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Abstract

We introduce LaGPS, a neuro-symbolic framework that grounds long-form textual
rules, such as cultural dress codes, by translating them into deterministic programs
for segmentation of rule violations1. Existing vision-language models struggle
with this task because they cannot parse the compositional logic inherent in human
rules. LaGPS overcomes this limitation with a two-stage architecture: a Semantic
Interpreter that uses a large language model to compile free-form text into a
structured program, and a Symbolic Executor that runs this program over a set
of visual primitives (e.g., per-person body parts, skin masks, etc) to produce
precise segmentation masks. To evaluate this setting, we introduce the Human-
Centric Rule-violation Segmentation (HRS) benchmark for this task, a new 1, 100
image dataset spanning diverse cultural contexts. LaGPS significantly outperforms
baselines like CLIPSeg, achieving a +19.4% absolute mIoU improvement. Our
work demonstrates that this decoupled approach creates more transparent, accurate,
and auditable systems for language-guided visual reasoning.

1 Introduction

A key challenge for computer vision is moving beyond the recognition of concrete objects towards an
understanding of the nuanced, compositional, and cultural contexts inherent in visual data [1]. While
modern models excel at identifying discrete objects like a ‘cat’ or a ‘car’, they often fail to interpret
abstract, human-centric concepts such as what constitutes an ‘culturally or contextually conditioned
attire requirement’ [2]. This gap between low-level recognition and high-level understanding limits
the development of AI that can reliably operate in the complexities of human environments [3].

Grounding text-based rules in visual data is a canonical problem that highlights this limitation [4].
Interpreting a seemingly simple rule like “Shoulders and knees must be covered” demands a cascade
of reasoning that is trivial for humans but challenging for standard models [5, 6]. This task requires
identifying semantic body parts, understanding their state (e.g., ‘covered’ vs. ‘uncovered’), and
composing these conditions according to a logical specification [6]. Solving this problem enables
transparent and auditable systems for understanding how culturally-situated guidelines are visually

1Here, “violation” is used in a strictly technical sense to denote pixels where a user-specified visual condition
is not met; it carries no moral, cultural, or legal implication.
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interpreted by vision-language models. This transparency supports human-in-the-loop review when
policy meaning varies across communities and contexts.

Current end-to-end Vision-Language Models (VLMs) struggle with this task due to a fundamental
“semantic-symbolic gap”: a disconnect between their ability to parse long-form language and the
skill needed to execute precise, logical operations on visual evidence [7]. Monolithic models like
CLIPSeg [8] attempt a direct mapping from text to pixels, but are not designed to decompose and
systematically evaluate the compositional logic required by a rule like “legs must be covered below
the knee but above the ankle” [9]. Consequently, they often produce imprecise segmentations that
fail to respect logical boundaries [10].

We introduce LaGPS (Language-Guided Policy Segmentation), a neuro-symbolic framework that
bridges this gap by compiling natural language into an executable symbolic program. Our contribu-
tions are:

• A Semantic Interpreter, an LLM-based module that translates unstructured textual rules
into a structured, symbolic program defining logical violation2 conditions.

• A deterministic Symbolic Executor that executes this program over primitives (like body
parts, gender, etc) to produce precise violation segmentations.

• The Human-Centric Rule-violation Segmentation (HRS) benchmark, a new dataset of
1, 100 images with rich categories designed to evaluate nuanced and diverse rule grounding.

2 Related Work

Referential Grounding. The dominant paradigm in vision-language research is referential grounding,
which uses implicit feature matching to locate objects described in text [11–14, 8, 15]. These
models (CLIPSeg [8], LSeg [15], DenseCLIP [16]) employ contrastive learning or detector-SAM
pipelines [14] that conflate semantic interpretation with visual execution [17]. While effective for
object identification, this architectural coupling is unsuited for parsing compositional logic and
prevents diagnosing error sources, creating a “semantic-symbolic gap” [18].

LLM Planners. A more recent class of models uses LLMs as planners to execute sequences of
imperative commands via vision tools [19]. ViperGPT [19] generates Python code that orchestrates
API calls for multi-step visual reasoning [20]. These systems are designed for command execution,
translating user instructions into sequential tool invocations. LaGPS targets a different objective:
policy interpretation for vision tasks, where the goal is to specify what constitutes compliance
rather than how to execute a query. This distinction enables reasoning over conjunctive/disjunctive
constraints (e.g., “neck AND hands covered OR full-body garment”) that are difficult to express as
linear action sequences [21, 22].

Neuro-Symbolic Synthesis. To bridge the semantic-symbolic gap, neuro-symbolic synthesis lever-
ages LLMs as compilers that translate natural language into structured programs for deterministic
execution [23, 24]. Historically constrained by hand-crafted logical vocabularies, modern implemen-
tations generate declarative programs for precise evaluation [25], contrasting with the imperative
scripts of planners or the opaque feature maps of grounding models [26]. LaGPS extends this trajec-
tory by explicitly decoupling semantic interpretation (Semantic Interpreter) from visual execution
(Symbolic Executor), enabling two capabilities: (1) fine-grained, body-part-level policy specification
through a domain-specific language; and (2) diagnostic failure analysis that traces errors to specific
components, as demonstrated in our experiments.

LaGPS generates declarative programs for policy interpretation, executed over visual primitives,
enabling both compositional logic and diagnostic transparency. This contrasts with grounding models
that output opaque pixel maps or planners that output imperative scripts for command execution.

3 The LaGPS Framework

Our LaGPS framework grounds textual rules in multi-person scenes through a modular, two-stage
pipeline, as illustrated in Figure 1. The pipeline begins by extracting a set of foundational visual

2Here and throughout, we use “violation” to refer only to cases where the visual evidence does not satisfy
the stated condition, without implying judgment or enforcement.
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Figure 1: The LaGPS neuro-symbolic architecture. (Top) A textual rule is compiled by the
Semantic Interpreter into a JSON program. (Bottom) Visual primitives, including a Part Mask
(Mpart) and Skin Mask (Mskin), are extracted from the input image. The Symbolic Executor then
evaluates the program Π against the primitives to produce the final Violation Map, MV .

primitives (Sec. 3.1) from the input image (e.g., body parts). Next, a Semantic Interpreter translates
the textual rule into a structured, symbolic program (Sec. 3.2). Finally, a deterministic Symbolic
Executor evaluates this program over the visual primitives to produce the violation mask (Sec. 3.3).

3.1 Foundational Visual Primitives

The vocabulary for our Symbolic Executor is constructed from four visual primitives: (1) per-person
instance masks from a YOLOv8n-seg [27] model for disambiguation; (2) fine-grained anatomical
part masks (e.g., face, left_knee) from the Sapiens3 model[28]; (3) a global skin mask generated
using game-theoretic approach in YCbCr thresholding [29]; and (4) a gender classification4 for each
person. These primitives are extracted for the entire image and then associated with each person
instance, enabling person-specific rule evaluation. We provide qualitative examples in Appendix D

3.2 The Semantic Interpreter

The core of our framework is the Semantic Interpreter, which uses a Large Language Model (LLM)
to translate the free-form text rule T into a structured, symbolic program Π. By using Structured
Decoding, we constrain the LLM to act as a reliable language compiler, outputting a strict JSON
schema. The program Π is an “allow list", where a False value for a body part indicates that
its visibility is a violation. The schema also requires the LLM to output a reasoning string for
auditability. An example program is provided in Appendix C.3. This process may involve the LLM
completing or refining the rule through both literal translation and common-sense inference, while
also resolving any gender-specific logic.

3.3 The Symbolic Executor: Rule-based Mask Composition

The Symbolic Executor constructs a violation mask MV by executing the program Π over the visual
primitives. The final mask is the aggregation of all violations across all detected persons, formulated
as: MV =

⋃
i

⋃
j:πj=false

(
Pi ∩Mpart,j ∩Mskin

)
for all person indices i and part indices j where

πj (condition for part j) within Π evaluates to false for the attributes of person i. This formulation

3 We use sapiens-seg-1B variant.
4 “Gender” here refers to classification inferred from visual attribute; see Ethics in Appendix B
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ensures every pixel in the final mask can be traced back to a specific rule and a set of visual primitives,
making the system’s reasoning transparent and auditable.

4 Experiments

4.1 The Human-Centric Rule-violation Segmentation (HRS) benchmark

Motivation. A primary obstacle to developing models for subjective visual reasoning is the lack
of appropriate evaluation benchmarks. Existing segmentation datasets are annotated with a fixed
vocabulary of concrete objects and cannot be used to evaluate a model’s ability to ground composi-
tional, subjective, and culturally-nuanced rules. To address this gap, we created the Human-Centric
Rule-violation Segmentation (HRS) benchmark. Curation. The ground-truth masks were created by
three annotators using a two-stage process with specific guidelines, detailed in Appendix A.2. Ethics.
For ethical considerations in our work refer to Appendix B

Benchmark Diversity. For evaluation, we introduce the HRS benchmark, which contains 1,100
diverse images organized into a hierarchy of 4 primary and 16 sub-categories. This hierarchy enables
testing across a wide range of cultural rules and visual contexts (e.g., Islam, Swimwear, East Asia).
The categories include Religion (454 images, e.g., Islam, Hinduism), Geography (380, e.g., Middle
East, East Asia), Urban (88, e.g., Swimwear), and General (178). A complete breakdown of the
dataset hierarchy and image counts is provided in Appendix A.1.

4.2 Experimental Setup

Baselines and Metrics. We evaluate LaGPS against 3 strong baselines: CLIPSeg [8], Dense-
CLIP [16], and Grounded SAM [14]. For each baseline, we provide the entire textual rule as the
input prompt, testing their out-of-the-box compositional reasoning capabilities. Performance is
measured using standard segmentation metrics (IoU, Dice [30]) and boundary alignment (Hausdorff
Distance) [31]. To specifically penalize the imprecise over-segmentation common in this task, we
introduce the Rule Adherence Score (RAS) defined as: RAS = Dice · (1 − FPR), where the False
Positive Rate (FPR) measures the fraction of background pixels incorrectly segmented as a violation.
A high RAS score requires both accurate segmentation of the target region (high Dice) and correctly
ignoring irrelevant areas (low FPR).

Implementation. We implement LaGPS using publicly available models. We use YOLOv8n-seg [27]
for person instance segmentation, the Sapiens [28] model for body part extraction, and Gemma3-
4B [32] for gender classification. We use Gemini 2.5 Flash (with zero-shot prompting) as the LLM
for our Semantic Interpreter.

4.3 Results and Analysis

Quantitative Results. As shown in Table 1, LaGPS significantly outperforms all baselines across
every key metric. Our method achieves a +19.4% absolute mIoU improvement over the strongest
segmentation baseline, DenseCLIP (0.295). This demonstrates that our neuro-symbolic design, which
explicitly compiles language into a symbolic program, is a superior strategy for this task than relying
on opaque, end-to-end models.

Table 1: Quantitative comparison on HRS benchmark. We report our novel Rule Adherence Score
(RAS) and standard metrics. The best and second-best results are highlighted. ↑/↓ indicates higher /
lower is better. Our model, LaGPS, achieves SOTA performance on almost all metrics.

Overlap & Precision Distance & Error

Model RAS ↑ IoU ↑ Dice ↑ Haus. ↓ FPR ↓
CLIPSeg [8] 0.236 0.193 0.242 503.77 0.0254
DenseCLIP [16] 0.299 0.295 0.406 464.80 0.2625
Grounded SAM [14] 0.227 0.222 0.296 508.47 0.2347

LaGPS (Ours) 0.523 0.489 0.542 288.42 0.0355

4



LaGPS achieves an RAS of 0.523, more than 1.5× the score of the next-best method, revealing
its high precision. In contrast, the architectural flaws of monolithic models are exposed by their
high FPRs; they produce coarse, over-segmented masks that fail to respect logical boundaries. This
precision is further confirmed by the Hausdorff distance, where LaGPS is the only model to score
below 300. The per-category analysis clarifies this, showing the model excels in high-signal categories
like urban-swimwear (IoU 0.668) but degrades when primitives fail. Figure 4 in the Appendix D
provides a clear qualitative illustration. We can diagnose two failure modes: aggressive, where
complex attire (religion-islamic, IoU 0.349) confuses the primitives and causes a high FPR
(0.069); and passive, where poor lighting in urban-nightlife (IoU 0.382) starves primitives of
evidence, leading to high false negatives (FPR: 0.013). This diagnostic ability confirms that our
neuro-symbolic design is not only effective but also highly interpretable.

5 Conclusion

In this work, we introduced LaGPS, a neuro-symbolic framework demonstrating that decoupling
semantic interpretation from symbolic visual execution enables transparent and precise grounding of
compositional language in visual data. By compiling free-form rules into executable programs over
visual primitives, LaGPS achieves a +19.4% absolute mIoU improvement over strong end-to-end
baselines on the HRS benchmark. This architecture produces outputs that are auditable and directly
traceable to the rule logic and visual primitives, enabling diagnostic failure analysis (distinguishing
primitive errors from semantic errors) that remains opaque in monolithic models.

Limitations and Future Work. The approach depends on visual primitive extractors, and errors
propagate even when the semantic program is correct. Improving primitive robustness through
multi-modal learning and expanding the symbolic grammar to richer visual attributes (texture,
material, temporal dynamics) are promising directions. Integrating self-correcting mechanisms that
exploit programmatic structure to detect and mitigate primitive failures would further strengthen the
framework’s reliability.

Responsible Use. LaGPS is not intended for compliance monitoring or enforcement. Its purpose is
transparent translation of user-specified rules towards fine-grained visual reasoning tasks, allowing in-
spection, contestation, and revision before real-world use. This transparency stems from architectural
design: the generated program and execution trace provide a human-readable audit trail. A public
release will follow in an extended version with an acceptable-use license prohibiting institutional
enforcement and requiring human-in-the-loop review.
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A HRS Benchmark

A.1 HRS Benchmark Composition

The Human-Centric Rule-violation Segmentation (HRS) benchmark is designed to provide com-
prehensive and diverse coverage for evaluating nuanced rule grounding. Figure 2 visualizes the
hierarchical composition of the benchmark, breaking down the 1,100 total images into 4 primary
categories and 16 sub-categories. This ensures that models are tested against a wide spectrum of
visual contexts, cultural norms, and demographic representations, making it a robust benchmark for
future research in this domain.

Figure 2: Hierarchical distribution of the HRS benchmark. The 1,100 images in the benchmark
are organized into four primary categories. The Religion and Geography categories are further
broken down into diverse sub-categories to ensure broad cultural and regional representation. The
Modern/Urban category focuses on contemporary Western contexts, while the General category
includes a wide array of miscellaneous scenes. This multi-level, diverse composition is designed to
rigorously test a model’s ability to ground subjective rules across varied domains.

A.2 Annotation Process

As shown in Figure 3, the ground-truth masks for the HRS benchmark were generated by a team of
three annotators according to a detailed protocol. For each sub-category, annotators were provided
with specific guidelines and illustrative examples of rule violations.

Figure 3: The HRS data annotation pipeline. The process proceeds in four stages: (1) Annotators
are provided with a rule and a set of candidate images. (2) Initial body part proposals are automatically
generated using the Sapiens model to accelerate the workflow. (3) Using the CVAT[33] annotation
tool, annotators perform manual correction to create pixel-perfect ground-truth violation masks.
(4) Finally, a 20% random subset of each group is reviewed by a second annotator to ensure high
inter-annotator agreement and quality.

To ensure consistency, all annotators were provided with a detailed protocol document. For each
image and its associated textual rule, annotators were instructed to:
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1. Identify all persons to whom the rule applies.
2. For each person, identify the specific body part(s) that violate the rule. For instance, for

the rule “Shoulders and knees must be covered," only the exposed skin on the shoulder and
knee regions should be segmented.

3. Produce a pixel-perfect segmentation mask for only the violating regions. Areas covered by
clothing, even if they are part of a violating body part (e.g., “the part of the knee covered by
shorts"), should not be included in the mask.

4. If the rule is ambiguous, adhere to a conservative interpretation provided in a supplementary
guide.

To ensure inter-annotator consistency (IAA), we employed a two-stage quality assurance process:

1. An initial set of annotations was created by a single annotator.
2. A 20% subset of these annotations was then reviewed by a second annotator to ensure

consistency.

B Ethical Statement

B.1 Scope and Intended Use

LaGPS is a research prototype that grounds textual policies into interpretable visual reasoning steps.
It is not intended for enforcement or surveillance. The system applies attribute-conditioned rules
only when the nuance is relevant in the text. The goal of LaGPS is to build auditable, transparent
systems that faithfully expose how a user-supplied policy is visually interpreted and grounded, rather
than to judge or prescribe compliance.

B.2 HRS Dataset

Images in HRS were collected from public web sources under permissive licenses. To enable broad
evaluation of appearance-related visual reasoning, the benchmark intentionally includes a range of
attire, including explicit content for stress-testing segmentation across diverse cultural and contextual
settings. Because the images are public-source, societal biases may persist and performance can vary
across demographic groups despite our effort to create a diverse hierarchy of categories.

B.3 Bias and Misuse

The policies in HRS are sourced from publicly documented cultural and contextual dress guidelines;
we do not assert whether these policies should or should not be followed. LaGPS reproduces
the logical structure of the rules provided to it – it does not correct or endorse the policy itself. We
recognize the potential for misuse, particularly automated enforcement of discriminatory dress codes.
Users and the contexts they define bear full ethical responsibility for the policies they supply.

B.4 Non-Enforcement and Community Protection

LaGPS is not intended for compliance monitoring or disciplinary enforcement. The system does not
judge whether a cultural or religious guideline should be followed; it only makes the interpretation
of a user-provided rule explicit and auditable. Because the HRS dataset includes culturally-situated
attire and may carry social sensitivity, we will release the dataset and code after further community
review and refinement in a forthcoming extended version. The release will be governed by an
acceptable-use license prohibiting deployment in institutional or governmental enforcement settings,
workplace or school monitoring workflows, and requiring human-in-the-loop review. This staged
release is intended to ensure responsible access, contextual guidance, and safeguards before
broader dissemination.

B.5 Gender References

When a rule mentions gender, LaGPS treats the term as a presentation-based linguistic cue extracted
from the wording of the rule and usually applies it only when the cues are relevant in the policy.
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B.6 Transparency / Auditability

Every output of LaGPS includes: (1) a structured, machine-readable program describing the logical
interpretation of the rule (reasoning chain), and (2) the visual primitives used in its execution. This
enables researchers or affected individuals to inspect, contest, revise or reject the interpretation
prior to any real-world deployment.

C Implementation Details

C.1 Structured Decoding for Program Generation

The Semantic Interpreter ensures the generated symbolic program Π adheres to a strict schema using
structured decoding. A Pydantic schema defines the program’s structure, specifying required fields
for body parts and their boolean values (e.g., covered or uncovered). This constrains the LLM’s
output to be syntactically and semantically valid, enhancing reliability and simplifying execution by
the Symbolic Executor.

C.2 Reproducibility Details.

Interpreter. We use Gemini 2.5 Flash in zero-shot mode (temperature=0.0, top-p=0.9). The
exact prompt templates and the Pydantic schema used for structured decoding are provided in
Appendix C.3. Decoding is performed via a schema validator; failed generations trigger up to two
re-prompts with a consistency hint.

Visual Primitives. Person masks use YOLOv8n-seg; part masks use Sapiens-1B [28]; skin masks
are computed via YCbCr thresholds [29]. When the rule text explicitly differentiates by gender, we
infer gender presentation by prompting for each person (Gemma3-4B) and classifying presentation
via a constrained LLM decision set; otherwise, this attribute is ignored.

Execution and Evaluation. The symbolic executor operates over binary masks using set operations.
We evaluate Dice, IoU, FPR, and RAS. All experiments ran on a single Nvidia-T4 and Cuda 12.8.

Release. We will release code and data under an acceptable-use license that prohibits surveillance
or coercive enforcement, with a documented takedown mechanism.

C.3 Example of a Generated Symbolic Program

This section provides an example of the symbolic program Π generated by our Semantic Interpreter
for the textual rule: “In this culture, women must cover their hair, neck, and arms. Legs below the
knee may be shown.” Using structured decoding, the LLM is constrained to output a program that
conforms to a fixed Pydantic schema, evaluating the rule’s impact on all possible body parts. The
program uses an "allow list" logic, where a boolean value of False indicates the corresponding body
part must be covered.

{
"Hair": false ,
"Hair_Reasoning": "Hair must be covered as per cultural rules.",
"Face_Neck": false ,
"Face_Neck_Reasoning": "The neck must be covered; face visibility is

not restricted , but the combined region means the neck cannot be
shown.",

"Right_Upper_Arm": false ,
"Left_Upper_Arm": false ,
"Right_Lower_Arm": false ,
"Left_Lower_Arm": false ,
"Right_Wrist": false ,
"Left_Wrist": false ,
"Arms_Wrist_Reasoning": "All parts of the arms , including wrists ,
must be covered as per cultural rules.",

"Left_Upper_Leg": false ,
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"Right_Upper_Leg": false ,
"Left_Lower_Leg": true ,
"Right_Lower_Leg": true ,
"Left_Foot": true ,
"Right_Foot": true ,
"Legs_Feet_Reasoning": "Upper legs must be covered. Lower legs and
feet may be shown as per cultural rules.",

"Torso": false ,
"Torso_Reasoning": "Although not explicitly stated , the requirement
to cover the neck and arms implies that the torso must also be
fully covered to maintain modesty."

}

Listing 1: Example symbolic program Π generated by the Semantic Interpreter using structured
decoding.

D Additional Results

D.1 Qualitative Examples of the LaGPS Pipeline

To provide a clear, visual understanding of our framework, Figure 5 illustrates the sequential outputs
of the core modules in the LaGPS pipeline for three distinct examples. The figure showcases the
intermediate outputs for the foundational visual primitives that our Symbolic Executor uses to execute
the final rule-based segmentation.

As demonstrated in Figure 5, the LaGPS pipeline robustly grounds rules across diverse cultural
contexts. We highlight several key examples:

• Row 1 (Hinduism): LaGPS successfully applies a rule regarding modest swimwear, accu-
rately segmenting the bikini top and bottom.

• Row 2 (Islam): The framework correctly grounds a rule requiring the covering of the hair
(hijab), producing a precise segmentation of the head and neck region.

• Row 3 (Orthodox Judaism): For a rule related to modest dress (tzniut), the model correctly
identifies the hair and upper body as the regions of interest.

• Row 4 (Islam): This example highlights the system’s abstract reasoning. For a male subject
under a rule requiring the torso and arms to be covered, LaGPS correctly identifies the entire
anatomical region as a violation, even though the subject is shirtless. This shows the model
grounds the rule’s logic on the body itself, not just on existing clothing.
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Figure 4: Qualitative comparison with baselines on the HRS benchmark. Our model (LaGPS)
produces precise and accurate violation masks that closely align with the ground truth. In contrast,
the end-to-end models exhibit characteristic failure modes. CLIPSeg often produces low-confidence,
imprecise masks that fail to capture sharp boundaries. Grounded SAM consistently over-segments,
failing to distinguish between the person as a whole and the specific body parts targeted by the
rule (Rows 1-3), and even incorrectly includes background individuals (Row 3). This visually
demonstrates the “semantic-symbolic gap”, the inability of monolithic models to execute the precise,
compositional logic required by the rule.
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Figure 5: End-to-end visualization of the LaGPS pipeline on culturally-specific rules. This
figure demonstrates the framework’s robustness across diverse religious dress codes by showing key
stages: the original image (1), extracted primitives (2, 3), person mask (4), final LaGPS output (5),
and ground truth (6).
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