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Abstract

Accurate network estimation serves as the cornerstone for understanding complex
systems across scientific domains, from decoding gene regulatory networks in sys-
tems biology to identifying social relationship patterns in computational sociology.
Modern applications demand methods that simultaneously address two critical
challenges: capturing nonlinear dependencies between variables and reconstructing
inherent hierarchical structures where higher-level entities coordinate lower-level
components (e.g., functional pathways organizing gene clusters). Traditional Gaus-
sian graphical models fundamentally fail in these aspects due to their restrictive
linear assumptions and flat network representations. We propose NNBLNet, a
neural network-based learning framework for bi-level network inference. The
core innovation lies in hierarchical selection layers that enforce structural con-
sistency between high-level coordinator groups and their constituent low-level
connections via adaptive sparsity constraints. This architecture is integrated with a
compositional neural network architecture that learn cross-level association patterns
through constrained nonlinear transformations, explicitly preserving hierarchical
dependencies while overcoming the representational limitations of linear methods.
Crucially, we establish formal theoretical guarantees for the consistent recovery of
both high-level connections and their internal low-level structures under general
statistical regimes. Extensive validation demonstrates NNBLNet’s effectiveness
across synthetic and real-world scenarios, achieving superior F1 scores compared
to competitive methods and particularly beneficial for complex systems analysis
through its interpretable bi-level structure discovery.

1 Introduction

Network estimation is a fundamental task across many disciplines—such as genetics, finance, and
social science—where uncovering the structure of dependencies among variables can yield critical
insights into the underlying mechanisms of complex systems [8, 38, 44]. For instance, in genetics,
gene regulatory networks can be reconstructed from analyzing multi-patient omics datasets to identify
statistically significant edges between genes. In social science, co-authorship networks connect
researchers through jointly published papers, with edge weights reflecting collaboration intensity,
and the resulting network reveals meaningful patterns of scholarly connection and knowledge flow.

A key characteristic shared across these domains is that variables can often be naturally organized
into groups. Such group information is readily available as direct labels in practice: for instance, most
genes have well-annotated pathway information in databases like KEGG, which naturally defines
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functional groupings, while public social datasets commonly include demographic or professional
categories such as gender or research field that provide meaningful group divisions. Under such a
grouped organization, connections may occur both within these groups—reflecting functional or
structural coherence—and between groups—reflecting higher-order dependencies or cross-functional
regulation [26, 6]. Crucially, these systems exhibit hierarchical dependency architectures: depen-
dencies among low-level variables often emerge only when their parent groups share systemic
interdependencies. For instance, in genomics, genes within a pathway rarely interact with genes in
unrelated pathways unless cross-pathway regulatory mechanisms exist [14, 10]. This hierarchical
structure poses significant modeling challenges, as conventional network estimation methods that ig-
nore group-level dependencies often fail to capture emergent system behaviors, yielding fragmentary
results that lack systematic interpretability. This motivates bi-level network estimation, which aims
to recover hierarchically structured dependencies at both the group and variable levels.

Gaussian Graphical Models (GGMs) are widely used for learning network structures by estimating
the inverse covariance matrix under multivariate Gaussian assumptions due to their ability to capture
conditional dependencies between variables [39]. Furthermore, a series of methods reformulate
the GGM estimation problem into a set of sparse linear regression models, often offering greater
computational efficiency [24]. Extensions to bi-level GGMs have also been proposed to capture
grouped variable associations [29]. However, GGMs are restricted to modeling linear relationships
and rely heavily on Gaussianity, limiting their applicability in real-world data with nonlinear or
non-Gaussian structure. To address this gap, a number of model-free or nonparametric approaches
have been proposed [13, 36, 32]. While these methods alleviate distributional assumptions, they often
struggle to model highly complex interdependencies in modern high-dimensional systems, where
traditional kernel-based or graphical techniques lack the representational capacity to capture intricate
hierarchical patterns. Neural network (NN) has demonstrated superior performance in capturing
nonlinear relationships compared to conventional nonparametric methods [18]. Nevertheless, neural
network-based bi-level network estimation remains unexplored.

We propose a neural network–based framework for bi-level network estimation to address the chal-
lenge of modeling complex, hierarchical dependencies in grouped variables. This work pioneers the
use of neural networks for bi-level network inference, effectively capturing nonlinear interdepen-
dencies both within and across groups, beyond the capacity of traditional linear models. The key
contributions of our work are:

• Bi-level Network Estimation: We propose a structured estimation framework that recovers
hierarchical network architectures through dual-layer selection mechanisms, capturing bi-
level dependencies between variables by incorporating group information and identifying
group dependencies simultaneously.

• Hierarchical Nonlinear Architecture: We integrate compositional neural network architec-
tures to model cross-level dependencies via constrained nonlinear transformations, explicitly
preserving hierarchical structures while overcoming the representational constraints of linear
methods.

• Theoretical Guarantees: We formally introduce the notion of bi-level selection consis-
tency and establish a rigorous selection consistency result under high-dimensional regimes,
ensuring the method to reliably recover the true network structure at both levels.

• Empirical Validation: We validate our method through comprehensive experiments on both
synthetic and real-world datasets. The results highlight the advantages of our approach in
accurately estimating complex network structures, especially in scenarios where traditional
GGM-based methods fail due to nonlinearity or distributional misspecification.

1.1 Notation

Consider n independent observations with p variables partitioned into L predefined groups (Fig-
ure 1 A), where the l-th group contains pl variables such that

∑L
l=1 pl = p. For the i-th obser-

vation, define the continuous measurement vector as xi = (xi1, . . . , xip)
⊤. The group mem-

bership of the j-th variable is specified by Cj ∈ {1, . . . , L}. We further define two derived
quantities: xi,−j = (xi,1, . . . , xi,j−1, xi,j+1, . . . , xi,p)

⊤ representing the i-th observation with
the j-th variable excluded and x̃il denoting the subvector containing all variables from group l
in the i-th observation. We define the operator ⊙ as a block-wise product between a vector and
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Figure 1: Workflow of the proposed bi-level network estimation. (A) Input xi = (xi,1, · · · , xi,p)
⊤’s:

n observations with p variables partitioned into L groups. (B) Node-wise nonlinear regression for
modeling the relationships between the jth variable xi,j and the others xi,−j , as well as those between
groups x̃i,l and x̃i,l′ . Here, Cj = l indicates that the jth variable belongs to the lth group. (C) Output:
Bi-level network, including both low-level edges and high-level edges. (D) Network structure of the
proposed NNBLNet, including the two hierarchical selection layers and multiple hidden layers for
accommodating the nonlinear relationships among both low-level variables and high-level groups.

a partitioned vector (or matrix). Specifically, let A = (a1, . . . , am)⊤ ∈ Rm×1 be a vector and

B =

((
B(1)

)⊤
, . . . ,

(
B(m)

)⊤)⊤

∈ Rn×N be a matrix that can be decomposed into m con-

tiguous blocks, i.e., B(l) ∈ Rnl×N for l = 1, . . . ,m with
∑m

l=1 nl = n. The block-wise product

A ⊙ B ∈ Rn×N is defined as A ⊙ B :=

(
a1

(
B(1)

)⊤
, a2

(
B(2)

)⊤
, . . . , am

(
B(m)

)⊤)⊤

.

That is, each element al scales all entries in the corresponding block B(l).

2 Neural Network-based Bi-level Network Estimation (NNBLNet)

Traditional methods, such as GGMs, typically handle linear conditional dependencies captured via
precision matrices. However, realistic systems often exhibit complex, nonlinear associations that
linear models may not adequately capture. To overcome these limitations, our framework formalizes
nonlinear relationships among variables through node-wise nonlinear regression. Specifically, for the
j-th variable with group assignment Cj = l, consider

xi,j = hj(xi,−j) + εij ≜ hj

((
x̃⊤
i1, . . . , x̃

⊤
il,−j , · · · , x̃⊤

iL

)⊤)
+ εij , (1)

where x̃il,−j specifically excludes the j-th variable from its native group l, εij is independent and
identically distributed sub-Gaussian stochastic noise with mean zero and sub-Gaussian parameter σ,
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and hj : Rp−1 → R is a sparse nonparametric mapping (Figure 1 B). Model (1) captures the nonlinear
relationships between xi,j and all other variables xi,−j , enabling more accurate characterization
of complex system mechanisms than linear approximations permit. The group information is
incorporated in (1) through structured group inputs x̃il. This strategy can also accommodate nonlinear
high-level relationships between group l and all other groups, leading to deeper investigation of the
underlying structures (Figure 1 C).

For estimating hj(·) and performing bi-level network estimation, we propose a neural network with
two hierarchical selection layers and D hidden layers (Figure 1 D):

fαj
(xi,−j) = T

(D)
j ◦ϱ◦T (D−1)

j ◦· · ·◦ϱ◦T (1)
j ◦

(
Γj ·

(
θl ⊙

(
x̃⊤
i1, . . . , x̃

⊤
il,−j , · · · , x̃⊤

iL

)⊤))
, (2)

with αj =
{
θl,Γj , {∆(d)

j , b
(d)
j }Dd=1

}
being the parameter set. Here, each affine transformation

is given by T
(d)
j (u) = ∆

(d)
j u + b

(d)
j with learnable parameters ∆(d)

j ∈ Rw
(d)
j ×w

(d−1)
j and b

(d)
j ∈

Rw
(d)
j ×1, where w

(d)
j is the width of the d-th hidden layer. The activation function ϱ is chosen as the

ReLU function and ⊙ is the block-wise product defined in Notation.

In (2), we innovatively introduce two selection layers. Specifically, the first selection layer involves
the vector θl = (θl1, . . . , θll, . . . , θlL)

⊤, which encodes group-level (high-level) dependencies with

θll = 1. Simultaneously, the second selection layer involves the matrix Γj ∈ Rw
(1)
j ×(p−1), which

captures specific associations between variable j and the other p− 1 variables. Hence, by integrating
these hierarchical components, the relationships among low-level variables are explicitly characterized
by θl ⊙ Γ⊤

j , where high-level group dependencies act as latent scaffolds that constrain or enable
low-level dependencies.

Denote α =

{
θ,
{
Γj , {∆(d)

j , b
(d)
j }Dd=1

}p

j=1

}
with θ = (θ1,θ2, · · · ,θL), and Γ

[:,k]
j as the k-th

column of Γj . Integrating fα1
(xi,−1), · · · , fαp

(xi,−p), we propose a dual-penalized estimator
designed to achieve bi-level sparsity for network estimation:

α̂n = argmin
α

p∑
j=1

1

n

n∑
i=1

l(αj , xi,j ,xi,−j) + λ1

∑
l<l′

|θll′ |+ λ2

p∑
j=1

p−1∑
k=1

∥∥∥Γ[:,k]
j

∥∥∥ , (3)

with l(αj , xi,j ,xi,−j) =
(
xi,j − fαj

(xi,−j)
)2

and ∥ · ∥ being the L2-norm of a vector.

Here, the first term constitutes a quadratic reconstruction loss. The second term implements a
Lasso penalty on θll′ , inducing sparsity through element-wise shrinkage towards zero, which enables
automatic high-level edge selection. This foundational assumption of inter-group sparsity aligns with
established practices in prior methodological work [5, 29]. This is well illustrated in the context of
genomic networks, where pathway-to-pathway connections exhibit natural sparsity since regulatory
relationships occur only between specific pathway pairs rather than universally [27]. The third
term employs a group Lasso penalty on Γ

[:,k]
j , enforcing simultaneous shrinkage of entire parameter

vectors to zero, thereby facilitating low-level edge selection. The tuning parameters λ1 and λ2 govern
edge selection stringency, with larger values yielding sparser network structures.

Based on α̂n, to mitigate regularization bias and enhance selection consistency, we further introduce
an adaptive bi-level sparse estimator:

α̃n = argmin
α

p∑
j=1

1

n

n∑
i=1

l(αj , xi,j ,xi,−j) + ζ1
∑
l<l′

|θll′ |
|θ̂ll′ |γ

+ ζ2

p∑
j=1

p−1∑
k=1

∥∥∥Γ[:,k]
j

∥∥∥∥∥∥Γ̂[:,k]

j

∥∥∥γ , (4)

with ζ1 and ζ2 being two tuning parameters for controlling network sparsity and γ being a positive

constant. Here, the weights |θ̂ll′ |γ and
∥∥∥Γ̂[:,k]

j

∥∥∥γ are introduced to adaptively reduce penalties for
connections with larger initial estimates while amplifying the shrinkage for smaller ones, resulting in
more accurate edge selection owing to reduced estimation bias.

The final bi-level network is constructed based on α̃n. Specifically, high-level connections between
groups l and l′ are established when either θ̃ll′ ̸= 0 or θ̃l′l ̸= 0. This high-level connectivity then
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informs low-level interactions: an edge forms between node j in group l and node k in group l′ if

either θ̃ll′Γ̃
[:,k]

j ̸= 0 or θ̃l′lΓ̃
[:,j]

k ̸= 0. The proposed bi-level network estimation strategy can also be
extended to accommodate overlapping groups, with the details provided in the Appendix.

3 Statistical Properties

3.1 Approximation Error

Without loss of generality, assume that xi ∈ X ⊂ [0, 1]p. Define the β-Hölder smooth class:

Hβ([0, 1]s, B0) =

{
f : [0, 1]s → R, max

∥α∥1≤⌊β⌋
∥∂αf∥∞ ≤ B0, max

∥α∥1=⌊β⌋
sup
x̸=y

|∂αf(x)−∂αf(y)|
∥x−y∥β−⌊β⌋

2

≤ B0

}
,

where ∂α = ∂α1 · · · ∂αs with α = (α1, . . . , αs)
⊤ ∈ Ns

0 and N0 denotes the set of non-negative
integers, ∥α∥1 =

∑s
i=1 |αi| and ⌊β⌋ denotes the largest integer strictly smaller than β. If a function

belongs to Hβ([0, 1]s, B0), then all the partial derivatives up to order ⌊β⌋ exist, and the partial
derivatives of order ⌊β⌋ are β − ⌊β⌋ Hölder continuous.
Asummption 3.1. For j = 1, · · · , p, the target sparse function hj resides in the sj-sparse
function class Fsj , where Fs =

{
h : [0, 1]p−1 → [0, 1] : ∃ h̄ : [0, 1]s → [0, 1] ∈ Hβ([0, 1]s, B0)

s.t. h(x) = h̄(x̃), ∀x ∈ [0, 1]p−1
}
, with x̃ ∈ Rs representing the relevant s-dimensional subvector

of x.

Assumption 3.1 posits that the target functions exhibit sparsity and smoothness. This is a common
requirement in neural network approximation theory [15, 4]. In addition, the assumption is grounded
in reality: for instance, in gene regulatory networks, genes are sparsely rather than fully connected,
and nonlinear effects vary smoothly rather than abruptly.

Next, we first establish the approximation capabilities of our proposed sparse ReLU feedforward
neural network architecture for sparse nonlinear functions. We define the width of a neural network
as the maximum width among its hidden layers.
Theorem 3.2 (Approximation Error). If h(x) ∈ Fs, then for any positive integer N and
M , there exists a sparse ReLU feedforward neural network f(x) with width W = 38(⌊β⌋ +
1)23ss⌊β⌋+1N⌈log2(8N)⌉, depth D = 21(⌊β⌋ + 1)2M⌈log2(8M)⌉ + 2s, and the selection layer
parameter (θ ⊙ Γ⊤)⊤ being able to be rearranged as [uw(1)×s,0w(1)×(p−1−s)] such that:

1. Support equivalence: both h(x) and f(x) are s-sparse functions and have the same support;

2. Uniform approximation:

sup
∥x∥≤[0,1]p−1

|f(x)− h(x)| ≤ 19B0(⌊β⌋+ 1)2s⌊β⌋+(β∨1)/2(NM)−2β/s. (5)

Under Assumption 3.1, Theorem 3.2 indicates that sparser nonlinear functions require smaller network
dimensions for accurate approximation—an observation aligning with intuition. Therefore, the target
sparse function hj can be approximated by a sparse ReLU feedforward network with parameter set
α∗

j , denoted as fα∗
j
.

3.2 Bi-level Selection Consistency

Let cj : N→ N be the column label mapping where cj(k) denotes the column of Γj corresponding
to the k-th variable, that is, cj(k) = k if k < j and cj(k) = k − 1 if k > j. Denote [p]
and [L] as the set {1, · · · , p} and {1, · · · , L}, respectively, and Ac as the complement of A. In
addition, we formalize three fundamental sets: Aj =

{
k ∈ [p] : θ∗Cj ,Ck

̸= 0 and Γ
∗[:,cj(k)]
j ̸= 0

}
,

Bj =
{
k ∈ [p] : Γ

∗[:,cj(k)]
j = 0

}
, and Pl =

{
l′ ∈ [L] : θ∗l,l′ = 0

}
.

Then, we can define the bi-level selection consistency as follows.

Definition 3.3 (Bi-level Selection Consistency). We say the estimator (θ̃, {Γ̃j}pj=1) achieves bi-level
selection consistency if ∀δ > 0, ∃Nδ ∈ N such that ∀n > Nδ:
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1. High-level true positives: θ̃ll′ ̸= 0 for all (l, l′) ∈ [L]× Pc
l ;

2. High-level true negatives: θ̃ll′ = 0 for all (l, l′) ∈ [L]× Pl;

3. Low-level true positives:
((

θ̃Cj
⊙ Γ̃

⊤
j

)⊤)[:,cj(k)]

̸= 0 for all (j, k) ∈ [p]×Aj;

4. Low-level true negatives:
((

θ̃Cj
⊙ Γ̃

⊤
j

)⊤)[:,cj(k)]

= 0 for all (j, k) ∈ [p]×Ac
j;

with probability at least 1− δ.

Let α∗ consist of all α∗
1, · · · ,α∗

p andW denote the feasible parameter space with α∗ ∈ W . We
define the population risk R(α) and empirical risk Rn(α) associated with the squared error as:

R(α) =

p∑
j=1

Rj(αj) =

p∑
j=1

E
[(
fαj (x−j)− xj

)2]
, (6)

Rn(α) =

p∑
j=1

Rnj(αj) =
1

n

p∑
j=1

n∑
i=1

(
fαj

(xi,−j)− xij

)2
. (7)

The optimal parameter set is defined as:

H∗ = {α ∈ W : R(α) = R(α∗)} . (8)

Despite the intricate geometric structure ofH∗, we establish in Lemma A.1 (Appendix) the funda-
mental equivalence:

α0 ∈ H∗ ⇐⇒ fα0j
= fα∗

j
, ∀j ∈ {1, . . . , p}. (9)

This equivalence implies that both the estimation and selection consistency can be simultaneously
attained by controlling the proximity of the parameters to the optimal set H∗. Define d(α,H∗) =
infβ∈H∗∥α− β∥.
To establish these theoretical guarantees, we introduce the following assumptions.

Asummption 3.4. Define F as a class of ReLU feedforward neural networks fα̌ : [0, 1]p−1 → [0, 1]
with parameter α̌, depth D, width W , size S (the number of elements in α̌) and B-Lipschitz continuity.
We assume that fαj ∈ F for all j = 1, 2, . . . , p.

Asummption 3.5. There exist c2 > 0 and ν > 2 such that R(β) − R(α∗) ≥ c2d(β,H∗)ν for all
β ∈ W .

Assumption 3.4 posits the boundedness of the ReLU neural network function class. This assumption
holds in practice, as real-world data (e.g., gene expression levels) and weights are naturally bounded
by physical constraints. Assumption 3.5 is a technical assumption. For a fixed network with an
analytic activation function, it holds and can be justified by Lojasiewicz’s inequality [9].

Under Assumptions 3.4 and 3.5, the following convergence properties hold:

Theorem 3.6 (Group Lasso + Lasso Convergence). Let p = o(log n), SD log(S) = O(n
1
4 ), λ1 =

O(n− 1
8 ), and λ2 = O(n− 1

8 ), then there exist c3 > 0 and c4 > 0 such that

d(α̂n,H∗) ≤ c3

(
log n

n
1
8

) 1
ν−1

(10)

and
p∑

j=1

∑
k∈Bj

∥∥∥Γ̂[:,cj(k)]

j

∥∥∥+ L∑
l=1

∑
l′∈Pl

|θ̂l,l′ | ≤ c4 logn

(
log n

n
1
8

) 1
ν−1

(11)

holds with probability at least 1− δ1 with δ1 = 4n
(
n

1
4 + 1

)logn (
32en

1
4

)(logn)n
1
4

e−
√

n log n
32 .
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Theorem 3.7 (Consistency of the adaptive bi-level sparse estimator). Let γ > 0, ϵ > 0, λ1 =

O(n− 1
8 ), λ2 = O(n− 1

8 ), ζ1 = O
(
n− γ

8(ν−1)
+ϵ
)

, and ζ2 = O
(
n− γ

8(ν−1)
+ϵ
)

, then the estimator α̃n

with adaptive bi-level sparse penalty has bi-level selection consistency, and there exists c5 > 0 such
that

d(α̃n,H∗) ≤ c5n
(− γ

8(ν−1)
+ϵ)/ν , (12)

holds with probability at least 1− δ1.

Under Assumption 3.4 and Theorem 3.7, the estimation error can be bounded by leveraging the
Lipschitz continuity |fα̃j

− fα∗
j
| ≤ Bc5n

(− γ
8(ν−1)

+ϵ)/ν . This result implies that the estimation error
decays as sample size n increases. Combined Theorem 3.2 and Theorem 3.7, we can easily establish
the estimation consistency of fα̃j

by triangle inequality. That is, |fα̃j
− hj | ≤ Bc5n

(− γ
8(ν−1)

+ϵ)/ν +

19B0(⌊β⌋+ 1)2s⌊β⌋+(β∨1)/2(NM)−2β/s with probability at least 1− δ1.

4 Computation

The proximal gradient descent algorithm for training NNBLNet is outlined in Algorithm 1 (see
Appendix). Following the convergence conditions in Theorems 3.6 and 3.7, we set λk = ζk =
c · n−1/8 for k = 1, 2, with c as a tunable constant. This choice follows conventional rate settings
in high-dimensional sparse inference [22]. Empirically, we recommend c = 0.35, as it achieves
satisfactory accuracy across diverse data settings. For finer calibration, these parameters can be
selected via cross-validation (see Appendix A.4). Consistent with common practice, we set γ = 1.
Regarding neural network hyperparameters, exploratory experiments (Appendix A.4) showed that a
configuration of 1000 training epochs, three hidden layers, and 50 nodes per layer offers an optimal
balance between accuracy and computational efficiency. This fixed setup was used in all experiments
to ensure reproducibility and consistency, in line with common practice [33].

5 Experiment

To comprehensively validate our methodology, we established a dual evaluation framework en-
compassing both synthetic benchmarks and real-world networks. The synthetic analysis included
systematically constructed networks with predefined nonlinear and linear patterns, enabling a con-
trolled assessment of relationship modeling capabilities. For real-world validation, we analyzed four
distinct network types: (1) Friendship– social connections among high school students from a high
school; (2) Co-authorship–collaborative relationships in academic publications; (3-4) BRCA and
LUAD–gene regulatory networks derived from The Cancer Genome Atlas (TCGA) breast cancer and
lung adenocarcinoma data, respectively.

In addition to the proposed NNBLNet, we conducted systematic comparisons with three alternative
methodologies: (1) BGSL [7], a Bayesian Gaussian graphical modeling framework with explicit
group-structured variable representations; (2) Fair Glasso [25], which enhances sparse precision
matrix estimation through group-aware regularization constraints; and (3) DeepGRNCS [19], a
multi-task deep learning architecture specializing in joint network inference. Experimental details,
including the synthetic settings and introductions to the real-world datasets, are provided in Appendix
A.5. To supplement the results presented in the main text, we also conducted a series of sensitivity
analyses in Appendix A.6, including an assessment of model generalization capability based on the
stability of network estimation and performance comparisons under different sample sizes, group
sizes, and group label misclassification rates, as well as downstream analysis of the LUAD dataset.

5.1 Synthetic Networks with Nonlinear and Linear signals

In Table 1, NNBLNet consistently outperformed all baseline methods in nonlinear scenario, achieving
the highest F1-score of 0.772. This improvement was attributed to its hierarchical design, which
jointly modeled both within-group and between-group edges through bi-level regularization. Fair
Glasso and BGSL, which impose sparsity within the GGM framework, yielded comparable results
with F1-scores of 0.710 and 0.709, respectively. DeepGRNCS, a deep learning-based method,
performed better than classical approaches but fell short of our proposed method, suggesting that

7



integrating bi-level selection is crucial for recovering multiscale network structure. These results
demonstrate the efficacy of NNBLNet in uncovering meaningful networks with greater accuracy and
structural coherence.

Under the linear setting, Fair Glasso attained the highest F1-score (0.790), aligning with its design
premise for sparse Gaussian graphical models. NNBLNet remained highly competitive (F1 = 0.769),
which illustrates its adaptability across both linear and nonlinear data regimes. Although specifically
designed for hierarchical nonlinear dependencies, it maintained robust performance even in simpler
settings. DeepGRNCS also delivered favorable results, while BGSL achieved a balanced recall-
precision trade-off. These findings verify that NNBLNet not only performs stably in conventional
linear estimation tasks but also offers flexibility to more complex environments.

Table 1: Performance comparison of different methods for the synthetic network with nonlinear and
linear relationships: Mean (SD) over 100 replicates.

Patterns Metric NNBLNet Fair Glasso BGSL DeepGRNCS

Nonlinear
Recall 0.872(0.016) 0.779(0.014) 0.790(0.017) 0.809(0.016)

Precision 0.693(0.022) 0.653(0.021) 0.644(0.018) 0.681(0.018)
F1-score 0.772(0.014) 0.710(0.017) 0.709(0.013) 0.731(0.017)

Linear
Recall 0.881(0.018) 0.901(0.016) 0.836(0.016) 0.846(0.016)

Precision 0.675(0.020) 0.704(0.019) 0.692(0.019) 0.671(0.020)
F1-score 0.765(0.013) 0.790(0.013) 0.757(0.015) 0.763(0.017)

5.2 Four Real-World Networks

We further evaluated our method on four real-world datasets spanning social networks and biological
systems: Friendship, Co-authorship, BRCA, and LUAD. Performance results are summarized in
Table 2.

Table 2: Performance comparison of different methods for the four real-world networks.

Dataset Metric NNBLNet Fair Glasso BGSL DeepGRNCS

Friendship
Recall 0.875 0.859 0.798 0.811
Precision 0.804 0.703 0.735 0.686
F1 0.838 0.771 0.765 0.745

Co-authorship
Recall 0.712 0.643 0.622 0.655
Precision 0.678 0.606 0.591 0.610
F1 0.695 0.619 0.604 0.632

BRCA
Recall 0.764 0.812 0.676 0.742
Precision 0.618 0.652 0.552 0.601
F1 0.683 0.723 0.607 0.664

LUAD
Recall 0.641 0.625 0.597 0.654
Precision 0.526 0.517 0.489 0.539
F1 0.577 0.566 0.537 0.591

Across all four datasets, NNBLNet consistently achieved either the best or second-best F1-score,
demonstrating its versatility and robustness in diverse application domains. On the Friendship
network, it significantly outperformed all competitors with an F1-score of 0.838, reflecting its
strength in modeling community-driven structures. In the Co-authorship setting, where overlapping
communities and latent hierarchies were expected, NNBLNet again led with an F1-score of 0.695,
significantly outperforming Fair Glasso (0.619), BGSL (0.604), and DeepGRNCS (0.632). These
results indicate the advantage of jointly modeling inter-group and intra-group dependencies.

For the biological datasets, BRCA and LUAD, NNBLNet maintained top-tier performance. While
Fair Glasso achieved a slightly higher F1 score in BRCA (0.723), NNBLNet offered more balanced
precision-recall trade-offs, especially in LUAD, where it achieved the second highest F1-score
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(0.577). The improvement in biological contexts suggests that our method effectively captures
complex relationships between molecular factors, including both nonlinear individual factor-level
dynamics and pathway-level crosstalk.

Collectively, these results demonstrate that NNBLNet is a highly competitive and generalizable frame-
work for network estimation, performing consistently well across domains with varying complexity
and noise characteristics.

5.3 Ablation Study

To validate the necessity of the proposed bi-level architecture, we performed ablation studies com-
paring our model against two simplified variants: the flat-structured NNNet, which ignores the
bi-level design, and Modified-NNNet, which uses group labels but omits intra-group adjacency
modeling. As shown in Table 3, NNBLNet consistently outperformed both variants on synthetic and
real-world datasets. The significant performance gain confirms that the bi-level structure is essential
for achieving higher recall, precision, and F1 scores.

To further isolate the benefits of the bi-level architecture beyond group information alone, we
conducted sensitivity analyses in scenarios with extreme sparsity of inter-group edges (Table 4),
where the ratio of inter-group edges to total edges (η) was set to 0%, 0.5%, and 1%. The results
showed that NNBLNet consistently achieved the highest F1 by balancing recall and precision. In
addition, the modified-NNNet failed to capture inter-group edges and exhibited declining recall as η
increased, while the NNNet, which ignored inter-group sparsity, produced excessive false positives
under sparse settings. These findings confirmed that the bi-level hierarchical sparsity structure is
essential for accurate network inference.

Table 3: Performance comparison of NNBLNet, NNNet, and Modified-NNNet across six datasets
(mean values and standard deviation for synthetic datasets).

Dataset Method Recall Precision F1

Nonlinear NNBLNet 0.872 (0.016) 0.693 (0.022) 0.772 (0.014)
NNNet 0.844 (0.017) 0.656 (0.019) 0.738 (0.014)
Modified-NNNet 0.782 (0.020) 0.660 (0.021) 0.716 (0.017)

Linear NNBLNet 0.881 (0.018) 0.675 (0.020) 0.769 (0.013)
NNNet 0.857 (0.014) 0.628 (0.017) 0.727 (0.013)
Modified-NNNet 0.802 (0.018) 0.627 (0.019) 0.704 (0.016)

Friendship NNBLNet 0.875 0.804 0.838
NNNet 0.842 0.745 0.790
Modified-NNNet 0.774 0.734 0.753

Co-authorship NNBLNet 0.712 0.678 0.695
NNNet 0.674 0.637 0.649
Modified-NNNet 0.612 0.636 0.624

BRCA NNBLNet 0.764 0.618 0.683
NNNet 0.709 0.563 0.627
Modified-NNNet 0.655 0.566 0.607

LUAD NNBLNet 0.641 0.526 0.577
NNNet 0.613 0.502 0.552
Modified-NNNet 0.552 0.503 0.527

6 Discussion

This work presents NNBLNet, a neural network framework for bi-level network inference. The
method is built upon a key structural prior that represents dependency structures in complex systems
as hierarchical. This hierarchical modeling is implemented through two mechanisms: intra-group
information sharing, which amplifies weak signals via latent pooling within groups, and inter-group
sparse transmission, which gates cross-group connections through switches (θll′) to suppress irrele-
vant noise. NNBLNet represents a paradigm shift in structured network inference by unifying neural
network representation learning with hierarchical sparsity constraints. Its innovative hierarchical
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Table 4: Performance of NNBLNet, NNNet, and Modified-NNNet under sparse inter-group edges
(mean and standard deviation over 100 replicates).

Setting η Method Recall Precision F1

Nonlinear 0% NNBLNet 0.752 (0.018) 0.684 (0.020) 0.716 (0.017)
NNNet 0.744 (0.019) 0.619 (0.023) 0.676 (0.018)
Modified-NNNet 0.737 (0.018) 0.682 (0.020) 0.708 (0.016)

0.5% NNBLNet 0.760 (0.017) 0.696 (0.019) 0.727 (0.016)
NNNet 0.752 (0.018) 0.616 (0.022) 0.677 (0.017)
Modified-NNNet 0.717 (0.019) 0.673 (0.021) 0.694 (0.017)

1% NNBLNet 0.774 (0.016) 0.715 (0.018) 0.743 (0.014)
NNNet 0.764 (0.018) 0.615 (0.023) 0.681 (0.019)
Modified-NNNet 0.696 (0.020) 0.663 (0.022) 0.679 (0.019)

Linear 0% NNBLNet 0.740 (0.019) 0.672 (0.021) 0.704 (0.018)
NNNet 0.732 (0.020) 0.607 (0.024) 0.664 (0.019)
Modified-NNNet 0.724 (0.019) 0.671 (0.021) 0.696 (0.017)

0.5% NNBLNet 0.750 (0.018) 0.684 (0.020) 0.715 (0.017)
NNNet 0.741 (0.019) 0.605 (0.023) 0.666 (0.018)
Modified-NNNet 0.706 (0.020) 0.662 (0.021) 0.682 (0.018)

1% NNBLNet 0.766 (0.017) 0.702 (0.019) 0.733 (0.015)
NNNet 0.753 (0.019) 0.605 (0.024) 0.671 (0.019)
Modified-NNNet 0.681 (0.021) 0.652 (0.022) 0.666 (0.020)

selection layer explicitly captures bi-level dependencies: local associations between individual vari-
ables and global coordination among groups. This architecture effectively models complex nonlinear
relationships while maintaining interpretability. Theoretically, we establish a bridge between neural
modeling and statistical guarantees by proving estimation consistency and exact bi-level selection
consistency. Empirical evaluations and real-data analyses demonstrate NNBLNet’s effectiveness,
showing it achieves superior F1 scores compared to competing methods.

6.1 Limitation

This study has several limitations that point to valuable directions for future research. Theoretically,
our analysis relies on the assumption of sub-Gaussian noise, which, while common in statistical
literature, is often difficult to verify in practical applications. Despite this limitation, empirical
comparisons against authoritative ground-truth networks demonstrate that our method still achieves
competitive network reconstruction accuracy, thereby offering partial validation of its practical
effectiveness. Moreover, our method relies on pre-defined group labels, and performance may decline
if these are noisy or incomplete. Future extensions could jointly infer group memberships and
associations or incorporate unsupervised techniques (e.g., spectral clustering) when prior labels are
unavailable, enhancing robustness and applicability across diverse scenarios.

6.2 Broader Impact

NNBLNet bridges neural network learning and hierarchical sparse inference to enable interpretable
bi-level network discovery across scientific domains, from identifying gene-pathway interplay in
disease mechanisms to modeling individual-group dynamics in social systems. Its adaptive sparsity
design balances predictive power with mechanistic interpretability, offering actionable insights for
precision medicine and policy-making.
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A Appendix / Supplemental Material

A.1 Related Works

In recent years, the explosive growth of high-dimensional data, such as high-throughput omics data,
has generated unprecedented volumes of complex data, thereby elevating the importance of network
estimation research. Among the various existing approaches, Gaussian Graphical Models (GGMs)
have emerged as one of the most widely used techniques. In the GGM framework, network structures
are inferred by estimating a sparse precision matrix (i.e., the inverse of the covariance matrix), which
encodes conditional dependencies among variables conditional on all others [41, 11]. This estimation
procedure can be formulated as a series of sparse node-wise linear regressions. Compared to marginal
or unconditional correlation-based methods (e.g., Pearson correlation), this conditional strategy
offers a more holistic view of system-level dependencies, potentially leading to more meaningful
interpretations.

In real-world scenarios, networks often exhibit a bi-level hierarchical structure. This structure
implies that some variables are organized into higher-level groups, with lower-level variables nested
within these groups. For example, a gene pathway consists of multiple genes that collaborate to
perform a specific cellular or physical function. In this context, pathways represent the higher-level
groups, while the individual genes within those pathways are the lower-level variables. It is also
important to note that these groups are not independent of each other. To tackle hierarchical network
estimation, several GGM-based methods have been developed. Cheng et al. (2017) [5] introduced a
multilevel Gaussian graphical model for nested data structures. Shan et al. (2020) [29] proposed a
framework for joint estimation of two-level GGMs across multiple classes. Colombi et al. (2024) [7]
focused on learning block-structured graphical models using variable groupings. Notably, Fair Glasso
[25] specifically leverages group information to estimate graphical models with provably unbiased
statistical behavior, addressing fairness concerns in network inference. However, these GGM based
methods can only capture linear dependencies and may ignore complex nonlinear relationship in the
real world.

Deep neural networks (DNNs) and related machine learning models have gained widespread attention
due to their strong capacity for nonlinear approximation and representation learning, particularly
in high-dimensional settings [21]. These models excel at uncovering complex associations within
large datasets, making them particularly appealing for network inference tasks. With the increasing
availability of large-scale high-dimensional data, deep learning has become a cornerstone for network
estimation. Researchers have recently developed several deep learning-based methods that aim to
reconstruct latent networks. These methods harness the expressive power of neural networks to
model intricate dependencies between variables, often using architectures such as pre-trained deep
neural networks [19], Variational Autoencoders (VAEs) [28] and Graph Convolutional Networks
(GCNs) [23]. While promising, these approaches face several important limitations. First, most
are supervised and require labeled data—such as group-specific regulatory annotations or curated
databases—which are expensive and time-consuming to acquire. Consequently, the size and diversity
of training datasets remain limited. Moreover, deep learning methods often lack theoretical guarantees
and interpretability, which hampers their adoption in sensitive scientific domains.

To improve interpretability, the research community has proposed a variety of strategies aimed at
making deep learning models more transparent and reliable. Among these, regularization-based
approaches have shown particular promise. By incorporating additional constraints (e.g., L1 or L2
penalties), regularization can limit model complexity, promote sparsity, and enhance feature selection
[30, 20]. This is especially valuable for network inference, where identifying the most influential
variables (e.g., hub nodes) is often a primary goal. In scientific applications, regularization enhances
both statistical reliability and practical interpretability. Recent theoretical work further supports the
effectiveness of regularization for consistent variable selection in deep models [34, 40], providing
a rigorous foundation for interpretable deep learning-based network estimation. These theoretical
insights not only deepen our understanding of model behavior but also inform the development of
robust and generalizable algorithms.

A.2 Extension to Overlapping Groups

In many scientific applications, variables may simultaneously belong to multiple groups, resulting in
overlapping group structures. For example, in genomics, the same gene may participate in several
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Figure 2: Illustration of overlapping and disjoint group structures. The upper panel shows three
pathways G1, G2, G3 with shared genes, leading to overlapping groups. The lower panel demonstrates
the decomposition of these overlapping pathways into non-overlapping subgroups (G′

1, . . . , G
′
5),

which allows group-level dependencies to be defined in a consistent and interpretable manner.

biological pathways, so different pathways can share common genes. Such overlaps complicate the
definition of group-level dependencies, as conventional methods typically assume disjoint group
memberships.

To illustrate, consider three pathways denoted by G1, G2, and G3 as shown in Figure 2. Each
contains five genes: G1 = {1, 2, 3, 4, 5}, G2 = {4, 5, 6, 7, 8}, G3 = {7, 8, 9, 10, 11}. Here, G1 and
G2 overlap on genes {4, 5}, G2 and G3 overlap on {7, 8}, while G1 and G3 have no common
elements. To resolve overlaps, we decompose the original groups into disjoint subgroups as shown in
Figure 2: G′

1 = {1, 2, 3}, G′
2 = {4, 5}, G′

3 = {6}, G′
4 = {7, 8}, G′

5 = {9, 10, 11}. Accordingly, the
original pathways can be represented as G1 = {G′

1, G
′
2}, G2 = {G′

2, G
′
3, G

′
4}, G3 = {G′

4, G
′
5}. We

denote θ′ll′ = 0 whenever two disjoint subgroups G′
l and G′

l′ are conditionally independent. Based
on this decomposition, we define the conditional dependency rules among the original pathways:

• Non-overlapping groups: For instance, G1 and G3 have no overlap. If θ′14 = θ′15 =
θ′24 = θ′25 = 0, then G1 and G3 are conditionally independent, as all variables in G1 are
independent of those in G3. Otherwise, they are conditionally dependent.

• Overlapping groups: For adjacent groups such as G1 and G2, if θ′13 ̸= 0 or θ′14 ̸= 0,
they are conditionally dependent, since at least one unique variable in G1 depends on a
unique variable in G2. If instead θ′13 = θ′14 = 0, but at least one of θ′12, θ

′
23, θ

′
24 is nonzero,

dependency arises through the common subgroup. Otherwise, G1 and G2 are conditionally
independent.

This decomposition preserves interpretability by mapping subgroup-level dependencies back to the
original overlapping groups, while avoiding inflated false discoveries due to redundant memberships.

A.3 Proof of Statistical Properties

A.3.1 Proof of Theorem 3.2

Since h(x) ∈ Fs, there exists a h̄(x̃) ∈ Hβ([0, 1]s, B0) such that h(x) = h̄(x̃). Refer to Corollary
3.1 in [15], there exists a function f̄(x̃) implemented by a ReLU network with width W = 38(⌊β⌋+
1)23ss⌊β⌋+1N⌈log2(8N)⌉ and depth D = 21(⌊β⌋+ 1)2M⌈log2(8M)⌉+ 2s such that

|h̄(x̃)− f̄(x̃)| ≤ 19B0(⌊β⌋+ 1)2s⌊β⌋+(β∨1)/2(NM)−2β/s, x̃ ∈ [0, 1]s. (13)
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Knowing that
(
θ ⊙ Γ⊤

)⊤
can be rearranged as

(
uw(1)×s,0w(1)×(p−1−s)

)
, we have(

θ ⊙ Γ⊤
)⊤

x = ux̃. Thus, for any low-dimensional Relu network f̄(x̃) there always exists a

high-dimensional sparse ReLU network f(x) satisfying f̄(x̃) = f(x). This completes the proof.

A.3.2 Supporting Lemmas

Lemma A.1. 1. There exists c0 > 0 such that θαCj ,Ck
≥ c0 and

∥∥∥Γ[:,cj(k)]
αj

∥∥∥ ≥ c0 for all
k ∈ Aj and α ∈ H∗.

2. Denote ϕ(α) the vector obtained from α by setting Γ[:,cj(k)]
αj

= 0 for all (j, k) ∈
⋃p

j=1{j}×
Bj and θαl,l′ = 0 for all (l, l′) ∈

⋃L
l=1{l} × Pl. For α ∈ H∗, ϕ(α) also belongs toH∗.

Proof. By Theorem 3.2, we establish the uniform convergence:∣∣∣hj(x−j)− fα∗
j
(x−j)

∣∣∣→ 0 as W,D →∞. (14)

This implies that fα∗
j
(x−j)→ E[xj |x−j ] serves as the unique minimizer of Rj(αj). Consequently,

the composite risk functional R(α∗) =
∑p

j=1 Rj(α
∗
j ) attains its global minimum through coordinate-

wise optimization. For any competing parameter α0 ∈ H∗, this construction ensures:

Rj(α0j) = Rj(α
∗
j ), ∀j = 1, . . . , p. (15)

The fundamental inequality

Rj(α
∗
j ) = min

g
E
[
(xj − g(x−j))

2
]
≤ min

αj∈Wj

Rj(αj) = Rj(α0j), (16)

holds with equality if and only if fαj = fα∗
j

almost surely, where g can be any measurable function
from the input space to the real numbers. Therefore, the identifiability condition

α0 ∈ H∗ ⇐⇒ fα0j
= fα∗

j
, ∀j = 1, . . . , p, (17)

follows necessarily.

1: Assuming that no such c0 exists, there exist α0 ∈ H∗ and k ∈ Aj such that(
θα0Cj

⊙ Γ⊤
α0j

)⊤[:,cj(k)]

= 0. This means fα0j
= fα∗

j
does not depend on the related variable xk,

which is a contradiction.

2: Denote ϕ(αj) the sub-vector of ϕ(α) corresponding to αj . Since α ∈ H∗, we have
fα∗

j
(xBj ,xBc

j
) = fαj (xBj ,xBc

j
) = fαj (0,xBc

j
) = fϕ(αj)(xBj ,xBc

j
), which implies ϕ(α) ∈

H∗.

Lemma A.2. Let p = o(logn), SD logS = O(n
1
4 ), then there exists c1 > 0 such that

|Rn(α)−R(α)| ≤ c1
log n

n
1
4

, ∀α ∈ W, (18)

holds with probability at least 1− δ1 with δ1 = 4n
(
n

1
4 + 1

)logn (
32en

1
4

)(logn)n
1
4

e−
√

n log n
32 .

Proof. Let lfj (xi) =
(
xij − fαj (xi,−j)

)2
and lf (xi) =

∑p
j=1 lfj (xi). For x ∈ Xn, denote

Rn(fx) =
1
n

∑n
i=1 lf (xi) and R(f) = E [lf (x)].

Define
Q =

{
x ∈ Xn : ∃fα1

· · · fαp
∈ F s.t. |R(f)−Rn(fx)| ≥ ε

}
, (19)

and
R =

{
(r, s) ∈ Xn ×Xn : ∃fα1

· · · fαp
∈ F s.t. |Rn(fr)−Rn(fs)| ≥

ε

2

}
. (20)
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Since
{
|R(f)−Rn(fr)| ≥ ε and |R(f)−Rn(fs)| < ε

2

}
⊂
{
|Rn(fr)−Rn(fs)| ≥ ε

2

}
, we have

P(R) ≥ P
{
∃fα1

· · · fαp
∈ F s.t. |R(f)−Rn(fr)| ≥ ε and |R(f)−Rn(fs)| <

ε

2

}
=

∫
Q

P
{
s : ∃fα1 · · · fαp ∈ F , |R(f)−Rn(fr)| ≥ ε and|R(f)−Rn(fs)| < ε/2

}
dP(r).

(21)

Noting that fαj
maps into [0, 1] and xij ∈ [0, 1], we have lfj (xi) ∈ [0, 1] and lf (xi) ∈ [0, p].

Hoeffding’s inequality for bounded random variables shows that

P
(
|R(f)−Rn(fs)| ≤

ε

2

)
≥ 1− exp

(
−nε2

4p

)
≥ 1

2
, (22)

for n > 4p
ε2 . Thus, P(Q) ≤ 2P(R) for n > 4p

ε2 .

In order to bound P(R), the technique of permutation and reduction to a finite class is useful. Denote
Tm the set of permutations on {1, 2, . . . , 2n} that switch elements i and n+ i, for i in some subset
of {1, 2, . . . , 2n}. A permutation σ is chosen uniformly at random from Tm. By Lemma 4.5 of [1],

P(R) = EP(σx ∈ R) ≤ max
x∈X 2n

P(σx ∈ R). (23)

where the expectation is over x and the probability is over permutations σ.

Denote LF =
{
lf (x) =

∑p
j=1

(
xj − fαj (x−j)

)2
: fαj ∈ F , j = 1, . . . , p

}
. Let

N
(
ε,F , L1(Pn)

)
be the covering number of F under the empirical L1(Pn) metric with ra-

dius ε. For a given sequence x = (x1, . . . , xn) ∈ Xn, let F|x = {(f(x1), . . . , f(xn)) : f ∈ F} be
the subset of Rn. Define the uniform covering number

Nn

(
ε,F , L1(Pn)

)
= max

{
N
(
ε,F|x, L1(Pn)

)
: x ∈ Xn

}
. (24)

Suppose that x ∈ X 2n and let T be a minimal ε
8 -cover for LF |x with respect to the L1(Pn)

metric. Pick G ⊂ F such that T = LG |x and |G| = |T |. Let r ∈ Xn and s ∈ Xn so that
x = (r, s). Suppose that f ∈ F satisfies |Rn(fr)−Rn(fs)| ≥ ε

2 and there exists g ∈ G such that
1
2n

∑2n
i=1 |lf (xi)− lg(xi)| < ε

8 . Then,

|Rn(gr)−Rn(gs)| =

∣∣∣∣∣ 1n
n∑

i=1

lg(xi)−
1

n

2n∑
i=n+1

lg(xi)

∣∣∣∣∣
=

∣∣∣∣∣ 1n
n∑

i=1

(lg(xi)− lf (xi))−
1

n

2n∑
i=n+1

(lg(xi)− lf (xi)) +Rn(fr)−Rn(fs)

∣∣∣∣∣
≥ |Rn(fr)−Rn(fs)| −∣∣∣∣∣ 1n

n∑
i=1

(lg(xi)− lf (xi))−
1

n

2n∑
i=n+1

(lg(xi)− lf (xi))

∣∣∣∣∣
≥ |Rn(fr)−Rn(fs)| −

1

n

2n∑
i=1

|lg(xi)− lf (xi)|

> ε/4.
(25)
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Thus,

P(σx ∈ R) ≤ P

(
∃g ∈ G :

∣∣∣∣∣ 1n
n∑

i=1

(
lg(xσ(i))− lg(xσ(n+i))

)∣∣∣∣∣ ≥ ε/4

)

≤ |G|max
g∈G

P

(∣∣∣∣∣ 1n
n∑

i=1

(
lg(xσ(i))− lg(xσ(n+i))

)∣∣∣∣∣ ≥ ε/4

)

= |G|max
g∈G

P

(∣∣∣∣∣ 1n
n∑

i=1

|lg(xi)− lg(xn+i)| ϵi

∣∣∣∣∣ ≥ ε/4

)

≤ |G|2 exp
(
−ε2n

32p

)
,

(26)

where each ϵi is independently and uniformly drawn from {−1, 1}.
Noting that

∥lf − lf ′∥L1(Pn) =
1

2n

2n∑
i=1

|lf (xi)− lf ′(xi)|

=
1

2n

2n∑
i=1

∣∣∣∣∣∣
p∑

j=1

(
[xij − fαj

(xi,−j)]
2 − [xij − f ′

αj
(xi,−j)]

2
)∣∣∣∣∣∣

=
1

2n

2n∑
i=1

∣∣∣∣∣∣
p∑

j=1

(fαj − f ′
αj

)(fαj + f ′
αj
− 2xij)

∣∣∣∣∣∣
≤ 1

n

2n∑
i=1

p∑
j=1

|fαj
− f ′

αj
|,

(27)

we can translate a cover of LF |x into a cover of the function space F , that is,

|G| = N
(ε
8
,LF |x, L1(Pn)

)
≤ N2n

( ε

16
,Fp, L1(Pn)

)
≤ N2n

(
ε

16p
,F , L1(Pn)

)p

. (28)

For a class of functions F , the pseudo dimension, denoted by Pdim(F), is a natural measure
of its complexity. According to [1], Pdim(F) is the largest integer m for which there exists
(x1, . . . , xm, y1, . . . , ym) ∈ Xm × Rm such that for any (b1, . . . , bm) ∈ {0, 1}m there exists f ∈ F
such that ∀i : f(xi) > yi ⇐⇒ bi = 1. Using Theorem 18.4 in [1], we can give an upper bound on
the covering number by Pdim(F). Suppose that Pdim(F) = d, we have

Nn

(
ε,F , L1(Pn)

)
≤ e(d+ 1)

(
2e

ε

)d

. (29)

Moreover, based on Theorems 3 and 6 in [2], the pseudo dimension of ReLU feedforward neural
network space is bounded as

c · SD log(S/D) ≤ Pdim(F) ≤ C · SD log(S). (30)

Thus,

P(Q) ≤ 4N2n

(
ε

16p
,F , L1(Pn)

)p

exp

(
−ε2n

32p

)
≤ 4ep (SD log(S) + 1)

p

(
32pe

ε

)pSD log(S)

exp

(
−ε2n

32p

)
.

(31)

Let p = o(log n), ε = O
(

logn

n
1
4

)
and SD logS = O(n

1
4 ), it is obvious

that n > 4p
ε2 and δ1 = 4ep (SD log(S) + 1)

p ( 32pe
ε

)pSD log(S)
exp

(
− ε2n

32p

)
≲

4n
(
n

1
4 + 1

)logn (
32en

1
4

)(logn)n
1
4

e−
√

n log n
32 → 0. This completes the proof.
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Lemma A.3. There exists a constant Mδ2 such that with probability at least 1− δ2, the empirical
risk function Rn(α) is Mδ2

√
p-Lipschitz.

Proof. For the empirical risk:

|Rn(α)−Rn(β)| =

∣∣∣∣∣∣ 1n
p∑

j=1

n∑
i=1

[(
xij − fαj (xi,−j)

)2 − (xij − fβj
(xi,−j)

)2]∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1n
p∑

j=1

n∑
i=1

(
fαj (xi,−j)− fβj (xi,−j)

) (
fαj (xi,−j) + fβj

(xi,−j)− 2xij

)∣∣∣∣∣∣
≤ 1

n

p∑
j=1

n∑
i=1

∣∣fαj (xi,−j)− fβj (xi,−j)
∣∣

(∣∣∣fαj (xi,−j)− fα∗
j
(xi,−j)

∣∣∣+ ∣∣∣fβj
(xi,−j)− fα∗

j
(xi,−j)

∣∣∣+ 2 |εij |
)

≤ 1

n

p∑
j=1

n∑
i=1

B∥αj − βj∥ · (2 + 2|εij |)

= B

p∑
j=1

∥αj − βj∥

(
2 +

2

n

n∑
i=1

|εij |

)
.

(32)

For a zero-mean sub-Gaussian random variable εij , we know that there exists a constant C1 such that
E|εij | ≤ C1σ. Applying Markov’s inequality:

P

(
1

n

n∑
i=1

|εij | > Cδ2

)
≤

1
n

∑n
i=1 E|εij |
Cδ2

. (33)

Choosing Cδ2 = C1σ/δ2, we obtain

|Rn(α)−Rn(β)| ≤ B(2 + 2Cδ2)
√
p∥α− β∥ = Mδ2

√
p∥α− β∥, (34)

with probability at least 1− δ2.

A.3.3 Proof of Theorem 3.6

Define βn = argminα∈H∗ ∥α̂n − α∥. Let L(α) =
∑p

j=1

∑p−1
k=1

∥∥∥Γ[:,k]
j

∥∥∥ +∑l<l′ |θll′ | and λ =

max(λ1, λ2). Since L(α) is Lipschitz, that is,

L(βn)− L(α̂n) =

p∑
j=1

p−1∑
k=1

∥∥∥Γ[:,k]
βnj

∥∥∥+∑
l<l′

|θβnll
′ | −

p∑
j=1

p−1∑
k=1

∥∥∥Γ[:,k]
α̂nj

∥∥∥−∑
l<l′

|θα̂nll′ |

≤
p∑

j=1

p−1∑
k=1

∥∥∥Γ[:,k]
βnj
− Γ

[:,k]
α̂nj

∥∥∥+∑
l<l′

|θβnll
′ − θα̂nll′ |

≤
√
p(p− 1)

∥∥Γβn
− Γα̂n

∥∥+ L(L+ 1)

2
∥θβn

− θα̂n
∥

≤ C
√
p(p− 1)∥βn − α̂n∥.

(35)

Combined with Lemma A.2, we have

c2∥βn − α̂n∥ν = c2d(α̂n,H∗)ν ≤ R(α̂n)−R(βn)

≤ 2c1
log n

n
1
4

+ λ (L(βn)− L(α̂n))

≤ 2c1
log n

n
1
4

+ λC
√
p(p− 1)∥βn − α̂n∥,

(36)
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holds with probability at least 1− δ1.

Applying Young’s inequality,

λC
√

p(p− 1)∥βn − α̂n∥ ≤
1

ν

(
(c2ν)

1/ν

2
∥βn − α̂n∥

)ν

+
ν − 1

ν

(
2C
√

p(p− 1)

(c2ν)1/ν
λ

)ν/(ν−1)

≤ c2
2
∥βn − α̂n∥ν + Cν

(
λ
√
p(p− 1)

)ν/(ν−1)

,

(37)

yielding ∥βn − α̂n∥ ≤ C ′
((

λ
√
p(p− 1)

) ν
ν−1

+ logn

n
1
4

) 1
ν

. Let p = o(log n), SD log(S) =

O(n
1
4 ), λ = O(n− 1

8 ). Since ν > 2, 1 < ν
ν−1 < 2, there exists c3 > 0 such that d(α̂n,H∗) ≤

c3

(
logn

n
1
8

) 1
ν−1

.

Let K denote the inactive regularization components of L. Since K is Lipschitz and K(ϕ(α)) =
K(α), we have

λ1

L∑
l=1

∑
l′∈Pl

|θ̂l,l′ |+ λ2

p∑
j=1

∑
k∈Bj

∥∥∥Γ̂[:,cj(k)]

j

∥∥∥ ≤ Rn(ϕ(βn))−Rn(α̂n) + λ[K(ϕ(βn))−K(α̂n)]

≤ 2c1
log n

n
1
4

+R(ϕ(βn))−R(α̂n)

+ λ[K(βn)−K(α̂n)]

≤ 2c1
log n

n
1
4

+ λC
√
p(p− 1)∥βn − α̂n∥.

(38)

Similarly, since ν > 2, 0 < 1
ν−1 < 1, there exists c4 > 0 such that

∑p
j=1

∑
k∈Bj

∥∥∥Γ̂[:,cj(k)]

j

∥∥∥ +∑L
l=1

∑
l′∈Pl

|θ̂l,l′ | ≤ c4 log n
(

logn

n
1
8

) 1
ν−1

. This completes the proof.

A.3.4 Proof of Theorem 3.7

By Theorem 3.6 and Lemma A.3, we have that for all (j, k) ∈
⋃p

j=1{j}×Aj , with probability 1−δ1,

Γ̂
[:,cj(k)]

j and θ̂Cj ,Ck
are bounded away from zero as n→∞. Our analysis considers two connection

structures: variable-level connection and group-level connection. The fundamental dependency
principle requires that variables from statistically independent groups must exhibit no conditional

dependence. That is, θ∗Cj ,Ck
= 0 implies Γ

∗[:,cj(k)]
j = 0. Let M(α) =

∑p
j=1

∑p−1
k=1

∥∥∥Γ[:,k]
j

∥∥∥∥∥∥Γ̂[:,k]
j

∥∥∥γ +∑
l<l′

|θll′ |
|θ̂ll′ |γ

and ζ = max(ζ1, ζ2). Thus,

M(α∗) =

p∑
j=1

∑
k/∈Bj

∥∥∥Γ∗[:,cj(k)]
j

∥∥∥∥∥∥Γ̂[:,cj(k)]

j

∥∥∥γ +

L∑
l=1

∑
l′ /∈Pl

|θ∗ll′ |
|θ̂ll′ |γ

<∞, (39)

and
c2d(α̃n,H∗)ν ≤ 2c1

logn

n
1
4

+ ζ (M(α∗)−M(α̂n)) ≤ 2c1
log n

n
1
4

+ ζM(α∗). (40)

Let ζ = O
(
n− γ

8(ν−1)
+ϵ
)

, there exists c5 > 0 such that d(α̃n,H∗) ≤ c5n
(− γ

8(ν−1)
+ϵ)/ν → 0 with

probability 1− δ1. Thus, by Lemma A.1, θ̃Cj ,Ck
and Γ̃

[:,cj(k)]

j are bounded away from zero for all
k ∈ Aj and large enough n.

To prove true negativity, we can separately prove that Γ̃
[:,cj(k)]

j = 0 for all (j, k) ∈
⋃p

j=1{j} × Bj
and θ̃l,l′ = 0 for all (l, l′) ∈

⋃L
l=1{l} × Pl. We establish the result by contradiction. Suppose there
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exist some j and k ∈ Bj with Γ̃
[:,cj(k)]

j ̸= 0. Define gn the vector obtained from α̃n by setting the

Γ̃
[:,cj(k)] component to 0, then we have Rn(α̃n) + ζ2

∥∥∥Γ̃[:,cj(k)]

j

∥∥∥∥∥∥Γ̂[:,cj(k)]

j

∥∥∥γ ≤ Rn(gn). By Lemma A.3, there

exists Mδ2 such that

ζ2

∥∥∥Γ̃[:,cj(k)]

j

∥∥∥∥∥∥Γ̂[:,cj(k)]

j

∥∥∥γ ≤ Rn(gn)−Rn(α̃n) ≤Mδ2

√
p∥gn − α̃n∥ = Mδ2

√
p
∥∥∥Γ̃[:,cj(k)]

j

∥∥∥ , (41)

with probability at least 1 − δ2. Since Γ̃
[:,cj(k)] ̸= 0, we deduce that ζ2

1∥∥∥Γ̂[:,cj(k)]

j

∥∥∥γ ≤

Mδ2
√
p. This contradicts Theorem 3.6, which proves that for n large enough ζ2

1∥∥∥Γ̂[:,cj(k)]

j

∥∥∥γ ≥

ζ2c
−γ
4 (log n)

−γν
ν−1 n

γ
8(ν−1) ≥ 2Mδ2

√
p, with probability at least 1− δ1. Thus, by Bonferroni inequal-

ity, we have Γ̃
[:,cj(k)]

= 0 for all k ∈ Bj with probability at least 1− δ1 − δ2. Similarly, it can be
inferred that θ̃ll′ = 0 for all l′ ∈ Pl with probability at least 1− δ1 − δ2. This completes the proof.

A.4 Computation

A.4.1 Algorithm

Algorithm 1: Two-Stage Proximal Gradient Descent for NNBLNet
Input: Data {xi}ni=1, learning rate η, regularization parameters ζ1 = λ1, ζ2 = λ2, power γ,

number of epochs T , tolerance ϵ

Output: Estimated parameters {θ,Γj , {∆(l)
j }Dl=1}

p
j=1

Stage 1: Initial Estimation (non-adaptive)
Initialize θ, Γj , and ∆

(l)
j for all j and l

for i = 1 to T do
for j = 1 to p do

Compute predictions: x̂i,j = fαj
(xi,−j)

Compute gradients: ∇Γj
, ∇θ, ∇

∆
(l)
j

for all l
Gradient step:

Γtmp
j ← Γj − η∇Γj

θtmp ← θ − η∇θ

∆
(l)
j ← ∆

(l)
j − η∇

∆
(l)
j

for all l
Proximal update:

Γ
[:,k]
j ←

(
1− ηζ1

∥Γ[:,k],tmp
j ∥

)
+

Γ
[:,k],tmp
j

θll′ ← sign(θtmp
ll′ ) ·max(|θtmp

ll′ | − ηζ2, 0)

Store estimates Γ̂, θ̂ and compute adaptive weights:
w

(1)
jk ←

1

∥Γ̂[:,k]
j ∥γ+ϵ

, w
(2)
ll′ ←

1
|θ̂ll′ |γ+ϵ

Stage 2: Adaptive Estimation
Reinitialize Γj and θ, keep ∆

(l)
j from Stage 1 (or reinitialize optionally)

for i = 1 to T do
for j = 1 to p do

Compute predictions and gradients as in Stage 1
Gradient step and update ∆

(l)
j as before

Proximal update with adaptive weights:

Γ
[:,k]
j ←

(
1− ηζ1w

(1)
jk

∥Γ[:,k],tmp
j ∥

)
+

Γ
[:,k],tmp
j

θll′ ← sign(θtmp
ll′ ) ·max(|θtmp

ll′ | − ηζ2w
(2)
ll′ , 0)
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A.4.2 Selection of the Regularization Parameters

Based on the convergence requirements specified in Theorems 3.6 and 3.7, we established the parame-
ter configuration λk = ζk = cn−1/8 for k = 1, 2. Computationally, n−1/8 yields values between 0.46
and 0.26 for sample sizes ranging from 500 to 50,000. To determine the optimal c, in Table 5, we eval-
uated F1-score performance across values {0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 1, 1.5}
at different sample sizes. This theoretically derived value achieved stable performance across varying
n at c = 0.35. We therefore use c = 0.35 in practical implementations to maintain computational
efficiency without compromising on accuracy.

Table 5: F1 score of NNBLNet with different sample sizes and values of c under linear and nonlinear
scenarios

Sample size n

Scenario c 500 1000 2000 5000 10000 20000

Nonlinear

0.05 0.659 (0.033) 0.666 (0.026) 0.673 (0.023) 0.674 (0.022) 0.670 (0.019) 0.676 (0.017)
0.10 0.695 (0.032) 0.704 (0.028) 0.713 (0.022) 0.716 (0.018) 0.719 (0.016) 0.717 (0.014)
0.15 0.720 (0.030) 0.729 (0.025) 0.731 (0.019) 0.738 (0.017) 0.735 (0.014) 0.742 (0.013)
0.20 0.738 (0.024) 0.749 (0.021) 0.754 (0.017) 0.759 (0.015) 0.760 (0.012) 0.758 (0.011)
0.25 0.756 (0.022) 0.763 (0.017) 0.769 (0.015) 0.772 (0.013) 0.771 (0.011) 0.773 (0.010)
0.30 0.764 (0.017) 0.767 (0.015) 0.772 (0.013) 0.777 (0.011) 0.778 (0.010) 0.780 (0.009)
0.35 0.769 (0.019) 0.772 (0.014) 0.775 (0.012) 0.778 (0.009) 0.776 (0.009) 0.778 (0.008)
0.40 0.765 (0.020) 0.768 (0.017) 0.775 (0.013) 0.777 (0.011) 0.781 (0.008) 0.779 (0.008)
0.45 0.762 (0.021) 0.763 (0.019) 0.767 (0.014) 0.770 (0.013) 0.773 (0.011) 0.771 (0.010)
0.50 0.748 (0.022) 0.755 (0.018) 0.757 (0.015) 0.762 (0.014) 0.761 (0.013) 0.765 (0.011)
1.00 0.708 (0.027) 0.716 (0.023) 0.724 (0.019) 0.729 (0.018) 0.728 (0.016) 0.731 (0.014)
1.50 0.670 (0.036) 0.677 (0.029) 0.688 (0.024) 0.695 (0.022) 0.693 (0.018) 0.698 (0.016)

Linear

0.05 0.645 (0.035) 0.652 (0.028) 0.660 (0.025) 0.661 (0.023) 0.657 (0.020) 0.664 (0.018)
0.10 0.682 (0.033) 0.691 (0.029) 0.701 (0.023) 0.704 (0.019) 0.707 (0.017) 0.705 (0.015)
0.15 0.707 (0.031) 0.716 (0.026) 0.718 (0.021) 0.726 (0.018) 0.723 (0.016) 0.730 (0.014)
0.20 0.724 (0.026) 0.735 (0.022) 0.741 (0.018) 0.747 (0.016) 0.747 (0.014) 0.746 (0.012)
0.25 0.742 (0.024) 0.751 (0.019) 0.757 (0.016) 0.761 (0.014) 0.760 (0.012) 0.763 (0.011)
0.30 0.751 (0.019) 0.755 (0.016) 0.760 (0.014) 0.765 (0.012) 0.766 (0.011) 0.768 (0.010)
0.35 0.760 (0.021) 0.765 (0.016) 0.769 (0.014) 0.772 (0.011) 0.771 (0.010) 0.773 (0.009)
0.40 0.752 (0.021) 0.755 (0.018) 0.760 (0.015) 0.764 (0.012) 0.767 (0.010) 0.766 (0.009)
0.45 0.746 (0.022) 0.749 (0.020) 0.754 (0.015) 0.757 (0.014) 0.760 (0.012) 0.759 (0.011)
0.50 0.732 (0.023) 0.741 (0.019) 0.744 (0.016) 0.749 (0.015) 0.748 (0.014) 0.752 (0.012)
1.00 0.695 (0.028) 0.703 (0.024) 0.711 (0.020) 0.716 (0.019) 0.715 (0.017) 0.718 (0.015)
1.50 0.657 (0.037) 0.664 (0.030) 0.675 (0.025) 0.682 (0.023) 0.681 (0.019) 0.686 (0.017)

For applications requiring finer calibration, the regularization parameters may alternatively be
selected via cross-validation. Specifically, to avoid extensive grid search, we unified the four
sparsification parameters as a single λ0 based on theoretical analysis indicating their identical
asymptotic order. Certainly, should that be necessary, we could alternatively assume distinct pa-
rameters for the four components and conduct a grid search. We then implemented a five-fold
cross-validation procedure: datasets were partitioned into training and validation sets, where mod-
els were trained using objective functions (3) and (4) to obtain fαj

(xi,−j) for j = 1, · · · , p. The
validation loss L =

∑p
j=1

1
n

∑n
i=1

(
xi,j − fαj

(xi,−j)
)2

was evaluated across candidate λ0 values
(0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.5, 1.0), with the minimizer selected as optimal. Performance
results are summarized in Table 6. This approach yielded slightly improved F1 scores compared to
our original results but incurred higher computational complexity.

A.4.3 Selection of the Hyperparameters

Regarding the hyperparameters of the neural network, we evaluated different configurations using
two simulated datasets. Specifically, we investigated the effect of the number of hidden layers: (2, 3,
5, 8) and the number of units per hidden layer: (25, 50, 100). The F1-score results (summarized in
Table 7) indicate minimal performance differences across configurations. To optimize computational
efficiency while maintaining competitive performance, and in line with established practices in the
field, we ultimately set the network architecture to 3 hidden layers with 50 units per layer.
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Table 6: Performance of NNBLNet with the optimal λ0 identified by five-fold cross-validation across
six datasets (mean values and standard deviations for synthetic datasets).

Dataset Recall Precision F1

Nonlinear 0.878 (0.016) 0.702 (0.021) 0.776 (0.014)
Linear 0.893 (0.017) 0.695 (0.019) 0.781 (0.013)
Friendship 0.888 0.820 0.853
Co-authorship 0.732 0.698 0.715
BRCA 0.779 0.634 0.700
LUAD 0.658 0.545 0.596

Table 7: F1 score of NNBLNet with different hyperparameters under linear and nonlinear scenarios

Layers Units Scenario Type

Nonlinear Linear

2
25 0.743(0.019) 0.739(0.018)
50 0.755(0.018) 0.751(0.017)
100 0.748(0.018) 0.742(0.018)

3
25 0.765(0.016) 0.760(0.015)
50 0.772(0.014) 0.769(0.013)
100 0.768(0.016) 0.765(0.015)

5
25 0.769(0.018) 0.765(0.017)
50 0.773(0.015) 0.770(0.014)
100 0.769(0.017) 0.766(0.017)

8
25 0.768(0.019) 0.764(0.018)
50 0.771(0.016) 0.768(0.016)
100 0.765(0.018) 0.762(0.018)

A.4.4 Computation Cost

All experiments were conducted on a workstation equipped with an Intel Core i7-800H Processor,
an Nvidia Tesla A40 GPU, and 64GB of RAM. Table 8 compares the computational time and peak
memory usage of our method against the baselines across varying values of n and p. To ensure a fair
comparison, all methods were executed on a single CPU core. The results indicate that Fair Glasso is
the most computationally efficient method by a significant margin. In contrast, NNBLNet, BGSL,
and DeepGRNCS involve substantially computational costs, which escalate with the number of nodes.
This higher cost is attributed to the iterative training of neural networks and, for BGSL, the additional
overhead from MCMC sampling. Although NNBLNet is slower than the linear-based methods, it is
faster than the other neural network-based approach, DeepGRNCS. Overall, NNBLNet demonstrates
favorable scalability.

A.5 Experiment Details

A.5.1 Synthetic Data Setting

We simulated a dataset with n = 1000 samples and p = 100 variables. The 100 nodes (variables)
were partitioned into L = 10 groups (blocks), each containing 10 nodes. For each block, we generated
a Barabási-Albert network structure with a maximum node degree of 4.

Connections were introduced between each pair of adjacent groups, i.e., group 1 is connected to
group 2, group 3 is connected to group 4, · · · , and group 9 is connected to group 10. For each such
pair, node-level links were established such that the i-th node in the first group was connected to the
i-th node in the second group (e.g., x1 to x11, x2 to x12, etc.).

Within each group, the features were generated using a recursive formula inspired by the Barabási-
Albert network property. First, nodes were sorted by degree in descending order: j1, . . . , j10. For
the node j1 with the largest degree, xij1 was generated from a standard normal distribution. For
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Table 8: Average computation time (in minutes, the first value in parentheses) and peak memory
usage (MB, the second value in parentheses) of different methods across various sample sizes (n) and
dimensions (p)

n p NNBLNet BGSL Fair Glasso DeepGRNCS

500
50 (9.5, 61.8) (6.3, 61.8) (0.0, 30.3) (15.7, 240.4)

100 (21.8, 307.1) (11.0, 90.3) (0.0, 45.1) (49.6, 1120.7)
200 (46.2, 709.5) (14.5, 149.2) (0.1, 69.1) (100.9, 4490.8)

1000
50 (12.2, 158.2) (8.1, 65.7) (0.0, 31.4) (20.1, 338.8)

100 (28.0, 308.9) (14.1, 91.1) (0.1, 45.7) (63.6, 1148.2)
200 (59.2, 719.6) (18.6, 152.3) (0.1, 70.2) (129.4, 4602.9)

2000
50 (15.6, 179.7) (10.4, 70.1) (0.2, 34.2) (25.7, 399.2)

100 (35.8, 428.4) (18.0, 98.0) (0.3, 52.2) (79.0, 1652.6)
200 (75.8, 929.2) (23.8, 171.9) (0.4, 89.9) (150.0, 6397.4)

5000
50 (19.5, 215.8) (13.0, 74.8) (0.3, 36.6) (32.2, 528.7)

100 (44.8, 498.9) (22.6, 109.2) (0.5, 56.3) (95.0, 1952.7)
200 (94.7, 1102.5) (29.8, 182.5) (0.7, 101.8) (185.0, 7598.6)

10000
50 (22.6, 241.0) (15.0, 80.9) (0.5, 38.5) (37.2, 599.5)

100 (51.8, 579.2) (26.1, 114.7) (0.8, 60.1) (110.0, 2248.9)
200 (109.5, 1247.9) (34.4, 193.3) (1.1, 109.7) (215.0, 8799.1)

20000
50 (26.3, 257.6) (16.8, 85.3) (0.7, 39.8) (42.4, 633.2)

100 (57.3, 609.8) (30.8, 127.2) (1.0, 64.4) (121.2, 2540.5)
200 (123.9, 1335.2) (39.7, 208.8) (1.4, 117.9) (242.2, 9008.7)

each subsequent node jl (l = 2, . . . , 10) with neighbors Njl in the same group, the feature xijl was
simulated as:

xijl =
∑

jk∈Njl
,k<l

fk(xijk) + εijl , (42)

where for the nonlinear case: fk(·) incorporated polynomial term x3, interaction term 0.5x1x2,
0.2 expx, and sinx, and for the linear case: fk(x) = z ·x with z ∼ N (2, 1). The error term εijl was
generated from N (0, 0.01).

For each connected group pair (e.g., group 1 and group 2), we first generated the features of the first
group (e.g., group 1) using the procedure described above. Then, for the second group (e.g., group
2), we generated each node’s feature using a bi-level formulation. Specifically, we first generated a
group-internal signal x′

ijl
=
∑

jk∈Njl
,k<l fk(xijk), then incorporated a signal from the connected

node in the previously generated group, g(x), along with a group-connection coefficient θ∗ ∼ N (5, 1)
as follows:

xijl = θ∗
(
x′
ijl

+ g(xij′)
)
+ εijl , (43)

where j′ denotes the index of the connected node in the first group, and g(x) = x3 for the nonlinear
case and g(x) = x for the linear case.

In the synthetic data generated by the aforementioned procedure, inter-group connections accounted
for 37.0% of the total network edges. To better visualize the connectivity patterns, we quantified the
network’s structural properties using two metrics. The intra-group density of a group Ck is defined as
the proportion of observed edges among all possible edges within the group:

IntraDensity(Ck) =
2 ·
∑

i<j, i,j∈Ck
Aij

|Ck|(|Ck| − 1)
.

Similarly, the inter-group density between two distinct groups Ck and Cl (k ̸= l) is given by the
proportion of observed edges across the groups:

InterDensity(Ck, Cl) =

∑
i∈Ck, j∈Cl

Aij

|Ck| · |Cl|
.
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For the synthetic network, the mean intra- and inter-group densities were 37.8% and 10.0%, re-
spectively. These metrics help characterize the strength of connections within and between groups,
providing a quantitative basis for analyzing the network structure.

For both linear and nonlinear patterns, the performance was assessed over 100 independent simulation
replicates, with results for recall, precision, and F1-score summarized by their mean and standard
deviation.

A.5.2 Real-world Datasets

Table 9 summarizes the key features of the real-world datasets. Additional details are provided below.

Table 9: Summary of real-world datasets.

Dataset Nodes (No.) Edges (No.) Samples (No.) Groups (No.)
Friendship Students (311) 1009 Interactions (47127) Gender (2)
Co-authorship Authors (130) 525 Keywords (1903) Publication type (6)
BRCA mRNA (73) 763 Patients (1099) Pathway (4)
LUAD CNA (98) 700 Patients (507) Pathway (13)

• Friendship. This network dataset captures social interactions among students across nine classes at
a high school in Marseille, France, recorded over five consecutive days in December 2013. Following
standard practice in contact network analysis, we constructed a ground-truth graph where nodes
correspond to students and weighted edges reflect aggregated interaction frequencies. In line with
[25], node attributes were assigned based on gender, and the signals were generated by grouping the
interactions into sets of four. The Friendship dataset is available at http://www.sociopatterns.
org/datasets/high-school-contact-and-friendship-networks/.

• Co-authorship. This network dataset originates from ACM conference proceedings and includes
17,431 unique authors, 122,499 publications, and 1,903 technical keywords. We focused on a
representative subset of authors, where nodes correspond to individual researchers. Demographic
attributes were assigned according to authors’ predominant conference categories, determined by
their maximum publication frequency. The ground-truth network was constructed through co-
authorship detection: edges were added between authors who co-published at least one paper. To
generate network signals, we quantified authors’ keyword usage patterns by calculating normalized
frequencies of specific technical terms across their publications. The Co-authorship dataset is
available at https://dl.acm.org/.

• BRCA. The BRCA dataset is derived from The Cancer Genome Atlas (TCGA) and comprises
mRNA gene expression profiles from 1,099 breast cancer patients. We selected 73 genes involved in
four key biological pathways: B Cell Receptor Complexes, Caspase Cascade, G1 And S Phases, and
MMP Cytokine Connection, based on prior domain knowledge and pathway annotations from the
KEGG database [16]. Nodes in the network represent these genes, and group structure is defined
by their pathway annotations [42]. A biologically grounded reference network was constructed
using curated interaction data from the STRING database [35], which integrates multiple evidence
sources such as experimental data, co-expression, and pathway information. An undirected edge was
placed between two genes if a high-confidence interaction was reported in STRING, reflecting known
regulatory or functional associations. For network estimation, each patient’s expression profile was
treated as an input signal across the 73 genes.

• LUAD. The LUAD dataset is also sourced from TCGA and contains copy number alteration (CNA)
profiles for 507 lung adenocarcinoma patients. We focused on 98 CNAs implicated in 13 distinct
biological pathways (see Figure 3 for details), with pathway annotations obtained from the KEGG
database, offering a more complex grouping structure compared to BRCA. Each CNA is treated as a
node, and group membership is determined by pathway assignment. As with BRCA, the reference
network was constructed using functional interaction information from the STRING database. Each
patient’s CNA profile was used as input for structure learning, with the goal of recovering sparse and
modular dependencies.

BRCA and LUAD expression data were obtained from the R package cdgsr, pathway information
from the KEGG database was obtained using msigdbr, and interaction information from STRING was
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obtained via STRINGdb. The structures of the four benchmark networks reveal distinct connectivity
patterns. Specifically, the proportion of inter-group connections is 47.9% (Friendship), 36.2% (Co-
authorship), 60.8% (BRCA), and 74.4% (LUAD), while the corresponding intra- and inter-group
density pairs are (37.8%, 10.0%); (2.5%, 2.0%); (11.1%, 3.2%); and (53.7%, 20.9%). These metrics
collectively highlight the structural heterogeneity across the datasets.

A.6 Sensitive Analysis

A.6.1 Generalization Capability

To evaluate the generalization capability of the proposed method, we assessed the stability of its
network estimates. We repeatedly drew 90% subsets of the data from two synthetic and four real-
world datasets and re-estimated the networks 100 times. The Jaccard index between each re-estimated
network and the original full-dataset network was then calculated. The resulting indices (mean and
standard deviation) were as follows: Nonlinear: 0.913 (0.052), Linear: 0.932 (0.047), Friendship:
0.889 (0.061), Co-authorship: 0.921 (0.055), BRAC: 0.902 (0.058), and LUAD: 0.874 (0.064). These
consistently high values indicate that the proposed method yields stable network structures across
diverse datasets, confirming its strong generalization capability.

A.6.2 Performance across Varying Sample Sizes and Group Sizes

To assess the robustness of our method to sample and group size specifications, we evaluated its
performance under varying sample sizes (n = 500, 1000, 2000, 5000) with a fixed group size of ten,
and under varying group sizes (ranging from 5-10, 5-20, and 5-30 individuals) with a fixed sample
size of 1000. For groups containing 20 or 30 members, the network structure was simplified to a
star module with node 1 as the hub connected to all other nodes. Based on the balanced baseline
setting (with a ratio of group size 1:1), these configurations reflected increasing levels of group size
imbalance, with approximate ratios of 2:1, 4:1 and 6:1, respectively. The last case represents the most
pronounced disparity, where the largest group is six times larger than the smallest.

Results are summarized in Tables 10 and 11. Consistent with expectations, larger sample sizes
enhanced the network recovery accuracy of all methods; nevertheless, NNBLNet consistently demon-
strated superior performance. According to Table 11, NNBLNet maintained highly stable performance
across moderate group size imbalances, with only a slight decrease in recall, precision, and F1 score
observed under the most extreme 6:1 condition.

Table 10: Performance comparison of different methods for the nonlinear synthetic network with
varying sample sizes: Mean (SD) over 100 replicates.

n Method Recall Precision F1

500

NNBLNet 0.861 (0.022) 0.679 (0.027) 0.769 (0.019)
Fair Glasso 0.756 (0.021) 0.639 (0.026) 0.693 (0.020)
BGSL 0.764 (0.022) 0.631 (0.024) 0.692 (0.019)
DeepGRNCS 0.782 (0.021) 0.662 (0.023) 0.717 (0.018)

1000

NNBLNet 0.872 (0.016) 0.693 (0.022) 0.772 (0.014)
Fair Glasso 0.779 (0.014) 0.653 (0.021) 0.710 (0.017)
BGSL 0.790 (0.017) 0.644 (0.018) 0.709 (0.013)
DeepGRNCS 0.809 (0.016) 0.681 (0.018) 0.731 (0.017)

2000

NNBLNet 0.879 (0.014) 0.707 (0.019) 0.775 (0.012)
Fair Glasso 0.787 (0.013) 0.660 (0.018) 0.717 (0.015)
BGSL 0.795 (0.015) 0.652 (0.017) 0.717 (0.014)
DeepGRNCS 0.822 (0.014) 0.695 (0.017) 0.752 (0.015)

5000

NNBLNet 0.887 (0.011) 0.716 (0.015) 0.778 (0.009)
Fair Glasso 0.795 (0.011) 0.667 (0.015) 0.725 (0.012)
BGSL 0.802 (0.012) 0.660 (0.014) 0.724 (0.011)
DeepGRNCS 0.838 (0.011) 0.708 (0.014) 0.767 (0.012)

A.6.3 Performance when Group Label Misclassification

Even when genuine group labels (e.g., pathway information) are available, misclassification may
still occur and impair model performance. To assess the impact of such label errors, we randomly
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Table 11: Performance comparison of different methods for the nonlinear synthetic network with
varying group imbalance ratios: Mean (SD) over 100 replicates.

Ratio Method Recall Precision F1

1:1

NNBLNet 0.872 (0.016) 0.693 (0.022) 0.772 (0.014)
Fair Glasso 0.779 (0.014) 0.653 (0.021) 0.710 (0.017)
BGSL 0.790 (0.017) 0.644 (0.018) 0.709 (0.013)
DeepGRNCS 0.809(0.016) 0.681(0.018) 0.731(0.017)

2:1

NNBLNet 0.874 (0.017) 0.691 (0.023) 0.771 (0.015)
Fair Glasso 0.773 (0.015) 0.649 (0.022) 0.706 (0.018)
BGSL 0.782 (0.018) 0.640 (0.020) 0.704 (0.015)
DeepGRNCS 0.802 (0.017) 0.670 (0.019) 0.730 (0.016)

4:1

NNBLNet 0.869 (0.018) 0.688 (0.024) 0.769 (0.016)
Fair Glasso 0.766 (0.016) 0.642 (0.023) 0.701 (0.018)
BGSL 0.770 (0.019) 0.635 (0.021) 0.698 (0.016)
DeepGRNCS 0.812 (0.017) 0.684 (0.019) 0.734 (0.016)

6:1

NNBLNet 0.854 (0.020) 0.675 (0.026) 0.753 (0.017)
Fair Glasso 0.755 (0.018) 0.634 (0.024) 0.692 (0.019)
BGSL 0.756 (0.020) 0.627 (0.023) 0.687 (0.017)
DeepGRNCS 0.808 (0.018) 0.677 (0.020) 0.727 (0.017)

scrambled node group labels in simulated data under nonlinear setting, using misclassification rates
of 10%, 20%, and 30%, with each scenario repeated 100 times. We evaluated three group-aware
methods—NNBLNet, Fair Glasso, and BGSL—under these conditions. As summarized in Table 12,
all three methods exhibit performance degradation as label error increases. Nonetheless, NNBLNet
maintains relatively higher F1 scores and consistently outperforms both BGSL and Fair Glasso,
demonstrating its robustness to moderate levels of label misclassification in real-world applications.

Table 12: Performance comparison of different methods for the nonlinear synthetic network with
varying levels of group label misclassification: Mean (SD) over 100 replicates.

Error rate Method Recall Precision F1

0%
NNBLNet 0.872 (0.016) 0.693 (0.022) 0.772 (0.014)
Fair Glasso 0.779 (0.014) 0.653 (0.021) 0.710 (0.017)
BGSL 0.790 (0.017) 0.644 (0.018) 0.709 (0.013)

10%
NNBLNet 0.821 (0.022) 0.598 (0.029) 0.691 (0.019)
Fair Glasso 0.756 (0.023) 0.564 (0.031) 0.662 (0.020)
BGSL 0.742 (0.024) 0.553 (0.032) 0.651 (0.021)

20%
NNBLNet 0.765 (0.026) 0.541 (0.034) 0.633 (0.022)
Fair Glasso 0.702 (0.027) 0.509 (0.035) 0.602 (0.023)
BGSL 0.688 (0.028) 0.496 (0.036) 0.588 (0.024)

30%
NNBLNet 0.702 (0.031) 0.489 (0.039) 0.574 (0.026)
Fair Glasso 0.648 (0.032) 0.455 (0.040) 0.540 (0.027)
BGSL 0.632 (0.033) 0.442 (0.041) 0.526 (0.028)

A.7 Downstream Analysis of the LUAD dataset

Based on the low-level network inferred by NNBLNet, the top three hub genes with the highest
degrees are TP53, JUN, and CD44. All three are strongly supported by existing literature in the
context of lung adenocarcinoma (LUAD) and lung cancer biology. Specifically, TP53 is one of the
most frequently mutated tumor suppressor genes in LUAD, with mutation rates often exceeding
40–50%. Its loss or mutation contributes to genomic instability, aggressive tumor behavior, and poor
prognosis in lung cancer [3]. JUN has been identified as a gene associated with response to PD-1
blockade, suggesting its potential as a biomarker for immunotherapy efficacy in non-small cell lung
cancer [37]. CD44, a recognized cell surface glycoprotein and cancer stem cell marker, is commonly
used to identify stem-like subpopulations in lung cancer [12].

Based on NNBLNet analysis, the most significant pathway-level connection was observed be-
tween “MMP Cytokine Connection” and “IL4 Receptor in B Lymphocytes”, with extensive gene
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connectivity indicating functional cross-talk. IL-4 experimentally regulates MMP expression; for
instance, it suppresses IL-1–induced MMP-3 transcription in human fibroblasts by inhibiting AP-
1 promoter binding [31]. In LUAD, MMPs are markedly overexpressed and contribute to ECM
remodeling, tumor invasion, and metastasis [43], while IL-4 signaling modulates immune activity
and tumor–microenvironment crosstalk [17]. This supports a model wherein IL-4/IL-4R signaling
influences ECM dynamics in LUAD by modulating MMP pathway activity, potentially via transcrip-
tional regulation. As shown above, the analysis further validates that the NNBLNet method can yield
biologically meaningful networks.

Figure 3: Network reconstruction of the LUAD dataset using NNBLNet. Nodes are color-coded by
annotated pathways, and the top three hub genes are labeled.
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paper’s contributions and scope?
Answer: [Yes]
Justification: Section 1 summarizes our main contributions, experimental and theoretical
results are presented in Section 3 and Section 5 respectively.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations of this work are discussed in Section 6.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]

29



Justification: The assumptions and theories are provided in Section 3 and a complete proof
is provided in Appendix A.3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Section 5 provides a concise overview of our experimental setup, while
Appendix A.5 contains a comprehensive description. The implementation code is included
in the supplementary material and is publicly accessible on GitHub at https://github.
com/mengyunwu2020/NNBLNet.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The supplementary material includes the code used for the experiments
presented in this paper. Links to all publicly available datasets, as well as instructions for
generating the synthetic datasets used, are provided in Appendix A.5.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The hyperparameter choices and optimization algorithm are described in
Appendix A.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The results of the synthetic simulations reported in Sections 5.1 are averaged
over 100 independent trials, with both the mean and standard error computed. However, we
observed consistently low variance across these realizations, and thus omit error bars in the
plots for visual clarity. In Section 5.2 , the experiments are conducted on real-world datasets
using all available samples and statistical significance tests are not applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide a summary of the compute resources used for the experiments in
Appendix A.4.4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms with the NeurIPS Code of Ethics in every respect.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The broader impacts of this work are discussed in Section 6.2.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The datasets used in the experiments are properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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