. In
International Conference on Machine Learning, pp. 914-924. PMLR, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Ar-
avind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling.
Advances in neural information processing systems, 34:15084—15097, 2021.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem Lahlou,
Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831, 2023.

Josiah D Coad, James Ault, Jeff Hykin, and Guni Sharon. A framework for predictable actor-critic control.
In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

Will Dabney, Georg Ostrovski, and André Barreto. Temporally-extended {\epsilon}-greedy exploration.
arXiv preprint arXiv:2006.01782, 2020.

Zihang Dai, Qizhe Xie, and Eduard Hovy. From credit assignment to entropy regularization: Two new
algorithms for neural sequence prediction. arXiv preprint arXiv:1804.1097/4, 2018.

Alan Dao and Dinh Bach Vu. Alphamaze: Enhancing large language models’ spatial intelligence via grpo.
arXiv preprint arXiv:2502.14669, 2025.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan Hunt,
Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement learning in large
discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then explore.
Nature, 590(7847):580-586, 2021.

Liad Giladi and Gilad Katz. Feedback decision transformer: Offline reinforcement learning with feedback.
In IEEFE International Conference on Data Mining (ICDM). IEEE, 2023.

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale, Arun
Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by transporting value. Nature
communications, 10(1):5223, 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34:1273-1286, 2021.

15

Under review as submission to TMLR

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114,
2013.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep reinforce-
ment learning: Integrating temporal abstraction and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

Nishanth Kumar, Tom Silver, Willie McClinton, Linfeng Zhao, Stephen Proulx, Tom&s Lozano-Pérez,
Leslie Pack Kaelbling, and Jennifer Barry. Practice makes perfect: Planning to learn skill parameter
policies. arXiv preprint arXiv:2402.15025, 2024.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuomotor
policies. Journal of Machine Learning Research, 17(39):1-40, 2016.

Jinghan Li, Zhicheng Sun, and Yadong Mu. Closed-loop long-horizon robotic planning via equilibrium
sequence modeling. arXiv preprint arXiv:2410.01440, 2024.

Wenhao Li. Efficient planning with latent diffusion. arXiv preprint arXiv:2310.00311, 2023.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th International
Conference on Learning Representations (ICLR), 2016.

Guanlin Liu, Zhihan Zhou, Han Liu, and Lifeng Lai. Efficient action robust reinforcement learning with
probabilistic policy execution uncertainty. Transactions on Machine Learning Research, 2024. ISSN 2835-
8856. URL https://openreview.net/forum?id=9sZsjfZV3q.

Jinxin Liu, Donglin Wang, Qiangxing Tian, and Zhengyu Chen. Learn goal-conditioned policy with intrinsic
motivation for deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,

volume 36, pp. 75587566, 2022.

Fan-Ming Luo, Tian Xu, Hang Lai, Xiong-Hui Chen, Weinan Zhang, and Yang Yu. A survey on model-based
reinforcement learning. Science China Information Sciences, 67(2):121101, 2024.

Marlos C Machado, Marc G Bellemare, Erik Talvitie, Joel Veness, Matthew Hausknecht, and Michael Bowl-
ing. Revisiting the arcade learning environment: Evaluation protocols and open problems for general
agents. Journal of Artificial Intelligence Research, 61:523-562, 2018.

Thomas Mesnard, Théophane Weber, Fabio Viola, Shantanu Thakoor, Alaa Saade, Anna Harutyunyan, Will
Dabney, Tom Stepleton, Nicolas Heess, Arthur Guez, et al. Counterfactual credit assignment in model-free
reinforcement learning. arXiv preprint arXiv:2011.09464, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, and Georg Ostrovski. Human-level control through deep
reinforcement learning. nature, 518(7540):529-533, 2015.

Jurgis Pasukonis, Timothy P Lillicrap, and Danijar Hafner. Evaluating long-term memory in 3d mazes. In
The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=yHLvI1E9RGN.

Devdhar Patel and Hava Siegelmann. Overcoming slow decision frequencies in continuous control: Model-
based sequence reinforcement learning for model-free control. arXiv preprint arXiv:2410.08979, 2024.

Roberta Raileanu and Tim Rocktéschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. arXiv preprint arXiv:2002.12292, 2020.

16

https://openreview.net/forum?id=9sZsjfZV3q
https://openreview.net/forum?id=yHLvIlE9RGN
https://openreview.net/forum?id=yHLvIlE9RGN

Under review as submission to TMLR

Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard. Latent plans
for task-agnostic offline reinforcement learning. In Conference on Robot Learning, pp. 1838-1849. PMLR,
2023.

Tankred Saanum, Noémi Eltetd, Peter Dayan, Marcel Binz, and Eric Schulz. Reinforcement learning with
simple sequence priors. Advances in Neural Information Processing Systems, 36:61985-62005, 2023.

Younggyo Seo and Pieter Abbeel. Coarse-to-fine g-network with action sequence for data-efficient robot
learning. arXiv preprint arXiv:2411.12155, 2024a.

Younggyo Seo and Pieter Abbeel. Coarse-to-fine g-network with action sequence for data-efficient robot
learning. arXiv preprint arXiv:2411.12155, 2024b.

Sahil Sharma, Aravind Srinivas, and Balaraman Ravindran. Learning to repeat: Fine grained action repe-
tition for deep reinforcement learning. arXiv preprint arXiv:1702.06054, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484-489, 2016.

Rana Muhammad Sohaib, Syed Tariq Shah, Muhammad Ali Jamshed, Oluwakayode Onireti, and Poonam
Yadav. Optimizing urllc in open ran: A deep reinforcement learning-based trade-off analysis. IEEFE
Communications Standards Magazine, 2025.

Aravind Srinivas, Sahil Sharma, and Balaraman Ravindran. Dynamic action repetition for deep reinforcement
learning. In Proc. AAAI 2017.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information processing systems,
12, 1999.

Giulia Vezzani, Dhruva Tirumala, Markus Wulfmeier, Dushyant Rao, Abbas Abdolmaleki, Ben Moran,
Tuomas Haarnoja, Jan Humplik, Roland Hafner, Michael Neunert, et al. Skills: Adaptive skill sequencing
for efficient temporally-extended exploration. arXiv preprint arXiv:2211.13743, 2022.

Shuo Wang, Zhihao Wu, Xiaobo Hu, Youfang Lin, and Kai Lv. Skill-based hierarchical reinforcement learning
for target visual navigation. IEEE Transactions on Multimedia, 25:8920-8932, 2023.

Pengfei Wu, Chen Chen, Dexiang Lai, and Jian Zhong. A safe drl method for fast solution of real-time
optimal power flow. arXiv preprint arXiv:2308.03420, 2023.

Mengda Xu, Manuela Veloso, and Shuran Song. Aspire: Adaptive skill priors for reinforcement learning.
Advances in Neural Information Processing Systems, 35:38600-38613, 2022.

Dongkun Zhang, Jiaming Liang, Ke Guo, Sha Lu, Qi Wang, Rong Xiong, Zhenwei Miao, and Yue Wang.
Carplanner: Consistent auto-regressive trajectory planning for large-scale reinforcement learning in au-
tonomous driving. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 17239—
17248, 2025.

Haichao Zhang, Wei Xu, and Haonan Yu. Generative planning for temporally coordinated exploration in
reinforcement learning. In International Conference on Learning Representations, 2022a.

Haichao Zhang, Wei Xu, and Haonan Yu. Generative planning for temporally coordinated exploration in
reinforcement learning. arXiv preprint arXiv:2201.09765, 2022b.

17

Under review as submission to TMLR

A Analysis of Reward Strategy Impact on ASR

This appendix details the comparison of two step penalty strategies, illustrated in Figure |5l The strategies
are the default Max-Level-based penalty (—1/lmax, where liax is a normalization factor related to task depth,
€.8., lmax &~ 30) and an alternative Map-Size-based penalty (—1/maze size, e.g., —1/256 for a 16 x 16 maze).
Their relative efficacy is measured by AASR = ASRnax-Level — ASRMap-Size, Where positive values indicate
superior performance for the Max-Level strategy.

Figure [5| reveals distinct performance patterns across the tested environments.

e In simple 16 x 16 mazes, the Max-Level strategy provides a significant initial learning speedup
(AASR ~ +0.8 at 200k steps), although its final Average Success Rate (ASR) is matched by the
Map-Size strategy after approximately 400k training steps.

e When 15% obstacles are introduced in the 16 x 16 maze, increasing its complexity, the Max-Level
strategy maintains a consistent performance advantage throughout the training. AASR peaks at
approximately +0.44 and remains positive (settling around +0.1).

e In larger 24 x 24 mazes, the Max-Level strategy’s superiority becomes more pronounced. AASR
dramatically increases after 500k steps, reaching and sustaining a value of approximately +0.9. This
highlights the diminishing effectiveness of the Map-Size penalty (e.g., —1/576 for 24 x 24) as it
becomes increasingly diluted in larger state spaces.

The consistently superior performance of the Max-Level strategy, particularly in more complex or larger
environments, can be attributed to several factors. Firstly, it provides a more impactful and relevant
penalty signal. The l,x-normalized penalty (e.g., & —1/30) offers a substantially stronger and more
consistent learning feedback compared to the Map-Size penalty, which diminishes significantly with increasing
maze size. Secondly, l;,.x serves as a normalization factor that likely correlates better with the intrinsic
task difficulty and typical solution length than the raw cell count of the maze, which does not inherently
capture navigational complexity. Consequently, the Max-Level penalty structure appears to offer more
effective exploration guidance and promotes greater learning efficiency.

In summary, normalizing step penalties by lpnax (Max-Level-based strategy) leads to a more robust and
effective reward scheme for the navigation tasks studied. This approach fosters more efficient learning and
achieves higher success rates by aligning the penalty signal more accurately with the inherent challenges of
the environment, proving especially advantageous as task complexity and scale increase.

B Evaluating the Average Success Rate (ASR) With Larger Train dataset

To assess performance on a larger dataset, we trained the agent on 2000 mazes. Table[4] presents the Average
Success Rates (ASR) across various maze configurations.

Table 4: Average Success Rates (ASR) with 2000 mazes in train dataset across maze types.

Maze Type Sl\fj;‘s TS\‘";‘: St[;ftt't;rg:al DQN | GPS | GPS-D | TempoRL | DAR
8x8 M| 2000 1 14] 1.00 | 1.00 1.00 1.00 0.81
16x16 M| 2000 (16 — 26] 1.00 | 1.00 1.00 1.00 0.89
16x16_obst_15% | 1.5M | 2000 20 — 30] 0.94 | 0.99 0.94 0.91 0.78
16x16_obst 25% | 1.5M | 2000 (20 - 30] 0.98 | 0.98 0.94 0.39 0.16
16x16_rooms 1.5M | 2000 20 — 30] 1.00 | 0.95 0.82 0.98 0.13
16x16_corr M| 2000 [10 - 30] 1.00 | 1.00 1.00 1.00 0.67
24x24 1.5M | 2000 (20 — 30] 0.98 | 1.00 0.98 1.00 0.75
24x24 obst 15% | 1.5M | 2000 (10 - 30] 0.05 | 0.09 0.05 0.03 0.13

18

Under review as submission to TMLR

Reward Strategy Impact on ASR

0.8 1
0.6 1
x —— 16x16_obst_15%
b — 16x16
< 04l —— 24x24
0.2
0.0

100k 200k 300k 400k 500k 600k 700k 800K 900k M
Training Steps

Figure 5: Comparison of average success rate differences (AASR) between two reward strategies: Max-
Level (the default strategy) and Map-Size, which is identical except that it replaces lnax with the total
number of cells in the maze (e.g., 256 for a 16x16 maze). The values are evaluated across training steps. A
positive AASR indicates that the Max-Level reward strategy yields better performance.

C Evaluation on Stochastic Environments

Real-world environments feature inherent stochasticity through action execution noise, sensor uncertainty,
and environmental dynamics. To evaluate GPS’s robustness under such conditions, we extended our evalu-
ation framework to include two types of stochastic dynamics:

e “Sticky” actions. We implemented a setup where there is a 25% probability that the agent executes
the previous action in the sequence instead of the current planned action. This "sticky actions"
mechanism follows established protocols in reinforcement learning evaluation Machado et al.|(2018);
Dabney et al|(2020), introducing temporal correlations and systematic execution biases that create
realistic uncertainty and test an agent’s ability to adapt to imperfect action execution.

e Random actions. In this setup each action has a 25% probability of being replaces with a random
action. These setups are also common in the literature, where they are used to simulate adversarial

environments (2024)), or environments with noisy signals [Sutton et al.| (1999).

These two setups present unique challenges for sequence-based methods like GPS. Since our approach com-
mits to entire action sequences, execution errors can potentially cascade throughout the sequence, leading
to significant deviations from intended trajectories. This makes stochastic environments a critical test for
the robustness of our sequence generation paradigm.

C.1 Sticky Actions Results

Table] presents GPS performance results under the “sticky” stochastic conditions across representative maze
configurations, comparing GPS under deterministic conditions versus GPS with sticky actions (GPS-SA)
under stochastic conditions. The results demonstrate that GPS exhibits remarkable resilience to stochastic
dynamics. Despite the 25% action execution uncertainty, GPS-SA achieves near-perfect or perfect success
rates in all environments, reaching ASR = 1.00 in empty mazes (8x8, 16x16, and 24x24) and maintaining
strong performance (ASR = 0.94) even in the challenging 16x 16 maze with 15% obstacles. Comparing GPS

19

Under review as submission to TMLR

Table 5: GPS Performance on Stochastic Maze Environments (25% Sticky Actions). GPS-SA denotes GPS

with sticky actions. Both GPS and GPS-SA results are based on single-seed experiment.
ASR Converge

ASR at Training Steps >0.9 Step PER SGF
Environment 100K 500K M 1.5M
GPS GPS-SA GPS GPS-SA GPS GPS-SA GPS GPS-SA GPS GPS-SA GPS GPS-SA GPS GPS-SA
8x8 1.00 0.99 1.00 1.00 1.00 1.00 - - 100k 100k 0.90 0.71 2.9 5.45
16x16 0.96 0.77 1.00 1.00 1.00 1.00 1.00 1.00 100k 300k 0.84 0.80 6.9 8.83
16x16_obstacles _15% 0.22 0.33 0.96 0.89 0.99 0.94 0.96 0.94 300k 600k 0.72 0.61 10.8 16.97
24x24 0.14 0.13 1.00 1.00 1.00 1.00 1.00 1.00 500k 300k 0.78 0.78 9.6 12.41

Table 6: GPS Performance on Stochastic Maze Environments (25% Uniform Random Actions). Both GPS
and DQN results are based on single-seed experiment.

ASR Converge

ASR at Training Steps >0.9 Step PER SGF
Environment 100K 500K M 1.5M
GPS DQN GPS DQN GPS DQN GPS DQN GPS DQN GPS DQN GPS DQN
8x8 098 074 099 0.86 1.0 0.86 - - 100k >1M 0.5 0.63 6.93 -
16x16 0.39 0.1 0.79 0.53 0.9 0.59 091 0.59 900k >1.5M 0.52 0.7 14.13 -
16x16_obstacles_15% 0.11 0.05 0.28 0.58 0.61 0.63 0.75 0.7 >1.5M >1.5M 049 0.62 20.26 -
24x24 0.08 007 033 009 072 019 072 023 >15M >1.5M 0.54 0.58 19.33 -

performance across conditions reveals execution uncertainty’s impact: while GPS achieves rapid convergence
in deterministic settings, sticky actions extend training requirements. The 16x16 empty maze exemplifies
this trade-off: convergence time triples from 100K to 300K steps under sticky actions, yet final ASR remains
perfect (1.00) in both conditions. Path Efficiency Ratio shows moderate degradation from deterministic to
stochastic conditions (0.84 to 0.80), indicating reduced optimality while maintaining effective navigation.
Obstacle-dense environments face more pronounced challenges, with the 16x16 maze requiring doubled
convergence time (300K to 600K steps) and greater PER reduction (0.72 to 0.61), as execution errors in
constrained spaces increase collision likelihood.

The Path Efficiency Ratio (PER) values of 0.61-0.80 indicate that GPS maintains reasonably efficient naviga-
tion despite the stochastic perturbations. While slightly lower than deterministic performance, these values
indicate that the agent successfully adapts to execution uncertainty while maintaining reasonable navigation
efficiency. The Sequence Generation Frequency (SGF) increases under sticky actions, ranging from 5.45 to
16.97 sequence generations per episode, reflecting the need for more frequent replanning when execution
deviates from intended sequences.

Notably, GPS under sticky actions still outperforms the baseline methods (DQN, TempoRL, DAR) operating
in deterministic environments. For instance, GPS-SA achieves perfect ASR in the 24x24 maze at 500K
steps, while DQN only reaches 0.24 ASR even at 1M steps in the deterministic setting. This superior
performance eliminates the need to evaluate baselines under sticky actions, as they already struggle in the
simpler deterministic case.

C.2 Random Actions Results

The stochastic setup of random actions presents a potential larger challenge to our proposed approach.
Although this setup has the same probability as the previous one of injecting an unintended action into the
sequence, these actions may be more diverse (and potentially disruptive) than those of the previous setup.
For example, an optimal trajectory for a given maze may include only “up” and “right” actions; in the sticky
setup, the injected actions may only include these two actions. In the random setup, every action — including
those not included in the optimal trajectory — is equally possible.

The results of our evaluation are presented in Table[f] We present a comparison to DQN, since this baseline,
which performs a single action at a time, is likely to be the most robust against the injection of random
actions. The results clearly show that both algorithms achieve reduced performance in this stochastic

20

Under review as submission to TMLR

setup: in all evaluated setups except 8x8 (the smallest and easiest), the evaluated algorithms underperform
compared to their non-stochastic results. However, GPS maintains a large lead over DQN: the former’s final
ASR performance in all evaluated scenarios is significantly higher.

The results of the PER metric reveals that uniform random action injection causes uniform degradation
across all environments. PER values under uniform random conditions cluster tightly between 0.49-0.54,
representing drops of 0.17-0.29 from sticky action performance. Under sticky actions, PER varied substan-
tially by environment (0.61-0.80 range), but uniform random perturbations compress all environments to
approximately 0.50 PER. This uniform degradation reflects how unpredictable disruptions systematically
undermine sequence coherence, reducing the path optimality benefits of temporal abstraction compared to
more predictable sticky perturbations. Sequence Generation Frequency (SGF) increases substantially under
uniform random versus sticky conditions: +27% (8x8: 6.93 vs 5.45), +60% (16x16: 14.13 vs 8.83), +19%
(16x16_obstacles_ 15%: 20.26 vs 16.97), and +56% (24x24: 19.33 vs 12.41). The obstacle-dense environ-
ment shows highest absolute SGF (20.26) but smallest relative increase, having already required frequent
replanning under sticky conditions. Open environments show larger relative increases (56-60%), indicating
unpredictable perturbations necessitate more frequent sequence regeneration than correlated sticky disrup-
tions. These elevated SGF values, particularly in complex environments, demonstrate that uniform random
perturbations substantially erode temporal abstraction benefits, though GPS’s sustained ASR advantage over
DQN indicates that multi-step sequence generation retains value over purely reactive single-action decisions.

C.3 Summary

These findings suggest that GPS’s sequence-level decision making provides inherent robustness against ac-
tion execution noise. By generating coherent multi-step action sequences, the approach creates a natural
buffer against individual action failures. The sequence generation paradigm appears to offer resilience to
stochastic perturbations, as the method can adapt its behavioral patterns over time while maintaining overall
navigational effectiveness despite local execution uncertainties.

The robust performance under stochastic conditions provides initial evidence that temporal abstraction
through sequence generation may offer advantages beyond sample efficiency. The ability to operate at the
sequence level appears to confer resilience to environmental uncertainties, suggesting potential applicability
to scenarios where perfect action execution cannot be guaranteed, though further evaluation across diverse
stochastic environments would be needed to establish broader generalizability of these findings.

D Evaluation on Partial Observability Environments

Real-world tasks often involve partial observability, where agents must make decisions based on limited
local information rather than complete environmental knowledge. To evaluate GPS’s robustness under such
constraints, we tested our approach with agents restricted to a 7 x 7 observation window centered on their
current position, obscuring the majority of the 16 x 16 maze structure.

We implemented partial observability by modifying the observation space to show only a 7 x 7 window around
the agent’s current position. Cells outside this window are marked as unobserved, preventing the agent
from accessing global maze structure or distant goal locations. This constraint fundamentally challenges
sequence-based methods like GPS, which must generate entire action sequences without visibility of the
complete path to the goal. The partial observability setting introduces limited planning horizons (visibility
only 3 cells in any direction), implicit memory requirements for previously observed areas, and increased
exploration complexity without global visibility.

Table [7] presents GPS’s performance under partial observability constraints compared to the DQN baseline
across representative maze configurations. The results reveal distinct performance patterns across envi-
ronment types. In empty and corridor environments, GPS demonstrates strong performance under partial
observability. In empty 16x16 mazes, GPS maintains clear advantages throughout training (0.54 vs 0.15
at 100K steps, 0.71 vs 0.65 at convergence), while in corridor environments, it achieves competitive results
with an ASR of 0.78 at 1M steps compared to DQN’s 0.78. This suggests that generating action sequences
provides inherent advantages under partial observability: multi-step sequences naturally maintain movement

21

Under review as submission to TMLR

Table 7: GPS and DQN Performance Under Partial Observability (7 x 7 view window)
ASR Converge

ASR at Training Steps >0.9 Step PER SGF
Environment 100K 500K 1M 1.5M
GPS DQN GPS DQN GPS DQN GPS DQN GPS DQN GPS DQN GPS DQN
16x16 0.54 0.15 0.67 063 0.71 0.65 0.71 065 >1.5M >1.5M 0.50 1.00 11.71 -
16x16_obstacles_15% 0.30 0.05 0.34 0.74 034 0.78 034 0.78 >1.5M >1.5M 0.53 1.00 16.63 -
16x16__corridors 048 049 0.76 078 0.78 0.78 >1M >1M 0.50 0.99 13.68

16x16_ rooms 0.11 0.06 039 062 048 063 048 065 >1.5M >1.5M 0.66 0.98 14.08 -

direction and exploration consistency, helping the agent navigate effectively even when it cannot see its desti-
nation. The narrow pathways of corridor mazes may provide implicit guidance that reduces the disadvantage
of partial observability—once an agent commits to moving down a corridor, the constrained environment
naturally channels movement toward valid destinations.

GPS faces increased challenges in obstacle-dense and rooms environments. While maintaining early ad-
vantages in obstacle mazes (0.30 vs 0.05 at 100K steps), DQN eventually surpasses GPS in 15% obstacle
environments (0.78 vs 0.34 at 1.5M steps), and rooms environments present significant challenges with GPS
achieving 0.48 ASR at 1.5M steps. We hypothesize these difficulties stem from the compounded uncertainty
of partial observability and complex spatial navigation: in obstacle environments, GPS must generate multi-
step sequences without seeing upcoming barriers, leading to frequent collisions with unseen walls, while rooms
environments require precise doorway navigation and chamber transitions that are particularly challenging
when global layout information is unavailable. DQN’s step-by-step approach allows it to immediately incor-
porate each newly revealed environmental feature into its next decision, while GPS remains committed to
sequences planned from incomplete information, accumulating penalties from suboptimal actions in complex
spaces. In addition, none of the tested configurations achieved the 0.9 ASR convergence threshold within
1.5M training steps, indicating significantly increased sample complexity under limited visibility.

The efficiency metrics further illuminate these trade-offs. GPS maintains moderate Path Efficiency Ratios
(0.50-0.66) indicating consistent but suboptimal navigation, while DQN achieves perfect efficiency when
successful. The elevated Sequence Generation Frequency under partial observability (11.71-16.63 vs 8.79-
15.8 with full visibility) reflects the increased challenges of operating with limited environmental informa-
tion—more frequent sequence generation becomes necessary to maintain navigation progress. The higher
SGF in obstacle environments (16.63 vs 11.71) indicates that GPS must generate new sequences more fre-
quently when navigating uncertain terrain, likely due to sequences that prove less effective when executed
with incomplete knowledge of obstacle locations, requiring more decision points to navigate around newly
discovered barriers and supporting our hypothesis about the challenges of sequence planning in complex
partially-observed spaces.

These findings highlight both the potential and limitations of sequence-based decision making under par-
tial observability. GPS’s early-stage advantages and moderate path efficiency (PER 0.5) demonstrate
that multi-step action sequences can provide useful structure even with limited sensory input, though per-
formance degrades significantly compared to full observability. The increased generation frequency shows
GPS attempting to adapt to limited visibility, though obstacle-dense environments remain challenging. Fu-
ture work might investigate confidence-conditioned sequence horizons, where the decoder learns to generate
shorter sequences when observation uncertainty is high, balancing temporal abstraction benefits with the
need for frequent replanning.

E Self-Correction Analysis

To substantiate our claim that GPS can self-correct through sequential sequences (Section [4.4.2)), we con-
ducted a comprehensive analysis of GPS’s ability to recover from deviations in its trajectory.

22

Under review as submission to TMLR

E.1 Methodology

We developed a quantitative framework to measure GPS’s self-correction behavior by tracking progress
toward the goal using Breadth-First Search (BFS) distance. Our analysis focuses on identifying when GPS
deviates from optimal progress and measuring its ability to generate correction sequences in subsequent
decisions.

E.1.1 Deviation Detection

For each action sequence executed during an episode, we calculate:

1. Initial BFS distance (dpefore): The shortest path distance to the goal before sequence execution

2. Final BFS distance (d.scr): The shortest path distance to the goal after sequence execution

A deviation is detected when the sequence does not bring the agent closer to the goal:

dafter > dbefore (1)

This indicates the agent either maintained the same distance or moved further from the goal, representing
a sequence that requires correction.

E.1.2 Correction Sequence Classification
When a deviation is identified, we track whether GPS generates a correction sequence in subsequent decisions.

We measure correction at multiple time horizons:

e Immediate Correction: The very next sequence reduces the optimal path length from its own
starting position to its ending position, demonstrating GPS’s ability to generate locally optimal
moves that recover from the previous suboptimal decision

o Near-term Correction (within 2 sequences): Recovery occurs within the next two decision points
e Medium-term Correction (within 3-4 sequences): Recovery within 3-4 subsequent decisions

o Long-term Correction (5+ sequences): Recovery before episode termination

A correction sequence is considered successful when the agent’s BFS distance falls below what would have
been expected from optimal execution of the original deviating sequence.

E.2 Results

Table [§] presents the self-correction analysis results across representative maze environments. The analysis
was performed only on successful episodes to focus on GPS’s recovery capabilities when it ultimately reaches
the goal.

E.3 Analysis and Discussion

The results provide strong empirical evidence for GPS’s self-correction capability:

High Immediate Correction Rates: Across all environments, GPS demonstrates substantial immediate
correction rates, ranging from 62.4% in complex room environments to 99.6% in open spaces. This indicates
that GPS frequently generates correction sequences at the very next decision point after detecting a deviation.

Environment-Specific Patterns:

o Open spaces (16x16, 24x24): Nearly perfect immediate correction (>89%), reflecting GPS’s ability
to quickly identify and generate correction sequences for directional errors

23

Under review as submission to TMLR

Table 8: GPS Self-Correction Success Rates Across Maze Environments

Environment Immediate Near-term Medium-term Long-term
Correction (<2 seq) (<4 seq) (54 seq)
8x8 0.885 £ 0.095 0.889 & 0.092 0.896 £ 0.086 1.000 & 0.000
16x16 0.996 £ 0.006 1.000 £ 0.000 1.000 £ 0.000 1.000 £ 0.000
16x16_obstacles_15% 0.753 + 0.311 0.779 £ 0.313 0.794 + 0.292 1.000 £ 0.000
16x16_obstacles_25% 0.765 + 0.324 0.789 £ 0.298 0.808 + 0.272 1.000 £ 0.000
16x16__rooms 0.624 £ 0.114 0.773 £ 0.088 0.805 £ 0.079 1.000 £+ 0.000
16x16__corridors 0.965 £ 0.046 1.000 &= 0.000 1.000 £ 0.000 1.000 £ 0.000
24x24 0.899 £ 0.143 1.000 £ 0.000 1.000 £ 0.000 1.000 £ 0.000

Note: Values represent mean + standard deviation across representative models from three different training seeds
per maze type. Analysis conducted only on successful episodes.

o Structured environments (rooms, obstacles): Lower immediate correction rates (62-77%) but
strong recovery within 2-4 sequences, suggesting GPS adapts its correction strategy to environmental
complexity

o Corridors: High immediate correction (96.5%), likely due to the constrained nature limiting devi-
ation possibilities

Guaranteed Long-term Recovery: All environments show 100% long-term correction rates in successful
episodes, confirming that GPS consistently generates effective correction sequences even after significant
trajectory deviations.

Variance Patterns: Higher standard deviations in obstacle-rich environments (40.3) compared to open
spaces (£0.006) indicate that correction difficulty varies with local maze structure, yet GPS maintains robust
recovery capabilities.

The evidence presented here directly supports our claim that GPS employs sequence-level closed-loop con-
trol, generating correction sequences at subsequent decision points without requiring initially perfect action
sequences. This self-correction mechanism helps explain GPS’s performance characteristics, where the ability
to recover from deviations enables reliable goal-reaching (high ASR) even when individual sequences may
not follow strictly optimal paths (resulting in lower PER).

F Computational Cost Analysis

While GPS demonstrates superior sample efficiency, we analyze its computational trade-offs compared to
baseline methods to provide a complete picture of the method’s practicality.

Pre-training Costs. The VAE decoder requires approximately 10-15 minutes of pre-training on an Apple
M1 Max with 64 GB RAM. This is a one-time cost per action space, and the trained decoder can be reused
across different environments with the same action space, amortizing this cost over multiple experiments.

Inference Overhead. During inference, GPS requires 1.6-3.3x the wall-clock time per decision compared
to baselines due to the Actor-Decoder pipeline. In the 16x16 maze with 15% obstacles, GPS takes 2.72ms
+ 0.25ms per decision versus DAR’s 1.39ms + 0.31ms (1.96x overhead) and DQN’s 1.67ms + 0.05ms (1.63x
overhead), while being 1.17x faster than TempoRL’s 3.18ms + 0.76ms. In the larger 24x24 environment,
the overhead pattern persists: GPS requires 3.82ms + 0.81ms per decision compared to DAR’s 1.16ms
+ 0.09ms (3.29x overhead), DQN’s 1.68ms + 0.05ms (2.27x overhead), and TempoRL’s 2.89ms £ 0.77ms
(1.32x overhead). However, since GPS makes decisions less frequently due to its sequence-level abstraction,
we also measure normalized episode efficiency—the total episode wall-clock time divided by the optimal path
length to normalize for task difficulty and enable fair comparison across algorithms with different success
rates. In the 16x16 with 15% obstacles environment, GPS (4.6ms + 0.19ms per optimal step) performs

24

Under review as submission to TMLR

comparably to baselines (DQN: 4.03ms, TempoRL: 4.55ms, DAR: 4.65ms), indicating that the per-decision
overhead is largely offset by reduced decision frequency. However, in the 24x24 environment, GPS shows
higher normalized costs (7.24ms + 1.51ms per optimal step) compared to baselines (DQN: 5.83ms, TempoRL:
5.83ms, DAR: 4.92ms). Note that this metric is computed only on successful episodes, which may bias results
toward baselines that solve only easier test instances (GPS: 90% ASR vs DQN: 24%, TempoRL: 46%, DAR:
23%), suggesting the true computational cost difference for solving challenging instances may be smaller
than indicated.

Training Time to Convergence. Despite higher per-step costs, GPS achieves faster wall-clock convergence
in medium complexity environments like 16x16 mazes with 15% obstacles due to its superior sample efficiency.
In 16x16 mazes with 15% obstacles, GPS reaches 90% ASR in 3.3 hours (500K steps), while other methods
fail to reach 90% ASR within the same training budget: DQN achieves only 85% ASR after 5.83 hours
(1.5M steps), TempoRL reaches 82% ASR after 9.2 hours (1.5M steps), and DAR achieves 64% ASR after
4.08 hours (1.5M steps). For the larger 24x24 maze, GPS’s computational overhead becomes more apparent,
with training times becoming comparable to the fastest baseline despite superior convergence and final
performance. GPS achieves 90% ASR in 11.5 hours (1M steps), while all baselines fail to reach 90% ASR:
DQN reaches only 24% ASR after 10.5 hours (1.5M steps), TempoRL achieves 46% ASR after 13.02 hours
(1.5M steps), and DAR reaches 23% ASR after 6.26 hours (1.5M steps), illustrating the trade-off between
computational efficiency and learning effectiveness.

Computational Trade-offs and Practical Considerations. While GPS incurs additional computational
overhead per decision compared to most baselines, its reduced decision frequency often compensates for this
cost. The computational trade-offs of GPS vary with environment complexity: in medium complexity
environments like 16x16 with 15% obstacles maze, GPS provides clear training time advantages, reaching
target performance levels significantly faster than baselines. In larger environments such as 24x24 maze,
training times become comparable to the fastest baselines, though GPS achieves substantially superior final
performance (90% vs 24% ASR for DQN). This pattern suggests that GPS becomes most practical when
learning effectiveness is prioritized over raw computational speed, particularly in scenarios where baseline
methods struggle to reach acceptable performance levels rather than purely on training efficiency grounds.

Table 9: Computational cost analysis across environments and methods. Values represent mean + standard
deviation over 5 runs.

Environment Metric GPS DQN TempoRL DAR
Inference time per decision (ms) 2.72 +£0.25 | 1.67 £0.05 | 3.18 £ 0.76 | 1.39 + 0.31
16x16 obst 15% Normalized episode efficiency (ms/opt. step) | 4.6 +£0.19 | 4.03 £ 0.08 | 4.55 + 0.75 | 4.65 + 0.56
- Training wall-clock to 90% ASR 3.3h 5.83h 9.2h 4.08h
Total training wall-clock (h) 997 £ 031 | 583+£035| 924172 | 4.08 + 0.65
Inference time per decision (ms) 3.82£0.81 | 1.68 £0.05 | 2.89 £0.77 | 1.16 £ 0.09
24594 Normalized episode efficiency (ms/opt. step) | 7.24 £ 1.51 | 5.83 £ 0.17 | 5.83 £ 1.18 | 4.92 + 0.54
Training wall-clock to 90% ASR 11.5h 10.5h 13.02h 6.26h
Total training wall-clock (h) 17.35 £ 2.11 | 10.5 £ 0.39 | 13.02 + 1.67 | 6.26 + 0.12
VAE Pre-training (one-time) 10-15 minutes on Apple M1 Max

In summary, GPS represents a favorable computational trade-off for challenging navigation tasks where base-
line methods fail to achieve acceptable performance, offering superior learning effectiveness at competitive
training costs.

G Comparison: Pre-trained Decoder vs. End-to-End Training

When training GPS, one needs to choose whether to pre-train the Proto-Sequence Decoder (PSD) or train
it jointly end-to-end with the actor and critic networks. To assess the impact of this choice, we conducted
a comprehensive comparison across multiple maze environments. This analysis was motivated by the ob-
servation that decoder pre-training could potentially encode implicit biases about feasible action sequences,
raising questions about whether GPS’s advantages stem from the sequence-level decision-making paradigm
itself or from initialization artifacts.

25

Under review as submission to TMLR

Table 10: Performance comparison between GPS with pre-trained decoder and end-to-end training (GPS-
E2E). All results use seed=123.

ASR Converge
ASR at Training Steps >0.9 Step PER SGF
Environment 100K 500K M 15M
GPS GPS-E2E GPS GPS-E2E GPS GPS-E2E GPS GPS-E2E GPS GPS-E2E GPS GPS-E2E GPS GPS-E2E
16x16 0.71 0.62 1.00 1.00 1.00 1.00 1.00 1.00 300k 200k 0.82 0.88 9.19 11.54

16x16_obs 15% 0.43 0.31 0.91 0.92 0.92 0.92 0.92 0.92 300k 300k 0.74 0.78 13.30 19.70
16x16_rooms 0.21 0.13 0.72 0.89 0.91 0.90 0.91 0.90 700k 1M 0.68 0.74 16.27 28.48
16x16__corr 0.93 0.96 0.99 0.99 0.99 0.99 - - 100k 100k 0.75 0.82 9.75 15.96
24x24 0.28 0.11 1.00 1.00 1.00 1.00 1.00 1.00 200k 300k 0.83 0.86 11.42 14.78

G.1 Experimental Setup

We evaluated two GPS variants:

o GPS: Our default implementation with a pre-trained VAE decoder (frozen during actor-critic train-
ing)

o GPS-E2E: End-to-end training where all three components (actor, decoder, critic) are jointly opti-
mized from random initialization

Both variants were evaluated on the same set of maze environments using identical hyperparameters for
the actor and critic networks. The decoder architecture remained unchanged; only the training procedure
differed.

G.2 Results and Analysis

Table [I0] presents the comparative results across representative environments. The findings reveal several
important insights:

G.2.1 Performance Parity in Success Rate and Convergence

The most significant finding is that GPS-E2E achieves comparable final performance to GPS with
pre-trained decoder across all tested environments. Both variants converge to similarly high success rates,
with convergence speeds being environment-dependent (e.g., 16x16: GPS-E2E reaches ASR > 0.9 at 200k
steps vs GPS at 300k steps; 24x24: GPS converges at 200k steps vs GPS-E2E at 300k steps). The final
ASR values are nearly identical across environments (e.g., 16x16: both reach 1.00; 16x16_obs_ 15%: 0.92
vs 0.92; 16x16_rooms: 0.91 vs 0.90). This demonstrates that:

1. The performance advantage of GPS stems primarily from the sequence-level decision-making
paradigm rather than from implicit biases encoded in decoder pre-training.

2. GPS can successfully learn effective action sequence representations from scratch during joint train-
ing.

3. Decoder pre-training is not a fundamental requirement. However, as we show below, there are
trade-offs with regard to path optimality and the number of sequences that need to be generated
per trajectory.

G.2.2 Path Efficiency vs. Temporal Abstraction Trade-off

An interesting pattern emerges when examining the Path Efficiency Ratio (PER) and Sequence Generation
Frequency (SGF) metrics:

e Higher PER for GPS-E2E: End-to-end training consistently produces slightly higher path effi-

ciency (e.g., 16x16: 0.88 vs 0.82; 16x16_obs_15%: 0.78 vs 0.74). This indicates that GPS-E2E
learns to generate action sequences that more closely follow optimal paths.

26

Under review as submission to TMLR

e Lower SGF for GPS: The pre-trained decoder variant requires fewer sequence generations per
episode (e.g., 16x16: 9.19 vs 11.54; 16x16_rooms: 16.27 vs 28.48), suggesting it produces longer,
more temporal abstraction action sequences.

This trade-off reveals an important behavioral difference: GPS with pre-trained decoder appears to develop
more aggressive temporal abstraction strategies—generating longer sequences that reduce decision frequency
at the cost of some path optimality. In contrast, GPS-E2E learns to balance temporal abstraction with path
efficiency, generating somewhat shorter sequences that more closely track optimal trajectories.

We hypothesize this difference arises because:

1. The pre-trained decoder’s latent space structure, learned from diverse synthetic sequences, encour-
ages exploration of longer, more varied action patterns

2. End-to-end training jointly optimizes sequence generation with the specific task objectives, poten-
tially leading to more task-specific (and thus more efficient but less exploratory) sequence patterns

This suggests that decoder pre-training may provide a form of implicit exploration regularization,
encouraging the agent to commit to longer temporal abstractions even when shorter sequences might be
locally optimal.

G.3 Decoder Transferability Across Tasks

An important practical advantage of the pre-trained decoder approach is its reusability. In our experiments,
the same pre-trained decoder was successfully used across:

o All maze configurations (empty, obstacles with varying densities, rooms, corridors)
o All maze sizes (8x8, 16x16, 24x24)

o Multiple experimental conditions (deterministic dynamics, stochastic environments and partial ob-
servability)

This transferability demonstrates that the decoder learns general-purpose sequence generation capabilities
that apply across diverse navigation scenarios within the same action space. For applications involving
multiple related tasks with shared action spaces, pre-training the decoder once and reusing it can provide
practical benefits. However, our end-to-end results confirm that decoder reusability is an added benefit
rather than a necessity for GPS’s effectiveness. The choice between variants ultimately reflects the PER-
SGF trade-off: pre-training encourages more aggressive temporal abstraction (lower SGF) while end-to-end
training optimizes for path efficiency (higher PER).

G.4 Conclusion

Our analysis demonstrates that GPS achieves strong performance with both pre-trained and end-to-end
training, confirming that its advantages stem from sequence-level decision-making rather than initialization
artifacts. The comparable performance of GPS-E2E validates that GPS’s superior performance compated
to the baselines (Section is derived by its architectural approach to temporal abstraction.

The pre-trained variant offers decoder reusability and more aggressive temporal abstraction (lower SGF),
while the end-to-end variant provides superior path efficiency (higher PER) with comparable success rates.
This PER-SGF trade-off suggests decoder initialization influences the exploration-exploitation balance. Prac-
titioners can select either variant based on specific requirements without sacrificing fundamental performance.

Future work could explore combining both approaches’ strengths through adaptive decoder training schedules
(starting pre-trained for exploration, transitioning to task-specific optimization) or curriculum learning that
leverages the complementary benefits of both paradigms.

27

Under review as submission to TMLR

H ASR Statistical Significance Testing

To assess the statistical significance of the differences in Average Success Rates (ASR) between our proposed
method (GPS) and the baseline (DQN), we employed McNemar’s test. This section details the methodology
and presents the results of these tests.

Methodology

McNemar’s test is a non-parametric test suitable for paired nominal data. It is used to determine whether
there is a significant difference in the proportions of two related samples, such as when two algorithms are
evaluated on the same set of test instances. In our context, each maze evaluation episode serves as a paired
instance, and the outcome for each algorithm (GPS or DQN) is categorized as either a success or a failure.

An episode was deemed a success if the agent reached the goal in an episodic length of less than 75 steps.
Otherwise, it was considered a failure.

For each pair of algorithms (GPS vs. DQN) on a given maze type, we constructed a 2 x 2 contingency table
based on the outcomes of common evaluation episodes:

Algorithm B (DQN)

Success Failure
Algorithm A (GPS) Success a b
Failure c d

Where:

e a: Number of episodes where both GPS and DQN succeeded.
e b: Number of episodes where GPS succeeded and DQN failed.
e ¢: Number of episodes where GPS failed and DQN succeeded.

e d: Number of episodes where both GPS and DQN failed.
McNemar’s test focuses on the discordant pairs (b and ¢). The null hypothesis (Hp) is that the two algorithms
have the same ASR. The test statistic is calculated as:

2 (b—c)2
X b+c

This statistic follows a chi-squared distribution with 1 degree of freedom. We used the version of the test
without continuity correction, as implemented in ‘statsmodels.stats.contingency_ tables.mcnemar®.

The significance level was set at a = 0.05. If the calculated p-value was less than 0.05, we rejected the null
hypothesis and concluded that there is a statistically significant difference in the ASR performance of the
two algorithms.

Results: GPS vs. DQN

The results of McNemar’s test comparing GPS (Algorithm A) to DQN (Algorithm B) across various maze
configurations are summarized in Table The Average Success Rate (ASR) reported in the table for each
algorithm is based on Table [2}

e« ASR (GPS) = (a+b)/(a+b+c+d)

o« ASR (DQN) = (a+c¢)/(a+b+c+d)

28

Under review as submission to TMLR

Table 11: McNemar’s Test Results for GPS vs. DQN. All p-values < 0.05 indicate a statistically significant
difference in performance, favoring GPS in all listed cases. P-values reported as 0.0000 by the script are
presented as < 0.0001.

Maze Type ASR (GPS) ASR (DQN) McNemar Stat. p-value

8x8 1.00 0.95 54.0000 < 0.0001
16x16 1.00 0.69 377.0000 < 0.0001
16x16_obs_15 0.96 0.85 22.1538 < 0.0001
16x16_obs_ 25 0.90 0.8 28.4462 < 0.0001
16x16__rooms 0.92 0.65 136.5329 < 0.0001
16x16_ corridors 1.00 0.80 107.0000 < 0.0001
24x24 1.00 0.24 757.0000 < 0.0001
24x24_obs_15 0.91 0.15 760.0208 < 0.0001
24x24 obs_ 25 0.36 0.11 192.9627 < 0.0001

All comparisons in Table[IT]yield p-values substantially less than 0.05, demonstrating statistically significant
improvements of GPS over DQN across all tested maze environments. The consistent outcomes and signifi-
cant p-values robustly support the conclusion that the GPS method offers superior performance compared
to the DQN baseline under the specified experimental conditions.

The following sections provide the detailed per-run summaries logged and the specific contingency tables
used for McNemar’s test for each maze configuration.

Maze: 8x8
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 1000, Failures: 0, Errors: 0
e DQN (Algorithm B) Summary: Total episodes: 1000, Successes: 946, Failures: 54, Errors: 0
Contingency Table (GPS vs. DQN):
DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 946 (a) 54 (b)
Failure 0 (c¢) 0 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 54.0000, p-value: < 0.0001

Maze: 16x16
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 1000, Failures: 0, Errors: 0
o DQN (Algorithm B) Summary: Total episodes: 1000, Successes: 623, Failures: 377, Errors: 0
Contingency Table (GPS vs. DQN):
DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 623 (a) 377 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 999
McNemar’s Statistic: 342.0000, p-value: < 0.0001

29

Under review as submission to TMLR

Maze: 16x16_obs_15
o GPS (Algorithm A) Summary: Total episodes: 210, Successes: 202, Failures: 8, Errors: 0

e DQN (Algorithm B) Summary: Total episodes: 210, Successes: 178, Failures: 32, Errors: 0

Contingency Table (GPS vs. DQN):

DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 177 (a) 25 (b)
Failure 1 (c) 7 (d)

Common episodes for comparison: 210
McNemar’s Statistic: 22.1538, p-value: < 0.0001

Maze: 16x16_obs_25
o GPS (Algorithm A) Summary: Total episodes: 399, Successes: 360, Failures: 39, Errors: 0

o DQN (Algorithm B) Summary: Total episodes: 402, Successes: 320, Failures: 82, Errors: 0

Contingency Table (GPS vs. DQN):

DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 306 (a) 54 (b)
Failure 11 () 28 (d)

Common episodes for comparison: 399
McNemar’s Statistic: 28.4462, p-value: < 0.0001

Maze: 16x16_rooms

e GPS (Algorithm A) Summary: Total episodes: 586, Successes: 530, Failures: 56, Errors: 0

o DQN (Algorithm B) Summary: Total episodes: 586, Successes: 379, Failures: 207, Errors: 0

Contingency Table (GPS vs. DQN):

DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 371 (a) 159 (b)
Failure 8 (c) 48 (d)

Common episodes for comparison: 583
McNemar’s Statistic: 132.7872, p-value: < 0.0001

Maze: 16x16_corridors

o GPS (Algorithm A) Summary: Total episodes: 545, Successes: 545, Failures: 0, Errors: 0

o DQN (Algorithm B) Summary: Total episodes: 545, Successes: 438, Failures: 107, Errors: 0
Contingency Table (GPS vs. DQN):

30

Under review as submission to TMLR

DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 438 (a) 107 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 545
McNemar’s Statistic: 107.0000, p-value: < 0.0001

Maze: 24x24
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 999, Failures: 1, Errors: 0

o DQN (Algorithm B) Summary: Total episodes: 1000, Successes: 242, Failures: 758, Errors: 0

Contingency Table (GPS vs. DQN):

DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 242 (a) 757 (b)
Failure 0 (c) 1(d)

Common episodes for comparison: 1000
McNemar’s Statistic: 757.0000, p-value: < 0.0001

Maze: 24x24_obs_15
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 914, Failures: 86, Errors: 0

o DQ@N (Algorithm B) Summary: Total episodes: 1000, Successes: 150, Failures: 850, Errors: 0

Contingency Table (GPS vs. DQN):

DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 148 (a) 766 (b)
Failure 2 (c) 84 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 760.0208, p-value: < 0.0001

Maze: 24x24_obs_25
e GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 368, Failures: 632, Errors: 0
o DQN (Algorithm B) Summary: Total episodes: 1000, Successes: 99, Failures: 901, Errors: 0

Contingency Table (GPS vs. DQN):

DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 46 (a) 322 (b)
Failure 53 (c) 579 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 192.9627, p-value: < 0.0001

This detailed breakdown for each environment shows the specific data underlying the McNemar’s tests.

31

Under review as submission to TMLR

Results: GPS vs. TempoRL

Table [12] summarizes the Average Success Rates (ASR) for GPS and TempoRL, along with the McNemar
test statistics and p-values derived from common paired evaluation episodes.

All comparisons in Table[I2]yield p-values substantially less than 0.05, demonstrating statistically significant
improvements of GPS over the TempoRL baseline across all tested maze environments. The consistent
outcomes and significant p-values robustly support the conclusion that the GPS method offers superior
performance compared to the TempoRL baseline under these experimental conditions.

Table 12: Summary of McNemar’s Test Results for GPS vs. TempoRL. All p-values < 0.05 indicate a
statistically significant difference in performance, favoring GPS.

Maze Type ASR (GPS) ASR (TempoRL) McNemar Stat. p-value

8x8 1.00 0.97 26.0000 < 0.0001
16x16 1.00 0.84 178.0000 < 0.0001
16x16_obs_ 15 0.96 0.82 19.5652 < 0.0001
16x16 obs_ 25 0.90 0.79 18.9804 < 0.0001
16x16__rooms 0.92 0.63 119.0088 < 0.0001
16x16_ corridors 1.00 0.9 56.0000 < 0.0001
24x24 1.00 0.46 511.0078 < 0.0001
24x24 obs 15 0.91 0.20 651.0968 < 0.0001
24x24 obs_ 25 0.36 0.09 171.6100 < 0.0001

The following sections provide the detailed per-run summaries and the specific contingency tables used for
McNemar’s test for each maze configuration when comparing GPS with TempoRL.

Maze: 8x8 (GPS vs. TempoRL)

o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 1000, Failures: 0, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 1000, Successes: 974, Failures: 26, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 974 (a) 26 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 26.0000, p-value: < 0.0001

Maze: 16x16 (GPS vs. TempoRL)

o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 1000, Failures: 0, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 1000, Successes: 822, Failures: 178, Errors: 0
Contingency Table (GPS vs. TemporL):

32

Under review as submission to TMLR

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 822 (a) 178 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 178.0000, p-value: < 0.0001

Maze: 16x16_obs_15 (GPS vs. TempoRL)

o GPS (Algorithm A) Summary: Total episodes: 210, Successes: 202, Failures: 8, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 210, Successes: 172, Failures: 38, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 164 (a) 38 (b)
Failure 8 (c) 0 (d)

Common episodes for comparison: 210
McNemar’s Statistic: 19.5652, p-value: < 0.0001

Maze: 16x16_obs_25 (GPS vs. TempoRL)
o GPS (Algorithm A) Summary: Total episodes: 399, Successes: 360, Failures: 39, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 402, Successes: 318, Failures: 84, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 287 (a) 73 (b)
Failure 29 (c) 10 (d)

Common episodes for comparison: 399
McNemar’s Statistic: 18.9804, p-value: < 0.0001

Maze: 16x16_rooms (GPS vs. TempoRL)

o GPS (Algorithm A) Summary: Total episodes: 586, Successes: 530, Failures: 56, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 586, Successes: 366, Failures: 220, Errors: 0

Contingency Table (GPS vs. TemporlL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 335 (a) 195 (b)
Failure 31 (c) 25 (d)

Common episodes for comparison: 586
McNemar’s Statistic: 119.0088, p-value: < 0.0001

33

Under review as submission to TMLR

Maze: 16x16_corridors (GPS vs. TempoRL)
o GPS (Algorithm A) Summary: Total episodes: 545, Successes: 545, Failures: 0, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 545, Successes: 489, Failures: 56, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 489 (a) 56 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 545
McNemar’s Statistic: 56.0000, p-value: < 0.0001

Maze: 24x24 (GPS vs. TempoRL)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 999, Failures: 1, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 1000, Successes: 486, Failures: 514, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 485 (a) 514 (b)
Failure 1 (¢) 0 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 511.0078, p-value: < 0.0001

Maze: 24x24_obs_15 (GPS vs. TempoRL)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 914, Failures: 86, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 1000, Successes: 218, Failures: 782, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 194 (a) 720 (b)
Failure 24 (c) 62 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 651.0968, p-value: < 0.0001

Maze: 24x24_obs_25 (GPS vs. TempoRL)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 368, Failures: 632, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 1000, Successes: 106, Failures: 894, Errors: 0
Contingency Table (GPS vs. TemporL):

34

Under review as submission to TMLR

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 37 (a) 331 (b)
Failure 69 (c) 563 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 171.6100, p-value: < 0.0001

This detailed breakdown for each environment when comparing GPS to TempoRL shows the specific data
underlying McNemar’s tests.

Results: GPS vs. DAR

Table summarizes the Average Success Rates (ASR) for GPS and DAR, along with the McNemar test
statistics and p-values derived from common evaluation episodes.

Table 13: Summary of McNemar’s Test Results for GPS vs. DAR. All p-values < 0.05 indicate a statistically
significant difference in performance, favoring GPS.

Maze Type ASR (GPS) ASR (DAR) McNemar Stat. p-value

8x8 1.00 0.76 244.0000 < 0.0001
16x16 1.00 0.61 394.0000 < 0.0001
16x16_obs 15 0.96 0.64 57.8000 < 0.0001
16x16 obs 25 0.90 0.14 298.2038 < 0.0001
16x16 rooms 0.92 0.15 438.0800 < 0.0001
16x16 corridors 1.00 0.61 213.0000 < 0.0001
24x24 1.00 0.23 711.0000 < 0.0001
24x24 obs 15 0.91 0.12 614.2257 < 0.0001
24x24 obs 25 0.36 0.07 236.2798 < 0.0001

All comparisons in Table [I3]yield p-values substantially less than 0.05, demonstrating statistically significant
improvements of GPS over the DAR baseline across all tested maze environments. The consistent outcomes
and significant p-values robustly support the conclusion that GPS offers superior performance compared to
the DAR baseline under these experimental conditions.

The following sections provide the detailed per-run summaries logged by the script and the specific contin-
gency tables used for McNemar’s test for each maze configuration when comparing GPS with DAR.

Maze: 8x8 (GPS vs. DAR)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 1000, Failures: 0, Errors: 0
o DAR (Algorithm B) Summary: Total episodes: 1000, Successes: 756, Failures: 244, Errors: 0
Contingency Table (GPS vs. DAR):
DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 756 (a) 244 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 244.0000, p-value: < 0.0001

35

Under review as submission to TMLR

Maze: 16x16 (GPS vs. DAR)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 1000, Failures: 0, Errors: 0

o DAR (Algorithm B) Summary: Total episodes: 1000, Successes: 606, Failures: 394, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 606 (a) 394 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 394.0000, p-value: < 0.0001

Maze: 16x16_obs_15 (GPS vs. DAR)
e GPS (Algorithm A) Summary: Total episodes: 210, Successes: 202, Failures: 8, Errors: 0

o DAR (Algorithm B) Summary: Total episodes: 210, Successes: 134, Failures: 76, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 128 (a) 74 (b)
Failure 6 (c) 2 (d)

Common episodes for comparison: 210
McNemar’s Statistic: 57.8000, p-value: < 0.0001

Maze: 16x16_obs_25 (GPS vs. DAR)
o GPS (Algorithm A) Summary: Total episodes: 399, Successes: 360, Failures: 39, Errors: 0

o DAR (Algorithm B) Summary: Total episodes: 402, Successes: 54, Failures: 348, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 50 (a) 310 (b)
Failure 4 (c) 35 (d)

Common episodes for comparison: 399
McNemar’s Statistic: 298.2038, p-value: < 0.0001

Maze: 16x16_rooms (GPS vs. DAR)
o GPS (Algorithm A) Summary: Total episodes: 586, Successes: 530, Failures: 56, Errors: 0

o DAR (Algorithm B) Summary: Total episodes: 586, Successes: 86, Failures: 500, Errors: 0
Contingency Table (GPS vs. DAR):

36

Under review as submission to TMLR

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 83 (a) 447 (b)
Failure 3 (c) 53 (d)

Common episodes for comparison: 586
McNemar’s Statistic: 438.0800, p-value: < 0.0001

Maze: 16x16_corridors (GPS vs. DAR)

o GPS (Algorithm A) Summary: Total episodes: 545, Successes: 545, Failures: 0, Errors: 0

e DAR (Algorithm B) Summary: Total episodes: 544, Successes: 331, Failures: 213, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 331 (a) 213 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 544
McNemar’s Statistic: 213.0000, p-value: < 0.0001

Maze: 24x24 (GPS vs. DAR)

o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 999, Failures: 1, Errors: 0

e DAR (Algorithm B) Summary: Total episodes: 1000, Successes: 288, Failures: 712, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 288 (a) 711 (b)
Failure 0 (c) 1(d)

Common episodes for comparison: 1000
McNemar’s Statistic: 711.0000, p-value: < 0.0001

Maze: 24x24_obs_15 (GPS vs. DAR)

o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 914, Failures: 86, Errors: 0

e DAR (Algorithm B) Summary: Total episodes: 4833, Successes: 524, Failures: 4309, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 38 (a) 632 (b)
Failure 6 (c) 55 (d)

Common episodes for comparison: 731
McNemar’s Statistic: 614.2257, p-value: < 0.0001

37

Under review as submission to TMLR

Maze: 24x24_obs_25 (GPS vs. DAR)

o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 368, Failures: 632, Errors: 0

o DAR (Algorithm B) Summary: Total episodes: 1000, Successes: 66, Failures: 934, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 24 (a) 344 (b)
Failure 42 (c) 590 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 236.2798, p-value: < 0.0001

This detailed breakdown for each environment when comparing GPS to DAR shows the specific data under-
lying McNemar’s tests.

| Baselines and Architecture

Each baseline is evaluated using a grid search over multiple hyperparameter configurations; Tables [T4] [I5]
and [22] detail the specific value ranges for these parameters.

All baseline models employ the same CNN feature extractor architecture followed by similarly sized linear
layers, differing only in the final output layer size. For example, DQN outputs 4 Q-values (one per action),
while DAR outputs 12 (4 actions x 3 repetition heads). TempoRL requires an additional network head
to implement the skip policy, adding architectural complexity but gaining flexibility in temporal decision-
making. In our GPS method, the actor and critic networks each have their own separate CNN state feature
extractors. In future work, we plan to explore a shared CNN feature extraction architecture as implemented
in TempoRL, which could potentially improve computational efficiency and state representation learning.

For TempoRL, we configured the model with a maximum skip length between 1..10 to allow variable sequence
lengths of action repetition. For DAR, we evaluated possible coarse control values of 1,5,10 to allow the
same maximum sequence length and mid-sequence capability, with the fine control value fixed at 1 to allow
for actions at every time step. We based our implementations on the publicly available code at https:
//github.com/automl/TempoRL but reimplemented from scratch to enrich with more metrics and employ
our evaluation methodology. Detailed architectures, hyperparameter configurations, and implementation

specifics can be found in Appendix [J] [K] [C} [M] and [N}

While GPS, like hierarchical methods, targets long-horizon tasks, its approach is fundamentally different.
Hierarchical RL learns temporal abstractions via skill discovery and multi-level policies, whereas GPS gen-
erates full action sequences directly from state observations without skills or sub-goal decomposition. The
proto-sequence decoder is pre-trained and fixed, providing a structured output space rather than a learned
controller. Because of these differences and GPS ’s focus on discrete action spaces, we compare against DAR
and TempoRL, which similarly extend temporal horizons through action repetition and sequence commit-
ment.

J DQN Baseline Implementation Details

This section outlines the architecture and configuration of the Deep Q-Network (DQN) agent used as a
baseline. It details the neural network structure, hyperparameter settings, exploration strategy, optimization
method, and other relevant training aspects.

38

https://github.com/automl/TempoRL
https://github.com/automl/TempoRL

Under review as submission to TMLR

J.1 Model Architecture (QNetwork)

The Q-Network is a neural network designed to approximate the action-value function Q(s,a). It consists
of a convolutional part for feature extraction from the input observation and a linear part for producing
Q-values for each action.

In our maze environments, as depicted in Subsection the input observation has a shape (C, H, W), where
the number of input channels C is 3. The number of output channels, n_ output_channels, corresponds to
the number of available actions, which is 4 (right, left, up, down).

J.1.1 Convolutional Neural Network (CNN) Part

The CNN component processes the input observation through a sequence of convolutional layers:

1. Conv2D Layer 1:

o Input channels: 3

e Output channels: 16
e Kernel size: 2

e Stride: 1

2. Activation: ReLU

3. Conv2D Layer 2:

e Input channels: 16
e Output channels: 32
o Kernel size: 2

e Stride: 1

4. Activation: ReLU

5. Conv2D Layer 3:

e Input channels: 32
e Output channels: 64
e Kernel size: 2

e Stride: 1

6. Activation: ReLU

7. Flatten Layer: The output of the convolutional layers is flattened into a 1D vector. The size of
this vector, n__flatten, is computed automatically.

J.1.2 Linear Part

The flattened output from the CNN (n__flatten) is fed into a sequence of fully connected linear layers:

e The hidden layer sizes are configurable via grid search (see Table for details). The activation
function for these hidden layers is Leaky ReLU (negative slope 0.1).

o The final linear layer maps the last hidden layer’s output to n_ output_channels (4 actions).

J.2 Hyperparameters

The agent’s behavior and training process are governed by a set of hyperparameters, detailed in Tables
and

39

Under review as submission to TMLR

Table 14: General Experiment Hyperparameters for DQN Baseline

Parameter

Default Value

seed

val_eval_freq
train_eval_freq

torch_deterministic
save_model_strategy

eval_test_dataset_training freq

123

True
SUCCESS_RATE
5000

5000

100000

Table 15: Environment-Specific Hyperparameters for DQN Baseline

Parameter

Default Value

max_ episode_ steps

reward_ strategy

observation_ encoding strategy
Max Path Length (max_level)
Min Path Length (start_level)

75
NEGATIVE_BASED ON_MAX_LEVEL_WITH_PENALTIES
DEFAULT

Varies (see Env. Def. in Table
Varies (see Env. Def. in Table

ER

Table 16: Algorithm Specific Hyperparameters for DQN Baseline
Default Value / Options
Environment specific

[1x1073,1x 1074

[10000, 50000

Parameter
total__timesteps
learning_ rate
buffer_ size

~ (discount factor) 0.99

7 (target update rate) [0.01, 0.005]

target_ network_ frequency [10, 100] (soft-target update freq.)
batch_ size 256

start_e 1.0 (initial €)

end_e 0.1 (final €)

exploration_ fraction [0.1, 0.3, 0.5]

learning_ starts
train_ frequency
linear_ layers
activation_ function

1000 (timestep to begin learning)
2 (Q-network update freq.)
["512,128,32", "512,32"]

Leaky ReLU (slope 0.1)

J.3 Epsilon-Greedy Exploration

The agent uses an epsilon-greedy strategy for action selection. The value of epsilon (e) is linearly an-
nealed from start_e (1.0) to end_e (0.1) over a duration. This duration is calculated as |exp_frac x
total_timesteps], where exp_ frac is the selected exploration_fraction (from options in Table and
t is the current global timestep. The epsilon at timestep ¢ is:

e: = max((((end_e — start_e)/duration) x ¢ + start_e),end_e)
With probability €;, a random action is chosen; otherwise, the action with the highest Q-value is selected.
J.4 Optimizer

The Q-Network is trained using the Adam optimizer (torch.optim.Adam). The learning rate is controlled
by the learning_rate hyperparameter (see Table .

J.5 Replay Buffer

A buffer

replay (stable_baselines3.common.buffers.ReplayBuffer) stores experiences
(8tsat, 7ty Se41,dt).
The buffer size is specified in Table Key configurations include optimize_memory_usage = False and

handle_timeout_termination False.

40

Under review as submission to TMLR

J.6 Training Details

Loss Function. The Q-Network parameters () are updated by minimizing the Mean Squared Error (MSE)
loss:

L(e) = E(s,a,r,s’,d)NB [(yt - Q(Sa as; 0))2]
where the TD target:
Y = T + ’YH};}X Qta?”get(st+17 a/; 0_)(1 - dt)

Here, 7, is the reward, 7 is the discount factor, Qarge: is the target network with parameters 6~, and d;
indicates if s¢y1 is terminal. This is implemented via torch.nn.functional .mse_loss.

Target Network. A separate target network Qiqrger With parameters 6~ stabilizes training. Its weights
are updated using Polyak averaging: 6~ < 76 4+ (1 — 7)0~. The soft update rate 7 and update frequency
target_network_frequency are specified in Table [I6]

Training Procedure.

o Learning Starts: Training begins after learning starts timesteps (see Table .
o Training Frequency: The Q-network is updated every train_frequency global steps (see Table

15).

o Batch Size: Number of experiences sampled per training step is batch_size (see Table .

J.7 Evaluation
The agent’s performance is evaluated periodically on validation and test datasets.

o Evaluation on the validation dataset occurs every val_eval_freq steps.

o Evaluation on the test dataset can occur during training every eval_test_dataset_training_ freq
steps.

o During evaluation, actions are chosen greedily (or with a small fixed epsilon, e.g., 0.05 or 0.0).

e Metrics logged include mean episodic return, success rate, and agent step ratio.

o Model saving is based on performance metrics (e.g., highest success rate or reward on validation) as
per save_model_strategy.

K DAR Baseline Implementation Details

This section outlines the architecture and configuration of the Dyanmic Action Repetition (DAR) agent used
as a baseline. The DAR agent builds upon the Deep Q-Network (DQN) architecture and training methodol-
ogy. Therefore, for aspects not explicitly mentioned here, such as the general experiment configuration (Table
[14), environment-specific arguments (Table[L5]), epsilon-greedy exploration strategy (Section [J.3)), optimizer
(Section, replay buffer (Section, general training procedure (Section, and evaluation methodol-
ogy (Section , please refer to the corresponding descriptions in the DQN baseline implementation details

(Section [J)).
The primary distinctions of the DAR baseline are its modified network architecture to support an expanded
action space and an additional algorithm-specific hyperparameter, dar_r_1, related to action repetition.

K.1 Model Architecture

The DAR network for the DAR agent, similar to DQN, approximates the action-value function Q(s,a). It
comprises a convolutional part for feature extraction and a linear part for producing Q-values.

The input observation from the maze environments has a shape (C, H, W), where C' = 3, identical to the

DQN baseline (Section [J.1).

41

Under review as submission to TMLR

K.1.1 Convolutional Neural Network (CNN) Part

The CNN component is identical to the one used in the DQN baseline. For details on the architecture
(number of layers, channels, kernel sizes, strides, and activations), please refer to Section The output of
this part is a flattened 1D vector of size n__flatten.

K.1.2 Linear Part

The flattened output (n__flatten) from the CNN is processed by a sequence of fully connected linear layers:

e The hidden layer sizes are configurable via grid search, with the same options as the DQN baseline
(see Table [17| for linear_layers). The activation function for these hidden layers is Leaky ReLU
(negative slope 0.1).

e The final linear layer maps the last hidden layer’s output to n__output__channels. For the DAR agent,
n__output__channels = 12, corresponding to 4 base actions (right, left, up, down) each associated
with 3 repetition heads/levels.

K.2 Hyperparameters

The general experimental configuration and environment-specific hyperparameters for the DAR baseline are
the same as those for the DQN baseline, as detailed in Table [I4 and Table [I5] respectively.

K.2.1 Algorithm Specific Arguments

The algorithm-specific hyperparameters for the DAR baseline, including the newly introduced dar_r_1 pa-
rameter, are listed in Table These parameters are subject to grid search to find the optimal configuration
for each environment.

Table 17: Algorithm Specific Hyperparameters for DAR Baseline

Parameter Default Value / Options
total__timesteps Environment specific

learning rate [1x1073,1x 1074

buffer_size [10000, 50000]

~ (discount factor) 0.99

T (target update rate) [0.01, 0.005]
target_network__frequency [10, 100] (soft-target update freq.)
batch_ size 256

start_e 1.0 (initial €)

end_e 0.1 (final €)

exploration_ fraction [0.1, 0.3, 0.5]

learning_starts 1000 (timestep to begin learning)
train__frequency 2 (Q-network update freq.)
linear_ layers ["512,128,32", "512,32"]
activation_ function Leaky ReLU (slope 0.1)

dar_r 1 [1, 5, 10] (repetition level parameter)

K.3 Training Details

Loss Function. For DAR, the Q-Network parameters (6) are updated by minimizing Hubber loss. This is
implemented via torch.nn.SmoothL1Loss.

L TempoRL Baseline Implementation Details
This section describes the architecture and configuration of the TempoRL agent, a baseline designed for

temporal abstraction by learning how long to repeat actions. TempoRL shares several components and pro-
cedures with the DQN baseline. For details on the general experiment configuration (Table, environment-

42

Under review as submission to TMLR

specific arguments (Table , replay buffer (Section 7 and evaluation methodology (Section , please
refer to the corresponding descriptions in the DQN baseline implementation details (Section .

Key distinctions of the TempoRL agent include its specialized network architecture with separate heads
for action selection and skip duration, unique hyperparameters related to these mechanisms (skip_dim,
weight_sharing), and the use of Huber loss for training.

L.1 Model Architecture

The TempoRL network processes input observations to produce Q-values for primitive actions and Q-values
for skip durations. The input observation from the maze environments has a shape (C, H, W), where C = 3,
identical to the DQN baseline (Section |J.1)).

L.1.1 Convolutional Neural Network (CNN) Part

The CNN component used for initial feature extraction is identical to the one in the DQN baseline. For
details on its architecture (number of layers, channels, kernel sizes, strides, and activations), please refer to
Section The output of this CNN part is a flattened 1D vector of size n__flatten.

L.1.2 Linear Heads for Action and Skip Policies

Following the CNN, the network processes features through a structure that leads to two distinct output
heads: one for action selection and one for determining the skip duration. The MLP for each pathway (from
CNN output to pre-output layer) consists of layers with output units [512, 128, 32].

o Feature Processing and Weight Sharing:

— If weight_sharing = True (default configuration): The n__flatten vector is first processed by
a shared linear layer producing 512 output units, followed by a Leaky ReLU activation (negative
slope 0.1). This 512-unit feature vector serves as the common input to the subsequent differing
layers of the action and skip heads.

— If weight_sharing = False: The n__flatten vector is independently fed into the first linear
layer (512 output units, Leaky ReLU) of both the action and skip processing streams. Each
stream then continues with its own [128, 32] layers.

¢ Action Head:

— Starting from the 512-unit feature vector (either shared or head-specific), it is processed through
two subsequent linear layers with 128 and 32 output units, respectively. Each of these hidden
layers uses a Leaky ReLU activation (negative slope 0.1).

— The final linear layer of the action head maps the 32-unit feature vector to n_ output_ actions
Q-values, where n_ output__actions = 4 (corresponding to right, left, up, down).

e Skip Head:

— Similarly starting from the 512-unit feature vector, it is processed through two subsequent linear
layers with 128 and 32 output units, each followed by a Leaky ReLU activation (negative slope
0.1).

— The final linear layer of the skip head maps the 32-unit feature vector to skip_dim. Each
corresponds to the utility of repeating the chosen primitive action for a specific number of
steps, from 1 up to skip_dim.

L.2 Hyperparameters

General experimental configuration (Table and environment-specific arguments (Table are consistent
with the DQN baseline. Algorithm-specific hyperparameters for TempoRL, including those unique to its
architecture, are detailed in Table [I§]

43

Under review as submission to TMLR

Table 18: Algorithm Specific Hyperparameters for TempoRL Baseline

Parameter Default Value / Options

total _timesteps Environment specific

learning_ rate [1x1073,1x 1074

buffer_size [10000, 50000]

gamma (7) 0.99 (discount factor)

tau (7) [0.01, 0.005] (target network update rate)

target_ network_ frequency [10, 100] (frequency of applying soft target network update)
batch_size 256

start_e 1.0 (starting epsilon for exploration)

end_e 0.1 (ending epsilon for exploration)

exploration_ fraction [0.1, 0.3, 0.5]

learning_starts 1000 (timestep to start learning)

train_ frequency 2 (frequency of training the Q-network)
activation_ function Leaky ReLU (negative slope 0.1 for hidden layers)
skip_ dim 10 (maximum skip size)

weight_sharing True (whether to share the first 512-unit layer)

L.3 Action Selection and Exploration

TempoRL employs a two-step e-greedy strategy for exploration and action selection:

1. Primitive Action Selection: Given the current state s;, a primitive action a; (e.g., right, left,
up, down) is chosen. With probability €, a; is selected randomly from the set of n__output__actions.
Otherwise (with probability 1 — €), a; = argmax, Q(ss, a’;0), where Q(s,-;6) are the Q-values
produced by the action head of the online network.

2. Skip Duration Selection: Conditioned on the current state s; and the chosen primitive action ag,
a skip duration k; (number of times to repeat a;, from 1 to skip_dim) is selected. With probability
€, k¢ is chosen randomly from {1,...,skip_dim}. Otherwise, k; = argmax, Qskip(St, at, k'; Oskip),
where Qskip(st, @, -3 Oskip) are the Q-values for different skip durations produced by the skip head
(which might use shared parameters if weight_sharing = True).

The selected primitive action a; is then executed in the environment for k; consecutive timesteps. The value
of € is typically linearly annealed from start_e to end_e over exploration_fraction of total timesteps, as
detailed for the DQN baseline (see Section and Table [18)).

L.4 Optimizer

Separate Adam optimizers (torch.optim.Adam) are used for the action Q-network parameters and the
skip Q-network parameters. The learning rate for both optimizers is controlled by the learning rate
hyperparameter (see Table . Gradients for both networks are clipped (grad_clip_val = 40.0).

L.5 Replay Buffers

TempoRL utilizes two distinct replay buffers with capacity buffer_size (see Table to store experiences
for training its action and skip policies:

o Action Replay Buffer: This is a standard replay buffer (ReplayBuffer from Stable Baselines3)
that stores transitions corresponding to individual primitive actions. Each experience tuple is of the
form (s, at, re, St41,dt), where:

— s4: The state at time ¢.

44

Under review as submission to TMLR

— a4: The primitive action taken at time t.

— r¢: The reward received at time ¢ + 1.

— S¢r1: The state at time t + 1.

dy: A boolean flag indicating if sy is a terminal state.

Experiences sampled from this buffer are used to train the action Q-network (the action head).

o Skip Replay Buffer: This is a custom replay buffer (referred to as NoneConcatSkipReplayBuffer
in the implementation) specifically designed to store experiences related to the execution of multi-step

skip actions. Each experience tuple is of the form (s;, kj, sj4x;, Ry, djix;, ké—e", aé’-eh‘“’), representing:

behav
J
— k;: The selected skip duration (i.e., the ’action’ taken by the skip policy).

— 8j1k;: The state reached after the primitive action a?eh‘“’ was executed k'é-e" times.

— R;: The accumulated (and potentially discounted, depending on exact calculation before stor-
age) reward received over the course of the k;e” steps of the skip.

— s;: The state from which the skip action (repeating a) commenced.

— djyk,;: A boolean flag indicating if s;,4, (the state after the skip) is a terminal state.

— kge” (length): The actual number of steps the primitive action a?eh‘” was repeated (this is
equivalent to k;).

— a?e}m“: The underlying primitive action that was chosen to be repeated for ké-e” steps.

Experiences sampled from this buffer are used to train the skip Q-network (the skip head).

L.6 Training Details

TempoRL involves separate training updates for the action Q-network and the skip Q-network, both utilizing
the Huber loss function.

L.6.1 Loss Function and Updates

The network parameters are updated by minimizing the Huber loss (This is implemented via
torch.nn.SmoothL1Loss) for both action and skip predictions.

o Action Q-Network Update: Experiences (s;,a;,7;, Sj+1,d;) are sampled from a standard replay
action

buffer. The target value yj is computed using a Double DQN-style approach:

action

Y; =71 +7(1 — dj)Qrarget (sj+1, arg max Q(sj11,a’;0);07)

where @) is the online action Q-network with parameters 6, and Qqrges is its target network with
parameters ~. The loss is then:

Laction(0) = E(s;.a.r;.5;11.d,)~B [HUberLOSS(y;Ction —Q(s5,a;;0))]

e Skip Q-Network Update: Experiences (sj,a?-eh’“”,kj,Rj,sj+kj,dj+;€j) are sampled from a sepa-

rate replay buffer for skips. Here, a%"* is the primitive action executed, k; is the skip duration
(number of times aé’-e}““’ was repeated), R; is the accumulated discounted reward during these k;

steps, and s, is the state after k; steps. The target value yj-kip is calculated as:

ki] _
YU = Ry + " (1 = djy,)Qrarget (5 4k, T8 max Q(sj4k;,0'30);07)
Note that the future value component Qiarget(Sjtk;,---) uses the main action Q-network and its

target, reflecting the value of the optimal next primitive action after the skip concludes. The
current prediction is Qskip(s;, a;’-eh‘“’, kj; Oskip), where Qgrip has parameters 0z, (which may share
some parameters with 0 if weight_sharing = True). The loss is:

Lskip(eskip) =]E()~Bskip [HuberLoss(yjkip - stip(sja a?ehav’ kj; eskip))]

45

Under review as submission to TMLR

Both loss functions are optimized using their respective Adam optimizers, and gradients are clipped to
prevent large updates.

L.6.2 Target Network Updates

To stabilize training, target networks are employed.

o A target network Qierger (With parameters 67) is maintained for the primary action Q-network Q
(parameters 6). This Qtarger is always updated using Polyak averaging: 6~ < 76 + (1 —7)0.

o If weight_sharing is ‘False‘, the distinct skip Q-network Qsip (parameters 6g,) has its own
separate target network, Qskip target (Parameters G;kip). This Qskip targe: is similarly updated

using Polyak averaging with 6, and GSMP.

o If weight_sharing is ‘True‘, the parameters of the skip mechanism are part of the overall network
structure whose online parameters are § (which includes the shared trunk and potentially specific
skip head layers not part of the action head). In this scenario, a separate Polyak update for a distinct
Qskip_target is not performed; target values for the skip component’s loss are derived using Q:qrget
for estimating future state-action values, as shown in the skip target formula.

The soft update rate 7 and the update frequency target_network_frequency are specified in Table

M Proto Sequence Decoder (PSD) Implementation Details

This section outlines the architecture and configuration of the Proto-Sequence Decoder (PSD) module used
in our model. It describes the decoder network structure, training objectives, latent space regularization,
sequence reconstruction process, and other relevant design choices that enable effective decoding of proto-
sequence embeddings into action-sequence.

M.1 Training Dataset Setup

To ensure that the model learns from meaningful and structured data rather than arbitrary noise, we
constructed the training dataset according to the following constraints:

1. Sequence Length Constraint: All action sequences have lengths between 1 and L,,,4, = 10 steps.
2. Action Diversity Constraint: Each sequence includes at most two distinct action types. For
example, valid sequences include [up,up] or [up,left], whereas a sequence like [up, left, down]| is

considered invalid.

3. Switch Constraint: Each sequence may contain at most one switch between action types.
For instance, [up, left] is allowed, but [up, left,up| is not.

4. Directional Conflict Constraint: Sequences cannot include opposite directions, such as both
up and down, or both left and right.

5. Avoidance of loops.

Following these criteria, we generated a total of 400 unique action sequences. These sequences were
one-hot encoded and padded with EOS tokens to a fixed length of L., to suit VAE input requirements.
These sequences form the basis of the training data for the Proto-Sequence Decoder (PSD).

46

Under review as submission to TMLR

M.2 Model Architecture

The Proto-Sequence Decoder (PSD) is implemented as a Variational Autoencoder (VAE) designed to map
proto-sequence embeddings into action sequences of varying length. It is trained using reconstruction loss
combined with a Kullback-Leibler divergence (KLD) regularization toward a standard Gaussian prior. The
decoder operates on flattened one-hot sequence representations of actions and outputs reconstructed se-
quences over a predefined action vocabulary.

M.2.1 Input Representation

Each action in the sequence is represented as a one-hot vector over a vocabulary of size nyorgs = 5 correspond-
ing to {up, down, right, left, eos_token}. The decoder models sequences of up to input_length = 10
actions, resulting in an input vector of dimension 10 x 5 = 50.

M.2.2 Encoder Network

The encoder receives a flattened 50-dimensional input vector and passes it through a series of fully connected
layers:

1. Linear Layer 1:

o Input size: 50

e Output size: 32

e Normalization: InstanceNormld

o Activation: LeakyReLU (slope 0.2)

2. Linear Layer 2:

o Output size: 16
e Normalization: InstanceNormld
e Activation: LeakyReL.U

3. Linear Layer 3:

e Output size: 16
e Normalization: InstanceNormld
e Activation: Tanh

The output is then projected into two parallel linear layers to produce the latent mean ;i € R'6 and log-
variance logo? € R16. A latent sample z is drawn using the reparameterization trick: z = p + o - €, where

e ~N(0,1).

M.2.3 Decoder Network

The sampled latent vector z € R is decoded through a symmetric feedforward network:

1. Linear Layer 1:

e Output size: 16
e Normalization: InstanceNormld
e Activation: LeakyReL.U

2. Linear Layer 2:

e Output size: 32
e Normalization: InstanceNormld
e Activation: LeakyReLLU

47

Under review as submission to TMLR

3. Linear Layer 3:
x§
o Output size: 50 (reconstructed sequence)
e Normalization: InstanceNormld
o Final Activation: Sigmoid (applied element-wise)

M.3 Training Objective
The PSD is optimized using a combination of:

e Reconstruction Loss: Binary cross-entropy loss between the input sequence and its reconstruction,
normalized by sequence length.

« KL Divergence Loss: Encourages the latent distribution to match a unit Gaussian prior.

All input sequences are EOS-padded to the maximum length of 10 to ensure uniform input dimensionality
across batches.

M.4 Hyperparameters

The training of the Proto-Sequence Decoder (PSD) is governed by a set of fixed hyperparameters, detailed
in Table These parameters control aspects such as optimization, batch processing, and reproducibility.

Table 19: Proto-Sequence Decoder (PSD) Training Hyperparameters

Parameter Value

train_on_entire_dataset True
seed 42
optimizer Adam
optimizer_learning rate 1 X 10~4
optimizer_weight_decay 1x1073
batch_size 32

M.5 Optimizer

The PSD is trained using the Adam optimizer (torch.optim.Adam). The learning rate is controlled by the
learning_rate hyperparameter (see Table .

M.6 Training Details
M.6.1 Loss Function

The Proto-Sequence Decoder (PSD) parameters are updated by minimizing a combined loss:
L= Lrec + LKLa

where:

e Lyec is the label-smoothed binary cross-entropy over the reconstructed sequence:

T
1 X R
Lice = =7 > [yt log i + (1 — y¢) log(1 — yt)},
t=1

with y; replaced by 7; = y:(1 —€) + §, € = 0.1, and T' = 10 is the sequence length.
e Ly, is the Kullback-Leibler divergence between the approximate posterior and a unit Gaussian:
Lxr = Dk (N (i, %) |N(0,1)).

48

Under review as submission to TMLR

M.6.2 Training Procedure
e Maximum Steps: Train for up to 20,000 epochs.

e Batch Composition: Split sequences into

— Short (< 5 actions) and
— Long (> 5 actions),

and sample each batch with a 50/50 ratio of short and long sequences.

M.7 Evaluation

The Proto-Sequence Decoder’s (PSD) performance was assessed on the entire training set using two key
metrics. Evaluations were conducted every 50 epochs, and the checkpoint yielding the highest exact match
accuracy was retained. After 20,000 epochs, the following results were achieved:

o Exact Match Accuracy: This metric measures the proportion of sequences reconstructed with
zero errors. The PSD achieved an Exact Match Accuracy of 0.978.

e Per-Step Accuracy: This metric calculates the fraction of correctly reconstructed actions across
all positions within the sequences. The PSD achieved a Per-Step Accuracy of 0.99.

M.8 Visualization of the Learned Embedding Space

Figure [0 illustrates the two-dimensional t-SNE projection of the learned proto-action-sequence embeddings.
Each point corresponds to one sequence from the dataset, with colors representing the effective sequence
length. As can be seen, sequences with similar structural properties tend to form dense clusters, indicating
that the embedding space preserves meaningful relationships between sequences.

A particularly noteworthy observation is the position of the red star, which represents a previously unseen
sequence not included during training. This sequence is located within the cluster of its closest structural
neighbors, suggesting that the learned representation generalizes effectively to new data. In other words, the
embedding model is able to position novel sequences near the most similar examples from the training set,
supporting its potential for robust retrieval, similarity search, and downstream predictive tasks.

N GPS (Generative Proto Sequence) Implementation Details

This section outlines the architecture and configuration of our GPS (Generative Proto Sequence) method.
GPS is an actor-critic based algorithm where the actor network generates a latent representation, termed
"proto-sequence." This proto-sequence is then processed by a pre-trained generative decoder model (PSD)
to produce a sequence of discrete actions. A critic network evaluates this action sequence to guide learning.
The subsequent subsections detail neural network structures, hyperparameter settings, exploration strategy,
optimization methods, and other relevant training aspects.

N.1 Model Architecture and State Representation

The GPS agent consists of three primary neural network components: an Actor, a Critic, and a pre-trained
Decoder. It processes observations from the environment. For details on the specific state representation,
input shape (e.g., height, width, channels), and preprocessing, please refer to the "State Representation"
within Section 4.3

N.1.1 Convolutional Neural Network (CNN) Part

Both the Actor and Critic networks use separate but identical Convolutional Neural Network (CNN) ar-
chitecture to extract features from the input observation. The CNN component used for initial feature

49

Under review as submission to TMLR

T-SNE 2D representation of entire sequence dataset coloured by sequence length

. .
20 'c... . . .0 .. 'o . .o o
. . e o o °* ° *
.o ¢
P ’.' ° . . . ° o o
.
* ., o o %o L
. LI ® e o & _ o
. e o 0 e e
4 . e * o ¢ . PR e * o
g ° ¢ e ° ot o ...
. . ®
2 . . . ° o « ® o® .
5 -.o ; . : 0. : .. .0 .. . 0. .n .- .
g . ® e e’ e . S, . * o o tet el
& e o ° o ° o e ‘. e . g e o o
=) . o o ¢ e ® o o o« o
g : Bl e o e Action Sequence
S ° ® * o Length
. '. . 2
L . .' : Z
o
o« %o e e 5
°° .
e 6
°* o
o* ° s
.. e 8
o ® e 9
—-30 o ° e 10
-20 -10 0 10 20 30

First Dimension

Figure 6: T-SNE 2-D projection of the proto-action-sequence embedding space. The map contains embed-
dings for the 400 original sequences in the dataset together with one previously unseen sequence
(red star). Points are colored by their effective sequence length, and sequences with similar structure form
tight neighborhoods. The unseen sequence falls naturally inside the cluster of its closest structural neighbors,
showing that the learned representation places new, out-of-training sequences adjacent to the most
similar known examples.

extraction is identical to the one in the DQN baseline. For details on its architecture (number of layers,
channels, kernel sizes, strides, and activations), please refer to Appendix The output of this CNN part
is a flattened 1D vector of size n__flatten.

Note: in our current implementation, the actor and critic networks each have their own separate CNN
state feature extractors. In future work, we plan to explore a shared CNN feature extraction architecture as
implemented in TempoRL, which could potentially improve computational efficiency and state representation
learning.

N.1.2 Actor Network

The Actor network takes the extracted features from the CNN and produces a proto-sequence embedding.

e Input: The flattened feature vector ngeatures from the CNN is concatenated with a positional en-
coding. The embedding dimension of this positional encoding is specified by pe_embedding_dim.

e Architecture: The combined features are processed through a series of fully connected linear
layers, defined by the actor_linear_layers parameter (e.g., [512, 128, 32]). The activation function
for these hidden layers is specified by actor_linear_layers_activation_function which is "leaky relu"
with negative slope 0.1.

e Output: The actor generates a single proto-sequence embedding. This embedding is a vector of
Size actor_n_output_channels and serves as input to the Decoder PSD network.

N.1.3 Position Encoding in Proto-Sequence Generation

To enhance the expressiveness of our action sequence generation, we incorporate positional encoding within
the Actor network. This technique, inspired by transformer architectures (Dosovitskiy et al.l 2020)), helps the

50

Under review as submission to TMLR

Actor generate more contextually aware proto-sequence embeddings by providing explicit spatial information
about the agent and goal positions.

Implementation Details. Our positional encoding implementation combines both row and column infor-
mation for each grid cell in the observation space:

1. We create sinusoidal encodings for both dimensions (height and width) separately:

pe_row[:, 0::2]
pe_row[:, 1::2]

torch.sin(position_row * div_term)
torch.cos(position_row * div_term)

2. These encodings are combined into a unified representation where the first half of each cell’s embed-
ding encodes its row position and the second half encodes its column position.

3. During forward passes, we extract the agent and goal positions from the observation and retrieve
their respective positional encodings:

agent_pe = self.position_encoding[agent_row, agent_col]
goal_pe = self.position_encoding[goal_row, goal_col]

4. These position-specific features are concatenated with the CNN-extracted features before being
processed by the linear layers of the Actor.

Motivation and Benefits. Integrating positional encoding within the Actor network provides several
advantages:

1. Enhanced Spatial Reasoning: By explicitly encoding agent and goal positions, the Actor can
better understand spatial relationships, which is crucial for navigation tasks.

2. Improved Exploration Early in Training: The position encodings enable the generation of more
diverse proto-sequence embeddings in the initial training phases, facilitating better exploration before
the CNN features become well-trained.

3. Direction-Aware Sequence Generation: The relative positions of agent and goal inform the
Actor about the general direction of movement required, allowing it to generate more purposeful
action sequences even with limited experience.

4. Invariance to Visual Feature Quality: Especially early in training when the CNN features may
be unreliable, position encodings provide a stable signal that enables meaningful action sequence
generation.

Our manual investigations and targeted experiments suggest that incorporating position encodings enhances
the model’s capabilities in several ways. We observed that the position-enriched Actor generates proto-
sequence embeddings with greater contextual awareness of spatial relationships, which in turn produces
more diverse and situation-appropriate action sequences. Without position encoding, the proto-sequence
embeddings tended to cluster more closely in the latent space, resulting in less differentiated action patterns.
This difference was particularly evident in larger and more complex maze environments, where the position-
encoded model demonstrated an improved ability to generate directionally coherent sequences that efficiently
navigated toward goals. The positional information appears to provide a structural prior that helps the Actor
formulate meaningful navigation strategies even before the CNN features are fully refined through training.

Quantitative Ablation Study. To provide empirical evidence for the benefits of positional encoding,
we conducted a controlled ablation study comparing GPS with and without positional encoding on two
challenging environments. Table 20] presents the comparative results.

The ablation results provide strong quantitative evidence for positional encoding’s critical importance. GPS
with positional encoding achieves convergence (ASR > 0.9) in 300K-1.5M steps, while the variant without
positional encoding fails to converge after 1.5M steps. Performance gaps are substantial: 44 percentage

o1

Under review as submission to TMLR

Table 20: GPS with vs. without Positional Encoding
ASR at Training Steps ASR Converge

. Positional
Environment Encoding 100K 500K 1M 15M ~0-9Step PER SGF
With 022 096 099 096 300k 0.72 10.8
16x16_obstacles _15% yoor o 015 038 051 0.52 >1.5M 0.62 17.67
With 0.12 045 080 091 1.5M 048 6.34
24x24_obstacles_15% o v 007 042 013 0.13 >1.5M 0.54 16.91

in the 16x16 with 15% obstacles environment (0.96 vs 0.52 final ASR) and 78 percentage in the 24x24
with 15% obstacles environment (0.91 vs 0.13 final ASR). Path efficiency results show mixed patterns,
with positional encoding improving PER by 0.10 in the 16x16 with 15% obstacles environment (0.72 vs
0.62) but showing lower PER in the 24x24 with 15% obstacles environment (0.48 vs 0.54). However, this
apparent PER advantage for the variant without positional encoding is misleading, as its extremely low ASR
(0.13) indicates fundamental task learning failure—it likely only succeeds on the easiest instances, artificially
inflating the path efficiency metric. Both environments show substantial reductions in sequence generation
frequency with positional encoding: 39% reduction in 16x16 (10.8 vs 17.67 SGF) and 63% reduction in
24x24 (6.34 vs 16.91 SGF), indicating more coherent action sequences requiring fewer decision points.

N.1.4 Critic Network

The Critic network estimates the Q-value of a state and a decoded action sequence.

e Input:

— The flattened feature vector ngeatures from the CNN, representing the current state.

— The action sequence generated by the Decoder from the actor’s proto-sequence. The represen-
tation used for this action sequence is ACTION_SEQ_AS_ONE_HOT. Namely, the input is a tensor where
each action in the sequence of length n_actions_in_seq is one-hot encoded. Shorter sequences are
padded to this length using an End-of-Sequence (EOS) token. Each one-hot vector has a dimen-
sion equal to the action_space_size plus one (for the EOS token). Consequently, the total input
dimension for the action sequence part, action_seq_dim, is n_actions_in_seq X (action_space_size
+ 1).

e Architecture: The inputs are processed through a series of fully connected linear layers, de-
fined by critic_linear_layers (e.g., [512, 128, 32]). The activation function is specified by
critic_linear_layers_activation_function which is "leaky_relu" with negative slope 0.1.

e Output: A single scalar Q-value. The output Q-value can be optionally clipped between min_qf _value
and max_qf_value.

N.1.5 Decoder Network

A pre-trained generative model, specifically a Variational Autoencoder, acts as the Decoder (PSD).

e Loading: The Decoder is loaded from a pre-trained model specified by
decoder_model_path.

o Input: The proto-sequence embedding (size actor_n_output_channels) generated by the Actor.

e Output: A sequence of n_actions_in_seq discrete actions. Fach action is selected from a vocabulary
of action_space_size primitive actions plus an end_of_sequence_token token.

52

Under review as submission to TMLR

¢ Generation: The Decoder can use

Gumbel-Softmax for differentiable sampling if

use_gumble_in_decoder is true, or a deterministic argmax with a Straight-Through Estimator

otherwise. See explanation in Section

N.2 Hyperparameters

The GPS method is configured by a wide range of hyperparameters. General experiment settings and
environment-specific configurations are typically managed as detailed for the DQN baseline (see Tables
and . Key algorithm-specific hyperparameters for GPS are listed in Tables

Table 21: Algorithm Specific Hyperparameters for GPS

Parameter

Value / Options / Description

total_timesteps

actor_learning_rate
critic_learning_rate

buffer_size

gamna (7)

tau (7)

batch_size

learning_starts
actor_policy_frequency
actor_target_network_frequency
critic_target_network_frequency
start_e

end_e

total_steps_e
sub_sequences_move_start_point
sub_sequences_move_end_point
sub_sequences_min_jump_move_start_point
sub_sequences_min_jump_move_end_point
every_one_step_transition_to_buffer
actor_n_output_channels
actor_linear_layers

actor_linear_layers_activation_function
actor_weight_decay

pe_embedding_dim

critic_linear_layers

critic_linear_layers_activation_function
critic_weight_decay

decoder_model_path

n_actions_in_seq

action_space_size

end_of_sequence_token
use_gumble_in_decoder

Env. specific

Actor LR (e.g., 1 x 107%).

Critic LR (e.g., 1 x 107%).

[10000, 50000]

Discount factor.

Target net. soft update rate (e.g., 0.005).
Experiences per train step.

Timestep train begins.

Actor net. update freq. rel. to Critic (e.g., 2).
Target Actor net. update freq. (e.g., 10 steps).
Target Critic net. update freq. (e.g., 10 steps).
Initial € for e-greedy (e.g., 1.0).

Final € value (e.g., 0.1).

Timesteps for ¢ annealing (e.g., 15000).
Boolean; varying sub-seq. start points.
Boolean; varying sub-seq. end points.

Min. jump for start-moved sub-seq. gen.

Min. jump for end-moved sub-seq. gen.
Boolean; all single-step trans. stored.
Proto-action-seq. embed dim. (e.g., 16).
Actor MLP hidden layer sizes (e.g., [512, 128,
32]).

Actor MLP activation (e.g., "leaky_relu").
Actor L2 reg. strength (e.g., 1 x 1072).
Positional encoding dim. in Actor (e.g., 16).
Critic MLP hidden layer sizes (e.g., [512, 128,
32]).

Critic MLP activation (e.g., "leaky relu").
Critic L2 reg. strength (e.g., 1 x 1073).

Path to pre-trained VAE Decoder model.
Decoder action seq. length (e.g., 10).

Unique primitive actions in env. (e.g., 4).
Decoder integer token for end of seq. (e.g., 4).
Boolean; Decoder uses Gumbel-Softmax.

N.3 Reward Function and Empty Sequence Handling

The GPS agent utilizes a structured reward function designed to encourage efficient navigation while penal-
izing inefficient or invalid behaviors. The reward function is defined as:

R= Tgoal — X Nyalid —
lmax

X Ninvalid
lmax

53

Under review as submission to TMLR

Table 22: GPS Hyperparameters Settings

Parameter

Value

total_timesteps

buffer_size

gamma

tau

batch_size

start_e

end_e

learning_starts

actor_learning_rate
critic_learning_rate
actor_policy_frequency
sub_sequences_move_start_point
sub_sequences_move_end_point
sub_sequences_min_jump_move_start_point
sub_sequences_min_jump_move_end_point
every_one_step_transition_to_buffer
actor_target_network_frequency
critic_target_network_frequency
total_steps_e

actor_n_output_channels
actor_linear_layers
actor_linear_layers_activation_function
actor_weight_decay

pe_embedding_dim

critic_linear_layers
critic_linear_layers_activation_function
critic_weight_decay

max_level

start_level

use_gumble_in_decoder

Environment specific

[10000, 50000]

0.99

[0.01, 0.005]

256

1

0.1

1000

[1e-3, 1le-4, 1le-5]

le-04

2

TRUE

TRUE

1

1

TRUE

[10, 100]

10

15000

16

["512, 32", "512, 128, 32"]
leaky_relu (negative slope 0.1)
le-04

128

[512, 128, 32]

leaky_relu (negative slope 0.1)
le-04

Environment specific
Environment specific

TRUE

where rg0q1 is 1 if the agent reached the goal (0 otherwise), liax is the maximal start-goal distance acting as
a regularizer, nyajq is the number of valid actions taken, and nipyaiq is the number of invalid actions (e.g.,
bumping into a wall).

To handle cases during training where the actor generates proto-sequences that are decoded as empty se-
quences (i.e., where the PSD outputs the EOS token as the first action), we apply a harsh penalty of -20.
For these instances, we also hard-code the action to be 1 (DOWN) to ensure the agent always takes some
action. This direct negative reinforcement was found to be highly effective in guiding the actor to produce
valid proto-sequence embeddings that decode into meaningful action sequences. Without this penalty, the
actor might frequently produce embeddings that map to empty, significantly hampering exploration and
learning progress. This approach provides a clear signal to the actor network about the importance of gen-
erating proto-sequences that translate to substantive action sequences, accelerating the learning process and
improving the overall stability of training. Empirically, we observed that this simple yet effective mechanism
substantially reduced the occurrence of empty sequences.

N.4 Action Selection and Exploration

At each decision step, the Actor network generates a proto-sequence embedding. The Decoder then translates
this embedding into a corresponding action-sequence of primitive actions. The agent employs an e-greedy
exploration strategy:

o4

Under review as submission to TMLR

o With probability €; (where ¢; anneals from start_e to end_e over total_steps_e steps): An exploratory
action sequence is selected. This sequence is typically chosen randomly from a pre-defined set of
valid action sequences see Section for more details.

o With probability 1—¢; (exploitation): The action sequence generated by the Actor-Decoder pipeline
is used for execution.

The value of ¢; is linearly annealed:
€; = max (endie, start_e — (start_e — end__e) - (current_step/ totalistepsie)>
The chosen action sequence is subsequently trimmed using the end_of_sequence_token before execution.

N.5 Optimizer

The Actor and Critic networks are trained using separate Adam optimizers (torch.optim.Adam).

e The Actor’s optimizer is configured with a learning rate of actor_learning_rate and applies L2 weight
decay with a coefficient of actor_weight_decay.

e The Critic’s optimizer uses a learning rate of critic_learning_rate and L2 weight decay with a coef-
ficient of critic_weight_decay.

N.6 Replay Buffer

A replay buffer (ReplayMemory) with a capacity of butfer_size stores past experiences. Each stored transition
typically includes: the current state observation (s;), the next state observation (s¢11), the selected action se-
quence (act_seq,), the received reward (r;), a terminal flag (d;), and the actor’s proto-action-sequence embed-
ding that generated act_seq, (emb;). The system may also store sub-sequences derived from executed plans
if parameters such as push_every_one_step_transition_to_buffer, push_sub_sequences_to_buffer_move_start_point,
and push_sub_sequences_to_buffer_move_end_point are enabled, potentially enriching the diversity of experiences
in the buffer.

N.7 Training Details

Network training commences after learning starts timesteps have been collected. Updates are performed
using batches of batch_size experiences sampled from the replay buffer.

N.7.1 Critic Network Update
The Critic network parameters (6¢) are updated by minimizing the Mean Squared Error (MSE) loss:
L(QC) =]E(s,actiseq,r,s’A,d,emb)NB [(Q(S, emb7 act__seq; 6C> - yt)Q]

The target Q-value y; is computed using the target Actor (target_actor_network) and target Critic
(target_critic_network) networks to ensure stability:

ye =7+ v(1 — d)Qrarges (5, Actoriarget (), Decoder(Actoriarget (s')); 0
where Actorarget (') is the proto-sequence embedding from the target actor for state s’, Decoder(-) converts

it to an action sequence, and 0, are the parameters of the target critic. The Q-values from the target critic
can be clipped using min_qf_value and max_qf_value.

95

Under review as submission to TMLR

N.7.2 Actor Network Update

The Actor network parameters (f4) are updated with a frequency of actor_policy_frequency (delayed policy
update). The goal is to adjust the actor’s parameters to produce a proto-sequence that leads to a higher Q-
value as estimated by the current Critic. For a sampled batch of states, the Actor generates a proto-sequence
embedding. This is decoded into an action sequence, which is then evaluated by the online Critic network
Q(+;0¢). The actor loss is designed to maximize this Q-value:

L(04) = —Eso5[Q(s, Actor(s), Decoder(Actor(s)); ¢)]

N.7.3 Target Network Updates

Separate target networks are maintained for both the Actor (Actory,,ge; With parameters §7) and the Critic
(Qtarget With parameters). Their parameters are updated using Polyak averaging with the parameters of
their corresponding online networks (64, 6¢):

0" 710+ (1—1)0"

The soft update rate is 7. Target network updates for the Actor occur every actor_target_network_frequency
steps, and for the Critic every critic_target_network_frequency Steps.

N.7.4 Training Procedure Summary

e Initialization: Networks and target networks are initialized. Replay buffer is empty.

o Data Collection: Agent interacts with the environment using the action selection strategy (Section
IN.4)), storing experiences (s:, St+1,act_seq,, rt, d, emb;) in the replay buffer.

o Learning Phase (after learning_starts steps):

1. Sample a batch_size of experiences from the replay buffer.

2. Update Critic network parameters by minimizing the MSE loss with the computed TD targets.

3. Periodically (every actor_policy_frequency steps), update Actor network parameters to maximize
the Q-value of the generated sequence as estimated by the Critic.

4. Periodically (CVCI‘y actor_target_network_frequency and critic_target_network_frequency Steps re-
spectively), update target Actor and target Critic networks using Polyak averaging.

N.8 Evaluation

The performance of the GPS agent is assessed periodically during training and/or at the end of the training
process.

e Frequency: Evaluations on validation datasets typically occur every val_eval_freq steps, and on
subsets of the training data every train_eval_freq steps. Less frequent evaluations may occur on a
dedicated test dataset (e.g., every eval_test_dataset_training_freq steps) or at the end of training.

e Method: During evaluation, the actor generates a proto-sequence, the decoder converts it to an
action sequence, and this sequence is executed. The Decoder may operate in a deterministic mode

(deterministic_inference = True) .

e Metrics: Standard reinforcement learning metrics are logged, such as mean episodic return and
success rate. Additional metrics might include the average number of decoder generations per
episode or properties of the generated action sequences.

o Model Saving: If save_model is enabled, the best performing models (actor and critic) are saved
based on criteria defined by save_model_strategy (e.g., best success rate or mean reward on the vali-
dation set).

56

Under review as submission to TMLR

O Maze Evaluation Environments Benchmark

In our research, our evaluation environments consist of procedurally generated mazes with varying structures
and complexity. We utilized synthetic maze environments created using Large Language Models (LLMs)
to ensure unbiased benchmark construction. The following details our approach to maze generation for the
different environment types used in our experiments.

0.1 Synthetic Maze Generation Process

We generated our maze environments using LLM. For each maze type (rooms, obstacles, and corridors), we
provided specific prompts instructing the LLM to generate Python code that would create the maze envi-
ronments according to our requirements. Importantly, all maze generation was performed programmatically
without manual intervention, ensuring reproducibility and eliminating human bias. We specifically used the
OpenAl o3-mini model for code generation, which was instructed to create five different variants for each
maze type. To avoid experimenter bias in seed selection, we also employed an LLM to generate code for
choosing random seeds:

import hashlib

def get_consistent_seed():

nnn

Selects a seed number from a list consistently across multiple runs.
Returns:

int: The selected seed number.

seed_list = [42, 1234, 9999, 2024, 2025]

Create a hash of the function name to ensure consistency
hash_object = hashlib.sha256(b’get_consistent_seed’)
hash_value = int(hash_object.hexdigest(), 16)

Use the hash value to select a seed from the list
seed_index = hash_value % len(seed_list)
return seed_list[seed_index]

Get the consistent seed
seed = get_consistent_seed()
print(f"Selected seed: {seed}")

The code generated by the LLM for each maze type is available in our code repository. This approach
ensured that the maze generation process was fully automated and free from experimenter bias, providing a
consistent and fair benchmark for evaluating our GPS algorithm against the baselines.

0.2 Maze Type Generation Prompts

For each maze type, we provided detailed prompts to the LLM to guide the generation process:

0.2.1 Obstacles Maze Prompt

Maze Generation with 15% Obstacles

Write a Python script that programmatically generates five distinct 16 x 16 mazes with randomly
placed obstacles. The grid follows these rules:

Grid & Output Format:

e The maze is a 16 x 16 grid.

o7

Under review as submission to TMLR

o Each cell is either open space (0) or a wall/obstacle (1).

o The outermost border (first and last rows and columns) must remain walls (1).

15% of the inner cells (excluding the border) should be randomly chosen as obstacles
(1), while the remaining are open spaces (0).

e The final maze should be output as a Python dictionary:

{
‘maze’: [
"1111111111111111", # Top row (wall frame)
D 1", # Use O for open spaces;
dots are placeholders here.
"1111111111111111" # Bottom row (wall frame)
]
}

Replace the dots with appropriate Os (open spaces) and 1s (walls/obstacles).
Maze Generation Method: Initialize the Maze:

o Create a 16 x 16 grid where every cell is an open space (0).

o The outer border (first and last rows/columns) must always remain walls (1).

o The inner 14 x 14 area (excluding the border) will contain open spaces (0) and obstacles

(1).

Randomly Place Obstacles:

o 15% of the inner 14 x 14 cells should be converted into obstacles (1).

e The placement of these obstacles should be random.

e Ensure that at least one path remains between any two open spaces for potential connectivity.
Generate Five Distinct Mazes:

o Use different random seeds to create five unique mazes.

o Ensure that each maze has exactly 15% obstacles inside the inner area.

0.2.2 Rooms Maze Prompt

You are a maze designer responsible for enhancing a predefined base maze structure for a navigation
simulation. Your task is to decide where entrances should be located while ensuring the maze meets
the following requirements:

Maze Design Requirements Base Maze Structure:

e The maze is predefined and consists of a 16 x 16 grid.

e The base structure must remain intact, but you will determine the placement of the entrances
and ensure connectivity between all rooms and open spaces.

Entrance and Room Connectivity:

o The maze is divided into four equal-sized quadrants (rooms) separated by walls.

o8

Under review as submission to TMLR

{

e Fach room must have only two entrances of size 1. Use a seeded random choice for
entrance placement.

e Entrances should be placed strategically to ensure the maze is fully connected, meaning
an agent can navigate between any two open cells (0) using up, down, left, or right
movements.

e Passageways between rooms must be narrow and preserve the integrity of the maze’s chal-
lenge.

Obstacle Coverage:

o Obstacles (1) must make up 5% of the total grid (= 13 cells).
e Don’t consider the obstacles that are part of the maze’s frame.

o Obstacles may be added or removed within constraints to maintain connectivity and align-
ment with the entrance placement.

e Don’t place obstacles in nearby squares close to any entrance. Make sure that an obstacle
doesn’t block any entrance.

e Use a seeded random choice for obstacles placement.

Reproducibility:

e Use a specific random seed to ensure the design is reproducible.

Output Format:

¢ Generate code for creating the maze.

o Generate the maze as a Python dictionary with a key (e.g., 'maze’) and represent each row
as a binary string.

e Output 5 mazes using different seeds and make sure that obstacles don’t block entrances.

Base Maze Layout: The base structure is as follows:

’base_maze’: [

"1111111111111111”",
"1000000100000001",
"1000000100000001",
""1000000100000001",
""1000000100000001",
""1000000100000001",
"1000000100000001",
"1111111111111111”",
"1000000100000001",
""1000000100000001",
""1000000100000001",
"1000000100000001",
""1000000100000001",
""1000000100000001",
""1000000100000001",
"1111111111111111

99

Under review as submission to TMLR

Design Task: Modify the maze by:
e Placing entrances in the walls separating the quadrants.

o The logic should be based on seed for determining the entrances position and obstacles posi-
tions.

e Ensuring the maze is fully connected.

o Making any minor adjustments to obstacles (1) to meet connectivity and percentage require-
ments.

e Verify by code that each room must have only two entrances of size 1.
e Verify by code that each obstacle doesn’t block any entrance.

Output the modified maze as a Python dictionary with the format below:

{

‘maze’: [
"updated_row_1",
"updated_row_2",
"updated_row_16"

]

}

General Steps:
e Choose two entrances for each room by selecting a random square on each wall.

o Randomly select a room and place obstacles within it until the obstacle budget is reached.

0.2.3 Corridors Maze Prompt

Write a Python script that programmatically generates five distinct 16 x 16 mazes. In each maze,
start with a grid completely filled with wall cells (represented by 1), then carve out corridors by
selecting one or more vertical lines and one or more horizontal lines to convert wall cells to open cells
(represented by 0). The corridors will be 1-cell-wide, and they must intersect so that every open cell
is reachable from any other via up, down, left, and right moves. The outer border of the maze should
always remain as walls.

Grid & Output Format:

e The maze is a 16 x 16 grid.
o Each cell is either open (0) or a wall (1).
o The outermost border (first and last rows and columns) must remain walls.
e The final maze should be output as a Python dictionary:
‘maze’: [
"1111111111111111", # Top row (wall frame)

e 1", # Use O for open spaces;
dots are placeholders here.

"1111111111111111" # Bottom row (wall frame)

60

Under review as submission to TMLR

3

Replace the dots with the appropriate Os and 1s as per the carved corridors.
Corridor Carving Method: Initialize the Maze:

o Create a 16 x 16 grid where every cell is a wall (1), with the outer border fixed as walls.
Select Corridor Lines:

o Vertical Corridors: Choose 2 up to 4 vertical columns (not including the outer borders)
that will serve as corridors.

e Restriction: Ensure that no consecutive vertical columns are selected—there must be at
least one wall column between any two chosen corridor columns.

o Horizontal Corridors: Choose 2 up to 4 horizontal rows (again, not including the outer
borders) that will serve as corridors.

¢ Restriction: Ensure that no consecutive horizontal rows are selected—there must be at least
one wall row between any two chosen corridor rows.

e These lines will form a network of corridors that cross each other.
Carve the Corridors:

o For each selected vertical column, change all cells in that column (except the outer border)
from 1 (wall) to 0 (open space).

o Similarly, for each selected horizontal row, change all cells in that row (except the outer
border) from 1 to 0.

o The intersections of these corridors (where a selected vertical column crosses a selected hori-
zontal row) will naturally be open, ensuring connectivity.

Ensure Full Connectivity:

e The chosen vertical and horizontal corridors should intersect, guaranteeing that every open
cell (in the corridors) is reachable from any other open cell.

e Optionally, you can add additional corridor “branches” (by clearing cells adjacent to the
main corridors) to create a more interesting maze layout, as long as all open cells remain
interconnected.

Randomness:

o Generate five distinct mazes by using different random seeds and varying the selected vertical
and horizontal corridor positions.

61

	Introduction
	Related Work
	Temporal Abstraction Through Action Repetition
	Multi-Step Action Sequence Generation
	Temporal Abstraction Using Hierarchies and LLMs

	Method
	The Actor
	The Proto-Sequence Decoder
	The Critic
	Training Set Augmentation Using Sequence Subsets and Inference

	Experiments and Results
	Evaluation Environment
	Baselines & Evaluated Methods
	Experimental Setup
	Evaluation Results
	Evaluating the Average Success Rate (ASR).
	Evaluating the Path Efficiency Ratio (PER).
	Evaluating Sequence Generation Frequency (SGF).

	Analysis and Discussion
	Analyzing GPS's Ability to Generate Novel Sequences
	Sequence Subsets Augmentation
	Performance Under Stochastic Dynamics
	Performance Under Partial Observability
	Impact of Actor Network Scaling
	Computational Complexity and Runtime

	Conclusions, Limitations, and Future Work
	Analysis of Reward Strategy Impact on ASR
	Evaluating the Average Success Rate (ASR) With Larger Train dataset
	Evaluation on Stochastic Environments
	Sticky Actions Results
	Random Actions Results
	Summary

	Evaluation on Partial Observability Environments
	Self-Correction Analysis
	Methodology
	Deviation Detection
	Correction Sequence Classification

	Results
	Analysis and Discussion

	Computational Cost Analysis
	Comparison: Pre-trained Decoder vs. End-to-End Training
	Experimental Setup
	Results and Analysis
	Performance Parity in Success Rate and Convergence
	Path Efficiency vs. Temporal Abstraction Trade-off

	Decoder Transferability Across Tasks
	Conclusion

	ASR Statistical Significance Testing
	Baselines and Architecture
	DQN Baseline Implementation Details
	Model Architecture (QNetwork)
	Convolutional Neural Network (CNN) Part
	Linear Part

	Hyperparameters
	Epsilon-Greedy Exploration
	Optimizer
	Replay Buffer
	Training Details
	Evaluation

	DAR Baseline Implementation Details
	Model Architecture
	Convolutional Neural Network (CNN) Part
	Linear Part

	Hyperparameters
	Algorithm Specific Arguments

	Training Details

	TempoRL Baseline Implementation Details
	Model Architecture
	Convolutional Neural Network (CNN) Part
	Linear Heads for Action and Skip Policies

	Hyperparameters
	Action Selection and Exploration
	Optimizer
	Replay Buffers
	Training Details
	Loss Function and Updates
	Target Network Updates

	Proto Sequence Decoder (PSD) Implementation Details
	Training Dataset Setup
	Model Architecture
	Input Representation
	Encoder Network
	Decoder Network

	Training Objective
	Hyperparameters
	Optimizer
	Training Details
	Loss Function
	Training Procedure

	Evaluation
	Visualization of the Learned Embedding Space

	GPS (Generative Proto Sequence) Implementation Details
	Model Architecture and State Representation
	Convolutional Neural Network (CNN) Part
	Actor Network
	Position Encoding in Proto-Sequence Generation
	Critic Network
	Decoder Network

	Hyperparameters
	Reward Function and Empty Sequence Handling
	Action Selection and Exploration
	Optimizer
	Replay Buffer
	Training Details
	Critic Network Update
	Actor Network Update
	Target Network Updates
	Training Procedure Summary

	Evaluation

	Maze Evaluation Environments Benchmark
	Synthetic Maze Generation Process
	Maze Type Generation Prompts
	Obstacles Maze Prompt
	Rooms Maze Prompt
	Corridors Maze Prompt

