Under review as submission to TMLR

Generative Proto-Sequence: Sequence-Level Decision Mak-
ing for Long-Horizon Reinforcement Learning

Anonymous authors
Paper under double-blind review

Abstract

Deep reinforcement learning (DRL) methods often face challenges in environments char-
acterized by large state spaces, long action horizons, and sparse rewards, where effective
exploration and credit assignment are critical. We introduce Generative Proto-Sequence
(GPS), a novel generative DRL approach that produces variable-length discrete action se-
quences. By generating entire action sequences in a single decision rather than selecting
individual actions at each timestep, GPS reduces the temporal decision bottleneck that
impedes learning in long-horizon tasks. This sequence-level abstraction provides three key
advantages: (1) it facilitates more effective credit assignment by directly connecting state
observations with the outcomes of complete behavioral patterns; (2) by committing to co-
herent multi-step strategies, our approach facilitates better exploration of the state space;
and (3) it promotes better generalization by learning macro-behaviors that transfer across
similar situations rather than memorizing state-specific responses. Extensive evaluations
on mazes of varying sizes and complexities demonstrate that GPS consistently outperforms
leading action repetition and temporal methods, where it converges faster and achieves
higher success rates across all environments.

1 Introduction

Deep reinforcement learning (DRL) has demonstrated impressive performance across diverse applications
(Mnih et all, 2015; [Silver et al.l [2016; Levine et al., [2016). However, significant challenges remain when
dealing with environments characterized by large state spaces, long-range tasks, and sparse rewards. In such
contexts, traditional DRL methods that select actions sequentially often suffer from inefficient exploration
and poor credit assignment (Mesnard et al.| 2020; Raileanu & Rocktaschel, |2020; [Ecoffet et al.| 2021)), leading
to difficulties in learning effective policies for tasks that require coordinated, multi-step strategies. These
challenges are further exacerbated by sparse reward signals, whose limited feedback hinders the agent’s
ability to discover and reinforce successful behaviors (Arjona-Medina et al., [2019; [Hung et al.l 2019)).

Recent research efforts have attempted to address these challenges using diverse techniques such as hierar-
chical DRL (Kulkarni et al., [2016; [Xu et al. |2022)), temporal abstraction (Biedenkapp et al. 2021} |Zhang
et al} [2022b} |[Saanum et al., |2023} |[Patel & Siegelmann, 2024)), sequence modeling (Chen et al.l [2021} |Janner
et al., 2021} |Giladi & Katzl [2023), and action repetition strategies (Srinivas et al., |2017; Sharma et al.| [2017}
Dabney et al.,|2020)). By creating sub-tasks or capturing higher-level behavioral patterns (Rosete-Beas et al.,
2023} [Vezzani et al.| |2022;|Wang et al.,|2023), these techniques aim to reduce decision frequency and enhance
learning efficiency in long-horizon tasks. Although these methods offer promising results, they often require
careful sub-task design (Ajay et al., 2023), reward shaping (Liu et al., |[2022)), or complex training procedures
(Seo & Abbeel 2024b; |[Rosete-Beas et al.,|2023). While there are temporal abstraction methods that generate
multi-step action sequences, they often depend on iterative rollouts, autoregressive decoding, or model-based
simulations. These solutions introduce computational overhead and restrict the ability to efficiently generate
diverse action sequences. To our knowledge, no method supports the generation of coherent, variable-length
action sequences directly from state observations in a single decision step.

Under review as submission to TMLR

In this study, we propose Generative Proto-Sequence (GPS), a novel actor-critic architecture capable of
producing variable-length action sequences. Instead of actions, our Actor generates a proto-sequence em-
bedding, which is then decoded into a discrete action sequence using a Decoder component. The Critic
evaluates the state and the entire generated sequence jointly, with gradients flowing from the critic through
the Decoder to the Actor, facilitating end-to-end learning of strategic, multi-step action sequences. This de-
sign enables the agent to generate and execute complex exploratory behaviors in a single decision, enhancing
both generalization and long-horizon credit assignment.

We evaluated GPS on a large set of challenging maze environments with varying sizes and configurations,
including rooms, corridors, and randomly generated obstacles. Our results demonstrate that GPS consis-
tently learns more efficiently, generalizes better to novel maze layouts, and significantly outperforms leading
baselines in terms of success rate and convergence speed, particularly in large and complex mazes. Our
contributions are as follows:

o We introduce a novel architecture that enables end-to-end generation and evaluation of variable-length
discrete action sequences, facilitating improved credit assignment and exploration.

e We demonstrate that producing multi-step action sequences in a single shot leads to superior general-
ization and faster convergence, particularly in large and complex environments.

o We provide extensive empirical results on challenging maze benchmarks, showing significant improve-
ments over top-performing action repetition and temporal methods baselines in metrics such as con-
vergence speed and success rate.

2 Related Work

2.1 Temporal Abstraction Through Action Repetition

Early works in temporal abstraction explored repeating single primitive actions to extend decision horizons.
Recent research in DRL has produced various approaches for performing multiple actions as a single block.
Earlier works (Srinivas et al., |2017; |[Sharma et al.; |2017)) introduced frameworks for dynamic action selection
and repetition, though their repetition policies operated independently from chosen actions, limiting strategic
development.

DAR (Srinivas et al., [2017)) augments discrete action spaces by duplicating each base action with multiple
repetition rates. While this expansion can improve learning in environments benefiting from temporal
abstraction, it produces an inefficient representation—duplicated actions are treated as unrelated, preventing
the agent from exploiting their shared underlying behavior and leading to slower learning and imbalanced
trade-offs between coarse and fine control. FiGAR (Sharma et al.,2017)) addresses this by decoupling behavior
and repetition into two jointly trained policies; however, the repetition policy operates independently from
the chosen action, limiting the development of nuanced, action-specific repetition strategies.

The authors of (Dabney et al.,2020|) proposed an exploration strategy repeating actions for random durations
to reduce inefficient dithering. Temporl (Biedenkapp et al. 2021) advanced this by enabling agents to
determine both action and repetition duration, improving learning efficiency. However, its hierarchical
structure artificially decouples action selection from duration determination. Despite showing promise, these
studies share a limitation: temporal abstraction is achieved solely through simple repetition of primitive
actions, without generating coherent, variable-length action sequences.

2.2 Multi-Step Action Sequence Generation

Beyond single-action repetition, several methods focus on generating and partially committing to multi-step
action sequences. The authors of (Zhang et all [2022a) introduced a generative planning method (GPM)
that produces multi-step plans. Since GPM is trained by maximizing value, the plans generated from it can
be regarded as intentional action sequences to reach high-value states and improve sample efficiency. PrAC
(Coad et al.l [2022) enables agents to generate n-step plans and commit to them while being predictable,
balancing adaptability and control stability. The work of (Saanum et al., [2023) incentivizes compressible

Under review as submission to TMLR

action sequences by integrating sequence priors, while (Patel & Siegelmann, 2024) introduced a model-based
sequence RL framework (SRL) reducing decision frequency through action chunking.

Despite recent progress, most existing methods for generating multi-step action sequences still face major
limitations. Many rely on heavy processes such as iterative rollouts, autoregressive decoding, or model-based
simulation, which can be slow and inflexible (Li et al., |2024; [Li, 2023} [Zhang et al.;, |2025). For example,
methods like PrAC and SRL use learned environment models for both planning and training, adding extra
model-based complexity (Kumar et al., 2024} |Luo et al., 2024). To stay adaptable, some approaches also
use external switching mechanisms or mid-sequence re-planning, as seen in GPM and PrAC. This treats
long-term planning as an add-on to a step-by-step framework rather than as a core design principle. As
a result, sequence generation and evaluation are often optimized separately, which can lead to poor credit
assignment (Dai et al., |2018)). One case is the use of handcrafted regularization, such as rewarding shorter
or more “compressible” sequences (Saanum et al.| 2023|). However, when objectives are split in this way, it
becomes unclear whether failures come from a bad plan or from breaking the secondary constraint, making
end-to-end training harder and reducing stability during execution.

2.3 Temporal Abstraction Using Hierarchies and LLMs

Hierarchical methods have advanced multi-action decision-making through skill discovery and sequencing.
TACO-RL (Rosete-Beas et al. |2023)) learns latent skills from unstructured data for long-horizon tasks.
ASPiRe (Xu et al 2022) accelerated RL by combining specialized skill priors. The work of (Vezzani et al.,
2022) introduced a skill scheduler sequencing pretrained skills, while SHRL (Wang et al., |2023)) combined
high-level policies with low-level skills for visual navigation. These approaches improve temporal abstraction
by leveraging reusable skills rather than primitive actions.

Recent works have leveraged large language models and value-based reinforcement learning methods with
action discretization for action sequence generation. CQN-AS (Seo & Abbeell 2024a) proposed a value-
based algorithm learning precise value functions from noisy action sequences. AlphaMaze (Dao & Vul 2025))
improved LLMs’ spatial reasoning by combining supervised fine-tuning with policy optimization.

Our work draws inspiration from (Dulac-Arnold et all [2015), who generated embedding representations
of proto-sequences mapped to discrete actions. In GPS, we propose key improvements: our approach is
fully differentiable and trainable end-to-end, unlike (Dulac-Arnold et al., 2015) whose k-nearest neighbors
mapping broke the computation graph. Additionally, by using a VAE-based decoder instead of clustering,
we automatically create sequence representations without manual embedding design. This enables efficient
generation of coherent, variable-length action sequences that extend beyond simple repetition or skill se-
quencing.

3 Method

Overview. Our proposed approach is presented in Figure GPS consists of three components: Actor,
Proto-Sequence Decoder (PSD), and Critic. The Actor receives the current state as input, and produces a
proto-sequence — an embedding-based representation of a sequence of actions. The PSD receives the proto-
sequence as input, and translates it into a discrete set of actions (e.g., at, Gyy1, ..., ar+1), which are then
executed sequentially by the agent. Finally, our Critic receives the sequence and predicts the expected
cumulative reward obtained from its execution.

GPS differs from previous studies in several important aspects. First, unlike previous studies (Dulac-Arnold
et al., [2015), it is end-to-end differentiable and does not require training workarounds. Secondly, our VAE
decoder produces more diverse and flexible action sequences than autoregressive or model-based approaches,
and also does so in an efficient, one-shot manner. Thirdly, sequence generation and evaluation are learned
jointly, without regularization or switching mechanisms, thus improving credit assignment. Finally, by
committing to the entire sequence (unlike the frequent re-evaluation of (Zhang et al.) [2022a))) we reduce
execution overhead and increase behavioral predictability by forcing GPS to learn robust policies.

Under review as submission to TMLR

| Proto-Sequence Decoder L'
[
Actor Critic
Proto - ‘ Agsq ()
.Q A = ,OR. =) | surer
i Action . Action
Environment Sequence B Ay, Sequence S;?::I:ge
(1) @)
T Action Sequence Execution @ |
Inference
Training

Figure 1: The three components of our proposed approach: (1) The Actor encodes the current state to
produce a proto-sequence embedding. (2) The Decoder translates this latent embedding into a variable-
length discrete action sequence. (3) The Critic evaluates the state-action-sequence pair and assigns it a
Q-value representing the expected cumulative reward (3). During inference, only the actor and decoder
components are used.

Another important aspect of our proposed approach is its ability to generate action sequences that differ
from those on which it was trained. By creating novel sequences, GPS does not simply “memorize” a fixed
set of actions, but is able to generalize to larger action spaces. We elaborate on GPS’s capacity to produce
novel sequences in Section

3.1 The Actor

The Actor serves as GPS’s policy network. Given a state s;, the Actor analyzes the input and outputs a
proto-sequence embedding k = g~ (s;), where ™ and 7 are the parameters of the Actor’s neural network
and the current policy, respectively. The proto-sequence, represented in the embedding space k € K, is the
latent embedding of a sequence of actions, rather than a directly executable action. This representation
provides our Actor with significant flexibility, as it can create action sequences of varying length using a
fixed-size representation.

The proto-sequence is next used by the PSD to produce a discrete sequence of actions, and this sequence is
evaluated by the Critic (Section. The parameters 6™ of the Actor are then updated using an actor-critic
approach analogous to the Deep Deterministic Policy Gradient (DDPG) algorithm (Lillicrap et al., 2016),
leveraging the learning signal provided by the Critic. Specifically, the actor’s parameters 0™ are adjusted
to produce proto-sequence embeddings k that maximize the expected cumulative reward estimated by the
critic, Qg (st,a). This optimization is achieved by updating #™ to minimize the negative Q-value provided
by the critic —Qga (¢, ggw (T~ (s¢))), using backpropagated gradients from the output of the critic network
Qpe. These gradients pass through the decoder network gy~ and subsequently through the actor network
e~ , enabling the update of the latter’s parameters 7.

3.2 The Proto-Sequence Decoder

The goal of the PSD is to translate the latent proto-sequence k generated by the Actor into a sequence of
executable actions in the original action space {at, a¢41,...,at+1} € A. We define the PSD as a function
gow : K — A''maz parameterized by 6%, where A’ extends A with an EOS token to handle variable-length
sequences within a fixed-length format, padding shorter sequences as needed. This function maps from the
latent proto-sequence space K to sequences of fixed length 4.

We use a Variational Autoencoder (VAE) (Kingma & Welling), 2013) as our PSD. We train the architecture
on a diverse set of synthetic action sequences of varying lengths. For detailed information on the generation

Under review as submission to TMLR

process of these sequences, see Appendix After training, we discard the VAE’s encoder and retain only
the learned decoder network gg.. The decoder is integrated into our agent architecture, transforming the
Actor’s latent proto-sequence embeddings into sequences of discrete actions. GPS will then execute the full
sequence, without changes or early stopping. We chose VAE for its efficiency, ability to generate complete
sequences in a single step, and its structured latent space that enables smooth interpolation and principled
probabilistic modeling.

We pre-train the PSD and keep its parameters fixed while jointly training the actor and critic. This modular
setup preserves generalization, improves efficiency by avoiding decoder retraining, and allows the decoder to
be transferred across environments with the same action space. Furthermore, it separates sequence structure
learning from environment-specific policy optimization.

3.3 The Critic

The goal of our Critic is similar to the role of the critic in an actor-critic architecture. The Critic receives the
current state s; and the one-hot encoded discrete actions sequence A = (a¢, Gyy1, ..., ar+r) produced by the
PSD. It then attempts to predict Qge (s¢, A), which represents the cumulative discounted reward obtained
by executing A and following the policy after the end of the sequence:
-1
Qoa(st, A) ~ B p | Y AFropn +7" V7 (s141)
k=0

where V7™ is the value function under policy 7, #% are the Critic’s parameters, and L = eff _len(A) denotes
the effective length of the action sequence A.

The Critic’s parameters ¢ are updated by minimizing the Mean Squared Error (MSE) loss against a
Temporal Difference (TD) target y;:

L(GQ) = E(st,A,rcwards,snext) [(Q(St7 A; OQ) - yt)Q]

The target y; is constructed from the sum of discounted rewards R;(A) obtained by executing sequence A,
and the discounted value of the subsequent state s;;1,, estimated using target Actor (Actoriarget) and target
Critic (Qtarges) networks:

Y = Ri(A) + ’YLQtarget(SHL» PSD(Actoriarget (St41)); 097)

This update mechanism, which relies on TD errors and target networks, is characteristic of many actor-critic
algorithms, and shares similarities with methods such as DDPG (Lillicrap et al., 2016). While the Critic
learns to accurately predict Q (s, A; %), the Actor is trained to produce proto-sequences that, when decoded
by the PSD, maximize this predicted Q-value.

3.4 Training Set Augmentation Using Sequence Subsets and Inference

To enhance learning efficiency and improve credit assignment, our training procedure leverages reward in-
formation from subsequences of each executed action sequence. For each sequence A = (a¢,...,a141)
of length L, we extract transitions corresponding to multiple contiguous subsequences (a;,...,a;) where
t < i< j < t+ L For each such subsequence starting from an intermediate state s;, we calculate the
accumulated discounted reward obtained during its execution. This process effectively generates multiple
learning samples of varying temporal lengths from a single interaction sequence, enriching the training data.

The subsequence extraction strategies for these state-subsequence-reward tuples, which we add to the replay
buffer, include two primary approaches: (1) prefix extraction, which fixes the starting state while varying
the end point, and (2) suffix extraction, which fixes the goal state while varying the starting point. This
bidirectional approach diversifies the replay buffer with different time scales and enables the Critic to learn
value estimates Qge (s, (a4, . .., a;)) for sequences of different lengths concurrently. As shown in our analysis
in Section [5] these extraction strategies significantly accelerate learning and improve overall performance. It
is important to note that during inference (test time), our architecture does not utilize the Critic component,
since no training takes place. Instead, the Actor and PSD produce the action sequence, and the latter is
executed in full.

Under review as submission to TMLR

Table 1: The setup and properties of the mazes used in the evaluation.

Environment Dist. from Train Train Optimal Val Set Val Optimal Test Set Test Optimal
start to goal Set Size Avg. Path Size Avg. Path Size Avg. Path
8x8 [1-14] 100 5.14 100 5.49 1000 5.31
16x16 [16 - 26] 100 18.04 100 18.0 1000 17.98
16x16__obstacles__ 15% [20 - 30] 100 21.02 100 21.35 210 21.31
16x16__obstacles_ 25% [20 - 30] 100 21.63 100 21.34 400 21.54
16x16_ rooms [20 - 30] 100 20.93 100 21.01 585 21.02
16x16__corridors [10 - 30] 100 12.84 100 12.76 545 13.14
24x24 [20 - 30] 100 23.39 100 23.26 1000 23.56
24x24_ obstacles_ 15% [10 - 20] 100 15.04 100 14.58 1000 14.73
24x24_obstacles_ 25% [10 - 20] 100 15.8 100 15.05 1000 15.11

4 Experiments and Results

4.1 Evaluation Environment

Mazes are a foundational benchmark in DRL research, commonly used to evaluate an agent’s ability to per-
form complex sequential decision-making and navigation tasks. Their structured yet variable environments
provide a controlled setting for evaluating generalization, exploration, and memory, which are central to
DRL performance (Pasukonis et al., [2023). We use four types of mazes in our evaluation:

e« Empty. These mazes have no walls or obstacles, except for their boundaries.

o Sparse Obstacles. This setup has randomly placed obstacles in K% of the cells of each maze (e.g.,
15%).

e Rooms. This setup consists of four large rooms with small doors between them. We also add
randomly placed obstacles in 5% of open cells.

e Corridors. These mazes have only narrow corridors for the agent to navigate.

Similarly to (Dao & Vu, 2025)), we use an LLM to produce the code used in our maze generation. Our code,
as well as the mazes generated for our evaluation, are available in the appendix. All information on our
generated mazes is presented in Table|l] For each maze size and type, the table presents: a) the sizes of our
training, validation, and test sets, b) the range for the distance between the start and goal positions, and c¢)
the average length of the optimal path.

4.2 Baselines & Evaluated Methods

We evaluate two versions of GPS and three discrete-action baselines: D@N, TempoRL, and DAR. Full
implementation details of our approach are included in the Appendix.

GPS: Our primary approach generates action sequences using a VAE-based decoder with Gumbel-Softmax
sampling. This stochastic mechanism applies a temperature-controlled softmax to produce action distribu-
tions that maintain differentiability while approximating discrete samples. The Gumbel-Softmax technique
creates a relaxation of categorical distributions that preserves gradients for backpropagation, facilitating
end-to-end training of our actor-critic architecture.

GPS-D: A deterministic variant of our approach that uses argmax operations with a straight-through esti-
mator in the decoder instead of Gumbel-Softmax sampling. This version produces consistent, deterministic
action sequences for each proto-sequence embedding.

DQN: Deep Q-Network (Mnih et al., 2013) is a foundational model-free DRL algorithm that learns state-
action values. DQN utilizes experience replay and a target network to stabilize its learning.

DAR: Dynamic Action Repetition (Srinivas et al. [2017) extends discrete action spaces by repeating original
actions at varying rates. DAR enables the agent to select different levels of temporal control, allowing for
some action abstraction.

Under review as submission to TMLR

Empty Obstalces Rooms Corridors

Figure 2: Examples of our generated mazes (16x16). We use four maze environments (left to right):
EMPTY - open space; 15% Obstacles — random obstacle placement; ROOMS - structured rooms with
doorways; CORRIDORS — narrow paths requiring precise navigation.

TempoRL: Temporal Reinforcement Learning (Biedenkapp et al., 2021)) introduces a proactive approach,
where the agent selects both an action and its duration. TempoRL employs a hierarchical structure with
a behavior policy for action selection and a skip policy for duration, enabling more fine-grained temporal
abstraction and efficient exploration.

4.3 Experimental Setup

State and action representations. We represent the state using a tensor of shape (N, M, 3), where N and
M are the height and width of the maze grid. The channels use a similar encoding to that of MiniGridLibrary
(Chevalier-Boisvert et al.; [2023): a) Object type: identifies all environmental elements including walls, empty
spaces, agent position, goal location, and starting position; b) Object color: provides distinguishing colors
for the start position, goal location, and current agent position; ¢) Placeholder channel: consistently set to
0, maintaining compatibility with the MiniGrid format. Our discrete environment supports the four basic
actions — up, down, left, right — represented as a four-entry one-hot vector

Reward function. We define the rewards function as follows:

_ 1 3
R= Tgoal — [X Nyalid — —— X Ninvalid

where 7404 is 1 if the agent reached the goal (0 otherwise), lpmqs is the maximal start-goal distance (see
Table [1)) acting as a regularizer, 1,414 is the number of valid actions taken, and nnyqiia is the number of
invalid actions (e.g., bumping into a wall).

Evaluation metrics. We use three evaluation metrics:

« Average success rate (ASR): the percentage of episodes evaluated where the agent navigates
successfully from start to goal position within a predefined number of steps.

o Path efficiency ratio (PER): for successfully completed episodes, we calculate the ratio between
the episode length and the optimal (minimal) length:

PER = ot

lepisode

o Sequence Generation Frequency (SGF): This metric reflects how often the agent generates
a new action sequence. It is calculated as the average number of times the Actor is invoked per
evaluation episode. Lower values suggest the agent relies on longer-term proto-sequences before
needing to generate a new sequence. This metric is relevant to GPS, DAR, and TempoRL baselines.

Under review as submission to TMLR

Table 2: ASR Performance at Different Training Steps

Environment 100k Steps 500k Steps 1M Steps 1.5M Steps

DQN GPS GPS-D TempoRL DAR DQN GPS GPS-D TempoRL DAR DQN GPS GPS-D TempoRL DAR DQN GPS GPS-D TempoRL DAR
8x8 0.86 1.00 0.99 0.92 0.63 095 1.00 1.00 0.98 0.75 0.95 1.00 1.00 0.97 0.75
16x16 0.21 0.96 0.82 0.25 0.29 0.60 1.00 1.00 0.8 0.58 0.69 1.00 1.00 0.84 0.61 - - - - -
16x16_obst_15% 0.09 0.22 0.19 0.09 0.15 0.76 0.96 0.9 0.71 0.51 0.8 0.99 0.87 0.77 0.62 085 0.96 0.91 0.82 0.64
16x16_obst_25% 0.03 0.03 0.01 0.02 0.03 0.63 0.33 0.27 0.18 0.06 0.75 0.35 0.27 0.69 009 08 090 0.76 0.79 0.14
16x16_rooms 0.06 0.03 0.01 0.04 0.02 052 0.74 0.58 0.3 0.06 0.65 0.95 0.81 0.58 0.09 065 0.92 0.85 0.63 0.15
16x16__corr 0.4 0.98 0.9 0.61 0.15 0.81 1.00 0.96 0.9 0.53 0.8 1.00 0.97 0.9 0.61 - - - - -
24x24 0.04 0.14 0.1 0.01 0.05 0.14 1.00 0.94 0.28 0.15 024 1.00 0.99 0.46 0.23 - - - - -
24x24_obst_15% 0.02 0.12 0.06 0.02 0.04 0.08 045 0.24 0.05 0.06 0.11 0.80 0.49 0.16 0.10 0.15 0.91 0.56 0.20 0.12
24x24 obst_25% 0.03 0.06 0.02 0.02 0.03 0.08 0.30 0.17 0.03 0.03 011 0.36 0.17 0.04 0.04 011 0.36 0.16 0.09 0.07

Note: The ASR for each algorithm at specific training step intervals. A gray background indicates the highest ASR achieved
for that environment across all steps and algorithms. A yellow background indicates the highest ASR within that specific step
interval (excluding any cell already marked gray). ‘-¢ indicates unavailable data.

These metrics are complementary, as they allow us to evaluate the policy’s effectiveness, efficiency, and
decision frequency.

Neural architecture setup. All models use a shared CNN feature extractor followed by method-specific
linear layers. DQN outputs Q-values for cardinal directions, DAR expands this for multiple repetition
rates, and TempoRL implements a branching architecture for action and skip duration. In GPS, actor and
critic networks use separate but identical CNN architectures. The actor produces a 16-dimensional proto-
sequence embedding, which the decoder converts into action sequences through a multi-layer network with
normalization. Full details are in the appendix.

Hyperparameters & Hardware. Unless otherwise noted for specific ablation studies, experiments were
conducted using a common set of key hyperparameters, summarized in Tables [4{J] and [I1] in the appendix.
We selected the values based on preliminary experiments and common practices. All experiments were
conducted on a system running Red Hat 5.14 with x86_64 architecture. We used an NVIDIA RTX 2080
GPU with 8GB of VRAM.

Training Protocol & Model Selection. We used different training setups based on maze size and
type. Detailed step counts are in Table [2] Model selection for final testing used the checkpoint from each
run yielding the highest average success rate on a held-out set of validation environments during training.
Exploration employed an e-greedy strategy, with random sequences being sampled from a predefined pool of
400 valid sequences (details in Appendix .

4.4 Evaluation Results

4.4.1 Evaluating the Average Success Rate (ASR).

The results of our evaluation are presented in Table 2] GPS consistently outperforms the baselines in most
cases, with several key observations:

Ability to learn, converge quickly, and generalize. GPS demonstrates high sample efficiency and
rapid convergence. It achieved an ASR=0.96 on the 16x16 empty maze with only 100K training steps
(compared to DQN’s 0.21), and perfect accuracy (ASR 1.00) for 24x24 empty mazes at 500K steps, while
the top baseline TempoRL only reached 0.28. This supports our hypothesis that modeling action sequences
rather than individual actions enables more strategic exploration. GPS primarily learns to generate sequences
that move the agent in the correct general direction toward goals, allowing progress in unseen environments
even without perfectly optimized paths. The deterministic variant, GPS-D, also shows strong performance,
supporting the robustness of the proto-sequence concept.

Scalability and superior ability to solve complex environments. The performance gap widens in
larger environments. In the empty 24x24 maze, GPS achieves perfect performance at 500k steps, whereas
DQN and TempoRL only reach 0.24 and 0.46 respectively after 1M steps. In complex 24x24 environments
with 15% obstacles, our approach achieves an ASR=0.80 after 1M steps, almost eight times its closest

Under review as submission to TMLR

Table 3: Comparative Performance Analysis: Convergence Speed and Efficiency Metrics

. ASR Converge>0.9 Step PER SGF

EIlVerIlIUeUt

DQN GPS GPS-D TempoRL DAR DQN GPS GPS-D TempoRL DAR DQN GPS GPS-D TempoRL DAR
8x8 200k 100k 100k 100k >1M 1.0 0.9 1.0 0.74 0.5 - 2.9 2.6 4.68 3.9
16x16 >1M 100k 200k >1M >1M 1.0 0.84 0.99 0.92 0.74 - 6.9 5.1 11.55 6.94
16x16_obstacles 15% >1.5M 300k 700k >1.5M >1.5M 1.0 0.72 0.93 0.94 0.51 - 10.8 9.2 15.1 10.09
16x16_obstacles_25% >1.5M 300k 700k >1.5M >1.5M 1.0 0.66 0.89 0.95 0.42 - 10.75 9.12 16.22 11.85
16x16_rooms >1.5M 900k >1.5M >1.5M >1.5M 1.0 0.63 0.89 0.95 0.63 - 13.76 9.53 15.01 9.84
16x16__corridors >1M 100k 200k 500k >1M 0.99 0.81 0.98 0.77 0.61 - 6.56 5.42 4.77 6.76
24x24 >1M 500k 600k >1M >1M 098 0.78 1.00 0.94 0.64 - 9.6 7 16.89 8.87
24x24_obstacles_15% >1.5M 1.4M >1.5M >1.5M >1.5M 0.96 0.48 0.84 0.93 0.45 - 6.34 6.34 13.34 7.76
24x24 obstacles 25% >1.5M >1.5M >1.5M >1.5M >1.5M 0.97 048 0.79 0.91 0.41 - 14.9 8.66 13.87 8.33

Note: We present four key performance metrics. The first column shows training steps required to achieve a 90% success rate
(lower is better), with highlighted values indicating the fastest convergence. Path Efficiency Ratio (PER) measures trajectory
optimality (higher is better, max=1.0), with bold values showing best performance. Sequence Generation Frequency (SGF)
indicates the average number of decision points needed per episode (lower generally indicates better temporal abstraction). ’-’
indicates N/A.

competitor. Even in the most difficult environments (24 x24 with 25% obstacles), GPS maintains a significant
relative advantage (ASR=0.36 vs. 0.14 for TempoRL).

Performance on medium-sized and structured environments. In the challenging "obstacles_ 25%"
setup for 16x16 mazes, GPS outperforms DQN only after 1.5M training steps (ASR 0.90 vs 0.80). This
is because medium-sized mazes do not significantly degrade DQN’s performance, and dense obstacle distri-
butions sometimes require very specific sequences. In structured "rooms" environments, GPS achieves an
ASR of 0.95 at 1M steps, significantly outperforming DQN (0.65) and TempoRL (0.58). In the same 24x24
mazes, GPS performs far better, relatively.

Baselines like DAR and TempoRL generally struggle, particularly in complex mazes. For TempoRL, which
might require more extensive training to converge optimally, we observed improved performance with larger
training data (see Table [12|in the appendix), though computational constraints limited further exploration.
GPS’s strong performance stems from operating in the space of action sequences rather than individual
actions, enabling more strategic exploration and the discovery of long-horizon rewards that would be difficult
to find using single actions or simple repetition methods.

4.4.2 Evaluating the Path Efficiency Ratio (PER).

The results of our evaluation are presented in Table[3] PER is calculated at the final training checkpoint using
the total time steps per environment detailed in Table|[ll We report PER for GPS, GPS-D, and two baselines
introduced in Section allowing for direct comparison across methods. A key GPS characteristic is Self-
Correction Through Sequential Decision Points. GPS can adjust its course at subsequent decision
points without requiring an initially perfect action sequence. This sequence-level closed-loop control enables
course corrections while retaining the benefits of temporal abstraction. Leveraging this capability, GPS
adopts a strategy of Trading Path Efficiency for Robust Navigation, prioritizing directional correctness
over strict path optimality. This approach develops more transferable navigation skills—particularly evident
in larger or more obstacle-dense mazes—explaining cases where PER is lower despite higher ASR and faster
convergence (see Tables [2 and .

GPS-D consistently yields higher PER than GPS in all environments. For example, in the 16 x 16 empty
maze, GPS-D’s PER is 0.99 versus GPS’s 0.84; in the 24 x 24 maze with 15% obstacles, PER is 0.84 for
GPS-D and 0.48 for GPS. GPS’s Gumbel-Softmax sampling introduces stochasticity that enables broader
exploration but can cause path deviations. GPS-D’s deterministic argmax decoder produces more consistent
trajectories, trading exploration advantages for improved exploitation. Among the baselines, DQN and
TempoRL often show high PER, frequently achieving near-optimal paths. For instance, in 16 x 16 empty
maze, DQN reached PER 1.0 and TempoRL 0.92. However, GPS often surpasses their ASR in complex
environments. DAR generally shows a lower PER.

Under review as submission to TMLR

16x16 16x16
Actor: [512,32] Actor: [512,128,32]
1.0 1.0
0.8 0.8
- 0.6 0.6
]
<
0.4 0.4
—— Prefixes_Seq: TRUE, Suffixes_Seq: TRUE —— Prefixes_Seq: TRUE, Suffixes_Seq: TRUE
0.2 Prefixes_Seq: FALSE, Suffixes_Seq: TRUE 0.2 Prefixes_Seq: FALSE, Suffixes_Seq: TRUE
—— Prefixes_Seq: TRUE, Suffixes_Seq: FALSE —— Prefixes_Seq: TRUE, Suffixes_Seq: FALSE
—— Prefixes_Seq: FALSE, Suffixes_Seq: FALSE —— Prefixes_Seq: FALSE, Suffixes_Seq: FALSE
0.0 0.0
16x16_obstacles 15% 16x16_obstacles 15%
Actor: [512,32] Actor: [512,128,32]
1.0 = = = 1.0
0.8 0.8
- 0.6 0.6
]
<
0.4 0.4
—— Prefixes_Seq: TRUE, Suffixes_Seq: TRUE —— Prefixes_Seq: TRUE, Suffixes_Seq: TRUE
0.2 Prefixes_Seq: FALSE, Suffixes_Seq: TRUE 0.2 Prefixes_Seq: FALSE, Suffixes_Seq: TRUE
—— Prefixes_Seq: TRUE, Suffixes_Seq: FALSE /_J— Prefixes_Seq: TRUE, Suffixes_Seq: FALSE
—— Prefixes_Seq: FALSE, Suffixes_Seq: FALSE —— Prefixes_Seq: FALSE, Suffixes_Seq: FALSE
0.0 0.0
RSSO IO R I O S O AN AW RSO IO O IR I I (SO SN W
Training Steps Training Steps

Figure 3: Impact of Subsequence Buffering Strategy on Average Success Rate.

In summary, while GPS may trade path optimality for higher ASR and faster learning, GPS-D shows excellent
path efficiency. This highlights a trade-off: GPS’s stochasticity boosts exploration and rapid ASR, while
GPS-D’s determinism excels in path efficiency once a good policy is learned.

4.4.3 Evaluating Sequence Generation Frequency (SGF).

The results are presented in Table (3] where lower values generally indicate superior temporal abstraction
due to fewer policy invocations per episode. For methods reporting SGF, our approaches GPS and GPS-D
demonstrate competitive performance across environments. In 16 x 16 empty maze, GPS-D achieves an
SGF of 5.1, outperforming DAR’s 6.94 and TempoRL’s 11.55, while GPS records 6.9. However, in the
16 x 16 corridors environment, TempoRL (SGF 4.77) outperform GPS-D (5.42) and GPS (6.56). Despite
this environment-dependent variation, our methods often operate with limited interventions-such as GPS-
D’s 7.0 SGF in 24 x 24 empty magzes versus TempoRL’s 18.1-demonstrating effective generation of extended
proto-sequences.

GPS-D’s generally low SGF combined with its high PER indicates capability for efficient, strategic trajectory
generation through robust behavioral patterns, making it ideal for scenarios requiring predictable execution or
constrained resources. GPS offers a compelling trade-off with competitive PER and favorable SGF compared
to TempoRL (e.g., 6.9 vs. 11.55 in 16 x 16 empty; 9.53 vs. 15.01 in 16 x 16 rooms), alongside faster Average
Success Rate convergence as discussed in Section It balances path efficiency, sequence compactness,
and learning speed effectively.

10

Under review as submission to TMLR

16x16 Mazes 24x24 Mazes
0.6 —— 16x16_obstacles_25% —— 24x24_obstacles_25%
—— 16x16_obstacles_15% —— 24x24_obstacles_15%
—— 16x16_rooms — 24x24
0.4 — 16x16
—— 16x16_corridors
0.2
[o
< //Xh e
< 0.0 = — <
-0.2
-0.4
0009400509 0% 004 0%t At AN gt AN st o 00050000 a0 a0 a0 a0 A AW 2t Y e o

Training Steps

Figure 4: Impact of Actor Network Scaling on Average Success Rate (A ASR) in Mazes.

In conclusion, SGF analysis confirms our sequence-generation paradigm’s effectiveness for temporal ab-
straction. GPS-D provides efficient, long-term utility with fewer, optimal decisions, while GPS balances
competitive SGF, good PER, and rapid ASR. The choice between them depends on application priorities:
efficiency vs. predictability or adaptation vs. broader performance.

5 Analysis and Discussion

Analyzing GPS’s Ability to Generate Novel Sequences. We consider GPS’s ability to generate novel
action sequences — sequences that were not used in the training of the Decoder — to be a useful aspect of
our approach. This capability enables our approach to diversify its generated sequences beyond those it was
“taught” during training. Not being constrained by a fixed training set extends GPS’s capabilities beyond
memorization to generalization, as we show below.

As described in Appendix the PSD was pre-trained on a set of 400 synthetic sequences generated
according to simple, common-sense heuristics for navigation tasks: a) each sequence contained at most two
distinct action types. b) Actions of the same type appeared in contiguous blocks (e.g., “up, up, left” allowed;
“up, left, up” disallowed). ¢) No immediately contrasting actions were allowed (e.g., “up, down” prohibited).
d) Maximum sequence length was capped at L.y (shorter sequences permitted). e) Avoidance of loops.
After full training, we gathered 15 action sequences by sampling states from the GPS replay buffer and
generating the corresponding action sequences through the actor and PSD. Eleven of these did not appear
in the PSD’s training set and were not fully aligned with at least one of the navigation patterns described
above. Using the encoding up—0, down—1, left—2, right—3, the novel sequences were:

[[17 27 17 1]7 [17 17 0]7 [37 1707]‘}7 [07 07 37]‘}7
3,3,2], [3,0,3], [1,1,2,3], [2,0,1],
[0,0,3,3,0,3], [3,3,1,2], [2,1,1,3]]

These results show that GPS can create new action sequences not seen during training because it works in a
structured embedding space. In this space, sequences with similar structures are grouped together, making
it possible to blend known patterns and generate new ones, as shown in Figure [5|in the appendix.

11

Under review as submission to TMLR

Sequence Subsets Augmentation. We investigate our subsequence buffering approach (Section ,
implemented through prefizes (fixed start, varying end point) and suffizes (fixed goal state, varying starting
point). Figure [3|shows that the baseline without subsequence buffering (red) consistently learns most slowly
and often converges sub-optimally, while all subsequence buffering variants substantially improve learning ef-
ficiency. Using prefixes and suffixes simultaneously (blue) generally produces the most rapid learning, though
the suffix-only configuration (orange) performs nearly as well, suggesting backward sampling provides par-
ticularly valuable learning signals. The prefix-only approach (green) typically shows slower convergence than
other subsequence methods. These performance patterns remain consistent across different maze structures
and actor networks.

Impact of Actor Network Scaling. We examined actor network size impact (small: two-layer (512,
32); large: three-layer (512, 128, 32)) on maze navigation performance, measured by AASR (Large - Small)
(see Figure . In simpler 16x16 mazes (empty or corridor), both architectures performed similarly. With
15% obstacles, the smaller network initially outperformed (AASR = —0.3 at 100K steps) before convergence
at 300K steps. In denser 25% obstacles, the smaller network significantly outperformed from 800K steps,
peaking at AASR ~ —0.5 at 1.1M steps. In larger 24x24 mazes with 15% obstacles, the small network
generally led, despite the large network’s brief advantage (500K steps). However, in the most complex 25%
obstacles maze, the large network consistently outperformed, maintaining AASR between 0.1-0.15. The
24x24 empty maze showed fluctuating performance with occasional spikes for the larger network around
200K and 500K steps.

These results suggest a trade-off: smaller networks suffice or excel in smaller or moderately complex envi-
ronments (possibly due to better regularization or more stable sequence generation learning), while larger
networks demonstrate clear benefits in more complex environments.

6 Conclusions, Limitations, and Future Work

GPS is a novel actor-critic method that generates variable-length action sequences in a single step. GPS
maps state observations to proto-sequences, which are decoded into discrete action sequences. This approach
enhances credit assignment and exploration in long-horizon tasks by moving beyond sequential single-action
selection. Our evaluation shows GPS consistently surpasses leading action repetition and temporal methods
in complex maze environments, achieving higher success rates and faster convergence.

Although our approach shows benefits, particularly in complex environments, several limitations should
be acknowledged. First, a new PSD needs to be trained for each unique action space, which adds to the
complexity of our approach. GPS has not been evaluated on large action spaces, so adaptations to the
decoder component may be needed. Additionally, we have not yet adapted GPS to continuous action spaces.
Future work will focus on making GPS generalizable in more complex, realistic environments, explore reward
function that incentivize path efficiency, and address continuous action spaces.

References

Anurag Ajay, Seungwook Han, Yilun Du, Shuang Li, Abhi Gupta, Tommi Jaakkola, Josh Tenenbaum,
Leslie Kaelbling, Akash Srivastava, and Pulkit Agrawal. Compositional foundation models for hierarchical
planning. Advances in Neural Information Processing Systems, 36:22304—22325, 2023.

Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner, Johannes Brandstetter,
and Sepp Hochreiter. Rudder: Return decomposition for delayed rewards. Advances in Neural Information
Processing Systems, 32, 2019.

André Biedenkapp, Raghu Rajan, Frank Hutter, and Marius Lindauer. Temporl: Learning when to act. In
International Conference on Machine Learning, pp. 914-924. PMLR, 2021.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Ar-
avind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling.
Advances in neural information processing systems, 34:15084-15097, 2021.

12

Under review as submission to TMLR

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem Lahlou,
Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Modular & customizable
reinforcement learning environments for goal-oriented tasks. CoRR, abs/2306.13831, 2023.

Josiah D Coad, James Ault, Jeff Hykin, and Guni Sharon. A framework for predictable actor-critic control.
In Deep Reinforcement Learning Workshop NeurIPS 2022, 2022.

Will Dabney, Georg Ostrovski, and André Barreto. Temporally-extended {\epsilon}-greedy exploration.
arXiv preprint arXiv:2006.01782, 2020.

Zihang Dai, Qizhe Xie, and Eduard Hovy. From credit assignment to entropy regularization: Two new
algorithms for neural sequence prediction. arXiv preprint arXiv:1804.10974, 2018.

Alan Dao and Dinh Bach Vu. Alphamaze: Enhancing large language models’ spatial intelligence via grpo.
arXiv preprint arXiv:2502.14669, 2025.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Un-
terthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth
16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Gabriel Dulac-Arnold, Richard Evans, Hado van Hasselt, Peter Sunehag, Timothy Lillicrap, Jonathan Hunt,
Timothy Mann, Theophane Weber, Thomas Degris, and Ben Coppin. Deep reinforcement learning in large
discrete action spaces. arXiv preprint arXiv:1512.07679, 2015.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then explore.
Nature, 590(7847):580-586, 2021.

Liad Giladi and Gilad Katz. Feedback decision transformer: Offline reinforcement learning with feedback.
In IEEFE International Conference on Data Mining (ICDM). IEEE, 2023.

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale, Arun
Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by transporting value. Nature
communications, 10(1):5223, 2019.

Michael Janner, Qiyang Li, and Sergey Levine. Offline reinforcement learning as one big sequence modeling
problem. Advances in neural information processing systems, 34:1273-1286, 2021.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint arXiv:1812.6114,
2013.

Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical deep reinforce-
ment learning: Integrating temporal abstraction and intrinsic motivation. Advances in neural information
processing systems, 29, 2016.

Nishanth Kumar, Tom Silver, Willie McClinton, Linfeng Zhao, Stephen Proulx, Tomés Lozano-Pérez,
Leslie Pack Kaelbling, and Jennifer Barry. Practice makes perfect: Planning to learn skill parameter
policies. arXiv preprint arXiv:2402.15025, 2024.

Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of deep visuomotor
policies. Journal of Machine Learning Research, 17(39):1-40, 2016.

Jinghan Li, Zhicheng Sun, and Yadong Mu. Closed-loop long-horizon robotic planning via equilibrium
sequence modeling. arXiv preprint arXiv:2410.01440, 2024.

Wenhao Li. Efficient planning with latent diffusion. arXiv preprint arXiv:2310.00311, 2023.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa, David
Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In 4th International
Conference on Learning Representations (ICLR), 2016.

13

Under review as submission to TMLR

Jinxin Liu, Donglin Wang, Qiangxing Tian, and Zhengyu Chen. Learn goal-conditioned policy with intrinsic
motivation for deep reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 36, pp. 7558-7566, 2022.

Fan-Ming Luo, Tian Xu, Hang Lai, Xiong-Hui Chen, Weinan Zhang, and Yang Yu. A survey on model-based
reinforcement learning. Science China Information Sciences, 67(2):121101, 2024.

Thomas Mesnard, Théophane Weber, Fabio Viola, Shantanu Thakoor, Alaa Saade, Anna Harutyunyan, Will
Dabney, Tom Stepleton, Nicolas Heess, Arthur Guez, et al. Counterfactual credit assignment in model-free
reinforcement learning. arXiv preprint arXiv:2011.09464, 2020.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, loannis Antonoglou, Daan Wierstra, and
Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, and Georg Ostrovski. Human-level control through deep
reinforcement learning. nature, 518(7540):529-533, 2015.

Jurgis Pasukonis, Timothy P Lillicrap, and Danijar Hafner. Evaluating long-term memory in 3d mazes. In
The Eleventh International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=yHLvI1E9RGN.

Devdhar Patel and Hava Siegelmann. Overcoming slow decision frequencies in continuous control: Model-
based sequence reinforcement learning for model-free control. arXiv preprint arXiv:2410.08979, 2024.

Roberta Raileanu and Tim Rocktéschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. arXiv preprint arXiv:2002.12292, 2020.

Erick Rosete-Beas, Oier Mees, Gabriel Kalweit, Joschka Boedecker, and Wolfram Burgard. Latent plans
for task-agnostic offline reinforcement learning. In Conference on Robot Learning, pp. 1838-1849. PMLR,
2023.

Tankred Saanum, Noémi Eltets, Peter Dayan, Marcel Binz, and Eric Schulz. Reinforcement learning with
simple sequence priors. Advances in Neural Information Processing Systems, 36:61985-62005, 2023.

Younggyo Seo and Pieter Abbeel. Coarse-to-fine g-network with action sequence for data-efficient robot
learning. arXiv preprint arXiv:2411.12155, 2024a.

Younggyo Seo and Pieter Abbeel. Coarse-to-fine g-network with action sequence for data-efficient robot
learning. arXiv preprint arXiv:2411.12155, 2024b.

Sahil Sharma, Aravind Srinivas, and Balaraman Ravindran. Learning to repeat: Fine grained action repe-
tition for deep reinforcement learning. arXiv preprint arXiv:1702.06054, 2017.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484-489, 2016.

Aravind Srinivas, Sahil Sharma, and Balaraman Ravindran. Dynamic action repetition for deep reinforcement
learning. In Proc. AAAI 2017.

Giulia Vezzani, Dhruva Tirumala, Markus Wulfmeier, Dushyant Rao, Abbas Abdolmaleki, Ben Moran,
Tuomas Haarnoja, Jan Humplik, Roland Hafner, Michael Neunert, et al. Skills: Adaptive skill sequencing
for efficient temporally-extended exploration. arXiv preprint arXiv:2211.13743, 2022.

Shuo Wang, Zhihao Wu, Xiaobo Hu, Youfang Lin, and Kai Lv. Skill-based hierarchical reinforcement learning
for target visual navigation. IEEE Transactions on Multimedia, 25:8920-8932, 2023.

Mengda Xu, Manuela Veloso, and Shuran Song. Aspire: Adaptive skill priors for reinforcement learning.
Advances in Neural Information Processing Systems, 35:38600-38613, 2022.

14

https://openreview.net/forum?id=yHLvIlE9RGN
https://openreview.net/forum?id=yHLvIlE9RGN

Under review as submission to TMLR

Dongkun Zhang, Jiaming Liang, Ke Guo, Sha Lu, Qi Wang, Rong Xiong, Zhenwei Miao, and Yue Wang.
Carplanner: Consistent auto-regressive trajectory planning for large-scale reinforcement learning in au-
tonomous driving. In Proceedings of the Computer Vision and Pattern Recognition Conference, pp. 17239—
17248, 2025.

Haichao Zhang, Wei Xu, and Haonan Yu. Generative planning for temporally coordinated exploration in
reinforcement learning. In International Conference on Learning Representations, 2022a.

Haichao Zhang, Wei Xu, and Haonan Yu. Generative planning for temporally coordinated exploration in
reinforcement learning. arXiv preprint arXiv:2201.09765, 2022b.

15

Under review as submission to TMLR

A Baselines and Architecture

Each baseline is evaluated using a grid search over multiple hyperparameter configurations; Tables 6]
[7 Bl O] and [I1] detail the specific value ranges for these parameters.

All baseline models employ the same CNN feature extractor architecture followed by similarly sized linear
layers, differing only in the final output layer size. For example, DQN outputs 4 Q-values (one per action),
while DAR outputs 12 (4 actions x 3 repetition heads). TempoRL requires an additional network head
to implement the skip policy, adding architectural complexity but gaining flexibility in temporal decision-
making. In our GPS method, the actor and critic networks each have their own separate CNN state feature
extractors. In future work, we plan to explore a shared CNN feature extraction architecture as implemented
in TempoRL, which could potentially improve computational efficiency and state representation learning.

For TempoRL, we configured the model with a maximum skip length between 1..10 to allow variable sequence
lengths of action repetition. For DAR, we evaluated possible coarse control values of 1,5,10 to allow the
same maximum sequence length and mid-sequence capability, with the fine control value fixed at 1 to allow
for actions at every time step. We based our implementations on the publicly available code at https:
//github.com/automl/TempoRL but reimplemented from scratch to enrich with more metrics and employ
our evaluation methodology. Detailed architectures, hyperparameter configurations, and implementation

specifics can be found in Appendix [B] [C] [D] [E] and [E}

B DQN Baseline Implementation Details

This section outlines the architecture and configuration of the Deep Q-Network (DQN) agent used as a
baseline. It details the neural network structure, hyperparameter settings, exploration strategy, optimization
method, and other relevant training aspects.

B.1 Model Architecture (QNetwork)

The Q-Network is a neural network designed to approximate the action-value function Q(s,a). It consists
of a convolutional part for feature extraction from the input observation and a linear part for producing
Q-values for each action.

In our maze environments, as depicted in Subsection the input observation has a shape (C, H, W), where
the number of input channels C is 3. The number of output channels, n_ output_channels, corresponds to
the number of available actions, which is 4 (right, left, up, down).

B.1.1 Convolutional Neural Network (CNN) Part

The CNN component processes the input observation through a sequence of convolutional layers:

1. Conv2D Layer 1:

e Input channels: 3

e Output channels: 16
o Kernel size: 2

o Stride: 1

2. Activation: ReLU

3. Conv2D Layer 2:

o Input channels: 16
e Output channels: 32
e Kernel size: 2

e Stride: 1

16

https://github.com/automl/TempoRL
https://github.com/automl/TempoRL

Under review as submission to TMLR

4. Activation: ReLU

5. Conv2D Layer 3:

o Input channels: 32
e Output channels: 64
o Kernel size: 2

e Stride: 1

6. Activation: ReLU

7. Flatten Layer: The output of the convolutional layers is flattened into a 1D vector. The size of
this vector, n__flatten, is computed automatically.

B.1.2 Linear Part

The flattened output from the CNN (n__flatten) is fed into a sequence of fully connected linear layers:

o The hidden layer sizes are configurable via grid search (see Table {| for details). The activation
function for these hidden layers is Leaky ReLU (negative slope 0.1).

o The final linear layer maps the last hidden layer’s output to n_output_channels (4 actions).

B.2 Hyperparameters

The agent’s behavior and training process are governed by a set of hyperparameters, detailed in Tables
and [6l

Table 4: General Experiment Hyperparameters for DQN Baseline

Parameter Default Value
seed 123
torch_deterministic True
save_model_strategy SUCCESS_RATE
val_eval_freq 5000
train_eval_freq 5000
eval_test_dataset_training_freq | 100000

Table 5: Environment-Specific Hyperparameters for DQN Baseline

Parameter Default Value
max__episode_ steps 75
reward_ strategy NEGATIVE_BASED_ON_MAX_LEVEL WITH_PENALTIES

observation_encoding_strategy | DEFAULT
Max Path Length (maz_level) | Varies (see Env. Def. in Table 1}
Min Path Length (start_level) | Varies (see Env. Def. in Table 1]

B.3 Epsilon-Greedy Exploration

The agent uses an epsilon-greedy strategy for action selection. The value of epsilon (¢) is linearly an-
nealed from start_e (1.0) to end_e (0.1) over a duration. This duration is calculated as |exp_frac x
total_timesteps|, where exp_frac is the selected exploration_fraction (from options in Table[6) and ¢
is the current global timestep. The epsilon at timestep ¢ is:

€ = max((((end__e — start_e)/duration) x ¢ + start_e),end_e)

With probability €;, a random action is chosen; otherwise, the action with the highest Q-value is selected.

17

Under review as submission to TMLR

Table 6: Algorithm Specific Hyperparameters for DQN Baseline

Parameter

Default Value / Options

total__timesteps
learning_ rate

buffer size

~ (discount factor)

7 (target update rate)
target_ network__frequency
batch_ size

start__e

end e

exploration__ fraction
learning_ starts
train_ frequency
linear__layers
activation_function

Environment specific

[1x1073, 1 x 1074]

[10000, 50000]

0.99

0.01, 0.005]

[10, 100] (soft-target update freq.)
256

1.0 (initial €)

0.1 (final €)

0.1, 0.3, 0.5]

1000 (timestep to begin learning)
2 (Q-network update freq.)
["512,128,32", "512,32"]

Leaky ReLU (slope 0.1)

B.4 Optimizer

The Q-Network is trained using the Adam optimizer (torch.optim.Adam). The learning rate is controlled
by the learning_rate hyperparameter (see Table @

B.5 Replay Buffer

A replay buffer (stable_baselines3.common.buffers.ReplayBuffer) stores experiences
(8¢, a1, 7, S¢41, dy)-

The buffer size is specified in Table [f] Key configurations include optimize_memory_usage = False and
handle_timeout_termination = False.

B.6 Training Details

Loss Function. The Q-Network parameters () are updated by minimizing the Mean Squared Error (MSE)
loss:
L(H) = E(s,a,r,s’,d)NB [(yt - Q(Sa a; 9))2]
where the TD target:
Y =7t + Y max Qrarger(se+1,a’507)(1 = di)

Here, 7, is the reward, v is the discount factor, Qiarget is the target network with parameters 6~, and d;
indicates if s¢y1 is terminal. This is implemented via torch.nn.functional .mse_loss.

Target Network. A separate target network Qiqrget With parameters 6~ stabilizes training. Its weights
are updated using Polyak averaging: 6~ < 76 4+ (1 — 7)0~. The soft update rate 7 and update frequency
target_network_frequency are specified in Table [0}

Training Procedure.

o Learning Starts: Training begins after learning starts timesteps (see Table @

e Training Frequency: The Q-network is updated every train_frequency global steps (see Table

o Batch Size: Number of experiences sampled per training step is batch_size (see Table @

B.7 Evaluation

The agent’s performance is evaluated periodically on validation and test datasets.

18

Under review as submission to TMLR

o Evaluation on the validation dataset occurs every val_eval_freq steps.

o Evaluation on the test dataset can occur during training every eval_test_dataset_training_freq
steps.

o During evaluation, actions are chosen greedily (or with a small fixed epsilon, e.g., 0.05 or 0.0).
e Metrics logged include mean episodic return, success rate, and agent step ratio.

o Model saving is based on performance metrics (e.g., highest success rate or reward on validation) as
per save_model_strategy.

C DAR Baseline Implementation Details

This section outlines the architecture and configuration of the Dyanmic Action Repetition (DAR) agent
used as a baseline. The DAR agent builds upon the Deep Q-Network (DQN) architecture and training
methodology. Therefore, for aspects not explicitly mentioned here, such as the general experiment config-
uration (Table , environment-specific arguments (Table , epsilon-greedy exploration strategy (Section

B.3), optimizer (Section [B.4), replay buffer (Section [B.5)), general training procedure (Section [B.6), and
evaluation methodology (Section [B.7)), please refer to the corresponding descriptions in the DQN baseline

implementation details (Section [BJ).

The primary distinctions of the DAR baseline are its modified network architecture to support an expanded
action space and an additional algorithm-specific hyperparameter, dar_r_1, related to action repetition.

C.1 Model Architecture

The DAR network for the DAR agent, similar to DQN, approximates the action-value function Q(s,a). It
comprises a convolutional part for feature extraction and a linear part for producing Q-values.

The input observation from the maze environments has a shape (C, H,W), where C' = 3, identical to the

DQN baseline (Section [B.1]).

C.1.1 Convolutional Neural Network (CNN) Part

The CNN component is identical to the one used in the DQN baseline. For details on the architecture
(number of layers, channels, kernel sizes, strides, and activations), please refer to Section The output
of this part is a flattened 1D vector of size n__flatten.

C.1.2 Linear Part

The flattened output (n__flatten) from the CNN is processed by a sequence of fully connected linear layers:

e The hidden layer sizes are configurable via grid search, with the same options as the DQN baseline
(see Table m for linear_layers). The activation function for these hidden layers is Leaky ReLU
(negative slope 0.1).

o The final linear layer maps the last hidden layer’s output to n_ output__channels. For the DAR agent,

n__output__channels = 12, corresponding to 4 base actions (right, left, up, down) each associated
with 3 repetition heads/levels.

C.2 Hyperparameters

The general experimental configuration and environment-specific hyperparameters for the DAR baseline are
the same as those for the DQN baseline, as detailed in Table] and Table [respectively.

19

Under review as submission to TMLR

C.2.1 Algorithm Specific Arguments

The algorithm-specific hyperparameters for the DAR baseline, including the newly introduced dar_r_1
parameter, are listed in Table[7] These parameters are subject to grid search to find the optimal configuration
for each environment.

Table 7: Algorithm Specific Hyperparameters for DAR Baseline
Parameter Default Value / Options
total__timesteps Environment specific
learning_rate [1x1073,1x 1074
buffer_size [10000, 50000]
~ (discount factor) 0.99
T (target update rate) [0.01, 0.005]
target_ network__frequency [10, 100] (soft-target update freq.)
batch__size 256
start_e 1.0 (initial €)
end_e 0.1 (final €)
exploration_ fraction [0.1, 0.3, 0.5]
learning_ starts 1000 (timestep to begin learning)
train__frequency 2 (Q-network update freq.)
linear_ layers ['512,128,32", "512,32"]
activation_ function Leaky ReLU (slope 0.1)
dar_r_1 [1, 5, 10] (repetition level parameter)

C.3 Training Details

Loss Function. For DAR, the Q-Network parameters (6) are updated by minimizing Hubber loss. This is
implemented via torch.nn.SmoothL1Loss.

D TempoRL Baseline Implementation Details

This section describes the architecture and configuration of the TempoRL agent, a baseline designed for
temporal abstraction by learning how long to repeat actions. TempoRL shares several components and pro-
cedures with the DQN baseline. For details on the general experiment configuration (Table , environment-
specific arguments (Table [5), replay buffer (Section , and evaluation methodology (Section , please
refer to the corresponding descriptions in the DQN baseline implementation details (Section .

Key distinctions of the TempoRL agent include its specialized network architecture with separate heads
for action selection and skip duration, unique hyperparameters related to these mechanisms (skip_dim,
weight_sharing), and the use of Huber loss for training.

D.1 Model Architecture
The TempoRL network processes input observations to produce Q-values for primitive actions and Q-values

for skip durations. The input observation from the maze environments has a shape (C, H, W), where C = 3,
identical to the DQN baseline (Section [B.I)).

D.1.1 Convolutional Neural Network (CNN) Part
The CNN component used for initial feature extraction is identical to the one in the DQN baseline. For

details on its architecture (number of layers, channels, kernel sizes, strides, and activations), please refer to
Section The output of this CNN part is a flattened 1D vector of size n__flatten.

20

Under review as submission to TMLR

D.1.2 Linear Heads for Action and Skip Policies

Following the CNN, the network processes features through a structure that leads to two distinct output
heads: one for action selection and one for determining the skip duration. The MLP for each pathway (from
CNN output to pre-output layer) consists of layers with output units [512, 128, 32].

e Feature Processing and Weight Sharing:

— If weight_sharing = True (default configuration): The n__ flatten vector is first processed by
a shared linear layer producing 512 output units, followed by a Leaky ReLU activation (negative
slope 0.1). This 512-unit feature vector serves as the common input to the subsequent differing
layers of the action and skip heads.

— If weight_sharing = False: The n_ flatten vector is independently fed into the first linear
layer (512 output units, Leaky ReLU) of both the action and skip processing streams. Each
stream then continues with its own [128, 32| layers.

e Action Head:

— Starting from the 512-unit feature vector (either shared or head-specific), it is processed through
two subsequent linear layers with 128 and 32 output units, respectively. Each of these hidden
layers uses a Leaky ReLU activation (negative slope 0.1).

— The final linear layer of the action head maps the 32-unit feature vector to n_ output__actions
Q-values, where n_ output__actions = 4 (corresponding to right, left, up, down).

e Skip Head:

— Similarly starting from the 512-unit feature vector, it is processed through two subsequent linear
layers with 128 and 32 output units, each followed by a Leaky ReLU activation (negative slope
0.1).

— The final linear layer of the skip head maps the 32-unit feature vector to skip_dim. Each
corresponds to the utility of repeating the chosen primitive action for a specific number of
steps, from 1 up to skip_dim.

D.2 Hyperparameters

General experimental configuration (Table [4) and environment-specific arguments (Table [5)) are consistent
with the DQN baseline. Algorithm-specific hyperparameters for TempoRL, including those unique to its
architecture, are detailed in Table

D.3 Action Selection and Exploration

TempoRL employs a two-step e-greedy strategy for exploration and action selection:

1. Primitive Action Selection: Given the current state s;, a primitive action a; (e.g., right, left,
up, down) is chosen. With probability e, a, is selected randomly from the set of n_ output__actions.
Otherwise (with probability 1 — €), a; = argmax, Q(ss, a’;0), where Q(s,-;0) are the Q-values
produced by the action head of the online network.

2. Skip Duration Selection: Conditioned on the current state s; and the chosen primitive action ag,
a skip duration k; (number of times to repeat a;, from 1 to skip_dim) is selected. With probability
€, k; is chosen randomly from {1,...,skip_dim}. Otherwise, k, = argmaxy, Qskip(St, at, k'; Oskip),
where Qskip(st, @, -; Oskip) are the Q-values for different skip durations produced by the skip head
(which might use shared parameters if weight_sharing = True).

The selected primitive action a; is then executed in the environment for k; consecutive timesteps. The value
of € is typically linearly annealed from start_e to end_e over exploration_fraction of total timesteps, as

detailed for the DQN baseline (see Section and Table [§).

21

Under review as submission to TMLR

Table 8: Algorithm Specific Hyperparameters for TempoRL Baseline

Parameter Default Value / Options

total _timesteps Environment specific

learning_ rate [1x1073,1x 1074

buffer_size [10000, 50000]

gamma (7) 0.99 (discount factor)

tau (7) [0.01, 0.005] (target network update rate)

target_ network_ frequency [10, 100] (frequency of applying soft target network update)
batch_size 256

start_e 1.0 (starting epsilon for exploration)

end_e 0.1 (ending epsilon for exploration)

exploration_ fraction [0.1, 0.3, 0.5]

learning_starts 1000 (timestep to start learning)

train_ frequency 2 (frequency of training the Q-network)
activation_ function Leaky ReLU (negative slope 0.1 for hidden layers)
skip_ dim 10 (maximum skip size)

weight_sharing True (whether to share the first 512-unit layer)

D.4 Optimizer

Separate Adam optimizers (torch.optim.Adam) are used for the action Q-network parameters and the
skip Q-network parameters. The learning rate for both optimizers is controlled by the learning_rate
hyperparameter (see Table . Gradients for both networks are clipped (grad_clip_val = 40.0).

D.5 Replay Buffers

TempoRL utilizes two distinct replay buffers with capacity buffer_size (see Table [§)) to store experiences
for training its action and skip policies:

o Action Replay Buffer: This is a standard replay buffer (ReplayBuffer from Stable Baselines3)
that stores transitions corresponding to individual primitive actions. Each experience tuple is of the
form (s¢, ag,re, S¢41,dt), where:

— s;: The state at time ¢.

— a4: The primitive action taken at time t.

— r¢: The reward received at time ¢ + 1.

— S¢41: The state at time ¢ + 1.

dy: A boolean flag indicating if sy is a terminal state.

Experiences sampled from this buffer are used to train the action Q-network (the action head).

o Skip Replay Buffer: This is a custom replay buffer (referred to as NoneConcatSkipReplayBuffer
in the implementation) specifically designed to store experiences related to the execution of multi-step

skip actions. Each experience tuple is of the form (s;, kj, sj4x;, Ry, djix;, kée", a?eh‘“’), representing:

behav
J
— kj: The selected skip duration (i.e., the ’action’ taken by the skip policy).

— s;: The state from which the skip action (repeating a) commenced.

— Sj+k;+ The state reached after the primitive action a?eh‘“’ was executed ké.e" times.
— Rj: The accumulated (and potentially discounted, depending on exact calculation before stor-
age) reward received over the course of the k;-e" steps of the skip.

— djyk,;: A boolean flag indicating if s;,4, (the state after the skip) is a terminal state.

- k;-e" (length): The actual number of steps the primitive action a?eh“”

equivalent to k;).

was repeated (this is

22

Under review as submission to TMLR

— a?eh‘w: The underlying primitive action that was chosen to be repeated for kéen steps.

Experiences sampled from this buffer are used to train the skip Q-network (the skip head).

D.6 Training Details

TempoRL involves separate training updates for the action Q-network and the skip Q-network, both utilizing
the Huber loss function.

D.6.1 Loss Function and Updates

The network parameters are updated by minimizing the Huber loss (This is implemented via
torch.nn.SmoothL1Loss) for both action and skip predictions.

o Action Q-Network Update: Experiences (s;,a;,7;, sj+1,d;) are sampled from a standard replay
action

buffer. The target value y; is computed using a Double DQN-style approach:

action

Yj =7j +7(1 — dj)Qtarget(sj+1,arg HE}XQ(SJ#—L a';0);67)

where @) is the online action Q-network with parameters 6, and Qtqrges is its target network with
parameters . The loss is then:

Laction(e) = E(Sj,aj,rj,5j+1,dj)~8 [HUberLOSS(y}ICtion — Q(SJ, a;; 9))]

e Skip Q-Network Update: Experiences (sj,a?-Ehm’,kj,Rj,sj+kj,dj+kj) are sampled from a sepa-

rate replay buffer for skips. Here, a%"* is the primitive action executed, k; is the skip duration
(number of times aé’?h‘“’ was repeated), R; is the accumulated discounted reward during these k;

steps, and s;j,, is the state after k; steps. The target value y;-kip is calculated as:
ki) _
yjs P = Rj + ij (1 - dj-‘rkj)Qtarget(5j+kj ,arg HE}X Q(5j+kj 5 a/; 0)3 0)
Note that the future value component Qiarget(Sjtk;,---) uses the main action Q-network and its
target, reflecting the value of the optimal next primitive action after the skip concludes. The
current prediction is Qskip(s;, abehav kj; Oskip), where Qgpip has parameters 6.y, (which may share

J
some parameters with 0 if weight_sharing = True). The loss is:

Lskip(eskip) =]E()~Bskip [HUberLOSS(y;kip - stip(sj7 a?ehav7 kj; eskzp))]

Both loss functions are optimized using their respective Adam optimizers, and gradients are clipped to
prevent large updates.

D.6.2 Target Network Updates

To stabilize training, target networks are employed.

o A target network Qiarger (With parameters 67) is maintained for the primary action Q-network Q
(parameters ¢). This Qiarget is always updated using Polyak averaging: 0~ < 76 + (1 —7)0~.

o If weight_sharing is ‘False‘, the distinct skip Q-network Qsip (parameters 6q;,) has its own
separate target network, Qurip target (Parameters 9;kip). This Qskip_targer is similarly updated

using Polyak averaging with 6, and O;kip.

o If weight_sharing is ‘“True‘, the parameters of the skip mechanism are part of the overall network
structure whose online parameters are 6 (which includes the shared trunk and potentially specific
skip head layers not part of the action head). In this scenario, a separate Polyak update for a distinct
Qskip_target is not performed; target values for the skip component’s loss are derived using Q:arget
for estimating future state-action values, as shown in the skip target formula.

The soft update rate 7 and the update frequency target_network_frequency are specified in Table [§|

23

Under review as submission to TMLR

E Proto Sequence Decoder (PSD) Implementation Details

This section outlines the architecture and configuration of the Proto-Sequence Decoder (PSD) module used
in our model. It describes the decoder network structure, training objectives, latent space regularization,
sequence reconstruction process, and other relevant design choices that enable effective decoding of proto-
sequence embeddings into action-sequence.

E.1 Training Dataset Setup

To ensure that the model learns from meaningful and structured data rather than arbitrary noise, we
constructed the training dataset according to the following constraints:

1. Sequence Length Constraint: All action sequences have lengths between 1 and L,,,4, = 10 steps.

2. Action Diversity Constraint: Each sequence includes at most two distinct action types. For
example, valid sequences include [up,up| or [up,left], whereas a sequence like [up,left,down] is
considered invalid.

3. Switch Constraint: Each sequence may contain at most one switch between action types.
For instance, [up, left] is allowed, but [up, left,up] is not.

4. Directional Conflict Constraint: Sequences cannot include opposite directions, such as both
up and down, or both left and right.

5. Avoidance of loops.

Following these criteria, we generated a total of 400 unique action sequences. These sequences were
one-hot encoded and padded with EOS tokens to a fixed length of L,,., to suit VAE input requirements.
These sequences form the basis of the training data for the Proto-Sequence Decoder (PSD).

E.2 Model Architecture

The Proto-Sequence Decoder (PSD) is implemented as a Variational Autoencoder (VAE) designed to map
proto-sequence embeddings into action sequences of varying length. It is trained using reconstruction loss
combined with a Kullback-Leibler divergence (KLD) regularization toward a standard Gaussian prior. The
decoder operates on flattened one-hot sequence representations of actions and outputs reconstructed se-
quences over a predefined action vocabulary.

E.2.1 Input Representation

Each action in the sequence is represented as a one-hot vector over a vocabulary of size nyords = b correspond-
ing to {up, down, right, left, eos_token}. The decoder models sequences of up to input_length = 10
actions, resulting in an input vector of dimension 10 x 5 = 50.

E.2.2 Encoder Network

The encoder receives a flattened 50-dimensional input vector and passes it through a series of fully connected
layers:

1. Linear Layer 1:

e Input size: 50

e Output size: 32

e Normalization: InstanceNormld

o Activation: LeakyReLU (slope 0.2)

24

Under review as submission to TMLR

2. Linear Layer 2:

e Output size: 16
e Normalization: InstanceNormld
e Activation: LeakyReLU

3. Linear Layer 3:

e Output size: 16
e Normalization: InstanceNormld

e Activation: Tanh

The output is then projected into two parallel linear layers to produce the latent mean p € R'® and log-
variance log o2 € R'6. A latent sample z is drawn using the reparameterization trick: z = p + o - €, where

e~ N(0,1).

E.2.3 Decoder Network

The sampled latent vector z € R'6 is decoded through a symmetric feedforward network:

1. Linear Layer 1:

e Output size: 16
e Normalization: InstanceNormld
e Activation: LeakyReLU

2. Linear Layer 2:

e Output size: 32
e Normalization: InstanceNormld
e Activation: LeakyReLLU

3. Linear Layer 3:
o Output size: 50 (reconstructed sequence)
e Normalization: InstanceNormld
o Final Activation: Sigmoid (applied element-wise)

E.3 Training Objective

The PSD is optimized using a combination of:

¢ Reconstruction Loss: Binary cross-entropy loss between the input sequence and its reconstruction,
normalized by sequence length.

« KL Divergence Loss: Encourages the latent distribution to match a unit Gaussian prior.

All input sequences are EOS-padded to the maximum length of 10 to ensure uniform input dimensionality
across batches.

E.4 Hyperparameters

The training of the Proto-Sequence Decoder (PSD) is governed by a set of fixed hyperparameters, detailed
in Table[9] These parameters control aspects such as optimization, batch processing, and reproducibility.

25

Under review as submission to TMLR

Table 9: Proto-Sequence Decoder (PSD) Training Hyperparameters

Parameter Value

train_on_entire_dataset True
seed 42
optimizer Adam
optimizer_learning rate 1 X 10~
optimizer_weight_decay 1x1073
batch_size 32

E.5 Optimizer

The PSD is trained using the Adam optimizer (torch.optim.Adam). The learning rate is controlled by the
learning_rate hyperparameter (see Table @

E.6 Training Details

E.6.1 Loss Function

The Proto-Sequence Decoder (PSD) parameters are updated by minimizing a combined loss:
L = Lyec + Lk,

where:

e L, is the label-smoothed binary cross-entropy over the reconstructed sequence:

T
1 . .
Lre = = 3 | logf + (1= o) log(1 =50

€

with y; replaced by §; = y:(1 —€) + 5, € = 0.1, and T" = 10 is the sequence length.

e Lxy, is the Kullback—Leibler divergence between the approximate posterior and a unit Gaussian:

Lxr = Dxr (N (p, 0%) | N(0,1)).

E.6.2 Training Procedure
e« Maximum Steps: Train for up to 20,000 epochs.
« Batch Composition: Split sequences into

— Short (< 5 actions) and
— Long (> 5 actions),

and sample each batch with a 50/50 ratio of short and long sequences.

E.7 Evaluation

The Proto-Sequence Decoder’s (PSD) performance was assessed on the entire training set using two key
metrics. Evaluations were conducted every 50 epochs, and the checkpoint yielding the highest exact match
accuracy was retained. After 20,000 epochs, the following results were achieved:

o Exact Match Accuracy: This metric measures the proportion of sequences reconstructed with
zero errors. The PSD achieved an Exact Match Accuracy of 0.978.

e Per-Step Accuracy: This metric calculates the fraction of correctly reconstructed actions across
all positions within the sequences. The PSD achieved a Per-Step Accuracy of 0.99.

26

Under review as submission to TMLR

E.8 Visualization of the Learned Embedding Space

Figure [f] illustrates the two-dimensional t-SNE projection of the learned proto-action-sequence embeddings.
Each point corresponds to one sequence from the dataset, with colors representing the effective sequence
length. As can be seen, sequences with similar structural properties tend to form dense clusters, indicating
that the embedding space preserves meaningful relationships between sequences.

A particularly noteworthy observation is the position of the red star, which represents a previously unseen
sequence not included during training. This sequence is located within the cluster of its closest structural
neighbors, suggesting that the learned representation generalizes effectively to new data. In other words, the
embedding model is able to position novel sequences near the most similar examples from the training set,
supporting its potential for robust retrieval, similarity search, and downstream predictive tasks.

T-SNE 2D representation of entire sequence dataset coloured by sequence length

201 A S R -
° L] . L] . ') . ° .
. e ® . e o
° N
. P 0. : : .°
° o o L .
. e e o _o
° . e o o . L
. e * o ¢ a e® o’ e * o
g e o o . . K M .
— .
2 *. . N I oo .’°. . .:‘
I o ® oo o . LI
g . o* . . S, ° e o o e
o . « L, ® e . o o . e o o
[=} . .. * o e Action Sequence
8 . ° o ® . o Length
n e M 1
., ‘. ! 2
. e 3
. o 4
¢ . e 5
. ° ° o
. e 7
o.. ° e 8
.. ° 9
* e 10
-20 -10 0 10 20 30

First Dimension

Figure 5: T-SNE 2-D projection of the proto-action-sequence embedding space. The map contains embed-
dings for the 400 original sequences in the dataset together with one previously unseen sequence
(red star). Points are colored by their effective sequence length, and sequences with similar structure form
tight neighborhoods. The unseen sequence falls naturally inside the cluster of its closest structural neighbors,
showing that the learned representation places new, out-of-training sequences adjacent to the most
similar known examples.

F GPS (Generative Proto Sequence) Implementation Details

This section outlines the architecture and configuration of our GPS (Generative Proto Sequence) method.
GPS is an actor-critic based algorithm where the actor network generates a latent representation, termed
"proto-sequence.” This proto-sequence is then processed by a pre-trained generative decoder model (PSD)
to produce a sequence of discrete actions. A critic network evaluates this action sequence to guide learning.
The subsequent subsections detail neural network structures, hyperparameter settings, exploration strategy,
optimization methods, and other relevant training aspects.

F.1 Model Architecture and State Representation

The GPS agent consists of three primary neural network components: an Actor, a Critic, and a pre-trained
Decoder. It processes observations from the environment. For details on the specific state representation,
input shape (e.g., height, width, channels), and preprocessing, please refer to the "State Representation"
within Section

27

Under review as submission to TMLR

F.1.1 Convolutional Neural Network (CNN) Part

Both the Actor and Critic networks use separate but identical Convolutional Neural Network (CNN) ar-
chitecture to extract features from the input observation. The CNN component used for initial feature
extraction is identical to the one in the DQN baseline. For details on its architecture (number of layers,
channels, kernel sizes, strides, and activations), please refer to Appendix The output of this CNN part
is a flattened 1D vector of size n__flatten.

Note: in our current implementation, the actor and critic networks each have their own separate CNN
state feature extractors. In future work, we plan to explore a shared CNN feature extraction architecture as
implemented in TempoRL, which could potentially improve computational efficiency and state representation
learning.

F.1.2 Actor Network

The Actor network takes the extracted features from the CNN and produces a proto-sequence embedding.

e Input: The flattened feature vector Nfeatures from the CNN is concatenated with a positional en-
coding. The embedding dimension of this positional encoding is specified by pe_embedding_dim.

e Architecture: The combined features are processed through a series of fully connected linear
layers, defined by the actor_linear_layers parameter (e.g., [512, 128, 32]). The activation function
for these hidden layers is specified by actor_linear_layers_activation_function which is "leaky relu"
with negative slope 0.1.

e Output: The actor generates a single proto-sequence embedding. This embedding is a vector of
Size actor_n_output_channels and serves as input to the Decoder PSD network.

F.1.3 Position Encoding in Proto-Sequence Generation

To enhance the expressiveness of our action sequence generation, we incorporate positional encoding within
the Actor network. This technique, inspired by transformer architectures (Dosovitskiy et al., 2020]), helps the
Actor generate more contextually aware proto-sequence embeddings by providing explicit spatial information
about the agent and goal positions.

Implementation Details. Our positional encoding implementation combines both row and column infor-
mation for each grid cell in the observation space:

1. We create sinusoidal encodings for both dimensions (height and width) separately:

torch.sin(position_row * div_term)
torch.cos(position_row * div_term)

pe_row[:, 0::2]
pe_row[:, 1::2]

2. These encodings are combined into a unified representation where the first half of each cell’s embed-
ding encodes its row position and the second half encodes its column position.

3. During forward passes, we extract the agent and goal positions from the observation and retrieve
their respective positional encodings:

agent_pe = self.position_encoding[agent_row, agent_col]
goal_pe = self.position_encoding[goal_row, goal_col]

4. These position-specific features are concatenated with the CNN-extracted features before being
processed by the linear layers of the Actor.

Motivation and Benefits. Integrating positional encoding within the Actor network provides several
advantages:

28

Under review as submission to TMLR

1. Enhanced Spatial Reasoning: By explicitly encoding agent and goal positions, the Actor can
better understand spatial relationships, which is crucial for navigation tasks.

2. Improved Exploration Early in Training: The position encodings enable the generation of more
diverse proto-sequence embeddings in the initial training phases, facilitating better exploration before
the CNN features become well-trained.

3. Direction-Aware Sequence Generation: The relative positions of agent and goal inform the
Actor about the general direction of movement required, allowing it to generate more purposeful
action sequences even with limited experience.

4. Invariance to Visual Feature Quality: Especially early in training when the CNN features may
be unreliable, position encodings provide a stable signal that enables meaningful action sequence
generation.

Our manual investigations and targeted experiments suggest that incorporating position encodings enhances
the model’s capabilities in several ways. We observed that the position-enriched Actor generates proto-
sequence embeddings with greater contextual awareness of spatial relationships, which in turn produces
more diverse and situation-appropriate action sequences. Without position encoding, the proto-sequence
embeddings tended to cluster more closely in the latent space, resulting in less differentiated action patterns.
This difference was particularly evident in larger and more complex maze environments, where the position-
encoded model demonstrated an improved ability to generate directionally coherent sequences that efficiently
navigated toward goals. The positional information appears to provide a structural prior that helps the Actor
formulate meaningful navigation strategies even before the CNN features are fully refined through training.

F.1.4 Critic Network

The Critic network estimates the Q-value of a state and a decoded action sequence.

e Input:

— The flattened feature vector nfeatures from the CNN, representing the current state.

— The action sequence generated by the Decoder from the actor’s proto-sequence. The represen-
tation used for this action sequence is ACTION_SEQ_AS_ONE_HOT. Namely, the input is a tensor where
each action in the sequence of length n_actions_in_seq is one-hot encoded. Shorter sequences are
padded to this length using an End-of-Sequence (EOS) token. Each one-hot vector has a dimen-
sion equal to the action_space_size plus one (for the EOS token). Consequently, the total input
dimension for the action sequence part, action_seq_dim, is n_actions_in_seq X (action_space_size
+ 1).

e Architecture: The inputs are processed through a series of fully connected linear layers, de-
fined by critic_linear_layers (e.g., [512, 128, 32]). The activation function is specified by
critic_linear_layers_activation_function which is "leakyirelu" with negative slope 0.1.

e Output: A single scalar Q-value. The output Q-value can be optionally clipped between min_qf_value
and max_qf_value.

F.1.5 Decoder Network

A pre-trained generative model, specifically a Variational Autoencoder, acts as the Decoder (PSD).

e Loading: The Decoder is loaded from a pre-trained model specified by
decoder_model_path.

o Input: The proto-sequence embedding (size actor_n_output_channels) generated by the Actor.

e Output: A sequence of n_actions_in_seq discrete actions. Fach action is selected from a vocabulary
of action_space_size primitive actions plus an end_of_sequence_token token.

29

Under review as submission to TMLR

¢ Generation: The Decoder can use

Gumbel-Softmax for differentiable sampling if

use_gumble_in_decoder is true, or a deterministic argmax with a Straight-Through Estimator

otherwise. See explanation in Section

F.2 Hyperparameters

The GPS method is configured by a wide range of hyperparameters. General experiment settings and
environment-specific configurations are typically managed as detailed for the DQN baseline (see Tables
and . Key algorithm-specific hyperparameters for GPS are listed in Tables

Table 10: Algorithm Specific Hyperparameters for GPS

Parameter

Value / Options / Description

total_timesteps

actor_learning_rate
critic_learning_rate

buffer_size

gamna (7)

tau (7)

batch_size

learning_starts
actor_policy_frequency
actor_target_network_frequency
critic_target_network_frequency
start_e

end_e

total_steps_e
sub_sequences_move_start_point
sub_sequences_move_end_point
sub_sequences_min_jump_move_start_point
sub_sequences_min_jump_move_end_point
every_one_step_transition_to_buffer
actor_n_output_channels
actor_linear_layers

actor_linear_layers_activation_function
actor_weight_decay

pe_embedding_dim

critic_linear_layers

critic_linear_layers_activation_function
critic_weight_decay

decoder_model_path

n_actions_in_seq

action_space_size

end_of_sequence_token
use_gumble_in_decoder

Env. specific

Actor LR (e.g., 1 x 107%).

Critic LR (e.g., 1 x 107%).

[10000, 50000]

Discount factor.

Target net. soft update rate (e.g., 0.005).
Experiences per train step.

Timestep train begins.

Actor net. update freq. rel. to Critic (e.g., 2).
Target Actor net. update freq. (e.g., 10 steps).
Target Critic net. update freq. (e.g., 10 steps).
Initial € for e-greedy (e.g., 1.0).

Final € value (e.g., 0.1).

Timesteps for ¢ annealing (e.g., 15000).
Boolean; varying sub-seq. start points.
Boolean; varying sub-seq. end points.

Min. jump for start-moved sub-seq. gen.

Min. jump for end-moved sub-seq. gen.
Boolean; all single-step trans. stored.
Proto-action-seq. embed dim. (e.g., 16).
Actor MLP hidden layer sizes (e.g., [512, 128,
32]).

Actor MLP activation (e.g., "leaky_relu").
Actor L2 reg. strength (e.g., 1 x 1072).
Positional encoding dim. in Actor (e.g., 16).
Critic MLP hidden layer sizes (e.g., [512, 128,
32]).

Critic MLP activation (e.g., "leaky relu").
Critic L2 reg. strength (e.g., 1 x 1073).

Path to pre-trained VAE Decoder model.
Decoder action seq. length (e.g., 10).

Unique primitive actions in env. (e.g., 4).
Decoder integer token for end of seq. (e.g., 4).
Boolean; Decoder uses Gumbel-Softmax.

F.3 Reward Function and Empty Sequence Handling

The GPS agent utilizes a structured reward function designed to encourage efficient navigation while penal-
izing inefficient or invalid behaviors. The reward function is defined as:

R= Tgoal — X Nyalid —
lmax

X Ninvalid
lmax

30

Under review as submission to TMLR

Table 11: GPS Hyperparameters Settings

Parameter

Value

total_timesteps

buffer_size

gamma

tau

batch_size

start_e

end_e

learning_starts

actor_learning_rate
critic_learning_rate
actor_policy_frequency
sub_sequences_move_start_point
sub_sequences_move_end_point
sub_sequences_min_jump_move_start_point
sub_sequences_min_jump_move_end_point
every_one_step_transition_to_buffer
actor_target_network_frequency
critic_target_network_frequency
total_steps_e

actor_n_output_channels
actor_linear_layers
actor_linear_layers_activation_function
actor_weight_decay

pe_embedding_dim

critic_linear_layers
critic_linear_layers_activation_function
critic_weight_decay

max_level

start_level

use_gumble_in_decoder

Environment specific

[10000, 50000]

0.99

[0.01, 0.005]

256

1

0.1

1000

[1e-3, 1le-4, 1le-5]

le-04

2

TRUE

TRUE

1

1

TRUE

[10, 100]

10

15000

16

["512, 32", "512, 128, 32"]
leaky_relu (negative slope 0.1)
le-04

128

[512, 128, 32]

leaky_relu (negative slope 0.1)
le-04

Environment specific
Environment specific

TRUE

where rg0q1 is 1 if the agent reached the goal (0 otherwise), liax is the maximal start-goal distance acting as
a regularizer, nyajq is the number of valid actions taken, and nipyaiq is the number of invalid actions (e.g.,
bumping into a wall).

To handle cases during training where the actor generates proto-sequences that are decoded as empty se-
quences (i.e., where the PSD outputs the EOS token as the first action), we apply a harsh penalty of -20.
For these instances, we also hard-code the action to be 1 (DOWN) to ensure the agent always takes some
action. This direct negative reinforcement was found to be highly effective in guiding the actor to produce
valid proto-sequence embeddings that decode into meaningful action sequences. Without this penalty, the
actor might frequently produce embeddings that map to empty, significantly hampering exploration and
learning progress. This approach provides a clear signal to the actor network about the importance of gen-
erating proto-sequences that translate to substantive action sequences, accelerating the learning process and
improving the overall stability of training. Empirically, we observed that this simple yet effective mechanism
substantially reduced the occurrence of empty sequences.

F.4 Action Selection and Exploration

At each decision step, the Actor network generates a proto-sequence embedding. The Decoder then translates
this embedding into a corresponding action-sequence of primitive actions. The agent employs an e-greedy
exploration strategy:

31

Under review as submission to TMLR

o With probability €; (where ¢; anneals from start_e to end_e over total_steps_e steps): An exploratory
action sequence is selected. This sequence is typically chosen randomly from a pre-defined set of
valid action sequences see Section for more details.

o With probability 1—¢; (exploitation): The action sequence generated by the Actor-Decoder pipeline
is used for execution.

The value of ¢; is linearly annealed:
€; = max (endie, start_e — (start_e — end__e) - (current__step/ totalistepsie)>
The chosen action sequence is subsequently trimmed using the end_of_sequence_token before execution.

F.5 Optimizer

The Actor and Critic networks are trained using separate Adam optimizers (torch.optim.Adam).

e The Actor’s optimizer is configured with a learning rate of actor_learning_rate and applies L2 weight
decay with a coefficient of actor_weight_decay.

e The Critic’s optimizer uses a learning rate of critic_learning_rate and L2 weight decay with a coef-
ficient of critic_weight_decay.

F.6 Replay Buffer

A replay buffer (ReplayMemory) with a capacity of butfer_size stores past experiences. Each stored transition
typically includes: the current state observation (s;), the next state observation (s¢11), the selected action se-
quence (act__seq,), the received reward (r;), a terminal flag (d;), and the actor’s proto-action-sequence embed-
ding that generated act_seq, (emb;). The system may also store sub-sequences derived from executed plans
if parameters such as push_every_one_step_transition_to_buffer, push_sub_sequences_to_buffer_move_start_point,
and push_sub_sequences_to_buffer_move_end_point are enabled, potentially enriching the diversity of experiences
in the buffer.

F.7 Training Details

Network training commences after learning starts timesteps have been collected. Updates are performed
using batches of batch_size experiences sampled from the replay buffer.

F.7.1 Critic Network Update
The Critic network parameters (6¢) are updated by minimizing the Mean Squared Error (MSE) loss:
L(QC) = E(s,actfseq,r,s’A,d,emb)NB [(Q(S7 emb7 act__seq; 0C> - yt)Q]

The target Q-value y; is computed using the target Actor (target_actor_network) and target Critic
(target_critic_network) networks to ensure stability:

yr =7+ v(1 — d)Qrarges (5, Actoriarget (), Decoder(Actoriarget (s')); 0
where Actorarget (') is the proto-sequence embedding from the target actor for state s’, Decoder(-) converts

it to an action sequence, and 0, are the parameters of the target critic. The Q-values from the target critic
can be clipped using min_qf_value and max_qf_value.

32

Under review as submission to TMLR

F.7.2 Actor Network Update

The Actor network parameters (f4) are updated with a frequency of actor_policy_frequency (delayed policy
update). The goal is to adjust the actor’s parameters to produce a proto-sequence that leads to a higher Q-
value as estimated by the current Critic. For a sampled batch of states, the Actor generates a proto-sequence
embedding. This is decoded into an action sequence, which is then evaluated by the online Critic network
Q(+;0¢). The actor loss is designed to maximize this Q-value:

L(04) = —Eso5[Q(s, Actor(s), Decoder(Actor(s)); ¢)]

F.7.3 Target Network Updates

Separate target networks are maintained for both the Actor (Actory,,ge; With parameters §7) and the Critic
(Qtarget With parameters). Their parameters are updated using Polyak averaging with the parameters of
their corresponding online networks (64, 60¢):

0" 710+ (1—-1)0"

The soft update rate is 7. Target network updates for the Actor occur every actor_target_network_frequency
steps, and for the Critic every critic_target_network_frequency steps.

F.7.4 Training Procedure Summary

e Initialization: Networks and target networks are initialized. Replay buffer is empty.

o Data Collection: Agent interacts with the environment using the action selection strategy (Section
F.4)), storing experiences (s;, S¢11,act_seq,, rt, ds, emby) in the replay buffer.

o Learning Phase (after learning_starts steps):

1. Sample a batch_size of experiences from the replay buffer.

2. Update Critic network parameters by minimizing the MSE loss with the computed TD targets.

3. Periodically (every actor_policy_frequency steps), update Actor network parameters to maximize
the Q-value of the generated sequence as estimated by the Critic.

4. Periodically (CVCI‘y actor_target_network_frequency and critic_target_network_frequency Steps re-
spectively), update target Actor and target Critic networks using Polyak averaging.

F.8 Evaluation

The performance of the GPS agent is assessed periodically during training and/or at the end of the training
process.

e Frequency: Evaluations on validation datasets typically occur every val_eval_freq steps, and on
subsets of the training data every train_eval_freq steps. Less frequent evaluations may occur on a
dedicated test dataset (e.g., every eval_test_dataset_training_freq steps) or at the end of training.

e Method: During evaluation, the actor generates a proto-sequence, the decoder converts it to an
action sequence, and this sequence is executed. The Decoder may operate in a deterministic mode

(deterministic_inference = True) .

e Metrics: Standard reinforcement learning metrics are logged, such as mean episodic return and
success rate. Additional metrics might include the average number of decoder generations per
episode or properties of the generated action sequences.

o Model Saving: If save_model is enabled, the best performing models (actor and critic) are saved
based on criteria defined by save_model_strategy (e.g., best success rate or mean reward on the vali-
dation set).

33

Under review as submission to TMLR

G Maze Evaluation Environments Benchmark

In our research, our evaluation environments consist of procedurally generated mazes with varying structures
and complexity. We utilized synthetic maze environments created using Large Language Models (LLMs)
to ensure unbiased benchmark construction. The following details our approach to maze generation for the
different environment types used in our experiments.

G.1 Synthetic Maze Generation Process

We generated our maze environments using LLM. For each maze type (rooms, obstacles, and corridors), we
provided specific prompts instructing the LLM to generate Python code that would create the maze envi-
ronments according to our requirements. Importantly, all maze generation was performed programmatically
without manual intervention, ensuring reproducibility and eliminating human bias. We specifically used the
OpenAl o3-mini model for code generation, which was instructed to create five different variants for each
maze type. To avoid experimenter bias in seed selection, we also employed an LLM to generate code for
choosing random seeds:

import hashlib

def get_consistent_seed():

nnn

Selects a seed number from a list consistently across multiple runs.
Returns:

int: The selected seed number.

seed_list = [42, 1234, 9999, 2024, 2025]

Create a hash of the function name to ensure consistency
hash_object = hashlib.sha256(b’get_consistent_seed’)
hash_value = int(hash_object.hexdigest(), 16)

Use the hash value to select a seed from the list
seed_index = hash_value % len(seed_list)
return seed_list[seed_index]

Get the consistent seed
seed = get_consistent_seed()
print(f"Selected seed: {seed}")

The code generated by the LLM for each maze type is available in our code repository. This approach
ensured that the maze generation process was fully automated and free from experimenter bias, providing a
consistent and fair benchmark for evaluating our GPS algorithm against the baselines.

G.2 Maze Type Generation Prompts

For each maze type, we provided detailed prompts to the LLM to guide the generation process:

G.2.1 Obstacles Maze Prompt

Maze Generation with 15% Obstacles

Write a Python script that programmatically generates five distinct 16 x 16 mazes with randomly
placed obstacles. The grid follows these rules:

Grid & Output Format:

e The maze is a 16 x 16 grid.

34

Under review as submission to TMLR

o Each cell is either open space (0) or a wall/obstacle (1).

o The outermost border (first and last rows and columns) must remain walls (1).

15% of the inner cells (excluding the border) should be randomly chosen as obstacles
(1), while the remaining are open spaces (0).

e The final maze should be output as a Python dictionary:

{
‘maze’: [
"1111111111111111", # Top row (wall frame)
D 1", # Use 0 for open spaces;
dots are placeholders here.
"1111111111111111" # Bottom row (wall frame)
]
}

Replace the dots with appropriate Os (open spaces) and 1s (walls/obstacles).
Maze Generation Method: Initialize the Maze:

o Create a 16 x 16 grid where every cell is an open space (0).

o The outer border (first and last rows/columns) must always remain walls (1).

o The inner 14 x 14 area (excluding the border) will contain open spaces (0) and obstacles

(1).

Randomly Place Obstacles:

o 15% of the inner 14 x 14 cells should be converted into obstacles (1).

e The placement of these obstacles should be random.

e Ensure that at least one path remains between any two open spaces for potential connectivity.
Generate Five Distinct Mazes:

o Use different random seeds to create five unique mazes.

o Ensure that each maze has exactly 15% obstacles inside the inner area.

G.2.2 Rooms Maze Prompt

You are a maze designer responsible for enhancing a predefined base maze structure for a navigation
simulation. Your task is to decide where entrances should be located while ensuring the maze meets
the following requirements:

Maze Design Requirements Base Maze Structure:

e The maze is predefined and consists of a 16 x 16 grid.

e The base structure must remain intact, but you will determine the placement of the entrances
and ensure connectivity between all rooms and open spaces.

Entrance and Room Connectivity:

o The maze is divided into four equal-sized quadrants (rooms) separated by walls.

35

Under review as submission to TMLR

{

e Fach room must have only two entrances of size 1. Use a seeded random choice for
entrance placement.

e Entrances should be placed strategically to ensure the maze is fully connected, meaning
an agent can navigate between any two open cells (0) using up, down, left, or right
movements.

e Passageways between rooms must be narrow and preserve the integrity of the maze’s chal-
lenge.

Obstacle Coverage:

o Obstacles (1) must make up 5% of the total grid (= 13 cells).
e Don’t consider the obstacles that are part of the maze’s frame.

o Obstacles may be added or removed within constraints to maintain connectivity and align-
ment with the entrance placement.

e Don’t place obstacles in nearby squares close to any entrance. Make sure that an obstacle
doesn’t block any entrance.

e Use a seeded random choice for obstacles placement.

Reproducibility:

e Use a specific random seed to ensure the design is reproducible.

Output Format:

¢ Generate code for creating the maze.

o Generate the maze as a Python dictionary with a key (e.g., 'maze’) and represent each row
as a binary string.

e Output 5 mazes using different seeds and make sure that obstacles don’t block entrances.

Base Maze Layout: The base structure is as follows:

’base_maze’: [

"1111111111111111”",
"1000000100000001",
"1000000100000001",
""1000000100000001",
""1000000100000001",
""1000000100000001",
"1000000100000001",
"1111111111111111”",
""1000000100000001",
""1000000100000001",
""1000000100000001",
"1000000100000001",
""1000000100000001",
"1000000100000001",
""1000000100000001",
"1111111111111111

36

Under review as submission to TMLR

Design Task: Modify the maze by:
e Placing entrances in the walls separating the quadrants.

o The logic should be based on seed for determining the entrances position and obstacles posi-
tions.

e Ensuring the maze is fully connected.

o Making any minor adjustments to obstacles (1) to meet connectivity and percentage require-
ments.

e Verify by code that each room must have only two entrances of size 1.
e Verify by code that each obstacle doesn’t block any entrance.

Output the modified maze as a Python dictionary with the format below:

{

‘maze’: [
"updated_row_1",
"updated_row_2",
"updated_row_16"

]

}

General Steps:
e Choose two entrances for each room by selecting a random square on each wall.

o Randomly select a room and place obstacles within it until the obstacle budget is reached.

G.2.3 Corridors Maze Prompt

Write a Python script that programmatically generates five distinct 16 x 16 mazes. In each maze,
start with a grid completely filled with wall cells (represented by 1), then carve out corridors by
selecting one or more vertical lines and one or more horizontal lines to convert wall cells to open cells
(represented by 0). The corridors will be 1-cell-wide, and they must intersect so that every open cell
is reachable from any other via up, down, left, and right moves. The outer border of the maze should
always remain as walls.

Grid & Output Format:

e The maze is a 16 x 16 grid.
o FEach cell is either open (0) or a wall (1).
o The outermost border (first and last rows and columns) must remain walls.
e The final maze should be output as a Python dictionary:
‘maze’: [
"1111111111111111", # Top row (wall frame)

e 1", # Use O for open spaces;
dots are placeholders here.

"1111111111111111" # Bottom row (wall frame)

37

Under review as submission to TMLR

3

Replace the dots with the appropriate Os and 1s as per the carved corridors.
Corridor Carving Method: Initialize the Maze:

o Create a 16 x 16 grid where every cell is a wall (1), with the outer border fixed as walls.
Select Corridor Lines:

o Vertical Corridors: Choose 2 up to 4 vertical columns (not including the outer borders)
that will serve as corridors.

¢ Restriction: Ensure that no consecutive vertical columns are selected—there must be at
least one wall column between any two chosen corridor columns.

e Horizontal Corridors: Choose 2 up to 4 horizontal rows (again, not including the outer
borders) that will serve as corridors.

¢ Restriction: Ensure that no consecutive horizontal rows are selected—there must be at least
one wall row between any two chosen corridor rows.

e These lines will form a network of corridors that cross each other.
Carve the Corridors:

o For each selected vertical column, change all cells in that column (except the outer border)
from 1 (wall) to 0 (open space).

o Similarly, for each selected horizontal row, change all cells in that row (except the outer
border) from 1 to 0.

o The intersections of these corridors (where a selected vertical column crosses a selected hori-
zontal row) will naturally be open, ensuring connectivity.

Ensure Full Connectivity:

e The chosen vertical and horizontal corridors should intersect, guaranteeing that every open
cell (in the corridors) is reachable from any other open cell.

e Optionally, you can add additional corridor “branches” (by clearing cells adjacent to the
main corridors) to create a more interesting maze layout, as long as all open cells remain
interconnected.

Randomness:

o Generate five distinct mazes by using different random seeds and varying the selected vertical
and horizontal corridor positions.

H Analysis of Reward Strategy Impact on ASR

This appendix details the comparison of two step penalty strategies, illustrated in Figure [6} The strategies
are the default Max-Level-based penalty (—1/lnax, where [y is a normalization factor related to task depth,
€.8., lmax ~ 30) and an alternative Map-Size-based penalty (—1/maze size, e.g., —1/256 for a 16 x 16 maze).
Their relative efficacy is measured by AASR = ASRumax-Level — ASRMap-size; Where positive values indicate

superior performance for the Max-Level strategy.

Figure [f] reveals distinct performance patterns across the tested environments.

38

Under review as submission to TMLR

e In simple 16 x 16 mazes, the Max-Level strategy provides a significant initial learning speedup
(AASR ~ +0.8 at 200k steps), although its final Average Success Rate (ASR) is matched by the
Map-Size strategy after approximately 400k training steps.

e When 15% obstacles are introduced in the 16 x 16 maze, increasing its complexity, the Max-Level
strategy maintains a consistent performance advantage throughout the training. AASR peaks at
approximately +0.44 and remains positive (settling around +0.1).

e In larger 24 x 24 mazes, the Max-Level strategy’s superiority becomes more pronounced. AASR
dramatically increases after 500k steps, reaching and sustaining a value of approximately +0.9. This
highlights the diminishing effectiveness of the Map-Size penalty (e.g., —1/576 for 24 x 24) as it
becomes increasingly diluted in larger state spaces.

The consistently superior performance of the Max-Level strategy, particularly in more complex or larger
environments, can be attributed to several factors. Firstly, it provides a more impactful and relevant
penalty signal. The lya-normalized penalty (e.g., & —1/30) offers a substantially stronger and more
consistent learning feedback compared to the Map-Size penalty, which diminishes significantly with increasing
maze size. Secondly, l,.x serves as a normalization factor that likely correlates better with the intrinsic
task difficulty and typical solution length than the raw cell count of the maze, which does not inherently
capture navigational complexity. Consequently, the Max-Level penalty structure appears to offer more
effective exploration guidance and promotes greater learning efficiency.

In summary, normalizing step penalties by ln.x (Max-Level-based strategy) leads to a more robust and
effective reward scheme for the navigation tasks studied. This approach fosters more efficient learning and
achieves higher success rates by aligning the penalty signal more accurately with the inherent challenges of
the environment, proving especially advantageous as task complexity and scale increase.

Reward Strategy Impact on ASR

0.8 A
0.6
x —— 16x16_obst_15%
2 — 16x16
< sl — 24x24
0.2
0.0

100k 200k 300k 400k 500k 600k 700k 800k 900k ™
Training Steps

Figure 6: Comparison of average success rate differences (AASR) between two reward strategies: Max-
Level (the default strategy) and Map-Size, which is identical except that it replaces lyax with the total

number of cells in the maze (e.g., 256 for a 16x16 maze). The values are evaluated across training steps. A
positive AASR indicates that the Max-Level reward strategy yields better performance.

| Evaluating the Average Success Rate (ASR) With Larger Train dataset

To assess performance on a larger dataset, we trained the agent on 2000 mazes. Table presents the
Average Success Rates (ASR) across various maze configurations.

39

Under review as submission to TMLR

Table 12: Average Success Rates (ASR) with 2000 mazes in train dataset across maze types.

Maze Type Sl\f:; Tgi?e“ Sgit’t(frg(‘)‘al DQN | GPS | GPS-D | TempoRL | DAR
8x8 IM | 2000 - 14] 1.00 | 1.00 | 1.00 1.00 0.81
1616 IM | 2000 [16 — 26] 1.00 | 1.00 | 1.00 1.00 0.89
16x16_obst_15% | 1.5M | 2000 (20 — 30] 094 | 099 | 0.94 0.91 0.78
16x16_obst_25% | 1.5M | 2000 20 — 30] 098 | 098 | 0.94 0.39 0.16
16x16_rooms 1L5M | 2000 20 — 30] 1.00 | 095 | 0.82 0.98 0.13
16x16_corr IM | 2000 (10 — 30] 1.00 | 1.00 | 1.00 1.00 0.67
24x24 1L5M | 2000 20 - 30] 098 | 1.00 | 0.98 1.00 0.75
24x24_obst_15% | 1.5M | 2000 (10 - 30] 0.05 | 0.09 | 0.05 0.03 0.13

J ASR Statistical Significance Testing

To assess the statistical significance of the differences in Average Success Rates (ASR) between our proposed
method (GPS) and the baseline (DQN), we employed McNemar’s test. This section details the methodology
and presents the results of these tests.

Methodology

McNemar’s test is a non-parametric test suitable for paired nominal data. It is used to determine whether
there is a significant difference in the proportions of two related samples, such as when two algorithms are
evaluated on the same set of test instances. In our context, each maze evaluation episode serves as a paired
instance, and the outcome for each algorithm (GPS or DQN) is categorized as either a success or a failure.

An episode was deemed a success if the agent reached the goal in an episodic length of less than 75 steps.
Otherwise, it was considered a failure.

For each pair of algorithms (GPS vs. DQN) on a given maze type, we constructed a 2 x 2 contingency table
based on the outcomes of common evaluation episodes:

Algorithm B (DQN)

Success Failure
Algorithm A (GPS) Success a b
Failure c d

Where:

e a: Number of episodes where both GPS and DQN succeeded.
e b: Number of episodes where GPS succeeded and DQN failed.
e ¢: Number of episodes where GPS failed and DQN succeeded.
e d: Number of episodes where both GPS and DQN failed.

McNemar’s test focuses on the discordant pairs (b and ¢). The null hypothesis (Hy) is that the two algorithms
have the same ASR. The test statistic is calculated as:

2 _ (b_0)2
 b+4c

This statistic follows a chi-squared distribution with 1 degree of freedom. We used the version of the test
without continuity correction, as implemented in ‘statsmodels.stats.contingency_tables.mcnemar®.

X

The significance level was set at a = 0.05. If the calculated p-value was less than 0.05, we rejected the null
hypothesis and concluded that there is a statistically significant difference in the ASR performance of the
two algorithms.

40

Under review as submission to TMLR

Results: GPS vs. DQN

The results of McNemar’s test comparing GPS (Algorithm A) to DQN (Algorithm B) across various maze
configurations are summarized in Table The Average Success Rate (ASR) reported in the table for each
algorithm is based on Table

o« ASR (GPS) = (a+b)/(a+b+c+d)
« ASR (DQN) = (a+c¢)/(a+b+c+d)

All comparisons in Table [I3]yield p-values substantially less than 0.05, demonstrating statistically significant
improvements of GPS over DQN across all tested maze environments. The consistent outcomes and signifi-
cant p-values robustly support the conclusion that the GPS method offers superior performance compared
to the DQN baseline under the specified experimental conditions.

Table 13: McNemar’s Test Results for GPS vs. DQN. All p-values < 0.05 indicate a statistically significant
difference in performance, favoring GPS in all listed cases. P-values reported as 0.0000 by the script are
presented as < 0.0001.

Maze Type ASR (GPS) ASR (DQN) McNemar Stat. p-value

8x8 1.00 0.95 54.0000 < 0.0001
16x16 1.00 0.69 377.0000 < 0.0001
16x16_obs__15 0.96 0.85 22.1538 < 0.0001
16x16_obs_ 25 0.90 0.8 28.4462 < 0.0001
16x16__rooms 0.92 0.65 136.5329 < 0.0001
16x16_ corridors 1.00 0.80 107.0000 < 0.0001
24x24 1.00 0.24 757.0000 < 0.0001
24x24_obs_15 0.91 0.15 760.0208 < 0.0001
24x24 obs_ 25 0.36 0.11 192.9627 < 0.0001

The following sections provide the detailed per-run summaries logged and the specific contingency tables
used for McNemar’s test for each maze configuration.

Maze: 8x8
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 1000, Failures: 0, Errors: 0

e DQ@N (Algorithm B) Summary: Total episodes: 1000, Successes: 946, Failures: 54, Errors: 0

Contingency Table (GPS vs. DQN):

DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 946 (a) 54 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 54.0000, p-value: < 0.0001

Maze: 16x16
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 1000, Failures: 0, Errors: 0

41

Under review as submission to TMLR

o DQN (Algorithm B) Summary: Total episodes: 1000, Successes: 623, Failures: 377, Errors: 0

Contingency Table (GPS vs. DQN):

DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 623 (a) 377 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 999
McNemar’s Statistic: 342.0000, p-value: < 0.0001

Maze: 16x16_obs_15
o GPS (Algorithm A) Summary: Total episodes: 210, Successes: 202, Failures: 8, Errors: 0
e DQN (Algorithm B) Summary: Total episodes: 210, Successes: 178, Failures: 32, Errors: 0
Contingency Table (GPS vs. DQN):

DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 177 (a) 25 (b)
Failure 1 (c) 7 (d)

Common episodes for comparison: 210
McNemar’s Statistic: 22.1538, p-value: < 0.0001

Maze: 16x16_obs_25
o GPS (Algorithm A) Summary: Total episodes: 399, Successes: 360, Failures: 39, Errors: 0
o DQN (Algorithm B) Summary: Total episodes: 402, Successes: 320, Failures: 82, Errors: 0

Contingency Table (GPS vs. DQN):

DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 306 (a) 54 (b)
Failure 11 (c) 28 (d)

Common episodes for comparison: 399
McNemar’s Statistic: 28.4462, p-value: < 0.0001

Maze: 16x16_rooms
o GPS (Algorithm A) Summary: Total episodes: 586, Successes: 530, Failures: 56, Errors: 0
e DQN (Algorithm B) Summary: Total episodes: 586, Successes: 379, Failures: 207, Errors: 0
Contingency Table (GPS vs. DQN):

DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 371 (a) 159 (b)
Failure 8 (c) 48 (d)

Common episodes for comparison: 583
McNemar’s Statistic: 132.7872, p-value: < 0.0001

42

Under review as submission to TMLR

Maze: 16x16_corridors

o GPS (Algorithm A) Summary: Total episodes: 545, Successes: 545, Failures: 0, Errors: 0

e DQ@N (Algorithm B) Summary: Total episodes: 545, Successes: 438, Failures: 107, Errors: 0

Contingency Table (GPS vs. DQN):
DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 438 (a) 107 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 545
McNemar’s Statistic: 107.0000, p-value: < 0.0001

Maze: 24x24
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 999, Failures: 1, Errors: 0

o DQN (Algorithm B) Summary: Total episodes: 1000, Successes: 242, Failures: 758, Errors: 0

Contingency Table (GPS vs. DQN):
DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 242 (a) 757 (b)
Failure 0 (c) 1(d)

Common episodes for comparison: 1000
McNemar’s Statistic: 757.0000, p-value: < 0.0001

Maze: 24x24_obs_15
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 914, Failures: 86, Errors: 0

o DQN (Algorithm B) Summary: Total episodes: 1000, Successes: 150, Failures: 850, Errors: 0

Contingency Table (GPS vs. DQN):
DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 148 (a) 766 (b)
Failure 2 (c) 84 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 760.0208, p-value: < 0.0001

Maze: 24x24_obs_25
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 368, Failures: 632, Errors: 0

o DQN (Algorithm B) Summary: Total episodes: 1000, Successes: 99, Failures: 901, Errors: 0

Contingency Table (GPS vs. DQN):

43

Under review as submission to TMLR

DQN (Algorithm B)

Success Failure
GPS (Alg. A) Success 46 (a) 322 (b)
Failure 53 (c) 579 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 192.9627, p-value: < 0.0001

This detailed breakdown for each environment shows the specific data underlying the McNemar’s tests.

Results: GPS vs. TempoRL

Table [14] summarizes the Average Success Rates (ASR) for GPS and TempoRL, along with the McNemar
test statistics and p-values derived from common paired evaluation episodes.

All comparisons in Table [I4]yield p-values substantially less than 0.05, demonstrating statistically significant
improvements of GPS over the TempoRL baseline across all tested maze environments. The consistent
outcomes and significant p-values robustly support the conclusion that the GPS method offers superior
performance compared to the TempoRL baseline under these experimental conditions.

Table 14: Summary of McNemar’s Test Results for GPS vs. TempoRL. All p-values < 0.05 indicate a
statistically significant difference in performance, favoring GPS.

Maze Type ASR (GPS) ASR (TempoRL) McNemar Stat. p-value

8x8 1.00 0.97 26.0000 < 0.0001
16x16 1.00 0.84 178.0000 < 0.0001
16x16_obs_ 15 0.96 0.82 19.5652 < 0.0001
16x16 obs 25 0.90 0.79 18.9804 < 0.0001
16x16__rooms 0.92 0.63 119.0088 < 0.0001
16x16_ corridors 1.00 0.9 56.0000 < 0.0001
24x24 1.00 0.46 511.0078 < 0.0001
24x24 obs_ 15 0.91 0.20 651.0968 < 0.0001
24x24 obs 25 0.36 0.09 171.6100 < 0.0001

The following sections provide the detailed per-run summaries and the specific contingency tables used for
McNemar’s test for each maze configuration when comparing GPS with TempoRL.

Maze: 8x8 (GPS vs. TempoRL)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 1000, Failures: 0, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 1000, Successes: 974, Failures: 26, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 974 (a) 26 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 26.0000, p-value: < 0.0001

44

Under review as submission to TMLR

Maze: 16x16 (GPS vs. TempoRL)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 1000, Failures: 0, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 1000, Successes: 822, Failures: 178, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 822 (a) 178 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 178.0000, p-value: < 0.0001

Maze: 16x16_obs_15 (GPS vs. TempoRL)

e GPS (Algorithm A) Summary: Total episodes: 210, Successes: 202, Failures: 8, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 210, Successes: 172, Failures: 38, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 164 (a) 38 (b)
Failure 8 (¢) 0 (d)

Common episodes for comparison: 210
McNemar’s Statistic: 19.5652, p-value: < 0.0001

Maze: 16x16_obs_25 (GPS vs. TempoRL)
o GPS (Algorithm A) Summary: Total episodes: 399, Successes: 360, Failures: 39, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 402, Successes: 318, Failures: 84, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 287 (a) 73 (b)
Failure 29 (c) 10 (d)

Common episodes for comparison: 399
McNemar’s Statistic: 18.9804, p-value: < 0.0001

Maze: 16x16_rooms (GPS vs. TempoRL)
o GPS (Algorithm A) Summary: Total episodes: 586, Successes: 530, Failures: 56, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 586, Successes: 366, Failures: 220, Errors: 0

Contingency Table (GPS vs. TemporL):

45

Under review as submission to TMLR

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 335 (a) 195 (b)
Failure 31 (c) 25 (d)

Common episodes for comparison: 586
McNemar’s Statistic: 119.0088, p-value: < 0.0001

Maze: 16x16_corridors (GPS vs. TempoRL)

o GPS (Algorithm A) Summary: Total episodes: 545, Successes: 545, Failures: 0, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 545, Successes: 489, Failures: 56, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 489 (a) 56 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 545
McNemar’s Statistic: 56.0000, p-value: < 0.0001

Maze: 24x24 (GPS vs. TempoRL)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 999, Failures: 1, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 1000, Successes: 486, Failures: 514, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 485 (a) 514 (b)
Failure 1 (c) 0 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 511.0078, p-value: < 0.0001

Maze: 24x24_obs_15 (GPS vs. TempoRL)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 914, Failures: 86, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 1000, Successes: 218, Failures: 782, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 194 (a) 720 (b)
Failure 24 (c) 62 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 651.0968, p-value: < 0.0001

46

Under review as submission to TMLR

Maze: 24x24_obs_25 (GPS vs. TempoRL)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 368, Failures: 632, Errors: 0

o TemporL (Algorithm B) Summary: Total episodes: 1000, Successes: 106, Failures: 894, Errors: 0

Contingency Table (GPS vs. TemporL):

TemporL (Algorithm B)

Success Failure
GPS (Alg. A) Success 37 (a) 331 (b)
Failure 69 (c) 563 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 171.6100, p-value: < 0.0001

This detailed breakdown for each environment when comparing GPS to TempoRL shows the specific data
underlying McNemar’s tests.

Results: GPS vs. DAR

Table [15| summarizes the Average Success Rates (ASR) for GPS and DAR, along with the McNemar test
statistics and p-values derived from common evaluation episodes.

Table 15: Summary of McNemar’s Test Results for GPS vs. DAR. All p-values < 0.05 indicate a statistically
significant difference in performance, favoring GPS.

Maze Type ASR (GPS) ASR (DAR) McNemar Stat. p-value

8x8 1.00 0.76 244.0000 < 0.0001
16x16 1.00 0.61 394.0000 < 0.0001
16x16_obs_ 15 0.96 0.64 57.8000 < 0.0001
16x16_obs_ 25 0.90 0.14 298.2038 < 0.0001
16x16__rooms 0.92 0.15 438.0800 < 0.0001
16x16__corridors 1.00 0.61 213.0000 < 0.0001
24x24 1.00 0.23 711.0000 < 0.0001
24x24 obs_15 0.91 0.12 614.2257 < 0.0001
24x24_obs_ 25 0.36 0.07 236.2798 < 0.0001

All comparisons in Table[I5]yield p-values substantially less than 0.05, demonstrating statistically significant
improvements of GPS over the DAR baseline across all tested maze environments. The consistent outcomes
and significant p-values robustly support the conclusion that GPS offers superior performance compared to
the DAR baseline under these experimental conditions.

The following sections provide the detailed per-run summaries logged by the script and the specific contin-
gency tables used for McNemar’s test for each maze configuration when comparing GPS with DAR.

Maze: 8x8 (GPS vs. DAR)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 1000, Failures: 0, Errors: 0

e DAR (Algorithm B) Summary: Total episodes: 1000, Successes: 756, Failures: 244, Errors: 0

47

Under review as submission to TMLR

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 756 (a) 244 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 244.0000, p-value: < 0.0001

Maze: 16x16 (GPS vs. DAR)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 1000, Failures: 0, Errors: 0

o DAR (Algorithm B) Summary: Total episodes: 1000, Successes: 606, Failures: 394, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 606 (a) 394 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 394.0000, p-value: < 0.0001

Maze: 16x16_obs_15 (GPS vs. DAR)
o GPS (Algorithm A) Summary: Total episodes: 210, Successes: 202, Failures: 8, Errors: 0

o DAR (Algorithm B) Summary: Total episodes: 210, Successes: 134, Failures: 76, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 128 (a) 74 (b)
Failure 6 (c) 2 (d)

Common episodes for comparison: 210
McNemar’s Statistic: 57.8000, p-value: < 0.0001

Maze: 16x16_obs_25 (GPS vs. DAR)
o GPS (Algorithm A) Summary: Total episodes: 399, Successes: 360, Failures: 39, Errors: 0

o DAR (Algorithm B) Summary: Total episodes: 402, Successes: 54, Failures: 348, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 50 (a) 310 (b)
Failure 4 (c) 35 (d)

Common episodes for comparison: 399
McNemar’s Statistic: 298.2038, p-value: < 0.0001

48

Under review as submission to TMLR

Maze: 16x16_rooms (GPS vs. DAR)
o GPS (Algorithm A) Summary: Total episodes: 586, Successes: 530, Failures: 56, Errors: 0

o DAR (Algorithm B) Summary: Total episodes: 586, Successes: 86, Failures: 500, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 83 (a) 447 (b)
Failure 3 (c) 53 (d)

Common episodes for comparison: 586
McNemar’s Statistic: 438.0800, p-value: < 0.0001

Maze: 16x16_corridors (GPS vs. DAR)
e GPS (Algorithm A) Summary: Total episodes: 545, Successes: 545, Failures: 0, Errors: 0

o DAR (Algorithm B) Summary: Total episodes: 544, Successes: 331, Failures: 213, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 331 (a) 213 (b)
Failure 0 (c) 0 (d)

Common episodes for comparison: 544
McNemar’s Statistic: 213.0000, p-value: < 0.0001

Maze: 24x24 (GPS vs. DAR)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 999, Failures: 1, Errors: 0

o DAR (Algorithm B) Summary: Total episodes: 1000, Successes: 288, Failures: 712, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 288 (a) 711 (b)
Failure 0 (c) 1(d)

Common episodes for comparison: 1000
McNemar’s Statistic: 711.0000, p-value: < 0.0001

Maze: 24x24_obs_15 (GPS vs. DAR)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 914, Failures: 86, Errors: 0

o DAR (Algorithm B) Summary: Total episodes: 4833, Successes: 524, Failures: 4309, Errors: 0
Contingency Table (GPS vs. DAR):

49

Under review as submission to TMLR

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 38 (a) 632 (b)
Failure 6 (c) 55 (d)

Common episodes for comparison: 731
McNemar’s Statistic: 614.2257, p-value: < 0.0001

Maze: 24x24_obs_25 (GPS vs. DAR)
o GPS (Algorithm A) Summary: Total episodes: 1000, Successes: 368, Failures: 632, Errors: 0

o DAR (Algorithm B) Summary: Total episodes: 1000, Successes: 66, Failures: 934, Errors: 0

Contingency Table (GPS vs. DAR):

DAR (Algorithm B)

Success Failure
GPS (Alg. A) Success 24 (a) 344 (b)
Failure 42 (c) 590 (d)

Common episodes for comparison: 1000
McNemar’s Statistic: 236.2798, p-value: < 0.0001

This detailed breakdown for each environment when comparing GPS to DAR shows the specific data under-
lying McNemar’s tests.

50

	Introduction
	Related Work
	Temporal Abstraction Through Action Repetition
	Multi-Step Action Sequence Generation
	Temporal Abstraction Using Hierarchies and LLMs

	Method
	The Actor
	The Proto-Sequence Decoder
	The Critic
	Training Set Augmentation Using Sequence Subsets and Inference

	Experiments and Results
	Evaluation Environment
	Baselines & Evaluated Methods
	Experimental Setup
	Evaluation Results
	Evaluating the Average Success Rate (ASR).
	Evaluating the Path Efficiency Ratio (PER).
	Evaluating Sequence Generation Frequency (SGF).

	Analysis and Discussion
	Conclusions, Limitations, and Future Work
	Baselines and Architecture
	DQN Baseline Implementation Details
	Model Architecture (QNetwork)
	Convolutional Neural Network (CNN) Part
	Linear Part

	Hyperparameters
	Epsilon-Greedy Exploration
	Optimizer
	Replay Buffer
	Training Details
	Evaluation

	DAR Baseline Implementation Details
	Model Architecture
	Convolutional Neural Network (CNN) Part
	Linear Part

	Hyperparameters
	Algorithm Specific Arguments

	Training Details

	TempoRL Baseline Implementation Details
	Model Architecture
	Convolutional Neural Network (CNN) Part
	Linear Heads for Action and Skip Policies

	Hyperparameters
	Action Selection and Exploration
	Optimizer
	Replay Buffers
	Training Details
	Loss Function and Updates
	Target Network Updates

	Proto Sequence Decoder (PSD) Implementation Details
	Training Dataset Setup
	Model Architecture
	Input Representation
	Encoder Network
	Decoder Network

	Training Objective
	Hyperparameters
	Optimizer
	Training Details
	Loss Function
	Training Procedure

	Evaluation
	Visualization of the Learned Embedding Space

	GPS (Generative Proto Sequence) Implementation Details
	Model Architecture and State Representation
	Convolutional Neural Network (CNN) Part
	Actor Network
	Position Encoding in Proto-Sequence Generation
	Critic Network
	Decoder Network

	Hyperparameters
	Reward Function and Empty Sequence Handling
	Action Selection and Exploration
	Optimizer
	Replay Buffer
	Training Details
	Critic Network Update
	Actor Network Update
	Target Network Updates
	Training Procedure Summary

	Evaluation

	Maze Evaluation Environments Benchmark
	Synthetic Maze Generation Process
	Maze Type Generation Prompts
	Obstacles Maze Prompt
	Rooms Maze Prompt
	Corridors Maze Prompt

	Analysis of Reward Strategy Impact on ASR
	Evaluating the Average Success Rate (ASR) With Larger Train dataset
	ASR Statistical Significance Testing

