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Abstract
Stroke is still the World’s second major factor of death, as well as the third major factor of death and disability. Ischemic 
stroke is a type of stroke, in which early detection and treatment are the keys to preventing ischemic strokes. However, due to 
the limitation of privacy protection and labeling difficulties, there are only a few studies on the intelligent automatic diagnosis 
of stroke or ischemic stroke, and the results are unsatisfactory. Therefore, we collect some data and propose a 3D carotid 
Computed Tomography Angiography (CTA) image segmentation model called CA-UNet for fully automated extraction of 
carotid arteries. We explore the number of down-sampling times applicable to carotid segmentation and design a multi-scale 
loss function to resolve the loss of detailed features during the process of down-sampling. Moreover, based on CA-Unet, we 
propose an ischemic stroke risk prediction model to predict the risk in patients using their 3D CTA images, electronic medi-
cal records, and medical history. We have validated the efficacy of our segmentation model and prediction model through 
comparison tests. Our method can provide reliable diagnoses and results that benefit patients and medical professionals.
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1 Introduction

Based on the Global Stroke Fact Sheet 2022 published 
by the World Stroke Organization [1], stroke is still the 
World’s second major factor of death, as well as the third 
major factor of death and disability. It is estimated that 
more than US$891 billion is spent globally for the treat-
ment and prevention of stroke, which is 1.12% of the 
global GDP [2]. Stroke has become one of the major 
threats to global public health. The lifetime risk of stroke 
has risen by 50 percent in the last 20 years% [3]. In many 
countries, stroke disease has shown explosive growth with 
the accelerated urbanization, aging of society, and the 
prevalence of unhealthy lifestyles. Therefore, the preven-
tion and treatment of stroke are facing great challenges.

Stroke is associated with high mortality, recurrence and 
disability rates [4], and can be classified into two catego-
ries based on etiology: ischemic and hemorrhagic strokes. 
Ischemic stroke patients account for over 80% of all stroke 
patients [5]. Common ischemic stroke causes are athero-
sclerotic plaques and carotid stenosis in the carotid region. 
Hence, the early detection of atherosclerosis and carotid 
stenosis is a fundamental approach to preventing ischemic 
stroke and assessing the risk of development.

Image segmentation is an important method to assist in 
the diagnosis of stroke. Over the past few decades, lots of 
segmentation methods for vessels have emerged [6–11]. 
In traditional vessel segmentation studies, researchers 
have proposed many methods [12–16], such as the hier-
archical region growth algorithm [17], semi-automatic 
carotid segmentation algorithm based on a self-adaptive 
segmentation algorithm [18], the decision mechanism for 
venous bone separation points [19], the random wandering 
algorithm [20], the shortest path faster algorithm [21] and 
the method based on Hession matrix [22]. However, most 
traditional image segmentation methods require manual 
initialization or interactive operations, which cannot be 
fully automated.

In recent years, deep learning-based segmentation 
methods have been used with good results in various medi-
cal tasks [23–28]. For example, CarotidNet for 3D CTA 
carotid segmentation [29], 3D-UNet for coronary CCTA 
image segmentation [30], the SC2Net for detecting the 
detection of COVID-19 in X-rays [31], the atlas-based 
organ segmentation network MTL-ABS3Net [32], the CT 
image segmentation algorithm for liver [33], the trans-
formers for 3D Medical Image Segmentation [34], combo 
loss-based spatio-temporal feature fusion network for cor-
onary artery segmentation [35], MSRF-Net for medical 

image segmentation [36] and SONNET for cell nucleus 
segmentation [37]. Nevertheless, the application of deep 
learning-based methods for the carotid segmentation of 
3D CTA images is still relatively few. It fails to achieve 
better results due to the limitation of privacy protection 
and labeling difficulties.

With the development of computer computing power 
[38], research on stroke risk prediction based on deep 
learning and machine learning has received more atten-
tion. Khosla et al. [39] proposed a new automatic feature 
selection algorithm for stroke risk prediction. Dritsas et al. 
[40] used machine learning techniques to predict stroke 
risk. Teoh et al. [41] predicted stroke risk from electronic 
health records. Arslan et al. [42] used data mining methods 
to predict stroke. However, these methods do not fully take 
advantage of clinical text and image data. They are lim-
ited by the difficulty of data acquisition and cannot obtain 
higher accuracy.

Given the above problems, we propose a 3D carotid 
CTA image segmentation model called CA-UNet and an 
ischemic stroke risk prediction model. CA-UNet is based 
on the encoder-decoder structure and improves on the 
down-sampling scheme, which could decrease the model 
parameters and effectively accelerate convergence speed. 
Skip connections enable the network to have information at 
each scale when decoding features at different scales. And 
we proposed a new fusion loss function for the characteris-
tics of the task and introduced multi-scale training to bal-
ance the model’s learning direction. Besides, our ischemic 
stroke risk prediction model is a fusion prediction network 
model that uses multiple data to predict jointly. It consists 
of a 3D image feature extraction network that uses carotid 
CTA images for prediction and a machine learning model 
that uses electronic medical records and medical history 
for prediction. The model predicts the risk of morbidity by 
the fusion of weights, fully uses clinical information and 
achieves good results. We validated the effectiveness of 
our models through comparative tests on our dataset. Our 
three contributions are listed below: 

1. We propose a model which is more applicable for 3D 
CTA carotid segmentation.

2. We propose a multi-scale loss function for joint training 
which could solve the problem that features of image 
details would be lost in the process of down-sampling.

3. The proposed model for predicting the risk of ischemic 
stroke can effectively predict the risk of ischemic stroke 
in patients. The model could make a significant contri-
bution to public health security.
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2  Materials and Methods

2.1  Dataset

2.1.1  Private Dataset

The image data in the private dataset contain CTA images 
of 42 patients for the segmentation task and CTA images 
of 390 patients for the ischemic stroke risk prediction task. 
These data were provided by the partner hospitals and were 
desensitized for use in the study. Approximately 31,000 
CTA images of 42 patients used for the segmentation task 
were annotated by two or more radiologists. We randomly 
selected 25 sets of 3D CTA images to be used for training 
and the remaining 17 sets of 3D CTA images to be used for 
testing. The CTA images of 390 patients for the ischemic 
stroke risk prediction task comprised approximately 290,000 
CTA images. We randomly chose 80% of them as training 
samples and the others as test samples. Table 1 illustrates 
the sample distribution.

The text data in the private dataset contains electronic 
medical records and the medical history of 390 patients 
used for the ischemic stroke risk prediction task. The text 
data categories are age, gender, blood glucose level, body 
mass index (BMI), smoking status, type of residence, type 
of work, marital status, history of heart disease and history 
of hypertension.

2.1.2  Public Dataset

The public dataset, which contains only text data, is from the 
Stroke Prediction Dataset in Kaggle [43], with 4908 patient 
data. The public dataset assists in machine learning model 
training as the sample size of text data in the private dataset 
is relatively small. We randomly selected 80% of the sam-
ples as training samples and the rest as test samples, and the 
sample distribution is shown in Table 2. The data categories 
of the public dataset used are the same as the private dataset.

2.2  Data Preprocessing

2.2.1  Carotid Segmentation Task

In the carotid segmentation task, the preprocessing operation 
performed on the dataset is divided into two steps. First, the 

image pixel values are intercepted according to the target 
of interest. The pixel values in the CTA images are called 
Hounsfield Units(HU). CTA imaging has a wide range, and 
the HU of the human body ranges from − 1000 to +1000, 
for a total of 2000 values. Humans cannot distinguish such 
minor grayscale differences. Hence, the radiologists adjust 
the Window Width and Window Center of the CTA image 
according to the actual condition to see the target better. 
Based on the above idea, we eliminated the interference of 
irrelevant parts by limiting the range of HU values of CTA 
images, i.e., setting two HU thresholds: the minimum HU 
and the maximum HU. If the HU value of a pixel in the 
image is smaller than the minimum HU or larger than the 
maximum HU, the HU value is truncated to the threshold. 
As shown in Fig. 1, by this processing, the influences of 
most other tissues outside the range of carotid HU values 
are excluded, which can effectively reduce mis-segmentation 
and facilitate network training.

Next, the CTA image data were resampled and down-
sampled in the cross-section. Since the CTA images used in 
this paper came from multiple scanning devices, the pixel 
z-axis spacing of the data is not uniform. When using 3D 
CTA images for deep learning model training, different slice 
thicknesses can impact the scale of extracted features, lead-
ing to degradation of model performance. Therefore, the 
input CTA images were resampled by trilinear interpolation. 
During resampling, the center of the input image is kept 
constant. The images were remapped to a spatial coordi-
nate system with a pixel pitch of (1, 1, 1) mm, ensuring that 
all samples had the same pixel pitch. Since the 3D images 
used in this paper occupy hundreds of times more space than 
the 2D images, even if each batch is trained with only one 
set of 3D images for training, the GPU processor memory 
limitation causes the deep learning model to be untrained. 
Therefore, the input CTA images were down-sampled in 
the cross-section, and the cross-section size was adjusted 
from 512 × 512 to 256 × 25 . The down-sampling was car-
ried out by trilinear interpolation. Figure 1 shows the cross-
sectional comparison of CTA images before and after image 
pre-processing.

2.2.2  Ischemic Stroke Risk Prediction Task

The two preprocessing steps described above in the ischemic 
stroke risk prediction task were also used to preprocess CTA 

Table 1  Sample distribution of private datasets for risk prediction

Training set Test set Total

Positive samples 154 42 196
Negative samples 158 36 194
Total 312 78 390

Table 2  Data distribution of public dataset

Training set Test set Total

Positive samples 156 53 209
Negative samples 3770 929 4699
Total 3926 982 4908
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images. The difference was that we needed to intercept the 
network model’s carotid artery region as the input image. 
The input to the image feature extraction network in the 
ischemic stroke risk prediction model is the segmented 
carotid region, which could be regarded as a subsequent task 
to the carotid segmentation task. The input was a 3D CTA 
image of the carotid region rather than the whole set of com-
plete CTA images. Therefore, we selected 2 cm upward and 
3 cm downward as the target area for interception according 
to the professional doctor’s recommendation, i.e., we took 
20 images upward and 30 images downward centered on the 
carotid bifurcation in the section direction, totaling 50 sec-
tion images. Then, we intercepted the carotid artery region 
according to the image segmentation results. To facilitate 
network training, we adjusted the size of the intercepted 
carotid artery region to 40 × 40 × 50.

Next, the public dataset was preprocessed. The public 
dataset contains some missing items, and the gaps need to be 
processed. The treatment of missing values was attempted, 
including deleting these records and filling the gaps with 
average values. After selection, we used a decision tree to 
predict the missing values.

2.3  CA‑UNet Model

2.3.1  Main Structure

Compared with 2D segmentation tasks, the segmented target 
carotid region has prominent overall structural characteris-
tics. The 3D structure of the central region of the carotid 
artery is shown in Fig. 2. The carotid artery can be roughly 
divided into the common carotid artery below the bifurca-
tion, the internal carotid artery above the bifurcation, and 
the external carotid artery. The size of the common carotid 
artery is larger, while the size of the internal and external 
carotid arteries becomes smaller as the blood vessel extends 
upward. To adequately parse the information in the CTA 
images, the CA-UNet model adopts an encoder-decoder 
structure, and the CA-UNet is shown in Fig. 3. The left side 
is a contracting path and the right side is an expanding path. 
The primary function of the contracting path is to extract 
the feature from 3D CTA images. The expanding path fuses 

multi-scale features and gradually restores the feature map 
to the identical size as the input image.

In the past work, image features of various scales in the 
model were not related. Hence, we use skip connections, 
which enable the network to get information at each scale 
when decoding features at different scales. We fuse features 
from different scale feature maps by skip connections which 
enables the network to decode the features of each layer 
with information of each scale and improves the network 
performance. We take the feature map of the third layer as 
an example. Its input data have two sources, one is the jump 
connections of the first three layers of the feature map in 
the contracting path, and the other is the up-sampling of 
the feature map in the layer above it, i.e., the feature map in 
the fourth layer of the extension path. In order to fuse the 
above four groups of feature maps, two problems need to 
be solved. The first problem is the different sizes of feature 
maps at different scales. To solve this problem, we use max 
pooling. For example, the first layer of the contracting path 
has an output feature map size of 256 × 256 × 32 , which 
is pooled using a 3D max pooling layer with the 4 × 4 × 4 
window size and 4 step size. The second problem is that 
the number of channels of feature maps at different scales. 
The number of channels of deep feature maps can be tens of 

Fig. 1  Data preprocessing in 
carotid segmentation task

(a) Original CTA image (b) After HU value inter-
ception

(c) After resampling and
down-sampling

Fig. 2  3D structure of the main region of the carotid artery
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times that of shallow feature maps, and direct splicing will 
result in a tiny percentage of shallow features in the final 
fused features. Here we use the standard convolution module 
of 3D convolution operation + batch normalization + ReLU 
activation function to process the three sets of pooled feature 
maps separately. After that, the above four sets of 3D feature 
maps are combined at the channel level by the concatenation 

operation. Finally, the combined features are fed into the 
convolution kernel so that each input feature map is fea-
ture fused to obtain the output feature map for that scale 
layer of the expansion channel. The output feature map will 
be directly involved in the loss value calculation as one of 
the input predictions in the joint training scheme of the 

Fig. 3  CA-UNet. The input 3D CTA image size is 
256 × 256 × 32 (H ×W × D) . The model will first convolve the input 
image using a convolution kernel of size 3 × 3 × 3 . In the feature 
extraction process, the number of channels increases sequentially 
in the order of 16, 64, 128, and 256 as the size of the feature map 
decreases. In contrast, in the extended channel, the number of chan-

nels gradually decreases and the feature map becomes progressively 
larger. Note that the first result of each layer of the expanding path 
has a channel number of 64, since each has four sources. (For exam-
ple, the second layer of the expanding path also has a jump connec-
tion from the fourth layer, which is not drawn in the figure for space 
constraints.)

Fig. 4  Comparison of different 
size blood vessels in carotid 
CTA images

(a) Fine blood vessel area (b) Coarse vascular area
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multi-scale loss function, in addition to continuing to up-
sampling as input to the subsequent network layers.

Furthermore, in the carotid 3D CTA image segmenta-
tion task, the carotid artery region accounts for a small 
proportion of the whole set of 3D images, and the blood 
vessels vary in thickness. As shown in Fig. 4, the differ-
ence in blood vessel size between the internal carotid artery, 
external carotid artery, and common carotid artery region is 
evident. Therefore, the original U-Net [44] four times down-
sampling scheme in this task has the problem of excessive 
down-sampling. By removing the last layer of down-sam-
pling, we not only increase the number of shallow convolu-
tional layers and channels and reduce the model parameters, 
effectively accelerating the training, but also have no impact 
on performance.

2.3.2  Loss Function

Since the carotid region accounts for a small proportion of 
the whole 3D CTA images, there is a severe problem of posi-
tive and negative sample imbalance in the segmentation task. 
The statistics of the samples in the dataset reveal that the 
ratio of positive and negative samples is about 0.003, which 
is a severe imbalance. Thus, based on the Dice distance, we 
innovatively design an improved loss function. It effectively 
solves problems caused by inconsistent positive and negative 
samples and makes the network perform better on challeng-
ing classification samples. The single-scale loss function can 
be represented by Eq. (1).

where � controls the weight of false positive samples in the 
loss value calculation, and � controls the weight of false 
negative samples in the loss value calculation. We can weigh 
the model prediction bias by adjusting these two parameters. 
In this paper, the � and � are taken as 0.4 and 0.6 to make 
the model balance and performance reach a better state. 
And � is taken as 0.3 to improve the function’s nonlinear 
performance.

In addition, in order to solve the problems of unstable 
training and difficult convergence of the original Dice loss 
function and help the model jump out of local extrema, we 
add a binary Cross Entropy loss function, which can effec-
tively smooth the gradient. The final loss function used in 
this paper at the single-scale can be represented by Eq. (2).
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where the parameter � is used to balance the participation 
weight of the binary cross-entropy loss function. Setting 
the parameter � to 1 at the beginning of model training can 
help the training to be more stably and accelerate the model 
convergence. In the later stages of training, we gradually 
decrease the value of the parameter � so that we can improve 
the model performance according to the Dice distance.

To better supervise the fusion of features at each scale 
of the CA-UNet, we propose a multi-scale multi-loss func-
tion joint training scheme, which can make good utilization 
of the image features extracted at each scale layer in train-
ing. In the calculation, an additional convolutional layer is 
connected after the expanding paths of all four scale layers. 
This convolutional layer uses a convolutional kernel of size 
3 × 3 × 3 with one channel to convolve the output of this 
scale layer. Then, We use trilinear interpolation to uniformly 
recover different feature maps to the input image size. We 
compute the corresponding loss values using the Sigmoid 
function and the above single-scale loss function. Finally, 
we assign different weights to the losses calculated by each 
scale layer to accumulate the final loss function. The multi-
scale loss function can be represented by Eq. (3).

where L Hybrid1 , L Hybrid2 , L Hybrid3 and L Hybrid4 denote the loss 
values computed from four different scale feature maps in 
the network model from deep to shallow. L Hybrid4 is the loss 
value calculated from the output image in the network, the 
specific calculation of these four loss functions is specifically 
calculated for the single-scale loss function design described 
above. � iis the weight for the first three loss values. During 
the training process, this weight value is gradually decreased 
by a factor after each certain round of iterations. The propor-
tion of L Hybrid4 in the overall loss value is gradually enlarged 
so that the model output is closer to the target effect in the 
later stages of training.

2.4  Ischemic Stroke Risk Prediction Model

2.4.1  3D Image Feature Extraction Network

In this paper, to extract the 3D features of carotid CTA 
images, we extend each convolutional layer of the 
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conventional DenseNet from 2D to 3D convolution. Our 
3D DenseNet uses dense connectivity to ensure that each 
network layer is connected to all the networks in the pre-
vious layer. First, we perform the initial feature extraction 
work on the input image using a convolutional kernel of 
size 7 × 7 × 7 . Secondly, the model is followed by several 
3D densely connected modules and transition modules. The 
transition modules consist of 3D convolution and 3D pool-
ing, and the 3D densely connected modules are the core of 
image feature extraction in this paper. The structure of the 
3D densely connected modules is presented as Fig. 5. Each 
feature map is directly connected to subsequent layers in the 
3D densely connected module by skip connections before 
being fed to the next convolutional layer. The features from 
each layer are fused using the addition operation at the end 
of the connection. For the ith network layer within the mod-
ule, the output x can be shown as Eq. (4).

where [x0, x1,… , xi−1] represents the dense concatenation 
of the first few layers of the input feature maps, H(⋅) is the 
nonlinear transformation function, which is a set of com-
posite functions performing 3DConv+ReLu+BN operations. 
3DConv is a 3D convolution operation using a convolution 
kernel of size 3 × 3 × 3 . ReLU is the commonly used acti-
vation function. BN is the batch normalization operation. 
There is a direct connection between any two layers in the 
3D DenseNet, which could obtain a larger range of receptive 
fields and preserve the features of the lower layers. Mor-
ever, using the bottleneck layers, the 3D DenseNet has fewer 
parameters than the 3D convolutional neural network. Fewer 
parameters make it easier to train the network when the 3D 
model is limited by GPU memory.

Besides, to extract the image features in the carotid region 
more effectively, we propose to introduce deformable con-
volution into the 3D image feature extraction network. The 
3D deformable convolution adds an offset to the convolu-
tion kernel for learning, which enables the shape and size 
of the convolution window to be adjusted autonomously 

(4)xi = Hi

(

[

x0, x1,… , xi−1
]

)

according to the characteristics of the carotid artery region. 
By this method, we make the convolution window focus on 
the carotid and take full advantage of the spatial structure 
of the data. The training of offsets and weights of the 3D 
deformable convolution can be represented by Eq. (5).

where p0 represents the position of the pixel point in the 
output feature map, y

(

p0
)

 represents the feature value of 
the convolution layer at that position, and pn represents the 
nth value in the convolution receptive field R. When using a 
3D convolution kernel of size 3 × 3 × 3 , the receptive field 
R={(−1,−1,−1), (−1,−1, 0),… , (1, 1, 0), (1, 1, 1)} . w

(

pn
)

 
represents the weight of the corresponding position of the 
convolution kernel. Δpn represents the offset corresponding 
to the nth value in the deformable convolutional receptive 
field R, and the exact position is obtained by the bilinear dif-
ference. The improved 3D deformable convolution structure 
is shown in Fig. 6.

2.4.2  Fusion Prediction Network

The overall of fusion prediction model is presented in Fig. 7. 
The fusion prediction model mainly consists of the image 
feature extraction sub-model and the machine learning sub-
model. Since data such as electronic medical records and 
medical history in the private dataset are insufficient to train 
a machine learning model with good results, we introduce 
a large amount of data from the public dataset to assist in 
training the machine learning sub-model. Along this line, we 
perform migration learning on a 3D image feature extrac-
tion network trained on a CTA image dataset and a machine 
learning model trained on a public dataset containing elec-
tronic medical records and medical history data. Through 
parameter migration, we migrate the weight parameters into 
the image feature extraction sub-model and the machine 
learning sub-model in the fusion prediction network model. 
Finally, we derive the joint risk assessment results by weight 

(5)y
(

p0
)

=
∑

pn∈R

w
(

pn
)

x
(

p0 + pn + Δpn
)

Fig. 5  3D dense connection 
module structure
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fusion. The optimal weight values of the two sub-models in 
the fusion prediction network are derived by grid search.

In the fusion prediction network model, the outputs of the 
image feature extraction sub-model and the machine learn-
ing sub-model are fused according to the scale factors �1 
and �2 . In this way, we can obtain the final output prediction 
probability value of the fusion prediction network model, 
which can be calculated by Eq. (6).

where x indicates the input value, ŷ1 indicates the evalu-
ation result of the image feature extraction sub-model, ŷ2 
represents the evaluation result of the machine learning sub-
model, �1 and �2 represent the weight values of both in the 
fusion prediction network model. We migrate the trained 
weight parameters of the sub-models to form a fusion pre-
diction network model. The model can obtain joint predic-
tion results that combine various types of information while 
the data are trained separately, making full use of the infor-
mation in the data.

3  Results and Discussion

3.1  Evaluation Indicators

Dice coefficient, Jaccard Index, False Negative Rate (FNR), 
and False Positive Rate (FPR) are utilized evaluation metrics 
in image segmentation. The below is the formula representa-
tion for the above evaluation metrics, where Rgt represents 
the ground truth of the segmentation result and Rseg repre-
sents the segmentation result predicted by the network.

Dice coefficient indicates the ratio of the area of the inter-
section of two set regions to the total area and is usually used 
to represent the degree of overlap of two sets. A higher value 

(6)
p out = p(ŷ = 1 ∣ x) = 𝜆1 ⋅ p

(

ŷ1 = 1 ∣ x
)

+ 𝜆2 ⋅ p
(

ŷ2 = 1 ∣ x
)

of the Dice coefficient indicates a better segmentation result. 
The calculation method is represented by Eq. (7).

Jaccard Index is expressed as the ratio of the area where 
two regions intersect to the area where they merge, which 
is compared to the similarity and difference of the two 
regions. The larger the value of the Jaccard coefficient, the 
more similar the two sets are, and the calculation is denoted 
by Eq. (8).

False Negative Rate denotes the proportion of foreground 
pixels misclassified as background pixels to all pixels in the 
whole. A higher value of False Negative Rate indicates that 
more parts of the target object are not segmented completely 
and is calculated by Eq. (9).

False Positive Rate denotes the proportion of background 
pixels misclassified as foreground pixels to all pixels in the 
whole. If the FPR value is higher, the more redundant parts 
of the result that do not belong to the target object. The cal-
culation is represented by Eq. (10).

Accuracy (Acc), sensitivity (Sen), and specificity (Spe) have 
commonly used evaluation metrics in medical image predic-
tion classification tasks. The above evaluation metrics are 
calculated from a two-dimensional confusion matrix.

(7)Dice =
2 ∗

(

Rseg ∩ Rgt

)

Rseg + Rgt

(8)Jaccard =

(

R seg ∩ Rgt

)

R seg ∪ Rgt

(9)FNR =
FN

Rseg ∪ Rgt

(10)FPR =
FP

Rseg ∪ Rgt

Fig. 6  3D deformable convolu-
tional structure
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Accuracy represents the proportion of all samples 
with correct predictions, which could be obtained by the 
equation 11.

Sensitivity represents the probability that an algorithm can 
correctly determine a positive sample and is calculated by 
Eq. (12).

(11)Accuracy =
TP + TN

TP + FP + TN + FN

Specificity represents the probability that an algorithm can 
correctly determine a negative sample and is calculated as 
shown in Eq. (13).

(12)Sensitivity =
TP

TP + FN

(13)Specificity =
TN

FP + TN

Fig. 7  Fusion prediction network. The input of the image feature 
extraction sub-model is the segmented 3D CTA image of the carotid 
region, which can reduce the influence of redundant image regions. 

The input of the machine learning sub-model is the electronic medi-
cal record. Ultimately, we obtain joint risk assessment results
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3.2  Results and Discussion of the Two Tasks

3.2.1  Carotid Segmentation Task

First, we investigated the appropriate number of down-
sampling for CA-UNet by testing whether the four down-
sampling layers used in the conventional encoder-decoder 
partition network have excessive down-sampling problems. 
After constructing a network containing four down-sampling 
layers, the down-sampling modules and network layers were 
removed layer by layer, starting from the bottom layer. The 
number of channels at the bottom layer was kept constant. 
Table 3 shows the results of comparative experiments with 
different numbers of down-sampled layers.

The experimental results show that when training CA-
UNet, removing the lowest layer of down-sampling had little 
effect on the segmentation performance. The network perfor-
mance showed a decline when the remaining down-sampling 
layer was removed. Removing the useless down-sampling 
layer could increase the number of shallow convolutional 
layers and channels and decrease the model parameters, 
effectively accelerating the training.

Different ways of calculating loss values have significant 
effects on the direction of learning in the training. Table 4 
provides the test results of CA-UNet model using the fusion 
loss function compared with the Dice loss function.

The results show that compared with the Dice loss 
function, using the fusion loss function has significantly 
improved the results, and has better performance in all indi-
cators. The most apparent decrease in the False Negative 
Rate indicates that by adjusting the variable parameters in 
the fusion loss function, the purpose of balancing the learn-
ing direction of the model is achieved.

To test the performance of CA-UNet and the fusion loss 
function, the same training set was used to train the mod-
els of 3D U-Net, V-Net, Zhou [29] and Zhu [35], and we 
tested on the same settings. The test results are presented 
at Table 5.

Compared with 3D U-Net, V-Net, [29], and [35], our CA-
UNet model combined with fusion loss function gets the 

best evaluation performance with Dice coefficient, Jaccard 
Index, and False Negative Rate of 90.49, 82.90 and 9.96%, 
which is better than all other methods, and False Positive 
Rate of 7.14%, which is better than the other two methods. 

Table 3  Comparison results of different down-sampling times

Bold indicates that the best results were achieved in the current indi-
cator

Dice Jaccard FNR FPR

CA-UNet + once down-sampling 83.53% 72.34% 7.44% 20.22%
CA-UNet + twice down-sam-

pling
87.10% 77.64% 9.52% 12.84%

CA-UNet + three times down-
sampling

90.49% 82.90% 9.96% 7.14%

CA-UNet+four times down-
sampling

90.37% 82.62% 8.04% 9.34%

Table 4  Comparison results of different loss functions  (Bold indi-
cates that the best results were achieved in the current indicator)

Bold indicates that the best results were achieved in the current indi-
cator

Dice Jaccard FNR FPR

CA-UNet + 
Dice loss 
function

88.77% 80.32% 12.02% 7.67%

CA-UNet + 
fusion loss 
function

90.49% 82.90% 9.96% 7.14%

Table 5  Experimental results of different carotid artery segmentation 
models

Bold indicates that the best results were achieved in the current indi-
cator

Dice Jaccard FNR FPR

3D U-Net [45] 81.12% 69.22% 23.26% 7.52%
V-Net [46] 86.22% 76.45% 17.33% 6.22%
Zhou et al. [29] 86.61% 76.88% 14.13% 8.99%
Zhu et al. [35] 88.14% 79.76% 15.77% 4.48%
CA-UNet (Ours) 90.49% 82.90% 9.96% 7.14%

Table 6  Segmentation results for each volume in the test set

Bold indicates that the best results were achieved in the current indi-
cator

Dice Jaccard FNR FPR

V-1 91.96% 85.11% 10.44% 4.45%
V-2 93.47% 87.74% 8.81% 3.44%
V-3 94.95% 90.39% 4.28% 5.33%
V-4 93.07% 87.05% 4.94% 8.01%
V-5 93.69% 88.13% 7.39% 4.48%
V-6 92.44% 85.95% 5.78% 8.27%
V-7 95.24% 90.90% 3.41% 5.69%
V-8 90.69% 82.97% 13.79% 3.24%
V-9 92.43% 85.92% 3.54% 10.54%
V-10 96.44% 93.13% 5.53% 1.35%
V-11 94.87% 90.24% 7.16% 2.60%
V-12 91.42% 84.20% 11.44% 4.36%
V-13 92.11% 85.37% 6.09% 8.54%
V-14 93.52% 87.83% 6.13% 6.04%
V-15 91.76% 84.77% 4.14% 11.09%
V-16 93.50% 87.79% 6.92% 5.29%
V-17 94.10% 88.86% 7.00% 4.14%
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In addition, due to the optimization of the model structure 
and the number of down-sampling, the CA-UNet model has 
only 1/2 of the parameters of Zhu et al.

Table 6 shows the performance of each group of CTA 
images in the test set, applying the CA-UNet model. The 
best results were obtained for the sample numbered V-10, 
with Dice coefficient, Jaccard Index, False Negative Rate, 
and False Positive Rate of 96.44, 93.13, 5.53 and 1.35%. 
Figure 8 shows the segmentation results of the CA-UNet 
model proposed in this paper compared with the ground 
truth.

3.2.2  Ischemic Stroke Risk Prediction Task

The ischemic stroke risk prediction model proposed in this 
paper consists of three parts. The first part is a 3D image 

feature extraction network for carotid CTA images. The sec-
ond part is a machine learning model for predicting stroke 
risk using electronic medical records and medical history. 
The third part is the fusion network. We design comparison 
experiments for the machine learning model, the 3D image 
feature extraction model, and the fusion network model on 
their respective datasets.

First, we conduct comparative experiments with machine 
learning models. In this paper, SMOTE, random under sam-
pling (RUS), and instance hardness threshold (IHT) were 
selected as methods to solve the sample size imbalance 
problem. The results of the comparative experiments are 
presented in Table 7.

In the comparison experiment of resampling meth-
ods, the accuracy and specificity of the XGBoost model 
using SMOTE are 90.63 and 95.16%, which are the best 

Fig. 8  Comparison of CA-
UNet segmentation results with 
ground truth

(a) Cross-section of
segmentation results

(b) Cross-section of
ground truth

(c) 3D reconstruc-
tion of segmentation
results

(d) 3D reconstruction
of ground truth

Table 7  Comparison between 
machine learning model and 
data resampling method

Bold indicates that the best results were achieved in the current indicator

Model Resampling method Accuracy Sensitivity Specificity

Decision Tree SMOTE 85.23% 24.53% 88.70%
Decision Tree RUS 67.52% 73.58% 67.17%
Decision Tree IHT 75.25% 75.47% 75.24%
Random Forest SMOTE 87.47% 18.87% 91.39%
Random Forest RUS 69.25% 84.91% 68.35%
Random Forest IHT 78.72% 71.70% 79.12%
SVM (Linear Kernel) SMOTE 76.88% 62.26% 77.72%
SVM (Linear Kernel) RUS 74.85% 83.02% 74.38%
SVM (Linear Kernel) IHT 79.74% 77.36% 79.87%
SVM (RBF Kernel) SMOTE 75.97% 79.25% 75.78%
SVM (RBF Kernel) RUS 72.00% 84.91% 71.26%
SVM (RBF Kernel) IHT 81.98% 60.38% 83.21%
XGBoost SMOTE 90.63% 11.32% 95.16%
XGBoost RUS 70.06% 84.91% 69.21%
XGBoost IHT 77.70% 79.25% 77.61%
Logistic Regression SMOTE 76.37% 58.49% 77.40%
Logistic Regression RUS 73.42% 83.02% 72.87%
Logistic Regression IHT 79.53% 79.25% 79.55%
MLP SMOTE 82.38% 43.40% 84.61%
MLP RUS 70.47% 83.02% 69.75%
MLP IHT 85.13% 56.60% 86.76%
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performance, but the sensitivity is only 11.32%. Because the 
SMOTE method oversamples a small number of classes for 
training, which leads to the misconception that the model 
can classify well during the training phase. However, it is 
still poor at classifying samples in a small number of classes 
in fact. Compared to the other two data resampling meth-
ods, Instance Hardness Threshold performs better on each 
machine learning model due to the removal of those data that 
are often misclassified in training. In the comparative experi-
ments of machine learning models, using Instance Hardness 
Threshold as the resampling method, the Logistic Regres-
sion model performed the best overall, with accuracy, speci-
ficity, and sensitivity metrics of 79.53, 79.25 and 79.55%.

Next, we use the above machine learning model and 3D 
image feature extraction network to construct a fusion pre-
diction network and conduct comparison experiments. The 
results are presented as Table 8.

The results indicate that the fusion prediction model with 
two sub-models weight ratios of 0.5 and 0.5 performs best. 
The accuracy, specificity, and sensitivity of the test set are 
89.74, 94.44, and 85.71%. Its sensitivity was the highest, 
indicating that the model could correctly determine positive 
samples in the ischemic stroke risk prediction task.

In order to validate the performance of the proposed 3D 
image feature extraction network and the fusion predic-
tion network, we train and test 3DResNet, 3D-CNN and 
3D-DenseNet using the same settings. The test results are 
presented as Table 9.

The results indicate that 3D-ResNet achieved the best 
results in the specificity for the ischemic stroke risk pre-
diction task. The proposed model achieved the best overall 
results with accuracy and sensitivity of 83.33 and 91.67%. 
When using machine learning models such as XGBoost 

alone for prediction, the results are relatively poor because 
the rich information in CTA images is not utilized. In con-
trast, the fusion prediction model, with accuracy, specificity, 
and sensitivity of 89.74, 94.44, and 85.71% on the test set, 
achieved the best results in all three metrics. Therefore, the 
fusion prediction network model proposed in this paper has 
significant advantages for the ischemic stroke risk predic-
tion task.

4  Conclusion

We use the CA-UNet model to segment the carotid region 
and the fusion model to predict the risk of ischemic stroke 
for patients. According to the characteristics of the carotid 
segmentation task, we proposed to reduce the down-sam-
pling layer and use skip connectionss which reduce the cost 

Table 8  Comparison of fusion prediction models, where the 3D image feature extraction network is abbreviated as 3D CTA network

Bold indicates that the best results were achieved in the current indicator

Model Resampling method Machine learning 
model weight

Accuracy Sensitivity Specificity

Only 3D CTA network – 0 83.33% 91.67% 76.19%
3D CTA network + Random Forest SMOTE 0.6 87.18% 75.00% 97.62%
3D CTA network + Random Forest RUS 0.6 87.18% 91.67% 83.33%
3D CTA network + Random Forest IHT 0.6 89.74% 91.67% 88.10%
3D CTA network + SVM (Linear Kernel) RUS 0.8 88.46% 91.67% 85.71%
3D CTA network + SVM (Linear Kernel) IHT 0.5 88.46% 94.44% 83.33%
3D CTA network + SVM (RBF Kernel) SMOTE 0.6 88.46% 88.89% 88.10%
3D CTA network + SVM (RBF Kernel) RUS 0.6 85.90% 88.89% 83.33%
3D CTA network + XGBoost SMOTE 0.5 87.18% 83.33% 90.48%
3D CTA network + XGBoost IHT 0.5 89.74% 94.44% 85.71%
3D CTA network + Logistic Regression RUS 0.6 88.46% 91.67% 85.71%
3D CTA network + Logistic Regression IHT 0.5 85.90% 88.89% 83.33%
3D CTA network + MLP RUS 0.6 85.90% 88.89% 83.33%

Table 9  Comparative results of predictive models for ischemic stroke 
risk

Bold indicates that the best results were achieved in the current indi-
cator

Model Accuracy Sensitivity Specificity

XGBoost [47] 83.33% 83.33% 83.33%
3D-CNN [48] 75.64% 86.11% 66.67%
3D-ResNet [49] 79.49% 77.78% 80.95%
3D-DenseNet [50] 82.05% 86.11% 78.57%
3D Image Feature 

Extraction Network 
(Ours)

83.33% 91.67% 76.19%

Fusion Prediction 
Network (Ours)

89.74% 94.44% 85.71%



70 Interdisciplinary Sciences: Computational Life Sciences (2024) 16:58–72

1 3

of model training. And we apply a multi-scale loss func-
tion for joint training which could solve the problem that 
features of image details would be lost in the process of 
down-sampling. These novel designs resulted in a signifi-
cant improvement of the assessment metrics compared to 
the work of others. In addition, based on CA-Unet,we pro-
pose to use a fusion prediction network to predict the risk 
of ischemic stroke in patients., with Acc, Sen and Spe of 
89.74, 94.44 and 85.71%. Although we do not currently 
collect as much data as other vision tasks, our models can 
provide reliable diagnoses and outcomes, benefiting patients 
and healthcare professionals. In future research, we hope to 
expand more valuable data, enhance results, and investigate 
new ways to use more medical information, such as blood 
test information.
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