
Test-Time Search in Neural Graph Coarsening for the
Capacitated Vehicle Routing Problem

Anonymous Author(s)
Affiliation
Address
email

Abstract

The identification of valid inequalities, such as Rounded capacity inequalities1

(RCIs), is a key component of cutting plane methods for the Capacitated Vehicle2

Routing Problem (CVRP). While a neural separation method can learn to find high-3

quality cuts, improving the learned model further often requires costly retraining4

with diminishing returns. This paper proposes an alternative: enhancing the5

performance of a trained model at inference time through two test-time search6

techniques. First, we introduce stochastic edge selection into the graph coarsening7

procedure, replacing the previously proposed greedy approach. Second, we propose8

the Graph Coarsening History-based Partitioning (GraphCHiP) algorithm, which9

leverages coarsening history to identify not only RCIs but also, for the first time,10

the Framed capacity inequalities (FCIs). Experiments on randomly generated11

CVRP instances demonstrate the effectiveness of our approach in reducing the dual12

gap compared to the existing neural separation method. Additionally, our method13

discovers effective FCIs on a specific instance, despite the challenging nature of14

identifying such cuts.15

1 Introduction16

The Capacitated Vehicle Routing Problem (CVRP) is a fundamental combinatorial optimization17

problem in logistics and operations research. The goal of the CVRP is to design a set of minimum-cost18

routes for a fleet of vehicles, each with a limited capacity, to serve a group of customers with specific19

demands. Since this problem is NP-hard, finding optimal solutions for large-scale instances poses a20

significant computational challenge. To find optimal solutions, exact methods such as branch-and-cut21

[13, 11] or branch-and-price-and-cut algorithms [14, 4, 19] are commonly employed. These methods22

rely on the cutting plane method, which iteratively refines the linear programming relaxation of the23

CVRP by adding valid inequalities, or cuts, to eliminate infeasible solutions. The task of identifying24

violated inequalities for a given fractional solution is known as the separation problem.25

For the CVRP, one of the most important families of cuts is the Rounded capacity inequalities26

(RCIs), which leverage vehicle capacity constraints. However, the separation of effective RCIs is27

not trivial. Traditionally, this is addressed by either exact algorithms [6], which guarantee finding28

the most violated cuts but are relatively slow, or heuristic methods [11], which are faster but tend to29

produce cuts with relatively minimal violation. To bridge this gap, Kim et al. [9] recently introduced30

NeuralSEP, a neural separation algorithm designed for generating RCIs. By learning to identify31

promising customer subsets for cut generation via a neural graph coarsening procedure, NeuralSEP32

achieves good performance on large-scale problems.33

While NeuralSEP shows promising results, achieving further performance gains is often subject to34

diminishing returns, as strategies like architectural modifications or hyperparameter tuning require35

costly retraining for only marginal gains. We turn to test-time search, a technique that improves36

Submitted to 39th Workshop on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

model performance at inference time without any retraining. This approach has been widely adopted37

in neural combinatorial optimization (NCO). For example, common techniques include random38

sampling and beam search, which focus on generating multiple candidate solutions [2, 10, 3]. Other39

strategies adapt the model itself, such as active search, which refines model parameters for a specific40

test instance [2, 7]. More recently, methods inspired by evolutionary algorithms, such as neural genetic41

search [8], have also been proposed. Building on this established paradigm, our work introduces42

novel test-time search methods specifically designed to enhance the cut generation capabilities43

of NeuralSEP. In this work, we adapt this paradigm to introduce novel test-time search methods44

specifically designed to enhance the cut generation capabilities of NeuralSEP.45

We propose two methods that improve its performance on finding existing cuts and extend its46

capabilities to a more complex class of inequalities for the first time. Our first method introduces a47

stochastic edge selection strategy into NeuralSEP’s neural graph coarsening procedure, enhancing the48

generation of RCIs and leading to improved dual gap reduction. Our second, the novel GraphCHiP49

algorithm, leverages the model’s coarsening history to identify additional RCIs and to enable the50

training-free generation of Framed capacity inequalities (FCIs). Experimental results demonstrate51

that these methods collectively enhance the performance of NeuralSEP in terms of dual gap reduction.52

Additionally, we showcase the ability of GraphCHiP to identify effective FCIs on a specific instance,53

despite the challenging nature of finding such cuts.54

2 Preliminaries and background55

The Capacitated Vehicle Routing Problem (CVRP) is typically defined on a complete graph G =56

(V,E), where V = {v0} ∪ VC is the set of vertices, consisting of a depot (v0) and a set of customers57

(VC). Each edge e ∈ E is associated with a binary decision variable xe, where xe = 1 if the edge is58

used in the solution and xe = 0 otherwise. For any subset of customers S ⊆ VC , let δ(S) denote the59

set of edges with exactly one endpoint in S (the cut-set). The term x(δ(S)) represents the sum of60

decision variables for all edges in this cut-set, i.e., x(δ(S)) =
∑

e∈δ(S) xe. Each customer i ∈ VC61

has a demand qi, and each vehicle has a uniform capacity Q.62

2.1 Capacity inequalities63

Rounded capacity inequalities (RCIs) are the most widely used capacity inequalities in the CVRP.64

The form of RCIs is given by:65

x(δ(S)) ≥ 2

⌈∑
i∈S qi

Q

⌉
∀S ⊆ VC , |S| ≥ 2. (1)

This inequality ensures that the number of vehicles entering and leaving any subset of customers S is66

sufficient to meet the total demand of that subset, given the vehicle capacity Q. The exact separation67

problem for RCIs is NP-hard [5], and solving it for large-scale problems is computationally expen-68

sive. Alternatives to the exact separation algorithm range from heuristic methods, exemplified by69

the well-known CVRPSEP library Lysgaard et al. [11], to the learning-based algorithm NeuralSEP,70

which is trained using optimal solutions to the exact separation problem as labels.71

RCIs are effective, but they do not consider demands outside the set S [13]. To address this issue,72

Augerat et al. [1] introduced the framed capacity inequalities (FCIs). FCIs extend RCIs by defining a73

structure composed of a larger customer subset, which contains a set of smaller, mutually disjoint74

components. The total demand of each component is then treated as an individual item in a bin-75

packing problem. By solving this problem, the minimum number of vehicles needed to serve all the76

components is determined collectively. This approach allows FCIs to account for capacity constraints77

across multiple subsets simultaneously, resulting in tighter bounds and the generation of stronger78

inequalities compared to RCIs. The inequality is formulated as:79

x(δ(H)) +
∑
i∈I

x(δ(Si)) ≥ 2r(Ω) + 2
∑
i∈I

⌈
d(Si)

Q

⌉
. (2)

The identification of these FCIs is computationally expensive, since it requires solving the bin-packing80

problem, which is known to be NP-hard. The separation of FCIs is addressed in a few studies [1, 11].81

As far as we know, our work is the first to propose a learning-based approach for separating FCIs.82

2

Set Assignment & UncoarseningNeural Graph Coarsening Procedures

GNN

𝜸	– coarsening

GNN

𝑝! !∈𝒱!𝑝! !∈𝒱"

𝑞!" = 𝑝!𝑝" + 1 − 𝑝! 1 − 𝑝" , ∀𝑖, 𝑗 ≠ 0	

𝑆

𝑉\𝑆

Figure 1: The details of NeuralSEP framework. pi is the predicted probability that vertex i ∈ VC is
included in the subset S. qij is the contraction probability that vertices i ∈ VC and j ∈ VC are
contracted into a single vertex.

2.2 Revisiting NeuralSEP83

NeuralSEP, proposed by Kim et al. [9], is a neural separation algorithm designed to generate RCIs for84

the CVRP. In essence, NeuralSEP is a learned function that maps an input support graph to an output85

customer subset, S, which defines a violated inequality. The parameters of this function, embodied86

by a neural network, are trained in a supervised manner using labels derived from optimal solutions87

to the exact separation problem for instances with 50 to 100 customers. The overall framework of88

NeuralSEP consists of four parts, which are graph embedding with graph neural networks (GNNs),89

message passing GNNs, neural graph coarsening, and set assignment and graph uncoarsening. As90

illustrated in Figure 1, a key part is the neural graph coarsening procedure, inspired by the shrinking91

heuristic of Ralphs et al. [16]. It works by iteratively merging vertices that the model predicts are92

likely to be on the same side of the cut—that is, either both inside the violated subset S or both93

outside of it. Experimental results show that NeuralSEP efficiently generates high-quality cuts and94

outperforms CVRPSEP on large-scale instances with over 400 customers under fixed iterations.95

Further evaluation on benchmark datasets demonstrates scalability and effective generalization to96

out-of-distribution problems.97

3 Test-time search in neural graph coarsening98

3.1 Stochastic edge selection in graph coarsening99

The original NeuralSEP employs a greedy strategy in its neural graph coarsening procedure, where100

edges with the highest contraction probabilities are selected for merging. This deterministic approach,101

however, can lead to a lack of diversity in the generated cuts, as the same edges are consistently102

chosen for contraction across different runs. One effective approach to addressing the challenge103

is to introduce a stochastic element into the procedure. We modify the contraction probability by104

introducing a stochastic parameter πij , resulting in a perturbed contraction probability q̃ij :105

q̃ij =

{
pipj + (1− pi)(1− pj) + πij if i, j ̸= 0

0 otherwise.
(3)

where πij is a small random value drawn from a uniform distribution U(0, 0.001). During the106

coarsening procedure, an edge e whose perturbed probability q̃ij is the highest among the edges in107

the support graph Ḡ is selected for contraction, i.e., e = argmax(i,j)∈Ē q̃ij . This approach is termed108

π-greedy selection, and Figure 2 illustrates this process. Adding randomness can alter which edges109

are chosen for contraction and create chain effects throughout the procedure. Since the coarsening110

procedure iterates and generates predictions several times, early changes in contraction order spread111

through the entire process. As a result, the algorithm produces different cuts despite starting from the112

same initial conditions.113

3.2 Graph coarsening history-based partitioning algorithm114

The Graph Coarsening History-based Partitioning (GraphCHiP) algorithm is a novel test-time search115

method designed to identify both RCIs and FCIs using the trained NeuralSEP model. The key idea116

of GraphCHiP is to leverage the intermediate steps of the neural graph coarsening procedure from117

NeuralSEP to identify promising candidate subsets and partitions for generating violated inequalities.118

3

…
Vertex Selection Probability 𝑝! Contraction Probability 𝑞!"

𝜋!" 	~	𝒰(0,0.001)

argmax 𝑞!"

Neural Graph Coarsening Procedure

Figure 2: Illustration of π-greedy selection method in the neural graph coarsening procedure

6

5 7

𝑡 = 0 0 21 43 65 7

𝑡 = 1

𝑡 = 2

𝑡 = 3

𝑡 = 4

98

𝑡 = 5

𝑡 = 6

𝑆 𝑉\𝑆Depot

𝑡 = 1 0 21

43
6

5 7

9

8

𝐻

𝑆!

𝑆"

𝑡 = 5 0 21

43

9

8

𝐻

𝑆!# 𝑆"#

Figure 3: Illustration of how the GraphCHiP algorithm makes the subsets and partitions from the
node map. The left diagram shows the neural graph coarsening process from t = 0 (original graph
with vertices 0-9) to t = 6 (final coarsened graph with three supernodes: Depot, S, and V \ S). The
right diagrams demonstrate partition generation at steps t = 1 and t = 5 by backtracking the
coarsening history. At t = 5, merged vertex groups (e.g., S′

1 = {1, 2, 3, 4}, S′
2 = {5, 6, 7}) and

individual vertices form partition Ω of subset H .

In neural graph coarsening, vertices are iteratively merged based on their contraction probabilities.119

This process is controlled by the coarsening ratio γ, which dictates the fraction of vertices to be120

coarsened at each step. Thus, for a given support graph Ḡ = (V, Ē), the coarsening process121

generates a sequence of graphs {Gt}Tt=0, where Vt is the set of vertices (supernodes) at coarsening122

step t ∈ [0, T]. At each step t, vertices in Vt−1 are merged into disjoint supernodes to form the123

next step’s vertex set, Vt. The process is captured by a collection of node maps {Mt}Tt=1, where124

Mt : Vt → 2V provides, for any supernode u ∈ Vt, the complete set of initial vertices from V . Thus,125

these node maps provide a complete record of how the original vertices are hierarchically clustered.126

Figure 3 illustrates this core mechanism. The left side shows a complete coarsening process, while127

the right side demonstrates how the node map can be used to backtrack and reconstruct the specific128

vertex groupings at any intermediate step. This ability to query the historical structure of the graph129

is the foundation for our cut separation procedures. The supernodes formed at each step serve as130

candidate subsets for RCIs, and collections of these supernodes can be organized into candidate131

partitions for FCIs.132

For RCI separation Each supernode generated during the coarsening process is a natural candidate133

subset for RCIs. The procedure is straightforward: GraphCHiP iterates backward through the node134

map, from step t = T − 1 to t = 1. At each step t, it considers every supernode u ∈ Vt that is also135

present in the subset S identified by NeuralSEP. Using the node map Mt, it identifies the subsets136

which consists of the original vertices constituting the supernode u. It then directly checks if these137

subsets violate the RCI. For efficiency, this search terminates as soon as any subset that violates the138

RCI is found. By examining the entire coarsening history, this method can find a violating subset139

even when the final subset S itself is not violated.140

For FCI separation While NeuralSEP is originally designed to identify RCIs, GraphCHiP extends141

its capability to find FCIs at test time. One of the main challenges in separating FCIs is to find142

4

promising partitions of the vertex set, since searching all possible partitions is computationally143

intractable. Our algorithm leverages the coarsening history to generate candidate partitions. In144

detail, after NeuralSEP identifies a final subset S for a potential RCI, we trace its formation history145

backward. At each coarsening step t, we construct a candidate partition Ω of the customer set VC by146

three steps. First, for each supernode u ∈ Vt in the set S, we use the node map Mt(u) to identify its147

constituent set of original vertices. Second, we determine the set of all customer vertices in VC that148

are not included in any of the sets resolved in the previous step. Third, we complete the partition by149

adding each unassigned vertex as a distinct singleton set. This process guarantees that Ω is a complete150

partition of all customer vertices in VC . We then apply a filtering heuristic that discards any partition151

Ω if one of its subsets in Ω already violates an RCI. This makes the search focus on cuts arising from152

the partition’s structure. For the remaining partitions, we employ a two-stage evaluation to reduce153

computational cost. First, we use a fast, approximate calculation of the bin-packing value r(Ω) to154

quickly screen out unpromising candidates. For partitions that pass this check, we then compute the155

tight dual bound of r(Ω) using the algorithm in Martello and Toth [12].156

4 Experimental results157

In this section, we present a comprehensive evaluation of our proposed test-time search methods for158

NeuralSEP. Our evaluation focuses on the performance of a cutting plane method at the root node of159

a branch-and-cut algorithm. Our approach is used as the primary engine for generating cuts.160

The experiments are designed to address two primary objectives. First, we evaluate our stochastic161

edge selection method by measuring its impact on the dual gap. Second, we assess GraphCHiP162

algorithm’s effectiveness in leveraging the coarsening history to find additional RCIs, measured163

by improvements in the dual gap, and its novel capability to identify FCIs. Regarding the FCI164

evaluation, it is important to note that violated inequalities are not present in every problem instance,165

as their existence is highly contingent on the specific support graph structure and customer demands.166

Accordingly, our analysis of FCIs focuses on a detailed examination of a specific instance where our167

algorithm successfully identified them.168

Our evaluation methodology follows the approach from Kim et al. [9]. We measure performance using169

the optimality gap defined as GAP = UB−LB
UB × 100(%), where UB is the upper bound provided by170

the hybrid genetic search (HGS) algorithm from Vidal [18] and LB is the lower bound obtained from171

the cutting plane method at the root node of a branch-and-cut algorithm. We also use the same set of172

test instances, which are publicly available at https://github.com/hyeonahkimm/neuralsep/173

tree/main/data/instances. These randomly generated CVRP instances were created following174

the guidelines of Uchoa et al. [17] and Queiroga et al. [15]. The test set includes instances with175

a varying number of customers, |VC | ∈ {50, 75, 100, 200, 300, 400, 500, 750, 1000}. For a fair176

comparison, we run all experiments under the same conditions. The experiments are conducted on177

a single machine with 62 GB DDR4 RAM @ 3200 MT/s, an AMD Ryzen 9 5900X CPU, and an178

NVIDIA GeForce RTX 4070 GPU.179

4.1 Results on RCI separation180

For our comparative analysis, we use several benchmarks: CVRPSEP, a library of traditional separa-181

tion heuristics, serves as a non-learning-based benchmark, while the original NeuralSEP1 acts as our182

primary learning-based benchmark implemented by Deep Graph Library (DGL). We also developed183

NeuralSEP2, our re-implementation of NeuralSEP in PyTorch Geometric (PyG), to provide a con-184

trolled baseline for our enhancements. Our proposed methods are π-NeuralSEP2, which integrates185

a stochastic edge selection algorithm, and our full approach, π-NeuralSEP2 + GC, which further186

incorporates the GraphCHiP algorithm. This setup allows us to measure the performance gains from187

each of our algorithmic contributions.188

We evaluate the performance of the proposed RCI separation methods on the benchmark instances,189

imposing a uniform computational time limit of 3600 seconds for each run. The performance of the190

RCI separation algorithms on the CVRP test set is summarized in Table 1 and visually represented191

in Figure 4. The combination of the more efficient PyG implementation and our test-time search192

methods allows our approach to improve the dual gap within the given time limit.193

5

https://github.com/hyeonahkimm/neuralsep/tree/main/data/instances
https://github.com/hyeonahkimm/neuralsep/tree/main/data/instances
https://github.com/hyeonahkimm/neuralsep/tree/main/data/instances

Table 1: Summary of the performance of RCI separation algorithms

Size CVRPSEP NeuralSEP1 NeuralSEP2 π-NeuralSEP2 + GC
Gap Time/Iter Gap Time/Iter Gap Time/Iter Gap Time/Iter

50 1.970% 0.009 4.151% 0.830 5.250% 0.120 3.679% 0.133
75 2.769% 0.054 5.305% 1.066 5.164% 0.209 4.393% 0.246

100 4.539% 0.145 6.611% 1.440 6.410% 0.378 5.953% 0.394
200 6.280% 2.001 9.214% 3.411 8.314% 1.293 7.683% 1.594
300 7.903% 10.431 10.515% 12.006 10.087% 4.607 8.714% 7.482
400 12.618% 16.936 12.848% 26.714 13.632% 13.518 10.970% 19.850
500 16.357% 16.947 15.413% 41.227 14.826% 26.705 13.429% 39.125
750 25.783% 16.603 22.553% 102.623 22.187% 90.436 20.956% 111.835

1,000 30.408% 23.321 28.777% 161.183 26.434% 139.826 26.136% 159.042

507510
0

20
0

30
0

40
0

50
0

75
0

10
00

Number of customers

0

5

10

15

20

25

30

35

40

O
pt

im
al

ity
 g

ap
 (%

)

CVRPSEP
NeuralSEP1
NeuralSEP2
-NeuralSEP2+GC

(a) Comparison of optimality gap

50 75 100 200 300 400 500 750 1000
Number of customers

0.0

0.2

0.4

0.6

0.8

1.0

W
in

ni
ng

 R
at

io

NeuralSEP2
-NeuralSEP2+GC

(b) The winning ratio out of 10 instances

Figure 4: Comparison of the performance of RCI separation algorithms

4.2 Experimental results of FCI separation194

We now present the results of the experiments on FCI separation using our proposed method,195

GraphCHiP. Our separation routine is designed to add FCI cuts only when the violation found during196

RCI separation is less than 1.0. As this condition typically occurs in the later stages of the iterative197

process, the FCI experiments are conducted without a time limit or other early stopping criteria.198

Given the known rarity of FCIs, we present the results on the X-n153-k22 instance from Uchoa et al.199

[17]. The purpose is to demonstrate and validate the capability of our algorithm in the challenging task200

of identifying FCIs. Table 2 summarizes the detailed results on the instance. Combining GraphCHiP201

with π-NeuralSEP2 yields the best overall performance. This combination improves the optimality202

gap by an additional 1.38%p compared to using π-NeuralSEP2 alone.203

Table 2: Results on X-n153-k22 instance

Method Algorithm Lowerbound Gap FCI cuts

RCI CVRPSEP RCI 19983.51 5.83% -
π-NeuralSEP2 RCI 19861.37 6.40% -

RCI+FCI CVRPSEP RCI + CVRPSEP FCI 19984.29 5.82% 4
π-NeuralSEP2 RCI + GraphCHiP FCI 20153.95 5.02% 324

Optimal Value (opt): 21220.0

6

References204

[1] Augerat, P., Naddef, D., Belenguer, J., Benavent, E., Corberan, A., and Rinaldi, G. (1995). Computational205

results with a branch and cut code for the capacitated vehicle routing problem.206

[2] Bello, I., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2016). Neural combinatorial optimization with207

reinforcement learning. arXiv preprint arXiv:1611.09940.208

[3] Choo, J., Kwon, Y.-D., Kim, J., Jae, J., Hottung, A., Tierney, K., and Gwon, Y. (2022). Simulation-guided209

beam search for neural combinatorial optimization. Advances in Neural Information Processing Systems,210

35:8760–8772.211

[4] Costa, L., Contardo, C., and Desaulniers, G. (2019). Exact branch-price-and-cut algorithms for vehicle212

routing. Transportation Science, 53(4):946–985.213

[5] Diarrassouba, I. (2017). On the complexity of the separation problem for rounded capacity inequalities.214

Discrete Optimization, 25:86–104.215

[6] Fukasawa, R., Longo, H., Lysgaard, J., Aragão, M. P. d., Reis, M., Uchoa, E., and Werneck, R. F. (2006).216

Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical programming,217

106:491–511.218

[7] Hottung, A., Kwon, Y.-D., and Tierney, K. (2021). Efficient active search for combinatorial optimization219

problems. arXiv preprint arXiv:2106.05126.220

[8] Kim, H., Choi, S., Son, J., Park, J., and Kwon, C. (2025). Neural genetic search in discrete spaces. arXiv221

preprint arXiv:2502.10433.222

[9] Kim, H., Park, J., and Kwon, C. (2024). A neural separation algorithm for the rounded capacity inequalities.223

INFORMS Journal on Computing.224

[10] Kool, W., Van Hoof, H., and Welling, M. (2018). Attention, learn to solve routing problems! arXiv preprint225

arXiv:1803.08475.226

[11] Lysgaard, J., Letchford, A. N., and Eglese, R. W. (2004). A new branch-and-cut algorithm for the227

capacitated vehicle routing problem. Mathematical programming, 100:423–445.228

[12] Martello, S. and Toth, P. (1990). Knapsack problems: algorithms and computer implementations. John229

Wiley & Sons, Inc.230

[13] Naddef, D. and Rinaldi, G. (2002). Branch-and-cut algorithms for the capacitated vrp. In The vehicle231

routing problem, pages 53–84. SIAM.232

[14] Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017). Improved branch-cut-and-price for capacitated233

vehicle routing. Mathematical Programming Computation, 9(1):61–100.234

[15] Queiroga, E., Sadykov, R., Uchoa, E., and Vidal, T. (2021). 10,000 optimal cvrp solutions for testing235

machine learning based heuristics. In AAAI-22 workshop on machine learning for operations research236

(ML4OR).237

[16] Ralphs, T. K., Kopman, L., Pulleyblank, W. R., and Trotter, L. E. (2003). On the capacitated vehicle238

routing problem. Mathematical programming, 94:343–359.239

[17] Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., and Subramanian, A. (2017). New benchmark240

instances for the capacitated vehicle routing problem. European Journal of Operational Research, 257(3):845–241

858.242

[18] Vidal, T. (2022). Hybrid genetic search for the cvrp: Open-source implementation and swap* neighborhood.243

Computers & Operations Research, 140:105643.244

[19] You, Z. and Yang, Y. (2025). RouteOpt: An open-source modular exact solver for vehicle routing problems.245

Available at SSRN 5314242.246

A Pseudo Code for GraphCHiP247

We present two algorithms that leverage NeuralSEP’s coarsening history to find new cuts. Algorithm 1248

details our procedure for identifying additional RCIs, while Algorithm 2 introduces our GraphCHiP249

method for separating FCIs.250

7

Algorithm 1 GraphCHiP for RCI
Input: Support Graph G,

Subset S ⊆ VC ,
A node map {Mt}Tt=1

Output: The collectionR of the subset h and RHS of RCI
1: R← ∅, t← T − 1 ▷ Initialize. Iterate backwards from the coarsest graph
2: while t > 0 do
3: for each u ∈ Vt ∩ S do
4: h←Mt(u) ▷ Get initial nodes using the map for the current level t
5: LHS← Calculate_LHS(G, h)
6: RHS← 2

⌈
d(h)
Q

⌉
7: if RHS− LHS > 0 then ▷ Check if the violation exists
8: Add (h, RHS) toR
9: end if

10: end for
11: ifR ̸= ∅ then
12: returnR
13: end if
14: t← t− 1 ▷ Backtrack to the previous coarsening step
15: end while
16: returnR

Table 3: Comparison of the performance with and without π-greedy selection

Size NeuralSEP2 π-NeuralSEP2 Difference Winning Ratio
RCI Cuts RCI Cuts % Cut Increase ∆ Gap π-NeuralSEP2 Win

50 130.9 165.2 26.2% ↓1.337%p 1.0
75 395.0 391.5 -0.9% ↓0.075%p 0.4

100 724.3 731.1 0.9% ↓0.117%p 0.5
200 1425.4 1481.1 3.9% ↓0.193%p 0.7
300 2336.1 3188.8 36.5% ↓1.045%p 0.9
400 2362.1 3363.8 42.4% ↓2.396%p 1.0
500 2163.9 2612.0 20.7% ↓1.307%p 1.0
750 1649.4 1735.8 5.2% ↓1.095%p 0.8

1000 1295.2 1332.7 2.9% ↓0.239%p 0.5

B Ablation Study on Test-time Search for RCIs251

B.1 Results on π-greedy selection252

To investigate the impact of the π-greedy selection method, we analyze its effectiveness through253

direct comparison. Table 3 presents a detailed comparison between the original NeuralSEP and254

π-NeuralSEP under the same PyG implementation. We evaluate the π-greedy selection method by255

examining the average total number of cuts generated, differences in optimality gaps, number of256

RCIs. The results demonstrate reduced average optimality gaps across all instance sizes. Particularly257

noteworthy improvements are observed in medium to large instances ranging from 300 to 750258

customers. The number of RCI cuts increases for all sizes except 75.259

B.2 Results on GraphCHiP for RCIs260

To assess the effectiveness of the GraphCHiP algorithm for RCI separation, we conduct a comparative261

analysis between our full approach (π-NeuralSEP2 + GC) and the version without GraphCHiP262

(π-NeuralSEP2). As summarized in Table 4, adding GraphCHiP to our π-NeuralSEP2 approach263

consistently identifies more RCI cuts and leads to a reduction in the average dual gap across all264

problem sizes. This enhancement is particularly effective for small to medium-scale instances with265

75 to 400 customers. We hypothesize that the smaller effect observed on instances with 500 or more266

8

Algorithm 2 GraphCHiP for FCI
Input: Support Graph G,

Subset S ⊆ VC ,
A node map {Mt}Tt=1

Output: The collection F of the partition Ω of VC and RHS of FCI
1: Initialize F ← ∅, t← T − 1 ▷ Iterate backwards from the coarsest graph
2: while t > 0 do
3: Ω← ∅ ▷ Initialize the partition of Vc

4: for each u ∈ Vt ∩ S do
5: h←Mt(u) ▷ Get initial nodes using the map for the current level t
6: Add h to Ω ▷ Add the subset to the partition
7: end for
8: for each v ∈ VC \

⋃
Ω do

9: h← {v}
10: Add h to Ω ▷ Add each remaining individual node as a subset
11: end for
12: if ∃h ∈ Ω such that 2⌈d(h)/Q⌉ > Calculate_LHS(G, h) then
13: t← t− 1 ▷ Filter out subsets which violate RCI
14: continue ▷ Proceed to the next iteration of the outer loop
15: end if
16: LHS← Calculate_LHS(G,Ω)
17: RHS← 2

⌈
d(VC)

Q

⌉
+ 2

∑
h∈Ω

⌈
d(h)
Q

⌉
18: if RHS− LHS > −2 then ▷ Check tight RHS for the potential cuts
19: RHS← 2r(Ω) + 2

∑
h∈Ω

⌈
d(h)
Q

⌉
▷ Update RHS by calculating r(Ω)

20: if RHS− LHS > 0 then ▷ Check if the violation exists
21: Add (Ω, RHS) to F
22: end if
23: end if
24: t← t− 1 ▷ Backtrack to the previous coarsening step
25: end while
26: return F

Table 4: Comparison of the performance with GraphCHiP algorithm for RCIs

Size π-NeuralSEP2 + GC Difference Winning Ratio
RCI Cuts RCI Cuts % Cut Increase ∆ Gap π-NeuralSEP2+GC Win

50 165.2 185.8 12.5% ↓0.234%p 0.5
75 391.5 465.1 18.8% ↓0.696%p 0.9

100 731.1 806.0 10.2% ↓0.340%p 0.9
200 1481.1 1734.8 17.1% ↓0.438%p 1.0
300 3188.8 3503.6 9.9% ↓0.328%p 0.9
400 3363.8 3669.1 9.1% ↓0.266%p 0.9
500 2612.0 2751.8 5.4% ↓0.090%p 0.7
750 1735.8 1775.4 2.3% ↓0.136%p 0.7

1000 1332.7 1352.2 1.5% ↓0.059%p 0.5

customers may be partly due to the 3600-second time limit being insufficient for the full benefits of267

the search to materialize.268

C Detailed Results of X-n153-k22 Instance269

We present the detailed analysis of the X-n153-k22 instance, which shows the capability of our270

GraphCHiP algorithm to identify a violated FCI. The X-n153-k22 instance is characterized by a271

skewed demand distribution, with a large number of low-demand customers and a smaller group of272

high-demand customers. Figure 5 illustrates the specific FCI found by GraphCHiP, with a violation of273

0.31. The partition Ω consists of two non-singleton subsets, S1 and S2, along with several singleton274

9

𝑆!

𝑆"

Figure 5: An example of a FCI found by GraphCHiP on X-n153-k22 instance. The blue and green
nodes represent the two non-singleton subsets in the partition Ω, respectively, while the remaining
nodes are singleton subsets. The sum of demands for customers in S1 and S2 is 602 and 662,
respectively. (total customer demand: 3068, vehicle capacity: 144). The set H for the partition is the
entire set of customers VC , and the corresponding cut values are x̄(δ(H)) = 44.0, x̄(δ(S1)) = 10.5,
x̄(δ(S2)) = 11.19. The bin-packing value for the partition is r(Ω) = 23, larger than ⌈d(VC)

Q ⌉ = 22.

subsets. We then verify the violation of the corresponding FCI. The left-hand side (LHS) of the275

inequality, which is the sum of the relevant cut values, is x̄(δ(VC)) + x̄(δ(S1)) + x̄(δ(S2)) = 65.69.276

The right-hand side (RHS) is 2r(Ω) + ⌈d(S1)
Q ⌉+ 2⌈d(S2)

Q ⌉ = 46 + 10 + 10 = 66. Since the LHS is277

less than the RHS, the inequality is violated by 0.31.278

10

	Introduction
	Preliminaries and background
	Capacity inequalities
	Revisiting NeuralSEP

	Test-time search in neural graph coarsening
	Stochastic edge selection in graph coarsening
	Graph coarsening history-based partitioning algorithm

	Experimental results
	Results on RCI separation
	Experimental results of FCI separation

	Pseudo Code for GraphCHiP
	Ablation Study on Test-time Search for RCIs
	Results on -greedy selection
	Results on GraphCHiP for RCIs

	Detailed Results of X-n153-k22 Instance

