
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Reinforcement Learning Teachers of Test Time Scaling

Anonymous Authors1

Abstract

Training reasoning language models (LMs) with
reinforcement learning (RL) for one-hot correct-
ness inherently relies on the LM being able to
explore and solve its task with some chance at ini-
tialization. Furthermore, a key use case of reason-
ing LMs is to act as teachers for distilling new stu-
dents and cold-starting future RL iterations rather
than being deployed themselves. From these con-
siderations, we introduce a new framework that
avoids RL’s exploration challenge by training a
new class of Reinforcement-Learned Teachers
(RLTs) focused on yielding the most effective
downstream distillation. RLTs are prompted with
both the question and solution to each problem,
and tasked to simply “connect-the-dots” with de-
tailed explanations tailored for their students. We
train RLTs with dense rewards obtained by feed-
ing each explanation to the student and testing its
understanding of the problem’s solution. In prac-
tice, the raw outputs of a 7B RLT provide higher
final performance on competition and graduate-
level tasks than existing distillation and cold-
starting pipelines that collect and postprocess the
reasoning traces of orders of magnitude larger
LMs. Furthermore, RLTs maintain their effec-
tiveness when training larger students and when
applied zero-shot to out-of-distribution tasks, un-
locking new levels of efficiency and re-usability
for the RL reasoning framework.

1. Introduction
Exploration is one of the critical challenges in reinforce-
ment learning (RL) and has been a core focus of its lit-
erature (Bellemare et al., 2016; Salimans & Chen, 2018;
Ecoffet et al., 2019). Sparse rewards cannot yield any learn-
ing signal unless the agent is already capable of solving the

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Figure 1. RLTs provide better student distillation and RL cold-
starts than orders of magnitude larger LMs across competition and
graduate-level tasks (AIME, MATH, GPQA).

given task at initialization. With the rise of RL for open-
ended reasoning (RL reasoning) inducing a new form of
language model (LM) scaling beyond prompt-engineering
and search (Kojima et al., 2022; Snell et al., 2024), ex-
ploration has re-emerged as a key challenge. A canonical
motivation for RL is the potential to bootstrap from partial
solutions guided by the reward function and learn entirely
new tasks from scratch. However, the nature of one-hot
correctness rewards used in the RL reasoning framework
fails to provide a dense form of guidance, focusing instead
on reinforcing correct responses in the initial model’s pool
of pass-at-k attempts – without true extrapolation beyond
the LM’s initial latent abilities (Yue et al., 2025). As a re-
sult, mostly large, already-capable models have been shown
to improve consistently beyond cheaper and simpler super-
vised optimization (Guo et al., 2025).

Due to this fundamental limitation, coupled with RL’s train-
ing instability, distillation has emerged as another ubiquitous
component of current reasoning paradigms. In this case, the
test-time role of LMs trained with RL is to act as a teacher
providing instructive reasoning traces for a student to solve
new problems. This teacher-student paradigm is widely
adopted both to train smaller, less-capable models (Muen-
nighoff et al., 2025; Xu et al., 2025) and even to cold-start
future RL iterations for better final convergence with the
teacher’s own initial checkpoint acting as the student (Guo
et al., 2025; Shen et al., 2025). However, the problem-
solving skills reinforced by correctness-based rewards have
been shown not to be entirely aligned with the goal of down-
stream distillation (Li et al., 2025a). To account for this

1

055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

Large Language Models to Diffusion Finetuning

mismatch, current pipelines significantly rely on heuristic-
driven postprocessing of the teacher’s outputs for effective
student transfer (Li et al., 2025a).

Based on these considerations, we propose a framework that
avoids RL’s exploration challenge with a new class of spe-
cialized Reinforcement-Learned Teachers (RLTs) trained
specifically to yield effective downstream distillation. Our
main intuition is simple: the ability of real-world teachers
is not measured by whether they can come up on their own
with complex theorems, proofs, or answers from scratch.
Instead, what matters is their ability to make use of read-
ily available solutions and devise instructive explanations
for their students. Thus, we depart from the traditional RL
reasoning framework, tasking a model to first think and
then come up with a new solution for the first time. In-
stead, RLTs are tasked with the easier problem of providing
an effective explanation with the problem’s solution al-
ready given within their prompt. We train RLTs with dense
rewards using the student’s log probabilities to assess its
understanding of each problem’s ground-truth solution from
the teacher’s explanations, and the interpretability of the
logical leaps in the explanations themselves.

By distilling students from the raw outputs of a lightweight
RLT with 7B parameters, we demonstrate significantly
higher performance than using existing pipelines relying on
reasoning LMs with orders of magnitude more parameters
(Figure 1). We show our framework provides superior bene-
fits even when distilling the RLT’s explanation to train larger
32B students and to cold-start traditional RL optimization.
Furthermore, we showcase how RLTs can be transferred
zero-shot to new domains and still produce effective distil-
lation datasets that yield yet better final students than direct
RL with access to the task’s reward. Overall, these results
highlight the potential of our new method for overcoming
the large costs of RL by focusing on stronger, smaller, and
highly reusable specialized teachers. In summary, Our main
contributions are threefold:

• We introduce the RLT framework, tackling exploration
with a simpler dense-reward that aligns the objective of
RL training to providing effective distillation.

• We show how distilling the raw outputs of a 7B RLT
outperforms training students trained on postprocessed
reasoning traces from orders of magnitude larger LMs.

• We demonstrate that RLTs also allow for better cold-starts
for traditional RL, distillation to larger students, and even
zero-shot transfer to new reasoning domains.

2. Inducing reasoning in language models
2.1. Reinforcement learning

The RL post-training recipe for inducing reasoning behav-
ior was recently popularized by the DeepSeek R1 line of
work (Wang et al., 2023; Shao et al., 2024; Guo et al., 2025).

By fine-tuning on a dataset of questions D = {q1, . . . , qN}
with verifiable solutions {s1, . . . , sN}, Guo et al. (2025)
show effective “reasoning” behavior emerges out of a 671B-
parameter LM (DeepSeek-AI, 2024), significantly pushing
its performance on challenging math and coding tasks. Their
training is conducted with GRPO (Shao et al., 2024), an on-
line RL algorithm that foregoes the use of a critic model
with a simple Monte-Carlo value estimate. GRPO prompts
the LM πθ to produce a set of G >> 1 “grouped” outputs
o1, ...oG for each sampled question q ∈ D, optimizing:

J(θ) = Eq∼D, {o}G1 ∼πθ(·|q)

[
1

G

G∑
i=1

(Ai − β DKL(πθ ∥πref))

]
.

(1)
Here, the “advantages” Ai are obtained by normalizing

each output’s reward ri within each group:

Ai =
ri −mean({r1, . . . , rG})

std({r1, . . . , rG})
. (2)

A key component of their design is a system prompt that
asks the LM to decompose each generated output oi into
two separate formatted sections separated by <think> and
<solution> tags, denoted toi and soi . This structure
is forced by assigning rewards ri = −1 to unformatted
completions, ri = −0.5 to wrong but formatted comple-
tions, and ri = 1 only to correct and formatted completions.
Training with this strategy, Guo et al. (2025) show the LM’s
completion length gradually grows with reflection, verifica-
tion, and self-correction steps emerging, mirroring human
chain-of-thoughts.

2.2. Supervised distillation

Supervised distillation is another critical step used to train
recent reasoning models to complement RL’s shortcomings.
For any online RL objective like Equation 1 to avoid col-
lapse, the model must already possess a non-trivial chance
of producing correct responses with non-zero gradients at
initialization. This defining property makes the RL objec-
tive much less applicable than cross-entropy objectives that
always include the correct response’s information in the
model’s gradients. As a consequence of this dichotomy,
distilling the reasoning traces of large RL-trained LMs with
supervised learning is not only cheaper but has also been
shown to be notably more effective than performing RL
itself for inducing reasoning in smaller, less-capable mod-
els (Guo et al., 2025; Muennighoff et al., 2025; Ye et al.,
2025; Li et al., 2025a; Xu et al., 2025). Furthermore, RL
appears prone to instabilities and output degradation, espe-
cially during extended training sessions. Due to this second
limitation, DeepSeek R1 and several other models (Guo
et al., 2025; Shen et al., 2025) perform RL training over
multiple iterations. This is done by using the RL-trained
models at the end of each intermediate iteration only to, once
again, collect distillation datasets used for “cold-starting”

2

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

Large Language Models to Diffusion Finetuning

Figure 2. Left: RL format asking an LM to think and solve hard problems from scratch. Right: RLT format asking an LM to produce
instructive step-by-step explanations given access to the solutions.

their original initial checkpoint and obtain a stronger initial-
ization point for the next RL iteration.

Constructing a dataset of distillation prompts DSD =
{d1, . . . , dN} involves using the RL-trained LM πθ with
its reasoning system prompt to answer a corpus of verifi-
able questions, which can be chosen with several heuris-
tics (Muennighoff et al., 2025; Ye et al., 2025; Li et al.,
2025a; Xu et al., 2025). The LM’s output reasoning traces
for each question o ∼ πθ(·|q) are then filtered by compar-
ing them with the ground-truth solutions to ensure their
correctness. Commonly, these reasoning traces are also
post-processed via additional “manual” steps of refinements,
such as asking other closed-sourced LMs to remove gram-
matical issues and refactor the reasoning steps into a nicer,
consistent format. In fact, Li et al. (2025a) even argues that
the structure and format of the thinking data is a critical
component to make weaker models actually understand and
learn how to reason from distillation, potentially even more
important than correctness itself.

3. Reinforcement learning teachers
3.1. The implications of training teacher models as

students

We distinguish two separate training and inference “roles”
that can be performed by LMs in the modern reasoning
framework. As detailed in Section 2, after RL training, LMs
πθ are often not deployed themselves but rather used to
obtain reasoning distillation datasets for fine-tuning weaker
models and cold-starting future RL iterations. Thus, these
models can be effectively seen as teachers, providing ex-
planations for future student models πs to learn from.

This teacher-student paradigm highlights a potential mis-
match between the objective used for RL training and the
teacher’s test-time role. In traditional settings, teachers are
trained with sparse correctness rewards to improve their
ability to solve hard problems from scratch. This objective

not only precludes the applicability of RL training for tasks
beyond the base model’s original capabilities, due to its in-
herent exploration challenge, but is also not aligned with the
teacher’s actual end goal: producing reasoning traces from
which students πs can learn the necessary skills to derive
correct solutions themselves. Based on these considerations,
we propose a different training framework for RL reasoning
models to be deployed as teachers that avoids RL’s explo-
ration challenge and breaks this objective mismatch. Our
framework comprises a much easier task formulation, a
dense reward objective, and a carefully designed training
recipe, allowing us to learn a new class of specialized Rein-
forcement Learned Teachers (RLTs).

3.2. Aligning the task of teacher models

In the traditional RL paradigm, the solution si to each prob-
lem is never explicitly provided to the model and is only
employed for checking the correctness of the corresponding
solutions within the LM’s completions soi . Precluding di-
rect access or information about the solutions aligns training
with the test-time objective of solving entirely new test prob-
lems from scratch, but is precisely what makes exploration
challenging, as the model receives no gradients until its first
successful attempt. Our key observation, however, is that
the test-time “teaching” objective of producing effective dis-
tillation datasets DSD for questions with known solutions,
can be greatly facilitated by explicitly providing access to
such solutions – as is the case for real-world teachers, who
can rely on access to readily available solutions and, thus,
focus entirely on how instructive their explanations are for
students.

To this end, as illustrated in Figure 2, RLTs are prompted
with a new formatting style, providing both the question
and solution to each problem as inputs, and are tasked to
produce instructive step-by-step explanations, connecting
the dots between the two. We design our prompts to allow
direct reuse of the teacher’s outputs for student distillation
while keeping the task natural, appending the solution to-

3

165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

Large Language Models to Diffusion Finetuning

Figure 3. The tokens from the RLT’s explanations are copied into
the student format to measure its understanding with our reward.

kens si and tags to the RLT’s system prompt and input
question before generating each completion. At test-time,
constructing the corresponding question completions for the
student distillation datasets di ∈ DSD is then as simple as
extracting the think tokens from the teacher’s outputs by
replacing surrounding explanation with think tags
and appending back the solutions si.

3.3. Evaluating the quality of explanations

The reward function to train RLTs is made of two terms
to incentivize explanations oi that lead the student πs to
recover correct solutions si and are also logical continua-
tions from questions alone under the student’s perspective.
In particular, following the procedure from the previous
subsection, for each completion oi from the teacher πθ, we
extract the think tokens toi and format the corresponding
student distillation prompt di by prepending the question qi
and appending the ground-truth solution si. As illustrated in
Figure 3, each distillation prompt is then fed as input to the
student model to obtain a set of per-token log probabilities,
which are processed into our two reward terms as follows:

i. rSSi : quantifying the student πs understanding of the
solutions si given the question qi and think tokens toi
in context. This first reward term is computed with
the student’s log probabilities over the solution tokens,
reduced with both average and minimum operations:

rSS(oi, si, qi) = avg {log πsi
s }+ αmin {log πsi

s } ,
where πsi

s = πs(si | toi .qi).
(3)

ii. rKL
i : quantifying whether the think tokens toi them-

selves are interpretable logical continuations from the
student’s perspective as compared with the teacher’s.
This second reward term is computed with the KL
divergence over the same think tokens between the
teacher’s distribution (under the RLT’s format with
both qi and si in context) and the student’s (with only
the question qi in context), reduced with both average
and maximum operations:

rKL(oi, si, qi) = avg
{
DKL

(
π
toi
θ ∥πtoi

s

)}
+ αmax

{
DKL

(
π
toi
θ ∥πtoi

s

)}
,

where π
toi
s = πs(toi | qi), π

toi
θ = πθ(toi | si, qi). (4)

Finally, the RLT rewards are obtained by combining these
two terms with a weighting coefficient λ:

rRLT
i = rSS(oi, si, qi)− λrKL(oi, si, qi) (5)

Each term in our reward function serves a precise purpose.
First, optimizing rSS will produce explanations contain-
ing think tokens toi that maximize the student’s likelihood
of reaching the correct solution si. However, this term
alone does not differentiate between explanations that guide
the student step-by-step and those that increase the solu-
tion’s likelihood without a logical path that can be learned
from. An extreme instance of the latter would be an ex-
planation simply repeating the solution tokens to increase
likelihood, failing to provide general examples of reasoning
methods that can be applied when approaching new prob-
lems. Thus, introducing rKL fills precisely this gap, aligning
the teacher’s distribution toward the student’s such that each
think token in the output explanations cannot have too low
probability when formatted in the distillation prompt di with
only the question qi and the previous think tokens in context.
Intuitively, introducing this term regularizes for each step in
the logical path traced by the teacher’s explanation to still
make sense in the “student’s mind” given only its prior un-
derstanding and the question itself. Additionally, combining
the average with min/max reductions ensures the rewards
do not forego any individual token, regardless of the solu-
tion length or the number of think tokens in the teacher’s
explanations. For instance, their omission could bias rSS

based on the length of the solutions or lead the teacher to
prefer long explanations only to reduce the influence on rKL

of hard but necessary individual logical steps. For further
discussion, we refer to Appendix D, where we empirically
analyze and validate all these design choices.

3.4. The RLT training paradigm

The RLT framework can be used with any RL algorithm
(e.g., (Schulman et al., 2017; Ahmadian et al., 2024)) with
minimal modifications to the LM’s conditioning and reward,
as described in the above subsections. In this work, we em-
ploy the simple GRPO recipe detailed in Section 2. where

4

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

Large Language Models to Diffusion Finetuning

the advantage is computed using the RLT reward function
from Equation 5. Unlike for correctness-based rewards, our
learning signal is inherently dense, providing informative
rankings to the RLT’s output even before achieving any
task expertise. This fundamental difference greatly facil-
itates our optimization, akin to how heuristically shaped
rewards enabled RL agents to learn entirely new behaviors
for videogames and robotics tasks (Mnih et al., 2016; 2013).

4. Experiments
4.1. Training, distillation, and evaluation

We train RLTs on the set of questions and solutions se-
lected by Li et al. (2025a) based on their level of challenge.
This dataset comprises less than 17K math and coding prob-
lems originally used for distilling filtered and post-processed
reasoning traces collected from QwQ (Team, 2025b) and
DeepSeek R1 (Guo et al., 2025). In contrast, the RLTs
we consider are orders-of-magnitude smaller models, all
trained starting from the Qwen2.5-7B-Instruct LM (Hui
et al., 2024). We precede our RL phase with a short super-
vised fine-tuning phase to familiarize RLTs with their new
system prompt and input format using the open reasoning
dataset released by Labs (2025). During RL, we compute
the reward for the RLT explanations using another small
Qwen-7B model as the student. We train our main models
for 125 steps, less than a single epoch, with a batch size of
1024, a constant learning rate of 1× 10−6, and a group size
of 64. We note that we were also able to train RLTs with a
smaller batch size of 256 and more steps for faster prelimi-
nary experimentation with only slightly inferior results.

We collect our distillation dataset with the learned RLTs
using the same full set of 17K question-solution pairs from
training. With the new reasoning traces, we then proceed to
fine-tune our students either on this full data or a randomly
sampled 1K subset, equating the distillation budget and
following the same recipes as our baselines (Muennighoff
et al., 2025; Li et al., 2025a). Unlike previous RL distillation
pipelines, we do not apply extra postprocessing refinements
to improve the quality of the RLT’s reasoning traces, directly
using our model’s raw outputs for student fine-tuning. We
refer to Appendices A and B for further details regarding
our training and distillation phases. hyperparameters.

Following prior work (Muennighoff et al., 2025; Labs, 2025;
Li et al., 2025a), our main evaluation considers three popular
and challenging tasks from the literature: AIME24 (of Amer-
ica, 2024), the set of problems used for the American Invita-
tional Mathematics Examination. MATH 500 (Hendrycks
et al., 2021), the set of problems selected by (Lightman
et al., 2023) from the canonical competition math bench-
mark. GPQA Diamond (Rein et al., 2024), the set of di-
amond difficulty problems on natural science topics from

the Graduate-level Google-proof Q&A benchmark. We re-
port the completion accuracy of each of our students using
Lighteval (Fourrier et al., 2023). When available, we use
baseline results reported in prior work, which we found
close to our early reproduction attempts. In Appendix C,
we extend the experiments in this section by evaluating our
models on additional tasks and settings.

4.2. Test-time reasoning across teachers and students

Our main experiments focus on grounding the effectiveness
of RLTs to obtain instructive reasoning traces beyond tradi-
tional distillation pipelines. As described in Section 4.1, to
construct the student distillation dataset, we use the same
starting question-solution pairs as our recent state-of-the-art
baselines (Li et al., 2025a; Labs, 2025), with each sample
only differing in terms of its reasoning trace. While RLTs
could be inexpensively applied to provide explanations of
larger corpora, this consistency serves to remove potential
confounding factors, other than the quality of the reason-
ing traces, biasing our experiments and comparisons. For
the same reason, we do not retune any hyperparameters for
the distillation phase, training students following the same
procedure as our baselines based on data size.

We compare the RLTs’ explanations with prior approaches,
evaluating students fine-tuned on both our full 17K distil-
lation samples and its 1K subset. Our recent baselines all
follow a similar recipe of distilling datasets obtained by gen-
erating reasoning traces with expensive reasoning models or
API calls and postprocessing them with closed-source LMs:
s1 (Muennighoff et al., 2025) using traces from Gemini
Flash Thinking (Google, 2024), Sky-T1 (Li et al., 2025a)
using traces from QwQ (Team, 2025b), and Bespoke (Labs,
2025) using traces from DeepSeek R1 (Guo et al., 2025).
Since the Bespoke baseline obtained state-of-the-art results
with our same question-solution corpus, we extend its evalu-
ation with new results distilling its processed R1 traces only
for our same 1K questions subset, equating its number of
datapoints with the other s1 baseline.

As shown in Table 1, the raw output explanations of our
small 7B parameter RLT outperform all the considered data-
distillation pipelines involving teachers with orders of mag-
nitude more parameters and additional ad-hoc postprocess-
ing steps. We also find the effectiveness of the RLT traces
stays consistent across different data sizes, in contrast to
the R1 traces from the Bespoke pipeline that appear signifi-
cantly less effective when subsampled. Furthermore, even
when distilling a Qwen-32B student, much larger than our
7B teacher, our RLT still outperforms all prior methods for
both data sizes with considerable margins. We believe this
result, in particular, shows how our framework could allow
overcoming the current prohibitive costs of RL reasoning:
shifting the burden of expensive RL procedures to small

5

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

Large Language Models to Diffusion Finetuning

Table 1. RLTs and prior distillation pipelines across model (7B and 32B) and data size (1K and 17K).

Model Data size AIME 2024 MATH 500 GPQA Diamond Overall

QwQ-32B N.A. 50.00 90.60 54.50 65.03
DeepSeek-R1 800K+ 79.80 97.30 71.50 82.87

Qwen2.5-7B-Instruct N.A. 10.00 74.20 33.30 39.17
Bespoke-7B-1K 1K 13.30 80.00 33.80 42.37
RLT-7B-1K (Ours) 1K 20.00 80.40 41.90 47.43

Bespoke-7B 17K 20.00 82.00 37.80 46.60
RLT-7B (Ours) 17K 23.30 82.80 42.40 49.50

Qwen2.5-32B-Instruct N.A. 26.70 84.00 49.00 53.23
s1-32B 1K 50.00 92.60 56.60 66.40
s1-32B + budget forcing 1K 56.70 93.00 59.60 69.77
Bespoke-32B-1K 1K 46.70 92.60 57.50 65.60
RLT-32B-1K (Ours) 1K 60.00 94.00 60.10 71.37

Sky-T1-32B 17K 43.30 82.40 56.80 60.83
Bespoke-32B 17K 63.30 93.00 58.10 71.47
RLT-32B (Ours) 17K 66.70 93.40 59.60 73.23

teachers, unable to effectively solve problems from scratch
but highly specialized in the simpler task of producing ef-
fective explanations for large, more powerful students.

4.3. RLTs to cold-start RL

Our next set of experiments focuses on evaluating the effec-
tiveness of RLTs in providing cold-start data for traditional
RL. For this new RL phase, we use our same GRPO imple-
mentation with the standard student format and correctness-
based rewards described in Section 2. As compared to the
RLT framework, we find that using a larger batch size of
1024 is significantly more beneficial to better cope with the
increased variance and reward sparsity of traditional RL. We
train for a full epoch on the recent RL dataset from Li et al.
(2025b) collected by analyzing and selecting an effective
subset of the competition math data based on the correlation
of individual samples with overall improvement.

We compare performing this new RL phase on the Qwen-
7B model cold-started from the reasoning traces of our 7B
RLT and the postprocessed R1 traces from the Bespoke
pipeline, our strongest distillation baseline. Moreover, we
also compare a 7B parameters baseline teacher trained with
traditional RL as done in prior work (Shen et al., 2025;
Guo et al., 2025): effectively performing RL twice on the
Qwen model and collecting a dataset at the end of the first
iteration to cold-start the second. To construct the cold-
starting dataset for this last baseline, we consider either
taking the model’s raw output traces, as done with RLTs,
or postprocessing them with additional refinements using
GPT4.1-mini (Achiam et al., 2023) and following a very
similar strategy to the other R1 and QwQ traditional distilla-
tion pipelines (Li et al., 2025a; Team, 2025a).

As shown in Table 2, the reasoning traces from our 7B pa-
rameter RLT again display superior cold-starting effective-
ness compared to all of our baselines. The performance gap
is exceedingly noticeable with the cold-starting approaches
that are also using a 7B teacher trained with traditional RL.
In fact, only after improving the format and structure of the
traces from these RL-trained teachers with GPT postpro-
cessing, we were able to observe any improvements from
the original Qwen-7B results. While our RLT was itself
trained from the same 7B model, it again demonstrates supe-
rior cold-starting even when compared to postprocessed R1
pipelines. Overall, we find these results to be compelling
evidence indicating that RLTs have the potential to unlock
new key avenues to democratize the RL reasoning frame-
work beyond the current reliance on prohibitively large and
closed-source LMs.

4.4. Out-of-domain zero-shot transfer

Unlike problem-solving from scratch, we posit that provid-
ing effective explanations to given solutions is a much less
task-specific skill. Thus, in this subsection, we evaluate
how well RLTs can be applied to construct datasets and
distill new specialized students in out-of-distribution do-
mains, without any expensive RL retraining. In particular,
we focus on the canonical countdown task (Gandhi et al.,
2024), asking student models to combine a set of numbers
to equal a given target using basic arithmetic operations. We
train and test our models on distinct datasets of 16K and
1K automatically-generated question and solution pairs. We
compare zero-shot transferring our RLT with transferring
the RLT-7B student and the Bespoke-7B baselines from the
previous subsections. To ground our results, we also con-

6

330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

Large Language Models to Diffusion Finetuning

Table 2. RLTs and prior distillation pipelines for cold-starting traditional RL.

Model Data size AIME 2024 MATH 500 GPQA Diamond Overall

Qwen2.5-7B-Instruct N.A. 10.00 74.20 33.30 39.17
Bespoke-7B 17K 20.00 82.00 37.80 46.60
RLT-7B (Ours) 17K 23.30 82.80 42.40 49.50

RL no cold-start N.A. 13.30 74.20 34.80 40.77
RL cold-start (raw) + RL 17K 10.00 71.00 34.80 38.60
RL cold-start (GPT) + RL 17K 16.70 78.20 36.90 43.93
Bespoke-7B + RL 17K 16.70 82.80 45.40 48.30
RLT-7B + RL (Ours) 17K 26.70 84.00 40.90 50.53

Figure 4. Left: Performance transferring RLTs to produce new distillation data as compared to students trained on the Li et al. (2025a)
corpus and RL on the countdown task. Right: Performance after training on different distillation datasets ranked by the RLT reward.

sider performing RL on the countdown task itself (CD RL),
training both from the Qwen-7B model and the cold-started
Bespoke-7B baseline as described in Section 4.3.

As shown in the left bar plot of Figure 4, applying RLT
distillation zero-shot remarkably achieves even higher per-
formance than direct RL on the countdown task. Interest-
ingly, direct RL appears to provide only marginally better
scores than using students distilled from our original set of
reasoning questions that do not include any examples of
countdown problems (50.8 vs. 49.2). Furthermore, we find
there is stark overlap of over 98.5% in the final sets of solved
problems between direct RL and the RL-free Bespoke-7B
baseline. We find these results in line with prior analysis (Li
et al., 2025a; Yue et al., 2025), providing further evidence
that the exploration challenge of traditional RL might make
most of its benefits come from steering the base model’s
distribution toward long-context generation. In contrast,
by simplifying the task and foregoing sparse rewards, our
RLT appears much more effective – providing countdown-
specific traces for students to learn new knowledge and solve
unseen questions, yielding higher improvements than direct
RL even without any teacher training in this new domain.

4.5. Explanation reward analysis

To analyze the design of the RLT reward function, we start
by examining the relationship between the traces’ rewards
and the effectiveness of student distillation. In particular,
we use our RLT’s checkpoint right before RL training to
generate 16 completions for each question-solution pair in
our data. We then score all completions with our reward
and divide them into groups based on their relative rank for
each prompt. Thus, we obtain 16 datasets with different
reasoning traces for each question, which we use to train
16 new 7B students from Qwen. As illustrated in the right
bar plot of Figure 4, ordering student performance by the
respective dataset rank shows a clear correlation between
the two, with a Pearson coefficient over 0.89, validating
the efficacy of the RLT objective. Additionally, the highest
ranked traces of our 7B teacher before any RL remarkably
already yield 90% the performance gains of our baseline R1
distillation pipeline (Labs, 2025), showing how even small
models already possess latent teaching skills unlocked by
our new reward and simplified task formulation.

We also inspect qualitative examples chosen by selecting
samples where the reward of the RLT explanations is partic-
ularly improved from the baseline R1 distillation pipeline.

7

385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

Large Language Models to Diffusion Finetuning

Figure 5. Contents from post-processed R1 traces (Labs, 2025) with lower rewards than the corresponding RLT explanations.

As shown in Figure 5, we find that the R1 traces with low
rewards often try to rely on external tools, such as calcu-
lators, and employ language patterns likely idiosyncratic
to the training data of the DeepSeek-V3 LM, as sentences
with brief humorous comments (DeepSeek-AI, 2024). In-
stead, the corresponding RLT explanations appear much
more grounded and even manage to add new verification
steps not considered by R1 to check the final solution. In
Appendix D, we provide additional examples showcasing
further qualitative differences of our framework with R1
traces and also specific failure cases from training RLTs
without proper balance between each reward component,
such as repetitions and overly-long explanations.

5. Related work
Inspired by the unprecedented abilities of the OpenAI o1
model (Jaech et al., 2024), there has been a resurgence of RL
approaches aimed at inducing a new kind of open-ended rea-
soning to scale test-time compute. The work from Guo et al.
(2025) was another milestone in this new domain, providing
a first openly detailed example of what is possible with large
models and RL. Other follow-ups considered smaller LMs
and ways to decrease optimization costs via approaches such
as explicit task breakdown (Shen et al., 2025), exploration
strategies (Hou et al., 2025), new RL objectives (Liu et al.,
2025), and cold-start data scale (Xu et al., 2025). However,
it is still an open question if RL on small models can go
beyond cheaper supervised alternatives (Guo et al., 2025)
and induce new skills beyond the pretraining corpus (Yue
et al., 2025). In contrast to this work, RLTs break the tra-
ditional framework of maximizing one-hot accuracy with
verifiable rewards – turning the task on its head by feeding
the model the correct solution as input and avoiding RL’s
inherent exploration challenge.

A large part of the recent test-time scaling literature con-
sidering smaller LMs has focused on inducing reasoning
with “teacher-student” supervised distillation (Hinton et al.,
2015), a widely validated technique in traditional LM de-
velopment (Hui et al., 2024; Shing et al., 2025). This ap-
proach’s popularity to induce LM reasoning dates earlier
than the RL paradigm, with older methods harnessing veri-

fiers and prompting for self-improvement (Zelikman et al.,
2022; 2024). By following a common structure of genera-
tion, filtering correct responses, and postprocessing them,
modern RL-based distillation has seen significant advances
mostly driven by more capable teachers (Labs, 2025; Li
et al., 2025a) and carefully curating targeted datasets (Muen-
nighoff et al., 2025; Ye et al., 2025). However, the effec-
tiveness of current distillation pipelines was shown to be
closely tied to the properties of the student itself (Li et al.,
2025c; Xu et al., 2025), and their ability to induce actual
generalization remains unclear (Chu et al., 2025). Unlike
these traditional distillation pipelines, the RLT framework
does not rely on verifiers for filtering, directly optimizes the
teacher for downstream distillation, and does not require
any post-processing, allowing direct transfer of reasoning
capabilities to arbitrary tasks and even larger student mod-
els.

6. Discussion and extensions
This work introduced a new class of Reinforcement-Learned
Teachers trained with a simpler dense-reward task that inputs
both each problem’s question and solution, and optimizes
the LM to provide instructive reasoning traces for distilla-
tion as outputs. Empirically, students trained or cold-started
from the raw outputs of a 7B RLT obtain higher performance
than prior distillation pipelines using orders-of-magnitude
larger LMs. Furthermore, RLTs maintain their effectiveness
even for distilling much larger students, and when providing
reasoning traces for out-of-distribution tasks beyond their
training corpus. Nonetheless, our work has only begun to
study the design space of our new framework, with many ex-
citing directions yet to be explored. One example is training
RLTs and their students in tandem, allowing the teacher’s
explanations to adapt to the student’s learning dynamics
live. Pushing this further, the same model could even take
both roles, iterating RL with our task formulation, providing
access to each problem’s solution, to obtain instructive rea-
soning traces, and self-distillation (Zelikman et al., 2022) to
revise its own explanation and learn how to solve questions
from scratch – unifying the open-endedness of RL with the
stability of supervised optimization.

8

440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

Large Language Models to Diffusion Finetuning

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,

Aleman, F. L., Almeida, D., Altenschmidt, J., Altman, S.,
Anadkat, S., et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

Ahmadian, A., Cremer, C., Gallé, M., Fadaee, M., Kreutzer,
J., Pietquin, O., Üstün, A., and Hooker, S. Back
to basics: Revisiting reinforce style optimization for
learning from human feedback in llms. arXiv preprint
arXiv:2402.14740, 2024.

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T.,
Saxton, D., and Munos, R. Unifying count-based ex-
ploration and intrinsic motivation. Advances in neural
information processing systems, 29, 2016.

Chu, T., Zhai, Y., Yang, J., Tong, S., Xie, S., Schuurmans,
D., Le, Q. V., Levine, S., and Ma, Y. Sft memorizes, rl
generalizes: A comparative study of foundation model
post-training. arXiv preprint arXiv:2501.17161, 2025.

DeepSeek-AI. Deepseek-v3 technical report, 2024. URL
https://arxiv.org/abs/2412.19437.

Ecoffet, A., Huizinga, J., Lehman, J., Stanley, K. O.,
and Clune, J. Go-explore: a new approach for hard-
exploration problems. arXiv preprint arXiv:1901.10995,
2019.

Fourrier, C., Habib, N., Kydlíček, H., Wolf, T., and
Tunstall, L. Lighteval: A lightweight framework for
llm evaluation, 2023. URL https://github.com/
huggingface/lighteval.

Gandhi, K., Lee, D., Grand, G., Liu, M., Cheng, W., Sharma,
A., and Goodman, N. D. Stream of search (sos): Learning
to search in language. arXiv preprint arXiv:2404.03683,
2024.

Google. Gemini 2.0 flash thinking mode (gemini-2.0-
flash-thinking-exp-1219), December 2024. URL
https://cloud.google.com/vertex-ai/
generative-ai/docs/thinking-mode.

Gorbatovski, A., Shaposhnikov, B., Malakhov, A., Sur-
nachev, N., Aksenov, Y., Maksimov, I., Balagansky, N.,
and Gavrilov, D. Learn your reference model for real
good alignment. arXiv preprint arXiv:2404.09656, 2024.

Guo, D., Yang, D., Zhang, H., Song, J., Zhang, R., Xu, R.,
Zhu, Q., Ma, S., Wang, P., Bi, X., et al. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforcement
learning. arXiv preprint arXiv:2501.12948, 2025.

He, C., Luo, R., Bai, Y., Hu, S., Thai, Z. L., Shen, J., Hu, J.,
Han, X., Huang, Y., Zhang, Y., et al. Olympiadbench: A
challenging benchmark for promoting agi with olympiad-
level bilingual multimodal scientific problems. arXiv
preprint arXiv:2402.14008, 2024.

Hendrycks, D., Burns, C., Kadavath, S., Arora, A., Basart,
S., Tang, E., Song, D., and Steinhardt, J. Measuring math-
ematical problem solving with the math dataset. NeurIPS,
2021.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Hou, Z., Lv, X., Lu, R., Zhang, J., Li, Y., Yao, Z., Li,
J., Tang, J., and Dong, Y. Advancing language model
reasoning through reinforcement learning and inference
scaling. arXiv preprint arXiv:2501.11651, 2025.

Hui, B., Yang, J., Cui, Z., Yang, J., Liu, D., Zhang, L.,
Liu, T., Zhang, J., Yu, B., Lu, K., et al. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186, 2024.

Jaech, A., Kalai, A., Lerer, A., Richardson, A., El-Kishky,
A., Low, A., Helyar, A., Madry, A., Beutel, A., Car-
ney, A., et al. Openai o1 system card. arXiv preprint
arXiv:2412.16720, 2024.

Jain, N., Han, K., Gu, A., Li, W.-D., Yan, F., Zhang, T.,
Wang, S., Solar-Lezama, A., Sen, K., and Stoica, I.
Livecodebench: Holistic and contamination free eval-
uation of large language models for code. arXiv preprint
arXiv:2403.07974, 2024.

Kojima, T., Gu, S. S., Reid, M., Matsuo, Y., and Iwasawa,
Y. Large language models are zero-shot reasoners. Ad-
vances in neural information processing systems, 35:
22199–22213, 2022.

Kwon, W., Li, Z., Zhuang, S., Sheng, Y., Zheng, L., Yu,
C. H., Gonzalez, J. E., Zhang, H., and Stoica, I. Efficient
memory management for large language model serving
with pagedattention. In Proceedings of the ACM SIGOPS
29th Symposium on Operating Systems Principles, 2023.

Labs, B. Bespoke-stratos: The unreasonable effectiveness of
reasoning distillation. www.bespokelabs.ai/blog/bespoke-
stratos-the-unreasonable-effectiveness-of-reasoning-
distillation, 2025. Accessed: 2025-01-22.

Li, D., Cao, S., Griggs, T., Liu, S., Mo, X., Tang, E., Hegde,
S., Hakhamaneshi, K., Patil, S. G., Zaharia, M., et al.

9

https://arxiv.org/abs/2412.19437
https://github.com/huggingface/lighteval
https://github.com/huggingface/lighteval
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking-mode
https://cloud.google.com/vertex-ai/generative-ai/docs/thinking-mode

495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

Large Language Models to Diffusion Finetuning

Llms can easily learn to reason from demonstrations
structure, not content, is what matters! arXiv preprint
arXiv:2502.07374, 2025a.

Li, X., Zou, H., and Liu, P. Limr: Less is more for rl scaling.
arXiv preprint arXiv:2502.11886, 2025b.

Li, Y., Yue, X., Xu, Z., Jiang, F., Niu, L., Lin, B. Y., Ra-
masubramanian, B., and Poovendran, R. Small models
struggle to learn from strong reasoners. arXiv preprint
arXiv:2502.12143, 2025c.

Lightman, H., Kosaraju, V., Burda, Y., Edwards, H., Baker,
B., Lee, T., Leike, J., Schulman, J., Sutskever, I., and
Cobbe, K. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

Liu, Z., Chen, C., Li, W., Qi, P., Pang, T., Du, C., Lee,
W. S., and Lin, M. Understanding r1-zero-like training:
A critical perspective, 2025. URL https://arxiv.
org/abs/2503.20783.

Loshchilov, I. Decoupled weight decay regularization. arXiv
preprint arXiv:1711.05101, 2017.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M. Playing
atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap,
T., Harley, T., Silver, D., and Kavukcuoglu, K. Asyn-
chronous methods for deep reinforcement learning. In
International conference on machine learning, pp. 1928–
1937. PmLR, 2016.

Muennighoff, N., Yang, Z., Shi, W., Li, X. L., Fei-Fei, L.,
Hajishirzi, H., Zettlemoyer, L., Liang, P., Candès, E.,
and Hashimoto, T. s1: Simple test-time scaling. arXiv
preprint arXiv:2501.19393, 2025.

of America, M. A. Aime, February 2024. URL https:
//artofproblemsolving.com/wiki/index.
php/AIME_Problems_and_Solutions/.

Rein, D., Hou, B. L., Stickland, A. C., Petty, J., Pang, R. Y.,
Dirani, J., Michael, J., and Bowman, S. R. Gpqa: A
graduate-level google-proof q&a benchmark. In First
Conference on Language Modeling, 2024.

Salimans, T. and Chen, R. Learning montezuma’s re-
venge from a single demonstration. arXiv preprint
arXiv:1812.03381, 2018.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Shao, Z., Wang, P., Zhu, Q., Xu, R., Song, J., Bi, X., Zhang,
H., Zhang, M., Li, Y., Wu, Y., et al. Deepseekmath: Push-
ing the limits of mathematical reasoning in open language
models. arXiv preprint arXiv:2402.03300, 2024.

Shen, M., Zeng, G., Qi, Z., Hong, Z.-W., Chen, Z., Lu,
W., Wornell, G., Das, S., Cox, D., and Gan, C. Satori:
Reinforcement learning with chain-of-action-thought en-
hances llm reasoning via autoregressive search. arXiv
preprint arXiv:2502.02508, 2025.

Shing, M., Misaki, K., Bao, H., Yokoi, S., and Akiba, T.
TAID: Temporally adaptive interpolated distillation for
efficient knowledge transfer in language models. In
The Thirteenth International Conference on Learning
Representations, 2025. URL https://openreview.
net/forum?id=cqsw28DuMW.

Snell, C., Lee, J., Xu, K., and Kumar, A. Scaling llm test-
time compute optimally can be more effective than scal-
ing model parameters. arXiv preprint arXiv:2408.03314,
2024.

Team, N. Sky-t1: Train your own o1 preview model within
$450. https://novasky-ai.github.io/posts/sky-t1, 2025a.
Accessed: 2025-01-09.

Team, Q. Qwq-32b: Embracing the power of reinforce-
ment learning, March 2025b. URL https://qwenlm.
github.io/blog/qwq-32b/.

von Werra, L., Belkada, Y., Tunstall, L., Beeching, E.,
Thrush, T., Lambert, N., Huang, S., Rasul, K., and
Gallouédec, Q. Trl: Transformer reinforcement learn-
ing. https://github.com/huggingface/trl,
2020.

Wang, P., Li, L., Shao, Z., Xu, R., Dai, D., Li, Y., Chen,
D., Wu, Y., and Sui, Z. Math-shepherd: Verify and
reinforce llms step-by-step without human annotations.
arXiv preprint arXiv:2312.08935, 2023.

Xu, H., Wu, X., Wang, W., Li, Z., Zheng, D., Chen, B., Hu,
Y., Kang, S., Ji, J., Zhang, Y., et al. Redstar: Does scal-
ing long-cot data unlock better slow-reasoning systems?
arXiv preprint arXiv:2501.11284, 2025.

Ye, Y., Huang, Z., Xiao, Y., Chern, E., Xia, S., and Liu,
P. Limo: Less is more for reasoning. arXiv preprint
arXiv:2502.03387, 2025.

Yue, Y., Chen, Z., Lu, R., Zhao, A., Wang, Z., Yue, Y., Song,
S., and Huang, G. Does reinforcement learning really
incentivize reasoning capacity in llms beyond the base
model?, 2025.

Zelikman, E., Wu, Y., Mu, J., and Goodman, N. D. Star:
Bootstrapping reasoning with reasoning, 2022. URL
https://arxiv.org/abs/2203.14465.

10

https://arxiv.org/abs/2503.20783
https://arxiv.org/abs/2503.20783
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions/
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions/
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions/
https://openreview.net/forum?id=cqsw28DuMW
https://openreview.net/forum?id=cqsw28DuMW
https://qwenlm.github.io/blog/qwq-32b/
https://qwenlm.github.io/blog/qwq-32b/
https://github.com/huggingface/trl
https://arxiv.org/abs/2203.14465

550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

Large Language Models to Diffusion Finetuning

Zelikman, E., Harik, G., Shao, Y., Jayasiri, V., Haber, N.,
and Goodman, N. D. Quiet-star: Language models can
teach themselves to think before speaking, 2024. URL
https://arxiv.org/abs/2403.09629.

11

https://arxiv.org/abs/2403.09629

605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

Large Language Models to Diffusion Finetuning

A. Implementation details
A.1. RLT training phase and reward

Table 3. Hyperparameter listing for the RLT training optimization and reward.

Hyperparameter name Value

RLT training

Fine-tuned model Qwen2.5-7B-instruct (Hui et al., 2024)
Number of training steps 125
Batch size 1024
Learning rate 1× 10−6

Learning rate decay Constant
Final learning rate 1× 10−6

Weight decay 0
Optimizer AdamW (Loshchilov, 2017)
Adam beta1 0.9
Adam beta2 0.999
Adam epsilon 1e-8
Warmup steps 0
Maximum gradient norm 1.0
Maximum generation context size 16384
Generation temperature 0.7
Generation top-p 1.0
Generation top-k No
Generation min-p 0.0
Generation repetition penalty 1.0
GRPO group size 64
GRPO β 0.04
Reference model sync. steps 32
Reference model sync. mixup 0.9
Dtype bfloat16
Gradient checkpointing true

RLT reward

Student model Qwen2.5-7B-instruct (Hui et al., 2024)
λ 3
α 0.01
Format penalty -1

Our experiments are conducted on a single compute node comprising 8 Nvidia Hopper H100 GPUs, 1.8 TB of memory, and
208 Intel Xeon Platinum 8481C CPUs. Due to the efficiency of training with our small 7B models, we note this setup is
significantly less resource-intensive than prior RL and even SFT work, often relying on multi-node settings (Muennighoff
et al., 2025; Li et al., 2025a). As described in Section 4, for its new RL phase, we train our Reinforcement Learned
Teachers on the set of questions and solutions selected by Li et al. (2025a)1 which is available under an Apache 2.0 License,
comprising less than 17K math and coding problems. All our new teachers are trained from a Qwen2.5-7B-Instruct LM (Hui
et al., 2024) also available under an Apache 2.0 License, together with the other models from the Qwen family. Before
RL, we shortly fine-tune on pre-collected samples using example traces from Labs (2025) formatted using our new system

1https://huggingface.co/datasets/bespokelabs/Bespoke-Stratos-17k

12

660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

Large Language Models to Diffusion Finetuning

prompt and tags. This short, inexpensive phase is conducted with the same distillation hyperparameters used for the 1K data
subset following Muennighoff et al. (2025), detailed in Appendix B, but with double the number of epochs, and serves to
quickly familiarize our teacher with the new RLT input format. We also use the output checkpoint at the end of this phase
for our correlation analysis experiment conducted in Section 4.5. For the same reason and also to limit the requirements for
reproducibility, our lightweight Qwen2.5-7B-instruct (Hui et al., 2024) student model used to compute the RLT reward
function is initialized with the checkpoint provided by Labs (2025)2 available under an Apache 2.0 License, which is already
familiar with their system prompt without needing further training. However, we found that the RLT reward is robust to the
specific LM choice for the student, yielding numerically close values when using our own Qwen student finetuned on only
1K samples.

We use simple coefficients to regulate the terms in the RLT rewards, with λ = 3 to scale rKL and α = 0.01 to scale both the
min term in rSS and the max term in rKL. Our choice was based on making each individual component of the RLT rewards
have approximately the same expected magnitude over the model’s initial output completions. As we observed the overall
rankings to be quite robust after testing small changes to these initial choices, we did not find extensive sweeps necessary.
We also add a -1 penalty to any completion that does not use the explanation tags or that exceeds our maximum generation
context length to limit training time and disincentivize overly long and expensive reasoning traces. For our training runs, we
make use of a custom GRPO implementation with the specifications from Shao et al. (2024), extending the TRL library (von
Werra et al., 2020) with faster distributed VLLM generation (Kwon et al., 2023). Our RL phase is short, comprising only
125 steps, less than a single epoch, with a batch size of 1024, an AdamW optimizer (Loshchilov, 2017) with a constant
learning rate of 1× 10−6, and a group size of 64. We synchronize the reference model every 32 steps as popularized by
(Gorbatovski et al., 2024) with a mixup ratio of 0.9. For the post-cold-start RL phase employed in Section 4.3, we use our
same GRPO implementation with the standard student format and correctness-based rewards described in Section 2. The
only difference is that we train for one epoch in total on the very small LIMR (Li et al., 2025b) dataset, containing less than
1K samples. We provide a full list of hyperparameters to ensure reproducibility in Table 3. All main libraries used in our
implementation are again available under an Apache 2.0 Licence.

A.2. Traditional reasoning and RLT formats

As detailed in Section 3.2 and illustrated in Figure 2, RLTs are prompted with a new formatting style that provides both
the question and solution to each problem as inputs. Then, their system prompt instructs to output instructive, detailed
step-by-step explanations, connecting the dots between the two. In contrast, traditional formats used for reasoning datasets
employed for RL and distillation forego any information about each problem’s solution and task the model to solve each
problem from scratch. We provide a specific comparison between the two, contrasting the system prompts used for traditional
RL and distillation from Li et al. (2025a) in Figure A.2, and our own new RLT input format in Figure A.2. As shown,
our prompting format’s design strives to make minimal changes to the prompts used for traditional reasoning frameworks,
replacing surrounding explanation with think tags, and simply appending the solution tokens after the user’s provided
input question, to allow our teachers to make full use of this information before generating each completion. This design
also practically avoids the need to re-prompt our teacher multiple times for each question and manually check the answers to
filter out incorrect solutions.

B. Student distillation
B.1. Reasoning traces generation

As detailed in Sections 3 and 4, we collect reasoning traces for each sample in the student distillation dataset by feeding our
RLTs both the problem’s question and its solution as input. Moreover, for our cold-starting experiments in Section 4.3, we
also collect reasoning traces by feeding the RL-trained Qwen models each question and postprocessing each output with
GPT4.1 (Achiam et al., 2023) similarly to Li et al. (2025a). We provide the hyperparameters used to collect these traces
across all our datasets and settings in Table 4. In particular, we use standard generation hyperparameters for reasoning
Qwen-based models (Li et al., 2025a), that are aligned with the online generation parameters during our new RL phases, as
detailed in Appendix A. The only main difference is that we allow for a longer maximum context size to avoid collecting
incomplete traces for downstream distillation, which is possible thanks to the fact that at test time we are not subject to the
same training-time memory constraints dictated by backpropagating through long traces.

2https://huggingface.co/bespokelabs/Bespoke-Stratos-7B

13

715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

Large Language Models to Diffusion Finetuning

Table 4. Hyperparameter listing for the RLT generation pipeline.

Hyperparameter name Value

Distillation data generation setting

Maximum generation context size 32764
Generation temperature 0.7
Generation top-p 1.0
Generation top-k No
Generation min-p 0.0
Generation repetition penalty 1.0
Generation dtype bfloat16

The RLT distillation datasets used for training all of our 7B students were collected by generating a single completion for
each question-solution pair, directly placing it in the student format. After preliminary experiments, we also found our 32B
students can be particularly sensitive to cropped reasoning traces that exceed the 16384 maximum context length specified in
the SFT hyperparameters from Li et al. (2025a), which they purposefully limited for computational efficiency. Thus, to avoid
this mismatch potentially affecting our results, we simply collected up to 16 reasoning traces for each question-solution pair
and selected anyone below 16384, otherwise resorting to rSS for selection.

B.2. Student distillation specifications

Our main experiments from Section 4 use the RLT traces collected either from the full set of training questions from Li et al.
(2025a) or its randomly selected 1K data subset. For the student distillation phases of these experiments, we re-use the same
hyperparameters from Li et al. (2025a) and Muennighoff et al. (2025), for the full data and 1K subset, respectively. The
purpose of not re-tuning based on our new data is to attempt to isolate the reasoning traces used for student distillation as the
only degree of variation in our comparison between RLTs with traditional reasoning distillation pipelines. Furthermore, in
our experiments in Section 4.4, we also compare transferring students learned on our original set of datapoints and direct RL
with transferring the RLTs themselves zero-shot to the countdown task (Gandhi et al., 2024). For these experiment, we use a
set of 16K automatically-generated countdown question and solution pairs with 3 or 4 numbers and, after obtaining the
corresponding RLT traces, distill our students using the hyperparameters from Li et al. (2025a) once again, which we found
to work well in practice without further tuning, given the two similar dataset sizes.

We provide a full list of the hyperparameters used for all our distillation experiments in each setting in Table 5, where we
highlight the key differences across the three. As detailed, the considered approaches mostly differ in terms of the number
of epochs, the batch size, and the optimizer parameters. These differences reflect the total number of samples and relative
variance in each data batch. In line with the findings from the relative prior works (Muennighoff et al., 2025; Li et al., 2025a;
Team, 2025a), we note that training on these small datasets was very inexpensive and could be completed within hours. We
note that the learning rate of our reinforcement learning phases matches the final learning rate during our SFT optimization,
a simple choice which we found to work well in practice.

B.3. Student RL details

For our cold-starting experiments in Section 4.3, we also implement and perform a phase of traditional RL training optimizing
the model with correctness-based rewards under the “student’s perspective.” This phase is done atop a Qwen2.5-7B-Instruct,
the cold-started Bespoke-7B, and the RLT-7B models using our same GRPO implementation on the open-source LIMR
dataset (Li et al., 2025b). We re-use most of the hyperparameters from the RLT training phase with a batch size of 1024,
something particularly important to cope with the increased variance and reward sparsity of traditional RL. Additionally,
we also conduct traditional RL as a baseline for our out-of-distribution transfer experiments in Section 4.4 that directly
optimizes correctness on the countdown task starting again from the Qwen2.5-7B-Instruct model, and the cold-started
Bespoke-7B models. For this particular task, we found using a larger batch size to be not strictly necessary, as for RLT
training, and obtained better results optimizing the model for more steps (250 total) with a batch size of 256. We provide a

14

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

Large Language Models to Diffusion Finetuning

Table 5. Hyperparameter listing student distillation phases on the datasets from the set of questions from Li et al. (2025a), and the
countdown dataset.

Hyperparameter name Full fine-tuning 1K subset fine-tuning Countdown fine-tuning

Student training

Distilled model Qwen2.5-7B/32B-instruct (Hui et al., 2024)
Number of training samples 16710 1000 16000
Number of epochs 3.0 5.0 3.0
Batch size 96 16 96
Learning rate 1× 10−5 1× 10−5 1× 10−5

Learning rate decay Cosine Cosine Cosine
Final learning rate 1× 10−6 1× 10−6 1× 10−6

Weight decay 0 1× 10−4 0
Optimizer AdamW (Loshchilov, 2017) AdamW (Loshchilov, 2017) AdamW (Loshchilov, 2017)
Adam beta1 0.9 0.9 0.9
Adam beta2 0.999 0.95 0.999
Adam epsilon 1× 10−8 1× 10−8 1× 10−8

Warmup ratio 0.1 0.05 0.1
Maximum gradient norm 1.0 1.0 1.0
Dtype bfloat16 bfloat16 bfloat16
Gradient checkpointing true true true

full list of the distillation hyperparameters used for our RL phases on these tasks in Table 6, where we highlight the key
differences between these two settings.

B.4. Student evaluation

As described in Section 4.1, our main evaluation consists of three graduate and competition-level tasks on math and natural
science domains. In particular, these include AIME24 (of America, 2024), the set of problems used for the American
Invitational Mathematics Examination; MATH 500 (Hendrycks et al., 2021), the set of problems selected by (Lightman et al.,
2023) from the canonical competition math benchmark; and GPQA Diamond (Rein et al., 2024), the set of diamond difficulty
problems on natural science topics from the Graduate-level Google-proof Q&A benchmark. Additionally, in Appendix C,
we also extend our set of experiments to include additional challenging coding and multilingual domains. In particular, we
consider LiveCodeBench (Jain et al., 2024), a contamination-free set of coding challenge problems continuously collected
from several prominent online hosting platforms; and OlympiadBench (He et al., 2024), a set of olympiad-level bilingual
problems in English and Chinese from past math and physics competitions.

We evaluate on all the above benchmarks using Lighteval (Fourrier et al., 2023), a library available under the MIT license.
In all our results, we report the completion accuracy of each of our students for a single generated completion, as also
reported in prior work (Muennighoff et al., 2025; Li et al., 2025a; Labs, 2025). Furthermore, we also ensure consistency by
re-using the task implementation code, including the system prompt, provided by our baselines (Team, 2025a), which is
available under an Apache 2.0 License. For the same reason, we do not modify any of the existing evaluation generation
hyperparameters from the suggested settings used in their evaluation, which we report in Table 7.

C. Additional experiments
C.1. Coding and multilingual reasoning

We extend our main set of experiments from Section 4, focusing on graduate and competition-level tasks on math and
natural science domains, comparing the effectiveness of the reasoning traces from our 7B parameter RLT with traditional

15

825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

Large Language Models to Diffusion Finetuning

Table 6. Hyperparameter listing for the traditional RL on the Li et al. (2025b) dataset.

Hyperparameter name LIMR data traditional RL Countdown data traditional RL

Traditional RL student training

Fine-tuned model Qwen2.5-7B-instruct (Hui et al., 2024)/Bespokes-7B (Labs, 2025)
Number of training samples 1389 16000
Number of epochs 1.0 1.0
Number of training steps 86 250
Batch size 1024 256
Learning rate 1× 10−6 1× 10−6

Learning rate decay Constant Constant
Final learning rate 1× 10−6 1× 10−6

Weight decay 0 0
Optimizer AdamW (Loshchilov, 2017) AdamW (Loshchilov, 2017)
Adam beta1 0.9 0.9
Adam beta2 0.999 0.999
Adam epsilon 1× 10−8 1× 10−8

Warmup steps 0 0
Maximum gradient norm 1.0 1.0
Maximum generation context size 16384 16384
Generation temperature 0.7 0.7
Generation top-p 1.0 1.0
Generation top-k No No
Generation min-p 0.0 0.0
Generation repetition penalty 1.0 1.0
GRPO group size 64 64
GRPO β 0.04 0.04
Reference model sync. steps 32 32
Reference model sync. mixup 0.9 0.9
Dtype bfloat16 bfloat16
Gradient checkpointing true true

distillation pipelines. We consider challenging coding and multilingual domains, which are less aligned with the training
and distillation set of questions employed. In particular, these new benchmarks include LiveCodeBench (LCB) (Jain et al.,
2024), a contamination-free set of coding challenge problems continuously collected from several prominent online hosting
platforms across three difficulty categories; and OlympiadBench (He et al., 2024), a set of olympiad-level bilingual problems
in English and Chinese from past math and physics competitions.

In Table 8, we provide a comparison of reported results from our baselines (Li et al., 2025a; Labs, 2025) and our fine-tuned
student models using our 7B RLT traces. We also re-collected the performance on OlympiadBench of the Qwen2.5-7B-
Instruct model and the Bespoke-7B baseline fine-tuned from the postprocessed R1 traces, as they were omitted in the
reference results from prior work. For LiveCodeBench, we report both the performance on the “hard” difficulty set of
problems and the average weighted performance. This was obtained by weighting the performances of the models in the
“easy,” “medium,” and “hard” sets of LiveCodeBench problems, by the relative number of problems in each.

We find the performance of RLT distilled students on these new tasks to be consistent with the performance from our
Section 4 experiments. In particular, the overall performance exceeds the performance of the baseline distillation pipelines

16

880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Large Language Models to Diffusion Finetuning

Table 7. Student evaluation hyperparameter listing for the RLT generation pipeline, matching the hyperparameters from Li et al. (2025a).

Hyperparameter name Value

Student evaluation

Maximum generation context size 32764
Generation temperature 0.7
Generation top-p 1.0
Generation top-k No
Generation min-p 0.0
Generation repetition penalty 1.0
Generation dtype bfloat16

Table 8. RLTs and prior distillation pipelines across model (7B and 32B) evaluated on coding and multilingual reasoning benchmarks.
Overall is computed by taking the average between LCB-Average and OlympiadBench scores.

Model Data size LCB-Average LCB-Hard OlympiadBench Overall

Qwen2.5-7B-Instruct N.A. 31.88 3.30 35.90 33.89
Bespoke-7B 17K 36.10 1.60 43.30 39.70
RLT-7B 17K 34.63 3.30 46.10 40.37

Qwen2.5-32B-Instruct N.A. 48.94 9.80 46.70 47.82
Sky-T1-32B 17K 57.94 17.90 57.30 57.62
Bespoke-32B 17K 71.06 26.20 60.30 65.68
RLT-32B 17K 71.24 32.50 64.00 67.62

using orders of magnitude larger models across student sizes. Furthermore, the RLT performance is also best across the
individual settings, with the sole exception of LCB-average only for the 7B model, where it comes as a close second.
However, as shown by the experiments in Section 4.4, by equating the pool of initial questions from which to perform
distillation, we believe these experiments could still be underplaying the true potential enabled by the zero-shot transferability
of RLTs. In particular, transferring RLTs, rather than their students, to construct reasoning traces to include more coding and
Chinese-written problems could allow downstream distillation to develop further domain-specific expertise and reasoning,
without the need to run expensive pipelines requiring large and closed-source models.

D. Extended analysis

D.1. RLT reward and R1 traces analysis

We analyze the empirical consequences of ablating the components in our RLT reward function, described in Section 3.3. In
particular, we focus on the effects of removing two key components of our design. First, we examine ablating the think
tokens KL reward rKL, quantifying whether the think tokens toi themselves are interpretable logical continuations from the
student’s perspective as compared with the teacher’s. Second, we examine ablating the min/max reductions terms, which
serve to ensure the rewards do not forego any individual token, avoiding introducing bias to the reward values based on the
solution length or the number of think tokens in the teacher’s explanations.

For these experiments, we train entirely new 7B RLTs following the hyperparameters from Table 3 but setting λ = 0 (see
Equation 5) or α = 0 (see Equations 4 and 3), respectively for the thought tokens KL reward and min/max reduction
ablations. We then construct student distillation datasets, using the same full set of starting question-solution pairs as our
recent state-of-the-art baselines (Li et al., 2025a; Labs, 2025) as considered in our main Section 4 experiments. We compare
the generated datasets and students after distillation with these ablated teachers to our original 7B RLT trained with the full
RLT reward and our strongest distillation baseline using postprocessed R1 reasoning traces (Li et al., 2025a; Labs, 2025).

First, we focus on the effects of these ablations in terms of the traces’ content as compared to our original RLT’s traces and

17

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

Large Language Models to Diffusion Finetuning

Table 9. Teachers ablated of individual reward components compared with RLTs and prior distillation pipelines on our main set of
challenging reasoning tasks.

Model Data size AIME 2024 MATH 500 GPQA Diamond Overall

Qwen2.5-7B-Instruct N.A. 10.00 74.20 33.30 39.17
Bespoke-7B (R1 traces) 17K 20.00 82.00 37.80 46.60
Full RLT reward 17K 23.30 82.80 42.40 49.50
No thought tokens KL term 17K 6.70 63.80 31.80 34.10
No min/max reduction 17K 23.30 79.00 40.00 47.43

the postprocessed R1 pipeline. As shown in Figure 8, the length of the reasoning traces is greatly affected by our ablations.
When looking at our original RLT with full rewards, the average length of the produced reasoning trace is 39% higher than
the original curated R1 traces in the Bespoke dataset (Labs, 2025). This is consistent with our analysis from Section 4.5 and
further highlighted by the full examples shown in Figures 9 and 10, showing how our 7B RLT often includes alternative
verification steps and approaches not considered by traditional pipelines that do not optimize directly for downstream
distillation. Furthermore, ablating each term in our reward leads to the concrete unwarranted effects described in Section 3.3,
allowing the RL optimization procedure to find “shortcuts” to maximize rRLT that hurt the quality of the reasoning traces.
In particular, without the thought tokens KL reward rKL, our RLT cannot differentiate between explanations that guide
the student step-by-step and those that increase the solution’s likelihood without a logical path that can be learned from.
Thus, as shown in Figure 11, this ablation leads to a teacher that only learns to repeat the solution tokens themselves in its
explanation to exploit the repetition tendency of pretrained student LMs, with the average length of its output reasoning
traces dramatically dropping. Moreover, in our second ablation of the min/max reward reduction terms, the rewards become
effectively biased by the length of the reasoning trace, leading the teacher to prefer long explanations only to reduce the
influence on rKL of hard but necessary individual logical steps. As a consequence of this bias, the average number of think
tokens in the teacher’s reasoning traces almost doubles from the postprocessed R1 traces and, as shown in Figure 12, their
content starts including many additional unnecessary steps that are just semantical repetitions of each other as learning
progresses.

Then, we also quantify and compare the effects that each of our ablations has on downstream student performance. As
shown in Table 9, the disruptive effects of ablating the thought tokens KL reward entirely reflect on the capabilities of the
learned students, with their performance being lower than even the original Qwen-7B model they are fine-tuned from. This
result validates our reward design, showing how regularizing for the reasoning traces to be “natural” continuations from the
student’s own perspective is of key importance for effective distillation. On the other hand, ablating the min/max reward
reduction terms produces a more moderate reduction in performance, with the new output traces of this 7B teacher still
remarkably outperforming our strongest baseline pipeline using the R1 LM with orders of magnitude more parameters.
However, we note that by preventing the increase in the lengths of the reasoning traces with the min/max reduction terms,
our full RLT reward also yields faster training, distillation dataset generation, and student fine-tuning, with non-trivial
benefits contributing to our framework’s efficiency.

E. Limitations and future implications
E.1. Limitations and unexplored directions

This work’s purpose was to introduce a new class of Reinforcement-Learned Teachers designed to avoid the exploration
challenge of sparse rewards and align the optimization of RL-trained LMs with the test-time goal of downstream distillation.
However, there are still several limitations and improvements which we hope will be tackled in future extensions. First, to
output explanations, the RLT framework relies on access to the ground-truth solutions. Hence, when used with datasets and
domains where this information might not be available or not be practical to recover without querying LMs, small RLTs
might have to again rely on larger models, even though still to a lesser extent than prior distillation pipelines. Similarly, as
described in Section 4.1 and Appendix A, our current training recipe does not exclusively involve RL, with an initial phase
to familiarize our small model with its new teaching format and role, again relying on some level of initial access to pre-
collected reasoning examples that can be used accordingly. We also note that RLT training makes use of an additional student
model for computing the rewards. In practice, however, we note the downsides from this were minimal, as simple parameter
offloading removed any potential memory burden of having this model on GPU memory during backpropagation, and actual

18

990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044

Large Language Models to Diffusion Finetuning

training time was dominated (> 90%) by the costs of long-context autoregressive generation with our computational setup.

As described in Section 6, we also did not explore the potential of sharing the teacher and student roles with the same
optimized model, nor concurrent training of the two. This leaves two open questions yet unanswered: whether there can be
an effective transfer between the two roles, potentially improving training efficiency by harnessing the relatedness of their
objectives, and whether RL can devise online curricula tailored to the student’s specific learning dynamics. Furthermore,
due to computational constraints, we had to limit the maximum context size during our RL-training and student distillation
phases to 16384, half the maximum context available with Qwen-based models. For the same reason, the considered
RLTs only comprised small, inexpensive 7B models and did not consider further scaling. Breaking these constraints, thus,
also remains another outstanding immediate direction for future improvements and further pushing the capabilities of our
framework. Lastly, this work did not explore increasing the number and breadth of starting question-solution pairs used for
obtaining distillation datasets, beyond the ones considered in prior work that made use of much more expensive pipelines.
This leaves the potential extent of another key feature of our method unexplored, as with our small 7B RLT, it could be much
more feasible to cheaply collect data for student distillation that matches the level of scale and efficacy of closed-source
state-of-the-art data sources such as the one from Guo et al. (2025).

E.2. Broader impact

Our work introduced a new class of models that enable small LMs to generate better synthetic distillation datasets beyond
prior, much more expensive pipelines. Rather than introducing a new application, this work’s contribution was foundational
in nature, thus, its broader implications are bound to the effect of improving the capabilities and democratizing the training
of large language models. To this end, as the accessibility and capabilities of LMs improve, there is an increasing chance
of misuse for potentially harmful goals, such as influencing public opinion or obtaining access to sensitive information.
Moreover, with increasing demand, the carbon footprint of LMs and their potential social impact might become increasingly
relevant. However, we believe these risks are currently offset by the potential upsides of advancing the AI field, such as
empowering humanity to better face upcoming environmental and economic challenges.

19

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099

Large Language Models to Diffusion Finetuning

Reasoning input format

System prompt

<|im_start|>system
Your role as an assistant involves thoroughly exploring questions through a

systematic long thinking process before providing the final precise and
accurate solutions. This requires engaging in a comprehensive cycle of
analysis, summarizing, exploration, reassessment, reflection, backtracing,
and iteration to develop well-considered thinking process. Please
structure your response into two main sections: Thought and Solution. In
the Thought section, detail your reasoning process using the specified
format: <|begin_of_thought|> {thought with steps separated with '\n\n'}
<|end_of_thought|> Each step should include detailed considerations such as
analisying questions, summarizing relevant findings, brainstorming new
ideas, verifying the accuracy of the current steps, refining any errors,
and revisiting previous steps. In the Solution section, based on various
attempts, explorations, and reflections from the Thought section,
systematically present the final solution that you deem correct. The
solution should remain a logical, accurate, concise expression style and
detail necessary step needed to reach the conclusion, formatted as follows:
<|begin_of_solution|> {final formatted, precise, and clear solution}
<|end_of_solution|> Now, try to solve the following question through the
above guidelines:<|im_end|>

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Generation prefix

<|im_start|>user
Return your final response within \boxed{}. Positive integers a and b are

such that the graphs of $y=ax+5$ and $y=3x+b$ intersect the x-axis at
the same point. What is the sum of all possible x-coordinates of these
points of intersection?

↪→

↪→

↪→

$\textbf{(A)}\ {-20}\qquad\textbf{(B)}\ {-18}\qquad\textbf{(C)}\
{-15}\qquad\textbf{(D)}\ {-12}\qquad\textbf{(E)}\ {-8}$<|im_end|>↪→

<|im_start|>assistant
<|begin_of_thought|>

Figure 6. Reasoning input format employed in traditional RL and student distillation, using an example question and the system prompt
from Li et al. (2025a), providing the model instructions first to present a step-by-step rationale and then the problem’s solution, deriving it
from scratch.

20

1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

Large Language Models to Diffusion Finetuning

RLT input format

System prompt

<|im_start|>system
Your role as an assistant involves providing precise and accurate solutions

before providing detailed explanations with your full work showing your
systematic thinking process leading to each solution. Your explanations
should show how you engaged in a comprehensive cycle of analysis,
summarizing, exploration, reassessment, reflection, backtracing, and
iteration to develop well-considered thinking process. Please structure
your response into two main sections: Solution and Explanation. In the
Solution section, present your well-thought solution that accurately
answers the question. The solution should remain a logical, accurate,
concise expression style and detail necessary step needed to reach the
conclusion, formatted as follows: <|begin_of_solution|> {final formatted,
precise, and clear solution} <|end_of_solution|>. In the Explanation
section, comprehensively detail your reasoning process using the specified
format: <|begin_of_explanation|> {explanation with steps separated with
'\n\n'} <|end_of_explanation|> Each step should show detailed
considerations leading to your solutions such as analisying questions,
summarizing relevant findings, brainstorming new ideas, verifying the
accuracy of the current steps, refining any errors, and revisiting
previous steps. <|im_end|>

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

↪→

Generation prefix

<|im_start|>user
Return your final response within \boxed{}. Positive integers a and b are

such that the graphs of $y=ax+5$ and $y=3x+b$ intersect the x-axis at
the same point. What is the sum of all possible x-coordinates of these
points of intersection?

↪→

↪→

↪→

$\textbf{(A)}\ {-20}\qquad\textbf{(B)}\ {-18}\qquad\textbf{(C)}\
{-15}\qquad\textbf{(D)}\ {-12}\qquad\textbf{(E)}\ {-8}$<|im_end|>↪→

<|im_start|>assistant
<|begin_of_solution|>

... the sum of all possible \(x \)-coordinates of these points of
intersection is \(\boxed{E}\).↪→

<|end_of_solution|>

<|begin_of_explanation|>

Figure 7. RLT Input format using an example question from Li et al. (2025a), providing the model instructions to produce a step-by-step
explanation given the solution to each problem as input.

21

1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209

Large Language Models to Diffusion Finetuning

Figure 8. Average number of think tokens in the reasoning traces generated by our baseline R1 pipeline, Our 7B RLT, and other 7B
teachers after ablating some of the key components in the RLT reward function.

22

1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264

Large Language Models to Diffusion Finetuning

Postprocessed R1 reasoning distillation example
Masked distillation input

<|im_start|>system
<|im_start|>system
Your role as an assistant involves thoroughly exploring questions...
<|im_start|>user
Generate an executable Python function generated from the given prompt...
<|im_end|>
<|im_start|>assistant

Distillation reasoning trace

<|begin_of_thought|>

Okay, let's see. The problem is to find the minimum number of sheets needed to print N pages double-sided. Each sheet can hold two pages. So, I need to
figure out how to calculate this based on N.↪→

Hmm, let's think about some examples. Like the sample input is 5, output is 3. Because 5 divided by 2 is 2.5, which rounds up to 3. So maybe the general
formula is to divide N by 2 and round up.↪→

Wait, but wait. Let me check another example. Suppose N is 4. Then 4/2 is exactly 2 sheets. That makes sense. If N is 1, then 1/2 is 0.5, which rounds up to
1. So that's correct.↪→

So the formula is simply ceiling(N / 2). But how to compute that in Python.

In Python, if you do integer division with //, but when you need to round up, you can do (N + 1) // 2. Let's see. For N=5: (5 +1)//2 =6//2=3. Correct. For
N=4: (4+1)/2=5/2=2.5, integer division gives 2. Wait, no. Wait, 5//2 in Python is 2. So (4+1)//2 is 5//2=2. Which is correct. For N=1: (1+1)//2=1.
Correct. So yes, the formula is (N +1) // 2.

↪→
↪→
So the function is straightforward. Take the input N, compute (N +1)//2, and output it.

Testing the sample input: input 5. (5+1)//2=6//2=3. Correct.

Another test case: N=1 → 1. N=2 → 1. N=3 →2. All correct.

So the code would be something like:

Read N from input, compute (N+1)//2, print the result.

So the Python code would be:

n = int(input())
print((n +1) // 2)

But wait, perhaps there's an edge case. Let's see. For N=0? But according to constraints, N is at least 1, so no problem.

Yes, so that's the solution. The code is simple. Just read N, calculate (N +1)//2, print.

<|end_of_thought|>

Distillation solution

<|begin_of_solution|>

To solve this problem, we need to determine the minimum number of sheets of paper required to print a document with N pages using double-sided printing,
where each sheet can hold two pages.↪→

Approach
The key insight here is that each sheet of paper can hold two pages. Therefore, the minimum number of sheets required is determined by dividing the number of

pages by 2 and rounding up to the nearest integer. This can be efficiently computed using integer arithmetic by adding 1 to the number of pages before
performing integer division by 2. This approach works because it effectively rounds up the result of dividing N by 2.

↪→
↪→
Solution Code
```python
n = int(input())
print((n + 1) // 2)
```

Explanation
1. **Reading Input**: The input is read as an integer N, which represents the number of pages.
2. **Calculation**: The formula `(N + 1) // 2` is used to compute the minimum number of sheets. Adding 1 to N before division ensures that any remainder from

the division results in rounding up to the next whole number.↪→
3. **Output**: The result is printed, which is the minimum number of sheets needed.

This approach efficiently computes the result in constant time, O(1), making it very efficient even for the upper constraint limit.

<|end_of_solution|><|im_end|>

Figure 9. Full formatted distillation data sample using a postprocessed DeepSeek R1 reasoning trace from the Bespoke dataset (Labs,
2025).

23

1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319

Large Language Models to Diffusion Finetuning

Raw 7B RLT distillation example
Masked distillation input

<|im_start|>system
<|im_start|>system
Your role as an assistant involves thoroughly exploring questions...
<|im_start|>user
Generate an executable Python function generated from the given prompt...
<|im_end|>
<|im_start|>assistant

Distillation reasoning trace

<|begin_of_thought|>

Okay, let's see. The problem is to find the minimum number of sheets needed to print N pages double-sided. Each sheet can hold two pages. So, I need to
figure out how to calculate this based on N.↪→

Hmm, let's think about some examples. Like the sample input is 5, output is 3. Because 5 divided by 2 is 2.5, which rounds up to 3. So maybe the general
formula is to divide N by 2 and round up.↪→

Wait, but wait. Let me check another example. Suppose N is 4. Then 4/2 is exactly 2 sheets. That makes sense. If N is 1, then 1/2 is 0.5, which rounds up to
1. So that's correct.↪→

So the formula is simply ceiling(N / 2). But how to compute that in Python.

In Python, if you do integer division with //, but when you need to round up, you can do (N + 1) // 2. Let's see. For N=5: (5 +1)//2 =6//2=3. Correct. For
N=4: (4+1)/2=5/2=2.5, integer division gives 2. Wait, no. Wait, 5//2 in Python is 2. So (4+1)//2 is 5//2=2. Which is correct. For N=1: (1+1)//2=1.
Correct. So yes, the formula is (N +1) // 2.

↪→
↪→
So the function is straightforward. Take the input N, compute (N +1)//2, and output it.

Testing the sample input: input 5. (5+1)//2=6//2=3. Correct.

Another test case: N=1 → 1. N=2 → 1. N=3 →2. All correct.

So the code would be something like:

Read N from input, compute (N+1)//2, print the result.

So the Python code would be:

n = int(input())
print((n +1) // 2)

But wait, perhaps there's an edge case. Let's see. For N=0? But according to constraints, N is at least 1, so no problem.

Yes, so that's the solution. The code is simple. Just read N, calculate (N +1)//2, print.

<|end_of_thought|>

Distillation solution

<|begin_of_solution|>

To solve this problem, we need to determine the minimum number of sheets of paper required to print a document with N pages using double-sided printing,
where each sheet can hold two pages.↪→

Approach
The key insight here is that each sheet of paper can hold two pages. Therefore, the minimum number of sheets required is determined by dividing the number of

pages by 2 and rounding up to the nearest integer. This can be efficiently computed using integer arithmetic by adding 1 to the number of pages before
performing integer division by 2. This approach works because it effectively rounds up the result of dividing N by 2.

↪→
↪→
Solution Code
```python
n = int(input())
print((n + 1) // 2)
```

Explanation
1. **Reading Input**: The input is read as an integer N, which represents the number of pages.
2. **Calculation**: The formula `(N + 1) // 2` is used to compute the minimum number of sheets. Adding 1 to N before division ensures that any remainder from

the division results in rounding up to the next whole number.↪→
3. **Output**: The result is printed, which is the minimum number of sheets needed.

This approach efficiently computes the result in constant time, O(1), making it very efficient even for the upper constraint limit.

<|end_of_solution|><|im_end|>

Figure 10. Full formatted distillation data sample using the raw reasoning trace from our 7B RLT model.

24

1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374

Large Language Models to Diffusion Finetuning

Thought tokens KL reward ablation distillation example
Masked distillation input

<|im_start|>system
<|im_start|>system
Your role as an assistant involves thoroughly exploring questions...
<|im_start|>user
Generate an executable Python function generated from the given prompt...
<|im_end|>
<|im_start|>assistant

Distillation reasoning trace

<|begin_of_thought|>

To solve this problem, we need to determine the minimum number of sheets of paper required to print a document with N pages using double-sided printing,
where each sheet can hold two pages.↪→

Approach
The key insight here is that each sheet of paper can hold two pages. Therefore, the minimum number of sheets required is determined by dividing the number of

pages by 2 and rounding up to the nearest integer. This can be efficiently computed using integer arithmetic by adding 1 to the number of pages before
performing integer division by 2. This approach works because it effectively rounds up the result of dividing N by 2.

↪→
↪→
Solution Code
```python
n = int(input())
print((n + 1) // 2)
```

Explanation
1. **Reading Input**: The input is read as an integer N, which represents the number of pages.
2. **Calculation**: The formula `(N + 1) // 2` is used to compute the minimum number of sheets. Adding 1 to N before division ensures that any remainder from

the division results in rounding up to the next whole number.↪→
3. **Output**: The result is printed, which is the minimum number of sheets needed.

This approach efficiently computes the result in constant time, O(1), making it very efficient even for the upper constraint limit.

<|end_of_thought|>

Distillation solution

<|begin_of_solution|>

To solve this problem, we need to determine the minimum number of sheets of paper required to print a document with N pages using double-sided printing,
where each sheet can hold two pages.↪→

Approach
The key insight here is that each sheet of paper can hold two pages. Therefore, the minimum number of sheets required is determined by dividing the number of

pages by 2 and rounding up to the nearest integer. This can be efficiently computed using integer arithmetic by adding 1 to the number of pages before
performing integer division by 2. This approach works because it effectively rounds up the result of dividing N by 2.

↪→
↪→
Solution Code
```python
n = int(input())
print((n + 1) // 2)
```

Explanation
1. **Reading Input**: The input is read as an integer N, which represents the number of pages.
2. **Calculation**: The formula `(N + 1) // 2` is used to compute the minimum number of sheets. Adding 1 to N before division ensures that any remainder from

the division results in rounding up to the next whole number.↪→
3. **Output**: The result is printed, which is the minimum number of sheets needed.

This approach efficiently computes the result in constant time, O(1), making it very efficient even for the upper constraint limit.

<|end_of_solution|><|im_end|>

Figure 11. Full formatted distillation data sample using a reasoning trace collected after training our teacher ablated from the thought
tokens KL reward rKL in the RLT rewards defined in Equation 5.

25

1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429

Large Language Models to Diffusion Finetuning

Min/max reduction reward ablation distillation example
Distillation reasoning trace

<|begin_of_thought|>

Okay, I need to solve this problem where Takahashi wants to print N pages double-sided, with each sheet holding two pages. The task is to find the minimum
number of sheets required. Let's think through this step by step.↪→

So, the problem is about packing pages into sheets. Each sheet can have two pages. But since it's double-sided, maybe the way the pages are arranged affects
how they fit. Wait, no, double-sided printing just means that two pages are printed on the same sheet, front and back. So for example, if I have page 1
on the front and page 2 on the back, that's one sheet. But if there's an odd number of pages, the last sheet will have only one page. For example, if N
is 5, then the sample input shows 3 sheets. Let's see: 1-2 on first sheet, 3-4 on second, 5 on third. So each sheet except possibly the last can have two
pages.

↪→
↪→
↪→
↪→
Hmm, so the approach is to calculate how many pairs we can make. For N pages, the number of pairs is N//2. But if N is odd, there's an extra page. So the

total number of sheets would be (N // 2) + (1 if N %↪→
Wait, but wait. Let's check another example. If N is 4. Then 4//2 is 2, and 4%

Another example: N=3. 3//2 is 1, 3%

What about N=1? Then 1//2 is 0, 1%

Wait, the problem says each sheet can hold two pages. So if there's an odd number of pages, the last sheet has one page. But the problem's sample input is 5,
which works out to 3 sheets. So maybe when N is odd, the formula is (N+1)//2. Wait, 5+1 is 6, 6//2 is 3. Which is correct. For N=3, 3+1=4, 4//2=2.
Correct. For N=1, 1+1=2, 2//2=1. So that's correct. Wait, 1+1=2, 2//2=1. So the formula is (N + 1) // 2. Let's test that.

↪→
↪→
Wait, for N=1: (1+1)//2 = 1. Which is correct. For N=2: (2+1)/2=1.5, integer division is 1. Which is correct. For N=3: (3+1)/2=2. Correct. N=4: 5//2=2.5→2.

Correct. N=5: 3. Correct. So this formula seems to work.↪→
Wait, but wait. Let's see. For N=1, if we use (N+1)//2, that's (1+1)//2=1. So yes. So the formula is (N +1)//2. But wait, in the problem statement, the

sample input 5 gives output 3, which is (5+1)//2=3. So that's correct. So the formula is (N +1)//2. Because adding 1 gives even number of pages, which
can be divided by 2, and then integer division by 2 gives the correct number of sheets.

↪→
↪→
Wait, but let me think again. For N=1, the formula gives 1. So that's correct. For N=2, (2+1)//2=1.5→1. Which is correct. So yes, this formula works.

Wait, but why would (N+1)//2 be the correct formula? Because when you have N pages, each sheet holds two pages, except possibly the last one. So the total
number of sheets is the number of pairs (each pair is two pages) plus one if there's an odd number. So the number of pairs is N//2, and if N is odd,
there's an extra sheet. So the total is (N//2) + (1 if N %

↪→
↪→
Yes. Because for N even, (N+1)/2 is (N/2) +0.5 → but integer division would be N/2. For example, N=4: (4+1)/2=2.5→2. Which is correct. For N=5: (5+1)/2=3. So

that's correct.↪→
So the formula is (N +1) // 2.

Wait, but wait. Let's test N=1. (1+1)/2=1. Correct. N=2: (2+1)/2=1.5→1. Correct. N=3: (3+1)/2=2. Correct. N=4: 2. Correct. N=5:3. Correct.

So this formula works.

So the problem reduces to calculating (N + 1) // 2.

But wait, the input is N, which is between 1 and 100. So the function needs to read N from standard input, compute (N+1)//2, and output that.

Wait, but wait. Let's take N=1. The sample input is 5, which gives output 3. For N=1, the output would be 1. But according to the problem statement, the
minimal number of sheets. So for N=1, you need 1 sheet. Because even though you can't fill a full sheet, you just have to use one sheet. So the formula
works.

↪→
↪→
So the code is straightforward. Read N, compute (N+1)//2, print that.

Wait, but let me check another example. Let's say N=6. (6+1)//2=3.5→3. Wait, 6//2=3. Correct. So that's correct.

Wait, but wait. Wait, no. Wait, (6+1)//2 is 7//2=3. Wait, 7 divided by 2 is 3.5, integer division is 3. So (6+1)//2 is 3.5 →3. So yes. So 6 pages would
require 3 sheets. Each sheet has two pages. So 1-2, 3-4, 5-6. So three sheets. Correct.↪→

So the code is as simple as reading N, then compute the ceiling of N divided by 2. Which is (N +1)//2.

So the Python function would be:

Read N from input. Then compute (N +1) // 2. Print that result.

Wait, but wait. Let's test N=1 again. (1+1)//2=1. Correct.

Yes. So the code is straightforward.

So the code would be:

Read N as integer from input. Then print (N + 1) // 2.

But wait, wait. Let's check N=1. (1+1)//2=1. Correct. For N=2: (2+1)//2=1. So 1 sheet. Which is correct. For N=3: 2 sheets. Correct. For N=4: 2. Correct. For
N=5:3. Correct. For N=6:3. Correct.↪→

So the code is correct.

Therefore, the Python function is:

Read N from input, then compute (N +1) // 2 and print it.

So the code would be:

n = int(input())
print((n + 1) // 2)

Wait, but wait. Let me think again. For N=1, the answer is 1. For N=2, 1. So that's correct. So the code is correct.

But wait, the problem says that N is the number of pages. So that's correct. So the code is as simple as that.

I think that's it. So the answer is to compute (N +1) // 2.

<|end_of_thought|>

Distillation solution

<|begin_of_solution|>

To solve this problem, we need to determine the minimum number of sheets of paper required to print a document with N pages using double-sided printing,
where each sheet can hold two pages.↪→

Approach
The key insight here is that each sheet of paper can hold two pages. Therefore, the minimum number of sheets required is determined by dividing the number of

pages by 2 and rounding up to the nearest integer. This can be efficiently computed using integer arithmetic by adding 1 to the number of pages before
performing integer division by 2. This approach works because it effectively rounds up the result of dividing N by 2.

↪→
↪→
Solution Code
```python
n = int(input())
print((n + 1) // 2)
```
Explanation
1. **Reading Input**: The input is read as an integer N, which represents the number of pages.
2. **Calculation**: The formula `(N + 1) // 2` is used to compute the minimum number of sheets. Adding 1 to N before division ensures that any remainder from

the division results in rounding up to the next whole number.↪→
3. **Output**: The result is printed, which is the minimum number of sheets needed.

This approach efficiently computes the result in constant time, O(1), making it very efficient even for the upper constraint limit.

<|end_of_solution|><|im_end|>

Figure 12. Full formatted distillation data sample using a reasoning trace collected after training our teacher ablated from the min/max
reduction term in the RLT rewards components defined in Equations 4 and 3. System prompt and Assistant message omitted for space.

26

