© ® N O o A~ W N =

Test-Time Search in Neural Graph Coarsening for the
Capacitated Vehicle Routing Problem

Anonymous Author(s)
Affiliation
Address

email

Abstract

The identification of valid inequalities, such as Rounded capacity inequalities
(RClIs), is a key component of cutting plane methods for the Capacitated Vehicle
Routing Problem (CVRP). While a neural separation method can learn to find high-
quality cuts, improving the learned model further often requires costly retraining
with diminishing returns. This paper proposes an alternative: enhancing the
performance of a trained model at inference time through two test-time search
techniques. First, we introduce stochastic edge selection into the graph coarsening
procedure, replacing the previously proposed greedy approach. Second, we propose
the Graph Coarsening History-based Partitioning (GraphCHiP) algorithm, which
leverages coarsening history to identify not only RCIs but also, for the first time,
the Framed capacity inequalities (FCIs). Experiments on randomly generated
CVRP instances demonstrate the effectiveness of our approach in reducing the dual
gap compared to the existing neural separation method. Additionally, our method
discovers effective FCIs on a specific instance, despite the challenging nature of
identifying such cuts.

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) is a fundamental combinatorial optimization
problem in logistics and operations research. The goal of the CVRP is to design a set of minimum-cost
routes for a fleet of vehicles, each with a limited capacity, to serve a group of customers with specific
demands. Since this problem is A/P-hard, finding optimal solutions for large-scale instances poses a
significant computational challenge. To find optimal solutions, exact methods such as branch-and-cut
[13L[11] or branch-and-price-and-cut algorithms [14}4,[19] are commonly employed. These methods
rely on the cutting plane method, which iteratively refines the linear programming relaxation of the
CVRP by adding valid inequalities, or cuts, to eliminate infeasible solutions. The task of identifying
violated inequalities for a given fractional solution is known as the separation problem.

For the CVRP, one of the most important families of cuts is the Rounded capacity inequalities
(RClIs), which leverage vehicle capacity constraints. However, the separation of effective RClIs is
not trivial. Traditionally, this is addressed by either exact algorithms [6]], which guarantee finding
the most violated cuts but are relatively slow, or heuristic methods [[11], which are faster but tend to
produce cuts with relatively minimal violation. To bridge this gap, Kim et al. [9] recently introduced
NeuralSEP, a neural separation algorithm designed for generating RCIs. By learning to identify
promising customer subsets for cut generation via a neural graph coarsening procedure, NeuralSEP
achieves good performance on large-scale problems.

While NeuralSEP shows promising results, achieving further performance gains is often subject to
diminishing returns, as strategies like architectural modifications or hyperparameter tuning require
costly retraining for only marginal gains. We turn to test-time search, a technique that improves

Submitted to 39th Workshop on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41
42
43
44
45

46
47
48
49
50
51
52
53
54

55

56
57
58
59
60
61
62

63

64
65

66
67
68
69
70
71

72
73
74
75
76
77
78
79

80
81
82

model performance at inference time without any retraining. This approach has been widely adopted
in neural combinatorial optimization (NCO). For example, common techniques include random
sampling and beam search, which focus on generating multiple candidate solutions [2} 10} 3]]. Other
strategies adapt the model itself, such as active search, which refines model parameters for a specific
test instance [2,[7]. More recently, methods inspired by evolutionary algorithms, such as neural genetic
search [8]], have also been proposed. Building on this established paradigm, our work introduces
novel test-time search methods specifically designed to enhance the cut generation capabilities
of NeuralSEP. In this work, we adapt this paradigm to introduce novel test-time search methods
specifically designed to enhance the cut generation capabilities of Neural SEP.

We propose two methods that improve its performance on finding existing cuts and extend its
capabilities to a more complex class of inequalities for the first time. Our first method introduces a
stochastic edge selection strategy into NeuralSEP’s neural graph coarsening procedure, enhancing the
generation of RCIs and leading to improved dual gap reduction. Our second, the novel GraphCHiP
algorithm, leverages the model’s coarsening history to identify additional RCIs and to enable the
training-free generation of Framed capacity inequalities (FCIs). Experimental results demonstrate
that these methods collectively enhance the performance of NeuralSEP in terms of dual gap reduction.
Additionally, we showcase the ability of GraphCHiP to identify effective FCIs on a specific instance,
despite the challenging nature of finding such cuts.

2 Preliminaries and background

The Capacitated Vehicle Routing Problem (CVRP) is typically defined on a complete graph G =
(V, E), where V' = {vg} U V¢ is the set of vertices, consisting of a depot (vg) and a set of customers
(Vo). Each edge e € E is associated with a binary decision variable x., where . = 1 if the edge is
used in the solution and z, = 0 otherwise. For any subset of customers .S C V¢, let §(.S) denote the
set of edges with exactly one endpoint in S (the cut-set). The term z(4(S)) represents the sum of
decision variables for all edges in this cut-set, i.e., #(0(5)) = >_ ¢ 5(s) Te- Each customer i € Vo

has a demand g¢;, and each vehicle has a uniform capacity Q.

2.1 Capacity inequalities

Rounded capacity inequalities (RCIs) are the most widely used capacity inequalities in the CVRP.
The form of RCls is given by:

VS C Ve, |S| > 2. ey

2(8(5)) > 2 [Eesqw

Q

This inequality ensures that the number of vehicles entering and leaving any subset of customers S is
sufficient to meet the total demand of that subset, given the vehicle capacity (). The exact separation
problem for RCIs is A/P-hard [J3], and solving it for large-scale problems is computationally expen-
sive. Alternatives to the exact separation algorithm range from heuristic methods, exemplified by
the well-known CVRPSERP library Lysgaard et al. [[1 1], to the learning-based algorithm NeuralSEP,
which is trained using optimal solutions to the exact separation problem as labels.

RClIs are effective, but they do not consider demands outside the set .S [13]. To address this issue,
Augerat et al. [1]] introduced the framed capacity inequalities (FCIs). FCIs extend RCIs by defining a
structure composed of a larger customer subset, which contains a set of smaller, mutually disjoint
components. The total demand of each component is then treated as an individual item in a bin-
packing problem. By solving this problem, the minimum number of vehicles needed to serve all the
components is determined collectively. This approach allows FClIs to account for capacity constraints
across multiple subsets simultaneously, resulting in tighter bounds and the generation of stronger
inequalities compared to RCIs. The inequality is formulated as:

2(6(H)) + > 2(8(S:) > 2r(Q) +2) [d(gw :)

i€l i€l

The identification of these FCIs is computationally expensive, since it requires solving the bin-packing
problem, which is known to be A"P-hard. The separation of FCIs is addressed in a few studies [T} [TT]).
As far as we know, our work is the first to propose a learning-based approach for separating FCIs.

83

84
85
86
87
88
89
90
91
92
93
94
95
96
97

98

99

100
101
102
103
104
105

106
107
108
109
110
111
112
113

114

115
116
17
118

Neural Graph Coarsening Procedures

Y — coarsening

{pitiev, {(pi}iev, V\S

< <. &

gy =pipj+ A —p)(1—p;).Vi,j #0

Figure 1: The details of NeuralSEP framework. p; is the predicted probability that vertex ¢ € V¢ is
included in the subset S. g;; is the contraction probability that vertices i € Vi and j € V¢ are
contracted into a single vertex.

2.2 Revisiting NeuralSEP

NeuralSEP, proposed by Kim et al. [9], is a neural separation algorithm designed to generate RCIs for
the CVRP. In essence, NeuralSEP is a learned function that maps an input support graph to an output
customer subset, S, which defines a violated inequality. The parameters of this function, embodied
by a neural network, are trained in a supervised manner using labels derived from optimal solutions
to the exact separation problem for instances with 50 to 100 customers. The overall framework of
NeuralSEP consists of four parts, which are graph embedding with graph neural networks (GNNs),
message passing GNNSs, neural graph coarsening, and set assignment and graph uncoarsening. As
illustrated in Figure|[I] a key part is the neural graph coarsening procedure, inspired by the shrinking
heuristic of Ralphs et al. [16]. It works by iteratively merging vertices that the model predicts are
likely to be on the same side of the cut—that is, either both inside the violated subset S or both
outside of it. Experimental results show that NeuralSEP efficiently generates high-quality cuts and
outperforms CVRPSEP on large-scale instances with over 400 customers under fixed iterations.
Further evaluation on benchmark datasets demonstrates scalability and effective generalization to
out-of-distribution problems.

3 Test-time search in neural graph coarsening

3.1 Stochastic edge selection in graph coarsening

The original NeuralSEP employs a greedy strategy in its neural graph coarsening procedure, where
edges with the highest contraction probabilities are selected for merging. This deterministic approach,
however, can lead to a lack of diversity in the generated cuts, as the same edges are consistently
chosen for contraction across different runs. One effective approach to addressing the challenge
is to introduce a stochastic element into the procedure. We modify the contraction probability by
introducing a stochastic parameter ;;, resulting in a perturbed contraction probability g;;:

Cj‘ _ Dipj + (]- _pi)(]. —pj) +7T7;j lf’L,] 7& 0
" 0 otherwise.

3

where 7;; is a small random value drawn from a uniform distribution ¢/(0,0.001). During the
coarsening procedure, an edge e whose perturbed probability ¢;; is the highest among the edges in
the support graph G is selected for contraction, i.e., e = arg max; j)cz ¢i;- This approach is termed
w-greedy selection, and Figure 2] illustrates this process. Adding randomness can alter which edges
are chosen for contraction and create chain effects throughout the procedure. Since the coarsening
procedure iterates and generates predictions several times, early changes in contraction order spread
through the entire process. As a result, the algorithm produces different cuts despite starting from the
same initial conditions.

3.2 Graph coarsening history-based partitioning algorithm

The Graph Coarsening History-based Partitioning (GraphCHiP) algorithm is a novel test-time search
method designed to identify both RCIs and FClIs using the trained NeuralSEP model. The key idea
of GraphCHiP is to leverage the intermediate steps of the neural graph coarsening procedure from
NeuralSEP to identify promising candidate subsets and partitions for generating violated inequalities.

119
120
121
122
123
124
125
126
127
128
129
130
131
132

133
134
135
136
137
138

140

141
142

Neural Graph Coarsening Procedure

= m;; ~1(0,0.001)

O0Oo0oo0o0O0O0OO0

544bbab.b4

Vertex Selection Probability p; Contraction Probability g;;

O argmax q;;

Figure 2: llustration of 7-greedy selection method in the neural graph coarsening procedure

Depot s s ®

Figure 3: Illustration of how the GraphCHiP algorithm makes the subsets and partitions from the
node map. The left diagram shows the neural graph coarsening process from ¢ = 0 (original graph
with vertices 0-9) to ¢ = 6 (final coarsened graph with three supernodes: Depot, S, and V' \ S). The
right diagrams demonstrate partition generation at steps ¢ = 1 and ¢ = 5 by backtracking the
coarsening history. At ¢ = 5, merged vertex groups (e.g., S; = {1,2, 3,4}, S5 = {5,6,7}) and
individual vertices form partition €) of subset H.

In neural graph coarsening, vertices are iteratively merged based on their contraction probabilities.
This process is controlled by the coarsening ratio -y, which dictates the fraction of vertices to be
coarsened at each step. Thus, for a given support graph G = (V, E), the coarsening process
generates a sequence of graphs {G; }1_, where V; is the set of vertices (supernodes) at coarsening
step t € [0,T]. At each step ¢, vertices in V;_; are merged into disjoint supernodes to form the
next step’s vertex set, V;. The process is captured by a collection of node maps { M}, where
M, : V; — 2V provides, for any supernode u € V;, the complete set of initial vertices from V. Thus,
these node maps provide a complete record of how the original vertices are hierarchically clustered.
Figure [3illustrates this core mechanism. The left side shows a complete coarsening process, while
the right side demonstrates how the node map can be used to backtrack and reconstruct the specific
vertex groupings at any intermediate step. This ability to query the historical structure of the graph
is the foundation for our cut separation procedures. The supernodes formed at each step serve as
candidate subsets for RClIs, and collections of these supernodes can be organized into candidate
partitions for FCIs.

For RCI separation Each supernode generated during the coarsening process is a natural candidate
subset for RCIs. The procedure is straightforward: GraphCHiP iterates backward through the node
map, fromstept =T — 1 tot = 1. At each step ¢, it considers every supernode u € V4 that is also
present in the subset .S identified by NeuralSEP. Using the node map My, it identifies the subsets
which consists of the original vertices constituting the supernode w. It then directly checks if these
subsets violate the RCI. For efficiency, this search terminates as soon as any subset that violates the
RCI is found. By examining the entire coarsening history, this method can find a violating subset
even when the final subset S itself is not violated.

For FCI separation While NeuralSEP is originally designed to identify RCIs, GraphCHiP extends
its capability to find FCIs at test time. One of the main challenges in separating FCls is to find

143
144
145
146
147
148
149
150
151
152
153
154
155

157

158
159
160

161
162
163
164
165
166
167
168

169
170
171
172
173
174
175
176
177
178
179

180

181
182
183
184
185
186
187
188

189
190
191
192
193

promising partitions of the vertex set, since searching all possible partitions is computationally
intractable. Our algorithm leverages the coarsening history to generate candidate partitions. In
detail, after NeuralSEP identifies a final subset S for a potential RCI, we trace its formation history
backward. At each coarsening step ¢, we construct a candidate partition €2 of the customer set V¢ by
three steps. First, for each supernode u € V; in the set .S, we use the node map M (u) to identify its
constituent set of original vertices. Second, we determine the set of all customer vertices in V¢ that
are not included in any of the sets resolved in the previous step. Third, we complete the partition by
adding each unassigned vertex as a distinct singleton set. This process guarantees that {2 is a complete
partition of all customer vertices in V. We then apply a filtering heuristic that discards any partition
Q if one of its subsets in € already violates an RCI. This makes the search focus on cuts arising from
the partition’s structure. For the remaining partitions, we employ a two-stage evaluation to reduce
computational cost. First, we use a fast, approximate calculation of the bin-packing value () to
quickly screen out unpromising candidates. For partitions that pass this check, we then compute the
tight dual bound of 7(2) using the algorithm in Martello and Toth [12]].

4 Experimental results

In this section, we present a comprehensive evaluation of our proposed test-time search methods for
NeuralSEP. Our evaluation focuses on the performance of a cutting plane method at the root node of
a branch-and-cut algorithm. Our approach is used as the primary engine for generating cuts.

The experiments are designed to address two primary objectives. First, we evaluate our stochastic
edge selection method by measuring its impact on the dual gap. Second, we assess GraphCHiP
algorithm’s effectiveness in leveraging the coarsening history to find additional RCIs, measured
by improvements in the dual gap, and its novel capability to identify FCIs. Regarding the FCI
evaluation, it is important to note that violated inequalities are not present in every problem instance,
as their existence is highly contingent on the specific support graph structure and customer demands.
Accordingly, our analysis of FCIs focuses on a detailed examination of a specific instance where our
algorithm successfully identified them.

Our evaluation methodology follows the %PPYO&Ch from Kim et al. [9]. We measure performance using
the optimality gap defined as GAP = YE—LB % 100(%), where UB is the upper bound provided by
the hybrid genetic search (HGS) algorithm from Vidal [[18] and LB is the lower bound obtained from
the cutting plane method at the root node of a branch-and-cut algorithm. We also use the same set of
test instances, which are publicly available at https://github. com/hyeonahkimm/neuralsep/
tree/main/data/instances| These randomly generated CVRP instances were created following
the guidelines of Uchoa et al. [17] and Queiroga et al. [15]]. The test set includes instances with
a varying number of customers, |Ve| € {50, 75,100,200, 300,400, 500, 750, 1000}. For a fair
comparison, we run all experiments under the same conditions. The experiments are conducted on
a single machine with 62 GB DDR4 RAM @ 3200 MT/s, an AMD Ryzen 9 5900X CPU, and an
NVIDIA GeForce RTX 4070 GPU.

4.1 Results on RCI separation

For our comparative analysis, we use several benchmarks: CVRPSEDP, a library of traditional separa-
tion heuristics, serves as a non-learning-based benchmark, while the original NeuralSEP; acts as our
primary learning-based benchmark implemented by Deep Graph Library (DGL). We also developed
NeuralSEP», our re-implementation of Neural SEP in PyTorch Geometric (PyG), to provide a con-
trolled baseline for our enhancements. Our proposed methods are m-NeuralSEP,, which integrates
a stochastic edge selection algorithm, and our full approach, m-NeuralSEP; + GC, which further
incorporates the GraphCHiP algorithm. This setup allows us to measure the performance gains from
each of our algorithmic contributions.

We evaluate the performance of the proposed RCI separation methods on the benchmark instances,
imposing a uniform computational time limit of 3600 seconds for each run. The performance of the
RCI separation algorithms on the CVRP test set is summarized in Table[l|and visually represented
in Figure @ The combination of the more efficient PyG implementation and our test-time search
methods allows our approach to improve the dual gap within the given time limit.

https://github.com/hyeonahkimm/neuralsep/tree/main/data/instances
https://github.com/hyeonahkimm/neuralsep/tree/main/data/instances
https://github.com/hyeonahkimm/neuralsep/tree/main/data/instances

194

195
196
197
198

199
200
201
202
203

Table 1: Summary of the performance of RCI separation algorithms

Size CVRPSEP NeuralSEP; NeuralSEP, m-NeuralSEP; + GC
Gap Time/Iter Gap Time/Iter Gap Time/Iter Gap Time/Iter

50 1.970% 0.009 4.151% 0.830 5.250% 0.120 3.679% 0.133
75 2.769% 0.054 5.305% 1.066 5.164% 0.209 4.393% 0.246
100 4.539% 0.145 6.611% 1.440 6.410% 0.378 5.953% 0.394
200 6.280% 2.001 9.214% 3411 8.314% 1.293 7.683% 1.594
300 7.903% 10431 10.515% 12.006 10.087% 4.607 8.714% 7.482

400 12.618% 16.936 12.848% 26.714 13.632% 13.518 10.970% 19.850
500 16.357% 16.947 15.413% 41.227 14.826% 26.705 13.429% 39.125
750 25.783% 16.603 22.553% 102.623 22.187% 90.436 20.956% 111.835
1,000 30.408% 23321 28.777% 161.183 26.434% 139.826 26.136% 159.042

-=-- CVRPSEP 1.0
35| --- NeuralSEP, NeuralSEP;
—— NeuralSEP, mmm n-NeuralSEP,+GC
— 1-Ni ISEP,+GC
:\830 n-Neural)+ 3 _ 9 0.8
a T
Q.25
] < 0.6
22 g
_E 15 E 0.4
g S
o
10 021
5
0.0
e S © & NQQQ 50 75 100 200 300 400 500 750 1000
Number of customers
Number of customers
(a) Comparison of optimality gap (b) The winning ratio out of 10 instances

Figure 4: Comparison of the performance of RCI separation algorithms

4.2 Experimental results of FCI separation

We now present the results of the experiments on FCI separation using our proposed method,
GraphCHiP. Our separation routine is designed to add FCI cuts only when the violation found during
RCT separation is less than 1.0. As this condition typically occurs in the later stages of the iterative
process, the FCI experiments are conducted without a time limit or other early stopping criteria.

Given the known rarity of FCIs, we present the results on the X-n153-k22 instance from Uchoa et al.
[17]. The purpose is to demonstrate and validate the capability of our algorithm in the challenging task
of identifying FCIs. Table [2] summarizes the detailed results on the instance. Combining GraphCHiP
with m-NeuralSEP, yields the best overall performance. This combination improves the optimality
gap by an additional 1.38%p compared to using w-NeuralSEP, alone.

Table 2: Results on X-n153-k22 instance

Method Algorithm Lowerbound Gap FCI cuts

RCI CVRPSEP RCI 19983.51 5.83% -
m-NeuralSEP; RCI 19861.37 6.40% -

RCI+ECI CVRPSEP RCI + CVRPSEP FCI 19984.29 5.82% 4
m-NeuralSEP2 RCI + GraphCHiP FCI 20153.95 5.02% 324

Optimal Value (opt): 21220.0

204

205

207
208

209
210
211

212
213

214
215

216
217
218

219
220

221
222

223
224

225
226

227
228

229
230

231
232

233
234

235
236
237

238
239

240
241
242

243
244

245
246

247

248
249
250

References

[1] Augerat, P., Naddef, D., Belenguer, J., Benavent, E., Corberan, A., and Rinaldi, G. (1995). Computational
results with a branch and cut code for the capacitated vehicle routing problem.

[2] Bello, L., Pham, H., Le, Q. V., Norouzi, M., and Bengio, S. (2016). Neural combinatorial optimization with
reinforcement learning. arXiv preprint arXiv:1611.09940.

[3] Choo, J., Kwon, Y.-D., Kim, J., Jae, J., Hottung, A., Tierney, K., and Gwon, Y. (2022). Simulation-guided
beam search for neural combinatorial optimization. Advances in Neural Information Processing Systems,
35:8760-8772.

[4] Costa, L., Contardo, C., and Desaulniers, G. (2019). Exact branch-price-and-cut algorithms for vehicle
routing. Transportation Science, 53(4):946-985.

[5] Diarrassouba, I. (2017). On the complexity of the separation problem for rounded capacity inequalities.
Discrete Optimization, 25:86-104.

[6] Fukasawa, R., Longo, H., Lysgaard, J., Aragdo, M. P. d., Reis, M., Uchoa, E., and Werneck, R. F. (2006).
Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical programming,
106:491-511.

[7]1 Hottung, A., Kwon, Y.-D., and Tierney, K. (2021). Efficient active search for combinatorial optimization
problems. arXiv preprint arXiv:2106.05126.

[8] Kim, H., Choi, S., Son, J., Park, J., and Kwon, C. (2025). Neural genetic search in discrete spaces. arXiv
preprint arXiv:2502.10433.

[9] Kim, H., Park, J., and Kwon, C. (2024). A neural separation algorithm for the rounded capacity inequalities.
INFORMS Journal on Computing.

[10] Kool, W., Van Hoof, H., and Welling, M. (2018). Attention, learn to solve routing problems! arXiv preprint
arXiv:1803.08475.

[11] Lysgaard, J., Letchford, A. N., and Eglese, R. W. (2004). A new branch-and-cut algorithm for the
capacitated vehicle routing problem. Mathematical programming, 100:423-445.

[12] Martello, S. and Toth, P. (1990). Knapsack problems: algorithms and computer implementations. John
Wiley & Sons, Inc.

[13] Naddef, D. and Rinaldi, G. (2002). Branch-and-cut algorithms for the capacitated vrp. In The vehicle
routing problem, pages 53-84. SIAM.

[14] Pecin, D., Pessoa, A., Poggi, M., and Uchoa, E. (2017). Improved branch-cut-and-price for capacitated
vehicle routing. Mathematical Programming Computation, 9(1):61-100.

[15] Queiroga, E., Sadykov, R., Uchoa, E., and Vidal, T. (2021). 10,000 optimal cvrp solutions for testing
machine learning based heuristics. In AAAI-22 workshop on machine learning for operations research
(ML4OR).

[16] Ralphs, T. K., Kopman, L., Pulleyblank, W. R., and Trotter, L. E. (2003). On the capacitated vehicle
routing problem. Mathematical programming, 94:343-359.

[17] Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Vidal, T., and Subramanian, A. (2017). New benchmark
instances for the capacitated vehicle routing problem. European Journal of Operational Research,257(3):845—
858.

[18] Vidal, T. (2022). Hybrid genetic search for the cvrp: Open-source implementation and swap* neighborhood.
Computers & Operations Research, 140:105643.

[19] You, Z. and Yang, Y. (2025). RouteOpt: An open-source modular exact solver for vehicle routing problems.
Available at SSRN 5314242.

A Pseudo Code for GraphCHiP

We present two algorithms that leverage NeuralSEP’s coarsening history to find new cuts. Algorithm[I]
details our procedure for identifying additional RCIs, while Algorithm [2]introduces our GraphCHiP
method for separating FClIs.

251

252

254

261
262
263
264
265
266

Algorithm 1 GraphCHiP for RCI

Input: Support Graph G,
Subset S C Ve,
A node map {M;}1_,
Output: The collection R of the subset h and RHS of RCI
I R0, t+T-1 > Initialize. Iterate backwards from the coarsest graph
2: whilet > 0 do

3 for eachu € V;, N S do
4: h +— M (u) > Get initial nodes using the map for the current level ¢
5: LHS < Calculate_LHS(G, h)
6 RHS « 2 [452]
7 if RHS — LHS > 0 then > Check if the violation exists
8: Add (h, RHS)to R
9: end if
10: end for
11: if R # () then
12: return R
13: end if
14: t+—t—1 > Backtrack to the previous coarsening step
15: end while
16: return R

Table 3: Comparison of the performance with and without 7-greedy selection

Size NeuralSEP; 7-NeuralSEP, Difference Winning Ratio
RCI Cuts RCICuts % Cut Increase A Gap 7-NeuralSEPy Win

50 130.9 165.2 26.2% 11.337%p 1.0
75 395.0 391.5 -0.9% 10.075%p 0.4
100 724.3 731.1 09% 10.117%p 0.5
200 1425.4 1481.1 39% 10.193%p 0.7
300 2336.1 3188.8 36.5% 11.045%p 0.9
400 2362.1 3363.8 42.4%]2.396%p 1.0
500 2163.9 2612.0 20.7% 11.307%p 1.0
750 1649.4 1735.8 52% |1.095%p 0.8
1000 1295.2 1332.7 29% 10.239%p 0.5

B Ablation Study on Test-time Search for RCIs

B.1 Results on 7-greedy selection

To investigate the impact of the 7m-greedy selection method, we analyze its effectiveness through
direct comparison. Table [3| presents a detailed comparison between the original NeuralSEP and
m-Neural SEP under the same PyG implementation. We evaluate the 7-greedy selection method by
examining the average total number of cuts generated, differences in optimality gaps, number of
RCIs. The results demonstrate reduced average optimality gaps across all instance sizes. Particularly
noteworthy improvements are observed in medium to large instances ranging from 300 to 750
customers. The number of RCI cuts increases for all sizes except 75.

B.2 Results on GraphCHiP for RCIs

To assess the effectiveness of the GraphCHiP algorithm for RCI separation, we conduct a comparative
analysis between our full approach (7-NeuralSEP> + GC) and the version without GraphCHiP
(m-NeuralSEP,). As summarized in Table 4] adding GraphCHiP to our w-NeuralSEP; approach
consistently identifies more RCI cuts and leads to a reduction in the average dual gap across all
problem sizes. This enhancement is particularly effective for small to medium-scale instances with
75 to 400 customers. We hypothesize that the smaller effect observed on instances with 500 or more

267

269

270
271
272
273
274

Algorithm 2 GraphCHiP for FCI

Input: Support Graph G,
Subset S C Ve,
A node map {M;}1_,
Output: The collection F of the partition 2 of V¢ and RHS of FCI
1: Initialize F < 0, t + T — 1 > Iterate backwards from the coarsest graph
2: whilet > 0 do
3 Q0 > Initialize the partition of V.
4 for eachu € V; N S do
5 h < M¢(u) > Get initial nodes using the map for the current level ¢
6 Add h to 2 > Add the subset to the partition
7 end for
8 for eachv € Vo \ Q2 do
9 h <+ {v}
10: Add hto Q > Add each remaining individual node as a subset
11: end for
12:
13
14
15
16

if 3h € Q such that 2[d(h)/Q] > Calculate_LHS(G, h) then
t—t—1 > Filter out subsets which violate RCI
continue > Proceed to the next iteration of the outer loop
end if
LHS < Calculate_LHS(G, ?)

d(V, d(h
17 RHS 2 [9] 125, ., [49°]

Q
18: if RHS — LHS > —2 then > Check tight RHS for the potential cuts
19; RHS < 2r(Q) + 25,0 [dgﬂ > Update RHS by calculating ()
20: if RHS — LHS > 0 then > Check if the violation exists
21: Add (2, RHS) to F
22: end if
23: end if
24: t+—t—1 > Backtrack to the previous coarsening step
25: end while
26: return F

Table 4: Comparison of the performance with GraphCHiP algorithm for RCIs

Size m-NeuralSEP, + GC Difference Winning Ratio
RCICuts RCICuts % Cut Increase A Gap 7-NeuralSEP>+GC Win

50 165.2 185.8 12.5% 10.234%p 0.5
75 391.5 465.1 18.8% 10.696%p 0.9
100 731.1 806.0 10.2% 10.340%p 0.9
200 1481.1 1734.8 171%]0.438%p 1.0
300 3188.8 3503.6 9.9%]0.328%p 0.9
400 3363.8 3669.1 9.1% 10.266%p 0.9
500 2612.0 2751.8 54% 10.090%p 0.7
750 1735.8 1775.4 23%]0.136%p 0.7
1000 1332.7 1352.2 1.5% 10.059%p 0.5

customers may be partly due to the 3600-second time limit being insufficient for the full benefits of
the search to materialize.

C Detailed Results of X-n153-k22 Instance

We present the detailed analysis of the X-n153-k22 instance, which shows the capability of our
GraphCHiP algorithm to identify a violated FCI. The X-n153-k22 instance is characterized by a
skewed demand distribution, with a large number of low-demand customers and a smaller group of
high-demand customers. Figure [3]illustrates the specific FCI found by GraphCHiP, with a violation of
0.31. The partition €2 consists of two non-singleton subsets, S; and S3, along with several singleton

275
276

277
278

1000

800 A

600 A

400

200 A

O T T T T
0 200 400 600 800 1000

Figure 5: An example of a FCI found by GraphCHiP on X-n153-k22 instance. The blue and green
nodes represent the two non-singleton subsets in the partition €2, respectively, while the remaining
nodes are singleton subsets. The sum of demands for customers in S7 and S5 is 602 and 662,
respectively. (total customer demand: 3068, vehicle capacity: 144). The set H for the partition is the
entire set of customers Ve, and the corresponding cut values are Z(5(H)) = 44.0, £(6(S1)) = 10.5,

Z(6(S2)) = 11.19. The bin-packing value for the partition is (2) = 23, larger than (%] = 22.

subsets. We then verify the violation of the corresponding FCI. The left-hand side (LHS) of the
inequality, which is the sum of the relevant cut values, is Z(5(Ve)) + 2(6(S1)) + 2(8(S2)) = 65.69.

The right-hand side (RHS) is 2r(Q) + [251] + 2[952)] = 46 4 10 + 10 = 66. Since the LHS is
less than the RHS, the inequality is violated by 0.31.

10

	Introduction
	Preliminaries and background
	Capacity inequalities
	Revisiting NeuralSEP

	Test-time search in neural graph coarsening
	Stochastic edge selection in graph coarsening
	Graph coarsening history-based partitioning algorithm

	Experimental results
	Results on RCI separation
	Experimental results of FCI separation

	Pseudo Code for GraphCHiP
	Ablation Study on Test-time Search for RCIs
	Results on -greedy selection
	Results on GraphCHiP for RCIs

	Detailed Results of X-n153-k22 Instance

