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ABSTRACT

We consider distributed learning over a communication graph where decentral-
ized clients, as local data owners, exchange information only with their neigh-
bors to train a system-level model, making communication complexity a critical
factor. To mitigate this complexity, we introduce a communication quantization
scheme based on Harmonic Modulation, in which high-dimensional vectors are
compressed and quantized prior to transmission, thereby substantially reducing
communication overhead. Building on this idea, we propose Log-Bit Gradient De-
scent with Harmonic Modulation, where each sender compresses a d-dimensional
vector into a single scalar, quantizes it into an m-bit binary codeand transmits it
to the receivers for decoding. Under a sufficient condition, our method achieves
an O(1/t) convergence rate, where t denotes the number of iterations. Moreover,
we establish a conservative lower bound showing that only log2(O(d)) bits per
communication are required, with d representing the vector dimension. Experi-
mental results on synthetic quadratic optimization, logistic regression, and neu-
ral network training validate our approach. In logistic regression, LBGD-HarMo
matches baseline accuracy while using 800× fewer bits per iteration and nearly
two orders of magnitude less communication. In neural network training, each
client transmits only 0.0001 MB per iteration while maintaining accuracy.

1 INTRODUCTION

In recent years, the vast amount of data generated by physically decentralized systems has sparked
significant interest in federated and distributed learning (DL), where multiple devices, servers, or
organizations collaboratively train a shared model without directly sharing their raw data (Konečný
et al., 2016; Mcmahan et al., 2017; Mohri et al., 2019; Pillutla et al., 2022). The objective of
federated learning is to solve the following system-level optimization problem,

min F (x) =

n∑
i=1

fi(x) (1)

where x ∈ Rd represents parameters of a global modeland fi(x) : Rd → R is the local loss
function from the data owned privately by i ∈ V = {1, 2, . . . , n}. The agents share model updates
(such as gradients or parameters) with a central server, e.g., (Fallah et al., 2020; T. Dinh et al., 2020;
Li et al., 2020; Kairouz et al., 2021), which then aggregates these updates to improve the global
model. The strength of federated learning lies in its capacity to preserve data privacy, improve
scalabilityand reduce communication overhead, as opposed to methods that rely on centralizing all
data for training.

In the standard federated learning setup, the role of the central server may be replaced by fully dis-
tributed information aggregation mechanisms. The cost function F (x) in (1) is inherently separable,
a feature long studied in distributed optimization (Tsitsiklis, 1984; Nedić & Ozdaglar, 2009; Duchi
et al., 2012). In such schemes, the agents in V are connected via wired or wireless links that define a
communication graph. Each agent exchanges updates only with its immediate neighbors, aggregates
the received information through distributed averagingand refines its local model using its private
data, for example via distributed gradient descent. These algorithms provide excellent convergence
guarantees and scalability for convex problems. Moreover, in the machine learning setting, dis-
tributed learning enhances security and privacy by eliminating the need for a central server, which
may otherwise be malicious or vulnerable to attack (Li et al., 2020).

1
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One of the central challenges in distributed learning is the high communication complexity. In both
federated and decentralized settings, every update requires agents to exchange real-valued vectors
whose dimension equals that of the model parameters. This quickly becomes a scalability bottle-
neck, particularly for modern large-scale models (Seide et al., 2014). To alleviate this, two common
strategies are employed: compression and quantization. Compression methods, such as Top-α spar-
sification (Alistarh et al., 2018), reduce communication load by sending only a fraction of the vector
entries, while quantization (Alistarh et al., 2017) lowers the bit-width of each transmitted entry
by mapping continuous values onto a discrete set. While both are effective in practice, applying
them naively, either alone or in combination, may result in instability or divergence in decentralized
optimization (Arjevani et al., 2023). To counteract this, error-feedback mechanisms (Stich et al.,
2018) are widely adopted, as they compensate for the bias induced by compression and quantization,
thereby supporting higher compression ratios and the use of low-precision representations. Further-
more, most distributed algorithms suffer from slower convergence with sparse communication links,
whereas single-scalar communication can outperform compression and quantization, especially in
wireless sensor networks where bandwidth and energy constraints make high-dimensional commu-
nication inefficient (Zhang et al., 2024; Joseph et al., 2025).

In this paper, we introduce Log-Bit Gradient Descent with Harmonic Modulation (LBGD-HarMo),
a fully digital and distributed framework for learning over graphs. The method integrates three key
components: (i) a harmonic modulation scheme that compresses high-dimensional updates into sin-
gle real-valued statistics, (ii) a quantizer that converts the compressed updates into binary represen-
tationsand (iii) a distributed primal–dual algorithm that enables local updates with quantized infor-
mation. This design provides a principled solution to communication-efficient distributed learning
over digital channels, while preserving strong theoretical convergence guarantees under convexity
assumptions. The main contributions of this work are summarized as follows:

• We prove that under standard connectivity (for the communication graph) and convexity
(for the cost functions) assumptions, the LBGD-HarMo achieves the optimal O(1/t) con-
vergence rate, while requiring only log2(O(d)) bits of communication per iteration, where
t denotes the number of iterations and d is the dimension of the decision variable.

• We conduct experiments on synthetic quadratic optimization, logistic regression and neural
network training tasks. The results demonstrate that LBGD-HarMo achieves comparable
convergence to representative decentralized baselines, including DSGD (Lian et al., 2017),
CHOCO with Top-α compression (Koloskova et al., 2020a), MoTEF with Top-α (Islamov
et al., 2025)and LBGD with Sign quantization, while requiring up to two orders of magni-
tude fewer transmitted bits to reach the same target accuracy.

To the best of our knowledge, LBGD-HarMo is the first distributed optimization and learning frame-
work that operates under logarithmic bit rates, thereby opening new avenues for both theoretical
investigation and practical deployment.

Large Language Models. The authors used large language models solely for polishing the writing.
They were not employed for retrieval, discovery, or research ideation.

2 PROBLEM DEFINITION

2.1 DISTRIBUTED LEARNING ON GRAPHS

We consider a system with n clients. Each agent i ∈ V possesses a private local dataset Di, a
loss function fi : Rd → Rand a learning model xi ∈ Rd. The agents are interconnected via a
connected and undirected communication graph G = (V, E). The system-level goal is described by
the following optimization problem:

min
x
F (x) =

1

n

n∑
i=1

fi(xi;Di)

s.t. xi = xj , ∀i, j ∈ V.
(2)

Any optimal solution to (2) implies a learning model that is trained on the collection of all datasets
Di, i = 1, . . . , n. We are interested in distributed algorithms that solve (2) with digital communica-
tions, i.e., agents only share digital messages with neighbors on the graph G.
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2.2 QUANTIZED COMMUNICATION

Clearly, all communication taking place over the graph G must be digital. An m-bit quantization
function (Kajiyama et al., 2021) for some m ∈ N+ is a mapping qm : R → R which maps a
real value a ∈ R to a quantized value with finite levels. Given integer parameters m1,m2 ∈ N+

satisfying m1 +m2 = m, we define K := 2m1−1 and l := 2−m2 as the quantization boundary and
the quantization error, respectively. Then, qm(·) is defined component-wise by

qm(a) =


K − l

2
, a > K;

I, a ∈ (I − l

2
, I +

l

2
];

−K +
l

2
, a ≤ −K.

(3)

where I = ±1

2
l, ±3

2
l, . . . , ±(K − 1

2
l). The quantization error always satisfies

|qm(a)− a|∞ ≤
l

2
, ∀|a| ≤ K.

Next, the function q̃m : R → {0, 1}m is a binary encoder that transforms the output of qm into an
m-bit digital representation suitable for communication. That is,

q̃m(a) := BinEncode(qm(a)), (4)

where BinEncode maps each quantized value of qm(a) to one of 2m pre-defined binary codes
shared among all clients.

2.3 RELATED WORK

Decentralized Optimization. Research on decentralized optimization began with the seminal work
of Tsitsiklis (1984), which analyzed distributed decision-making and optimization over networks.
Subsequent progress was achieved through gossip protocols, where clients iteratively average in-
formation with neighbors, including randomized gossip (Kempe et al., 2003), fastest mixing gossip
(Xiao et al., 2004)and randomized analysis (Xiao & Boyd, 2004). These protocols highlighted
that local information exchanges along graph edges are sufficient for reaching global agreement.
Building on these insights, distributed (sub)gradient methods were developed to solve convex pro-
grams. Nedić & Ozdaglar (2009) proved convergence under diminishing stepsizesand Johansson
et al. (2010) extended the analysis to randomized and asynchronous updates. At the same time,
distributed ADMM formulations were proposed for consensus and constrained optimization (Wei
& Ozdaglar, 2012; Iutzeler et al., 2013), while decentralized dual averaging schemes provided
topology-dependent convergence guarantees (Duchi et al., 2012; Nedić et al., 2015). In recent years,
these algorithmic foundations have been extended to machine learning applications. He et al. (2018)
investigated decentralized training for generalized linear models. Gao et al. (2024) introduced com-
pressed decentralized SGD for large-scale nonconvex learning.

Communication Compression and Quantization. Reducing communication overhead is a major
challenge in decentralized optimization. Two main directions have been explored: compression and
quantization. Compression-based methods aim to reduce the dimensionality of transmitted informa-
tion. For instance, Beznosikov et al. (2023) analyzed biased operators such as Top-α sparsification
and established convergence with error compensation. In addition, Wang et al. (2024) proposed
scalarized communication schemes and proved linear convergence for distributed linear equations.
Quantization-based methods, in contrast, focus on reducing bit precision. Thanou et al. (2012)
examined consensus under uniform quantization and introduced refinement strategies to improve
accuracy. Reisizadeh et al. (2019) proposed an encoding/decoding mechanism ensuring vanishing
consensus errorand Doan et al. (2020a;b) developed unbiased random and adaptive quantization
rules with linear convergence guarantees. Kajiyama et al. (2020) further established linear conver-
gence via time-varying quantizers. In stochastic optimization, Bernstein et al. (2018) introduced the
SignSGD algorithm that communicates only gradient signsand Karimireddy et al. (2019) incorpo-
rated error-feedback to show that compressed updates can attain convergence rates comparable to
full-precision methods.

3
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3 HARMONIC MODULATION

3.1 HARMONIC MODULATION

In this section, we propose the Harmonic Modulation (HarMo), which reduces each d-dimensional
vector to a single scalar, then quantifies it into an m-bit digital representation. This drastic reduction
in message size enables efficient decentralized communication while preserving convergence. In the
following, we present a detailed formulation and analysis of the proposed HarMo.

We define some functions in our compression process: the harmonic compression sequence
ψHarMo(t), the HarMo encoder CE and its decoder counterpart CD.

Harmonic Modulation Sequence ψHarMo(t). The HarMo sequence ψHarMo(t) ∈ Rd is defined as:

ψHarMo(t) =

[
sin

(
π

d+ 1
t

)
, sin

(
2π

d+ 1
t

)
, . . . , sin

(
dπ

d+ 1
t

)]⊤
, (5)

where t ∈ N denotes the communication round or iteration indexand d is the dimensionality of
the original vector. This harmonic structure introduces periodicity and diversity across time steps,
allowing the compressor to project high-dimensional information along varying directions with min-
imal computational and memory cost. Notably, since ψHarMo(t) is deterministically constructed and
shared among all clients, it requires no additional communication, making it highly efficient in de-
centralized, bandwidth-constrained settings. Importantly, the harmonic structure of ψHarMo(t) is
reminiscent of the basis functions used in the Fourier transform, enabling the system to approximate
frequency-aware projections of the original signal. This analogy allows the compressor to implicitly
exploit the spectral structure of the input, which is particularly beneficial for preserving informative
components under aggressive quantization.

HarMo Encoder CE. The function CE : Rd × N+ → {0, 1}m projects a d-dimensional real-valued
vector b ∈ Rd onto a scalar using ψHarMo(t), then applies the quantization function q̃m into an
m-bits binary representation suitable for transmission. That is,

CE(b, t) := q̃m(ψHarMo(t)
⊤ · b), (6)

HarMo Decoder CD. The decoder function CD : {0, 1}m×N+ → Rd first decodes the received m-
bit binary message (e.g., CE(b, t)) into a quantized scalar value. It then reconstructs a d-dimensional
vector by expanding this scalar along ψHarMo(t),

CD({0, 1}m, t) := ψHarMo(t) · BinDecode({0, 1}m), (7)

where BinDecode recovers the quantized real-valued scalar from the corresponding m-bit binary
representation.

Definition 3.1. The Harmonic Modulation Channel CHarMo: Rd × N+ → Rd satisfies

CHarMo(b, t) = CD(CE(b, t), t) = ψHarMo(t) · (qm(ψHarMo(t)
⊤ · b)) (8)

for some m ∈ N+.

The resulting vector b̂ = CHarMo(b, t) is subsequently used in downstream computations such as
consensus updates or local gradient steps. This separation of analog quantization and digital encod-
ing enables both precision control and bandwidth efficiency, allowing each component of a to be
transmitted using exactly m bits.

3.2 PERSISTENT EXCITATION CONDITION

The Persistent Excitation (PE) condition captures the idea that even when only a scalar projection
of a high-dimensional vector is transmitted at each step, the sequence of projection directions must
vary over time to ensure that all dimensions are sufficiently explored. Without such variation, cer-
tain components of the vector may be neglected, leading to biased or incomplete information. This
concept has a natural connection with the Discrete Fourier Transform (DFT), which also represents
signals through structured oscillatory components. The DFT, however, is defined on a finite time

4
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window and transforms the entire signal within this limited horizon into complex-valued frequency
components based on orthogonal bases. In contrast, PE relies on real-valued projections that evolve
over time and can extend over an unbounded horizon. Whereas the DFT captures all information
within its fixed window, PE ensures that the accumulated effect of projections over time, whether in
a finite sliding window or over an infinite sequence, spans the full space even if individual directions
are not orthogonal. This temporal coverage makes PE particularly suitable for sequential commu-
nication scenarios with compressed updates, enabling effective reconstruction of the original signal
under communication constraints.

Lemma 3.1. The HarMo sequence ψHarMo(t) is uniformly bounded and persistently excited, i.e.,

α2Id ≥
k+N−1∑

t=k

ψHarMo(t) ·ψHarMo(t)
⊤ ≥ α1Id, ∀k ≥ 0 (9)

for α1 = α2 = (2d−1)!
2 and N = (2d− 1)!.

This result provides the theoretical foundation for using the HarMo sequence in compressed com-
munication settings, ensuring that directional diversity is preserved over time despite transmitting
only scalar information at each step. The detailed proof is provided in Appendix B.

4 LOG-BIT GRADIENT DESCENT WITH HARMONIC MODULATION

4.1 THE ALGORITHM

In this subsection, we propose a novel algorithm to address the communication bottleneck in fully
decentralized federated learning. Specifically, we incorporate the HarMo into a distributed op-
timization framework. The resulting method, named Log-Bit Gradient Descent with Harmonic
Modulation (LBGD-HarMo), is summarized in Algorithm 1. In lines 6-7, inspired by the work in
Kajiyama et al. (2021), the algorithm quantizes the error state and introduces a decaying coefficient
gt to scale the transmitted value before and after quantization, reducing quantization error. In lines
8-10, The compression process involves encoding θ into a single real number using the HarMo
Encoder CE, followed by quantizing and encoding this value into an m-bits binary number for com-
munication. In lines 13-14, the HarMo Decoder CD reconstructs the transmitted value back to a real
vector, allowing the local updates to be performed. Lines 16-17 introduce a distributed filter and a
distributed integrator. The filter σ tracks the local state x, while the integrator z tracks the term
(κ0gtθ̂i− κ0gt

∑
j∈Ni

aij θ̂j), which is used to balance local and global information. Our proposed
algorithm shares a similar compression approach to other methods (Koloskova et al., 2020a; Liu
et al., 2021; Yi et al., 2023; Islamov et al., 2025), in the sense of compressing and transmitting error
states.

We introduce a weight matrix [aij ] ∈ Rn×n on G = (V, E) that satisfies aij > 0 if (j, i) ∈ E
and aij = 0 otherwise. The Laplacian matrix L is given by [L]ij = −aij for i ̸= j and [L]ii =∑n

j=1 aij . The neighbor set of node i is Ni = {j ∈ V | [L]ij ̸= 0}.

In Algorithm 1, the vector xi := [x1i , . . . , x
d
i ]

⊤ ∈ Rd represents model parameters of agent i. The
global vector x := [x1; . . . ;xn] ∈ Rnd collects the model parameters of all clients across the
network. Let the parameters κ, κ0, α, η > 0 be step size and tuning constants. We denote the local

loss function of agent i as fi(·)and its gradient by ∇fi(xi) :=
[
∂fi
∂x1

i
, . . . , ∂fi

∂xd
i

]⊤
∈ Rd. Only the

m-bits binary messages CE

(
xi,t−σi,t

gt
, t
)

are transmitted over the communication network.

To simplify the analysis, we define the extended gradient mapping as:

H(x) := [∇f1(x1); . . . ;∇fn(xn)] ∈ Rnd, ∀x ∈ Rnd. (10)

4.2 CONVERGENCE RESULT

We analyze the convergence behavior of Algorithm 1 (LBGD-HarMo)and establish the following
theoretical guarantee. First, we impose the following assumptions for the later analysis.

5
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Algorithm 1 Log-Bit Gradient Descent with Harmonic Modulation (LBGD-HarMo)

1: Input: T,G = (V, E), κ, κ0, η, α, gt,σi,t, zi,t,xi,t, ∀i ∈ V, 0 ≤ t ≤ T
2: Output: xi,T+1, ∀i ∈ V
3: Initialize t← 0, κ, κ0, η, α, g0, γ > 0,σi,0 = zi,0 = xi,0 = 0d

4: while t ≤ T do
5: for all clients i ∈ V do
6: gt = g0γ

t

7: θi,t =
xi,t − σi,t

gt
8: yi,t = ψHarMo(t)

⊤ · θi,t ◁ compress θi,t to a single real number
9: yi,t = qm(yi,t) ◁ quantify yi,t to a specific quantization error

10: yi,t = q̃m(yi,t) ◁ encode yi,t to m-bits binary numbers
11: for neighbors j ∈ Ni (including i) do
12: Transmit yi,t and receive yj,t
13: yj,t = BinDecode(yj,t) ◁ decode yi,t to the original quantified number
14: θ̂j,t = ψHarMo(t) · yj,t ◁ reconstruct yi,t to a real vector
15: end for
16: σi,t+1 = σi,t + κ0gtθ̂i,t
17: zi,t+1 = zi,t + κ0gtθ̂i,t − κ0gt

∑
j∈Ni

aij θ̂j,t

18: xi,t+1 = xi,t − κ
[
β (σi,t − zi,t) + η

t+1∇fi(xi,t)
]

◁ update the local variable
19: end for
20: t← t+ 1

21: end while

Assumption 4.1. The global cost function F (x) = 1
n

∑n
i=1 fi(x) is strongly convex, i.e., F (x)

satisfies

F (y) ≥ F (x) +∇F (x)⊤(y − x) + µ

2
∥y − x∥2, ∀x,y ∈ Rd,

for some constant µ > 0.
Assumption 4.2. The extended gradient mappingH(·) in (10) is Lipschitz continuous, i.e.,

∥H(x)−H(x′)∥ ≤ LH∥x− x′∥, ∀x,x′ ∈ Rnd,

for some constant LH > 0.
Assumption 4.3. The graph G is undirected, connectedand time-invariant.

Note that if Assumption 4.3 holds, the Laplacian matrix L is symmetric positive semi-definite with
eigenvalues 0 = λ1 < λ2 ≤ · · · ≤ λn and 1⊤

nL = 0 by Mesbahi & Egerstedt (2010).
Theorem 4.1. Consider the DL problem (2) over a communication graph Gand suppose Assump-
tions 4.1-4.3 hold. Then, for some κ, κ0, η, β, g0, γ > 0 and sufficiently large bit-length

m ≥ m̃ = O(log2(d)),
the model parameter xi,t of each client i produced by Algorithm 1 (LBGD-HarMo) converges to a
common model x⋆ at a rate of O(1/t), i.e.,

∥xi,t − x⋆∥ = O(1/t),
where t denotes the iteration index.

This theorem establishes the sublinear convergence rate of LBGD-HarMo under standard assump-
tions, providing a rigorous guarantee for its effectiveness. Notably, it highlights the fundamental
role of logarithmic bit complexity in ensuring convergence of LBGD-HarMo, showing that only
O(log2(d)) bits are sufficient for reliable optimization. The complete proof is provided in Ap-
pendix C.

6
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5 NUMERICAL RESULTS

5.1 EXPERIMENTAL SETUP

For all experiments, we evaluate each scheme in terms of convergence rate and communication
complexity, reporting number of iterations and communication cost.

Topologies. The communication topologies considered in our experiments include the ring, torus,
fully-connected networkand the complex network Erdős–Rényi (ER) graph.

Compressors and quantizers. In addition to our proposed HarMo, we also compare against the
Top-α (Alistarh et al., 2018) and the Sign quantizer (Bernstein et al., 2018). The details of these two
methods are provided in the Appendix.

Algorithms. We compare our proposed LBGD-HarMo with several representative baselines, in-
cluding DSGD (Lian et al., 2017), CHOCO (Koloskova et al., 2020a)and MoTEF (Islamov et al.,
2025). We also evaluate LBGD combined with Sign quantizer (LBGD-Sign), where the local
model θi,t is directly quantized using a standard Sign quantizer (Kajiyama et al., 2021) without
additional compression. For all methods, the step sizes are carefully tuned to ensure fair conver-
genceand detailed hyperparameter configurations are provided in Appendix D. Additionally, we
include FedAvg (McMahan et al., 2017) as a centralized baseline for reference in neural network
training.

5.2 SYNTHETIC QUADRATIC OPTIMIZATION PROBLEM

We consider a synthetic quadratic optimization problem to demonstrate the validity of the theoreti-
cal results for Algorithm 1. This problem follows the classical setups in strongly convex optimiza-
tion (Gao et al., 2024). For each client i, the local objective is defined as fi(xi) :=

1
2∥Qixi − si∥2,

where Qi = i2

n Id ∈ Rd×d is positive definite to ensure strong convexityand si ∼ N
(
0, ρ

2

i2 Id

)
introduces heterogeneity through the linear component (Koloskova et al., 2020b). To be consis-
tent with prior works, Gaussian noise with variance σ2 is added to the gradients. The quadratic
form guarantees a unique minimizerand the heterogeneity across clients arises from differences in
Qi and si. We evaluate performance using two standard metrics: the Optimality Error, defined as
1
n

∑n
i=1 ∥xi,t−x⋆∥2 measuring the deviation from the optimal solution x⋆and the Consensus Error,

defined as 1
n

∑n
i=1 ∥xi,t − x̄t∥2 quantifying disagreement across clients, where x̄t =

1
n

∑n
i=1 xi,t

denotes the network average.

Effect of number of clients and communication topologies. Figure 1a and Figure 1b show that the
number of clients has little effect on the performance of LBGD-HarMo. For network structures, the
fully-connected topology achieves the best overall performance, as its dense connectivity minimizes
consensus error and ensures more accurate results. These results confirm the robustness of LBGD-
HarMo to both network size and topology.

(a) Number of clients (b) Communication topologies (c) Quantization precisions

Figure 1: Convergence performance of synthetic quadratic optimization problem under different
settings: (a) varying the number of clients n; (b) varying the communication topologies; (c) varying
the quantization precision m. In these experiments, we fix the quantization precision to m = 8 in
panels (a) and (b), use a ring topology in panels (a) and (c), and set the number of clients to 25 in
panels (b) and (c), with dimension d = 8.

Effect of quantization precisions. In Figure 1c, we study the impact of different quantization
precisions m on the convergence of our proposed LBGD-HarMo algorithm. As the quantization

7
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precision m decreases, the number of communication cost is significantly reduced, thereby allevi-
ating the communication burden across clients. However, in our experiments we found that m = 3
bits is the minimum precision that still ensures convergence, as lower precisions with higher quan-
tization noise may lead to divergence. Moreover, the results with m = 8 and m = 16 bits are
almost identical, indicating diminishing returns from further increasing precision. These findings
are consistent with Theorem 4.1, which establishes convergence under finite but sufficiently large
quantization levels.

(a) Convergence of different algorithms (b) Communication cost of different algorithms

Figure 2: Comparison of DSGD, CHOCO, MoTEF with Top-α (α = 0.125), LBGD-Sign and
LBGD-HarMo (m = 8 bits) on the synthetic quadratic optimization problem. The experiment
is conducted with 25 clients connected over a ring topology, with detailed hyperparameter values
provided in the appendix.

Comparison against other algorithms. As illustrated in Figure 2, LBGD-HarMo attains compara-
ble convergence while clearly outperforming all baselines in terms of communication cost, achieving
the same accuracy with far fewer transmitted bits. Although MoTEF exhibits linear speedup in the
early stage, it still requires substantially more communication to reach higher-precision accuracy,
highlighting the superior efficiency of LBGD-HarMo.

5.3 LOGISTIC REGRESSION WITH STRONGLY CONVEX REGULARIZER

We further evaluate our proposed Algorithm 1 on a logistic regression task with an ℓ2-regularizer.
Specifically, the local objective function for each client i is given by fi(xi) = 1

mi

∑mi

j=1 log
(
1 +

exp(−bija⊤
ijxi)

)
+ 1

2mi
∥xi∥22, where aij ∈ Rd represents the feature vector of the j-th data sample

on client i, bij ∈ {−1, 1} is the corresponding labeland mi denotes the number of samples assigned
to client i. To examine the effect of data heterogeneity, we adopt two distribution settings: (i) IID,
where samples are uniformly and randomly assigned, so each client holds a representative subset
of the dataset; (ii) Non-IID, where samples are unevenly partitioned such that each client mainly
contains data from a limited set of classes, inducing statistical heterogeneity. Each experiment is
repeated three timesand we evaluate the Optimality Error f(x̄t)− f(x⋆), where x̄t =

1
n

∑n
i=1 xi,t

denotes the average model across all n clients at iteration tand f(x⋆) is computed using the Logis-
ticRegression from scikit-learn (Pedregosa et al., 2011). Furthermore, we record the per-iteration
Communication Cost per node and the final Test Accuracy and Runtime after training, providing
a comprehensive evaluation of both communication efficiency and model performance. We first
compare our approach against several representative algorithms. In addition, we compare the accu-
racy across different numbers of clients, various network topologiesand both IID and Non-IID data
distributions. The corresponding hyperparameter settings and experimental results are provided in
Appendices D.4 and E.

Datasets. We conduct experiments on the epsilon dataset (Sonnenburg et al., 2008), a large-scale
benchmark for binary classification consisting of 400,000 training samples, 100,000 validation sam-
plesand 2,000 features. The dataset’s high dimensionality and large sample size provide a rigorous
testbed for communication-efficient algorithms.

Comparison against other algorithms. As shown in Figure 3a, LBGD with both the proposed
HarMo and Sign quantizer achieves comparable convergence behavior to DSGD, CHOCOand
MoTEF with Top-α, while maintaining stable and consistent performance across runs. More im-
portantly, when the communication cost is measured in terms of communication cost in Figure 3b,
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LBGD-HarMo significantly outperforms the baselines. Table 2 indicates that LBGD-HarMo re-
duces the communication overhead to only 0.07 KB, compared with 281.25 KB for DSGD and
56.25 KB for CHOCO and MoTEF with the Top-α compressor, even the LBGD-Sign still requires
8.93 KB. These empirical findings are consistent with our theoretical guarantees, showing that the
proposed approach substantially reduces communication cost while maintaining accuracy close to
the baselines.

Table 1: Per-client communication cost per iteration and the corresponding test accuracies and run-
time for different algorithms under various compressors and quantizers in the Logistic Regression
experiment. Experiments are conducted using a Top-α compressor with α = 0.1, Sign quantizer
with 1 bitand HarMo with m = 16 bits, evaluated on n = 9 clients arranged in a ring topology
under IID data distribution.

Algorithm Method Communication cost (KB) Test accuracy (%) Runtime (s)
DSGD None 31.25 88.44 453.67
CHOCO TOP-α 6.25 88.23 957.34
MoTEF TOP-α 6.25 87.42 1497.01
LBGD Sign 0.99 86.82 608.63
LBGD HarMo 0.008 87.84 733.49

(a) Convergence of different algorithms (b) Communication cost of different algorithms

Figure 3: Comparison of Algorithm 1 (LBGD-HarMo), CHOCO, MoTEF with the Top-α com-
pressorand LBGD with the Sign quantizer on epsilon in terms of iterations and communication
cost, which respectively indicate the convergence rates and the total number of communication cost
needed to achieve the same accuracy.

5.4 NEURAL NETWORK TRAINING

We further evaluate the proposed LBGD algorithm on the standard image classification task. Each
client employs a neural network as the local model and trains it using the standard cross-entropy
loss. To simulate both IID and Non-IID data distributions across federating clients, we adopt the
Dirichlet-based partitioning strategy Dir(p) (Hsu et al., 2019), where larger values of p correspond
to more balanced (IID) data splits, while smaller values produce stronger data heterogeneity (Non-
IID). Following the same evaluation metrics as in Section 5.3, we record the Training Loss, the
per-iteration Communication Cost per node, the final Test Accuracyand the Runtime after training,
providing a comprehensive evaluation of both communication efficiency and model performance.

Dataset. We evaluate our method on the CIFAR-10 dataset (Krizhevsky, 2009), which is a widely
used benchmark for image classification. CIFAR-10 consists of 60,000 color images of size 32× 32
across 10 classes, with 50,000 images for training and 10,000 for testing.

Model. We adopt ResNet-18 (He et al., 2016) as the backbone network for each client. ResNet-18
is a lightweight residual convolutional neural network consisting of 18 layers, including one initial
convolutional layer, four residual stages with two BasicBlocks each, and a final fully connected
layer.

Comparison against other algorithms. To comprehensively evaluate the effectiveness of our pro-
posed method, we compare LBGD-HarMo with several representative baselines. For the central-
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ized setting, we adopt FedAvg (McMahan et al., 2017) as a benchmark. For the decentralized
federated learning setting, we employ two widely used algorithms: DSGD (Lian et al., 2017), repre-
senting the standard decentralized optimization framework, and CHOCO (Koloskova et al., 2020a),
which integrates communication compression in decentralized learning. Each compression scheme
is applied independently to every layer of ResNet-18 to ensure fair comparison. We evaluate the test
accuracy on each client and report the averaged performance over all clients.

Table 2: Per-client communication cost per iteration and the corresponding total training accuracies
and runtime for different algorithms under various compressors and quantizers in the Neural Net-
work Training experiment. Experiments are conducted using a Top-α compressor with α = 0.1,
Sign quantizer with 1 bitand HarMo with m = 24 bits, evaluated on n = 9 clients arranged in a ring
topology under IID data distribution.

Algorithm Method Communication cost (MB) Test accuracy (%) Runtime (min)
FedAvg None 804.60 (Central Server) 89.92 99
DSGD None 178.80 90.09 84
CHOCO TOP-α 35.76 87.03 209
LBGD Sign 5.33 81.94 147
LBGD HarMo 0.0001 86.69 203

From Table 2 and Figure 4, we can conclude that LBGD-HarMo requires considerably less commu-
nication cost compared to other algorithms and the training time for LBGD-HarMo is comparable to
that of other compression algorithms. Furthermore, LBGD-HarMo achieves competitive test accu-
racy, meeting the performance standards while significantly reducing the communication overhead.
These results suggest that LBGD-HarMo provides an effective balance between communication ef-
ficiency and model performance in decentralized neural network training.

(a) Convergence of different algorithms (b) Communication cost of different algorithms

Figure 4: Comparison of Algorithm 1 (LBGD-HarMo), FedAvg, DSGD, CHOCO with the Top-α
compressorand LBGD with the Sign quantizer on the ResNet-18 training task over the CIFAR-10
dataset, in terms of test accuracy and total communication cost.

6 CONCLUSIONS

In this paper, we proposed LBGD-HarMo, a novel log-bit quantization scheme with harmonic mod-
ulation for communication-efficient distributed learning over graphs. We developed provably con-
vergent algorithm that compresses high-dimensional variables into log-bit transmissions while pre-
serving convergence guarantees comparable to those of uncompressed methods. Both theoretical
analysis and empirical results demonstrated that LBGD-HarMo substantially reduces communica-
tion cost. Furthermore, we showed that the bit-width m can be tuned to trade off communication
overhead against learning performance, with even small values of m ensuring stable convergence.

A limitation of this work is that our analysis focuses on strongly convex objectivesand future re-
search will involve deriving explicit expressions for the relationship between convergence rate and
parameters in the strongly convex case. Additionally, extending the theoretical analysis of LBGD-
HarMo to non-convex objectives remains an important direction for future work.
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ETHICS STATEMENT

This work focuses on the development of decentralized optimization algorithms for federated learn-
ing. Our study is entirely theoretical and experimentaland does not involve human subjects, person-
ally identifiable information, or sensitive data. The datasets used in our experiments are standard
public benchmarks that are widely adopted in the machine learning community, ensuring compli-
ance with privacy, fairnessand ethical standards. No harmful applications or misuse of the proposed
methodology are foreseenand our code will be released to facilitate transparency, reproducibilityand
future research. We confirm that this research adheres to the ICLR Code of Ethics.

REPRODUCIBILITY STATEMENT

All experiments are conducted on a server equipped with an Intel(R) Xeon(R) Platinum 8336C
CPU @ 2.30GHz (32 cores, 2 threads per core) and nine NVIDIA GeForce RTX 4090 GPUs.
The synthetic quadratic optimization experiments were implemented in MATLAB R2024a, while
the logistic regression experiments were implemented in PYTHON 3.8. To ensure reproducibil-
ity, we provide an anonymous GitHub repository containing all source codes and scripts neces-
sary to replicate our results. Our implementation is based on open-source code from (Koloskova
et al., 2020a) https://github.com/epfml/ChocoSGD and is available at https://
anonymous.4open.science/r/LBGD-HarMo.
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Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and
Dave Bacon. Federated learning: Strategies for improving communication efficiency: Strategies
for improving communication efficiency. Workingpaper, ArXiv, October 2016.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Master’s thesis, Department
of Computer Science, University of Toronto, 2009.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE Signal Processing Magazine, 37(3):50–60, 2020.

Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
gradient descent. Advances in neural information processing systems, 30, 2017.

Xiaorui Liu, Yao Li, Rongrong Wang, Jiliang Tang, and Ming Yan. Linear convergent decentralized
optimization with compression. In International Conference on Learning Representations, 2021.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

H. Brendan Mcmahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Agüera y Arcas.
Communication-efficient learning of deep networks from decentralized data. Proceedings of In-
ternational Conference on Artifcial Intelligence and StatisticsFort Lauderdale, 2017.

Mehran Mesbahi and Magnus Egerstedt. Graph theoretic methods in multiagent networks. Princeton
University Press, 2010.

Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. Proceed-
ings of International Conference on Machine Learning, 2019.
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A NOTATION

In this paper, ∥ · ∥ denotes the Euclidean norm. The notation 1n (0n), 1n×d (0n×d), Inand
{e1, . . . ,ed} denote the one (zero) column, the one (zero) matrix, identity matrixand base vectors
in Rd, respectively. The expression blkdiag(x1, . . . ,xn) is a diagonal matrix with the i-th diagonal
matrix being xi. The symbol ⊗ denotes the Kronecker product, ⊙ denotes the Hadamard produc-
tand ⌈·⌉ denotes the ceiling operator. For a differentiable function, ∇(·) denotes its gradient. For
column vectors a and b, [a; b] means

[
a⊤, b⊤

]⊤
. The notationO(·) means the magnitude notation.

B PROOF OF LEMMA 3.1. —— HARMO SEQUENCE SATISFIES THE
PERSISTENT EXCITATION (PE) CONDITION

Lemma 3.1. The HarMo sequence ψHarMo(t) is uniformly bounded and persistently excited, i.e.,

α2Id ≥
k+N−1∑

t=k

ψHarMo(t) ·ψHarMo(t)
⊤ ≥ α1Id, ∀k ≥ 0

for α1 = α2 = (2d−1)!
2 and N = (2d− 1)!.
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Proof. Let the dimension be d ∈ Nand define the Harmonic Modulation (HarMo) sequence
ψHarMo(t) ∈ Rd as

ψHarMo(t) =

[
sin

(
πt

d+ 1

)
, sin

(
2πt

d+ 1

)
, . . . , sin

(
dπt

d+ 1

)]⊤
. (B.1)

We aim to show that {ψHarMo(t)} satisfies the persistent excitation (PE) condition

α2Id ⪰
k+N−1∑

t=k

ψHarMo(t)ψHarMo(t)
⊤ ⪰ α1Id, ∀k ≥ 0 (B.2)

for some 0 < α1 ≤ α2 and all integers N ≥ N0.

Consider the accumulated Gram matrix

MN (k) :=

k+N−1∑
t=k

ψHarMo(t)ψHarMo(t)
⊤.

Its (i, j)-entry can be expressed as

[MN (k)]i,j =

k+N−1∑
t=k

sin

(
iπt

d+ 1

)
sin

(
jπt

d+ 1

)
.

Applying the trigonometric identity sin(a) sin(b) = 1
2 [cos(a− b)− cos(a+ b)], we obtain

[MN (k)]i,j =
1
2

k+N−1∑
t=k

[
cos

(
(i− j)πt
d+ 1

)
− cos

(
(i+ j)πt

d+ 1

)]
.

When i ̸= j, both cosine terms are periodic with integer multiples of 2(d+1)
|i−j| and 2(d+1)

i+j , respec-
tively. By choosing N as a common multiple of these periods, the summation vanishes and hence
[MN (k)]i,j = 0. This shows that the Gram matrix is diagonal.

For i = j, one has

[MN (k)]i,i =

k+N−1∑
t=k

sin2
(

iπt

d+ 1

)
.

Since sin2(x) has average value 1
2 over its period, taking N as a multiple of the fundamental period

d+1
i yields

[MN (k)]i,i =
N
2 .

Thus, all diagonal entries coincideand the Gram matrix satisfies

MN (k) =
N

2
Id.

Consequently, the HarMo sequence satisfies the PE condition (B.2) with α1 = α2 = N
2 . A con-

servative universal choice of N can be made by taking the least common multiple of all possible
periods,

N = lcm
{

2(d+1)
s : s = 1, 2, . . . , 2d− 1

}
= 2(d+ 1) · lcm(1, 2, . . . , 2d− 1),

which can be upper bounded by (2d − 1)!. Therefore, the PE condition holds with constants α1 =

α2 = N
2 = (2d−1)!

2 .
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C PROOF OF THEOREM 4.1. —— CONVERGENCE RATES OF
LBGD-HARMO

Theorem 4.1. Consider the DL problem over a communication graph Gand suppose Assumptions
4.1-4.3 hold. Then, for some κ, η, g0, γ > 0 and sufficiently large bit-length

m ≥ m̃ = O(log2(d)),

the model parameters xi,t of each client i produced by Algorithm 1 (LBGD-HarMo) converge to a
common model x⋆ at a rate of O(1/t), i.e.,

∥xi,t − x⋆∥ = O(1/t),

where t denotes the iteration index.

Proof. As illustrated in Algorithm 1, lines 16–18 can be rewritten as follows:

σi,t+1 = σi,t + κ0gt CHarMo

(
xi,t − σi,t

gt
, t

)
,

zi,t+1 = zi,t + κ0gt CHarMo

(
xi,t − σi,t

gt
, t

)
− κ0gt

∑
j∈Ni

CHarMo

(
xj,t − σj,t

gt
, t

)
,

xi,t+1 = xi,t − κ
[
β(σi,t − zi,t) + η

t+1∇fi(xi,t)
]
,

gt = g0γ
t.

(C.1)

where CHarMo(
xj,t−σj,t

gt
, t) = CD(CE(

xj,t−σj,t

gt
, t), t) = ψHarMo(t) · (qm(ψHarMo(t)

⊤ · xj,t−σj,t

gt
)).

By recalling the relation established in Yi et al. (2022), we have

σi,t − zi,t =
∑
j∈Ni

Lij σj,t,

where Lij denotes the (i, j)-th entry of the graph Laplacian matrix.

For completeness, we briefly sketch the derivation. From the update rules in Algorithm 1, we sub-
tract the two updates and obtain

σi,t+1 − zi,t+1 = (σi,t − zi,t) + κ0gt
∑
j∈Ni

CHarMo

(
xj,t − σj,t

gt
, t

)
.

Since the update of σj,t satisfies

σj,t+1 = σj,t + κ0gt CHarMo

(
xj,t − σj,t

gt
, t

)
,

we have

κ0gt CHarMo

(
xj,t − σj,t

gt
, t

)
= σj,t+1 − σj,t.

Substituting this identity gives

σi,t+1 − zi,t+1 = (σi,t − zi,t) +
∑
j∈Ni

(
σj,t+1 − σj,t

)
. (C.2)

By telescoping the recursion equation (C.2) from s = 0 to t− 1, we obtain

σi,t − zi,t =
(
σi,0 − zi,0

)
+

t−1∑
s=0

∑
j∈Ni

(
σj,s+1 − σj,s

)
=

(
σi,0 − zi,0

)
−

∑
j∈Ni

σj,0 +
∑
j∈Ni

σj,t.
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With the standard initialization σi,0 = zi,0 = 0, this simplifies to

σi,t − zi,t =
∑
j∈Ni

σj,t.

Finally, by adopting the Laplacian notation, we can equivalently rewrite this relation as

σi,t − zi,t =
∑
j∈Ni

Lij σj,t. (C.3)

Combining the relation in (C.3) with the update rule (C.1), the iteration can be equivalently ex-
pressed in the following compact form:

σt+1 = σt + κ0C̃HarMo(xt − σt, t) + κ0gtδt,

xt+1 = xt − κ
[
βLσt +

η

t+ 1
H(xt)

]
,

gt = g0γ
t,

(C.4)

where C̃HarMo(xt, t) :=
[
ψHarMo(t)ψHarMo(t)

⊤x1,t; . . . ;ψHarMo(t)ψHarMo(t)
⊤xn,t

]
∈ Rnd, δt :=

CHarMo

(
xt−σt

gt
, t
)
− C̃HarMo

(
xt−σt

gt
, t
)
∈ Rnd,L := L ⊗ Id ∈ Rnd×nd and H(x) :=

[∇f1(x1); . . . ;∇fn(xn)] ∈ Rnd. Notably, (C.4) is obtained by noting that

gtC̃HarMo

(
xt − σt

gt
, t

)
= C̃HarMo (xt − σt, t) .

By Scutari et al. (2014) , as Assumptions 4.1–4.3, there exists a unique solution x⋆ ∈ Rd such
that H(1n ⊗ x⋆) = 0nd. To facilitate the analysis, we introduce the state error variables σ̄t :=
σt−1n⊗x⋆, x̄t := xt−1n⊗x⋆, which represent the deviations of σt and xt from the steady-state
solution x⋆. Substituting these definitions into the update rules, we obtain the following equivalent
system:

σ̄t+1 = σ̄t + κ0C̃HarMo(x̄t − σ̄t, t) + κ0gtδt,

x̄t+1 = x̄t − κ
[
βLσ̄t +

η

t+ 1
H(x̄t)

]
,

gt = g0γ
t,

(C.5)

whereH(x̄t) := H(xt)−H(1n ⊗ x⋆).

To analyze the convergence of the system, we introduce a projection-based decomposition of the
state variables. Let S ∈ Rn×(n−1) be a matrix whose rows are eigenvectors corresponding to the
nonzero eigenvalues of the graph LaplacianL, and define the projection operators S := S⊗Id, I :=
1√
n
1n ⊗ Id. By construction, these satisfy S⊤I = 0(n−1)d×d and SS⊤ + II⊤ = Ind. Then, for

the state errors x̄t, we introduce the decomposition x̄⊥
t := S⊤x̄t ∈ R(n−1)d, x̄

∥
t := I⊤x̄t ∈ Rd, so

that

x̄t = Sx̄⊥
t + Ix̄∥

t . (C.6)

Then it follows that the convergence of x̄t can be established by showing that both its consensus
component x̄∥

t and disagreement component x̄⊥
t converge to the zero equilibrium, respectively.

With the decomposition in (C.5) and the fact that LI = 0nd×d and I⊤L = 0d×nd, we obtain the
following equivalent dynamics:

σ̄t+1 = σ̄t + κ0C̃HarMo(x̄t − σ̄t, t) + κ0gtδt,

x̄⊥
t+1 = x̄⊥

t − κβS⊤Lσ̄t −
κη

t+ 1
S⊤H(x̄t),

x̄
∥
t+1 = x̄

∥
t −

κη

t+ 1
I⊤H(x̄t),

gt = g0γ
t.

(C.7)
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Besides, we can also abtain that
∥Lσ̄t∥2 ≤ 2λ2n∥x̄t − σ̄t∥2 + 2λ2n∥x̄⊥

t ∥2. (C.8)

To separate the consensus and disagreement components, we define the projected error variables as
σ̄⊥
t := S⊤σ̄t ∈ R(n−1)d. Correspondingly, the variations of these projected variables are defined

as
∆σ̄⊥

t := σ̄⊥
t+1 − σ̄⊥

t = κ0C̃HarMo(x̄
⊥
t − σ̄⊥

t , t) + κ0gtS⊤δt,

∆x̄⊥
t := x̄⊥

t+1 − x̄⊥
t = −κ[βS⊤Lσ̄t +

η

t+ 1
S⊤H(x̄t)],

∆x̄
∥
t := x̄

∥
t+1 − x̄

∥
t = − κη

t+ 1
I⊤H(x̄∥

t ) +
κη

t+ 1
I⊤(H(x̄∥

t )−H(x̄t))

gt = g0γ
t.

(C.9)

Now we are ready to propose Lyapunov functions for system (C.7). Define V1,t = 1
2∥x̄

⊥
t ∥2, then

V1,t+1 − V1,t =
1

2
∥x̄⊥

t+1∥2 −
1

2
∥x̄⊥

t ∥2

=
1

2
∥x̄⊥

t − κβS⊤Lσ̄t −
κη

t+ 1
S⊤H(x̄t)∥2 −

1

2
∥x̄⊥

t ∥2

≤
(
−1

2
κβλ2∥x̄⊥

t ∥2 +
1

2
κβλn∥σ̄t − x̄t∥2

+
1

2

κη

t+ 1
(1 + L2

H)∥x̄⊥
t ∥2 +

1

2

κη

t+ 1
L2
H∥x̄

∥
t ∥2

)
+

(
κ2β2∥Lσt∥2 + (

κη

t+ 1
)2L2

H(∥x̄⊥
t ∥2 + ∥x̄

∥
t ∥2)

)
≤

(
−1

2
κβλ2∥x̄⊥

t ∥2 +
1

2
κβλn∥σ̄t − x̄t∥2

+
1

2

κη

t+ 1
(1 + L2

H)∥x̄⊥
t ∥2 +

1

2

κη

t+ 1
L2
H∥x̄

∥
t ∥2

)
+
(
2κ2β2λn∥x̄t − σ̄t∥2 + 2κ2β2λn∥x̄⊥

t ∥2

+ (
κη

t+ 1
)2L2

H(∥x̄⊥
t ∥2 + ∥x̄

∥
t ∥2)

)
,

(C.10)

where the first inequality is obtained by

Lx̄t = L(SS⊤ + II⊤)x̄t = LSx̄⊥
t ,

∥H̄(x̄t)∥2 ≤ L2
H∥x̄t∥2 = L2

H

(
∥x̄⊥

t ∥2 + ∥x̄
∥
t ∥2

)
,

(C.11)

derived from Assumption 4.2 and the last inequality is obtained by (C.8).

Define V2,t := 1
2∥x̄

∥
t ∥2, then

V2,t+1 − V2,t =
1

2
∥x̄∥

t+1∥2 −
1

2
∥x̄∥

t ∥2

=
1

2
∥x̄∥

t −
κη

t+ 1
I⊤H(x̄t)∥2 −

1

2
∥x̄∥

t ∥2

≤
(
− κη

t+ 1
(Ix̄∥

t )
⊤[H(x̄t + 1n ⊗ x⋆)

−H(Ix̄∥
t + 1n ⊗ x⋆) +H(Ix̄∥

t + 1n ⊗ x⋆)

−H(1n ⊗ x⋆)]
)
+ (

κη

t+ 1
)2∥H(x̄t)∥2

≤
(
− κη

t+ 1
∥x̄∥

t ∥2 +
κη

t+ 1
∥x̄⊥

t ∥2
)

+ (
κηLH

t+ 1
)2(∥x̄⊥

t ∥2 + ∥x̄
∥
t ∥2),

(C.12)
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where the second inequality is obtained by (C.6) and (C.11).

By recalling Anderson (1977), we know x̄e,t+1 = x̄e,t − κ0C̃HarMo(x̄e,t, t) is uniformly globally
linearly stable for some κ0 > 0, then there exist positive constants C, γD < 1 such that for any t
and N ∈ N+, the solution satisfies(

∥xe (t+N) ∥2
)
≤ C

(
∥xe(t)∥2

)
γND .

We assume ϕt+T
t (xe(t)) is the state of the system xe (t+ 1) = xe(t) − κ0ΛC̃HarMo (xe(t), t) in

t+ T moment for any 0 ≤ T ≤ N with the state in t moment is xe(t). It is easy to verify that there
exists some Lϕ > 0 that ∥ϕt+T

t (x) ∥2 ≤ Lϕ∥x∥2 holds for any x ∈ R(n−1)d and 0 ≤ T ≤ N .

We define a Lyapunov function Ve,t (xe, t) :=
∑N−1

j=0 ∥ϕ
t+j
t (xe) ∥2 satisfying

c1∥xe∥2 ≤ Ve,t ≤ c2∥xe∥2 (C.13)

for c1 = 1, c2 = NLϕ.

In addition, we have

∆Ve,t =

N∑
j=1

∥ϕt+j
t+1 (xe (t+ 1)) ∥2 −

N−1∑
j=0

∥ϕt+j
t (xe(t)) ∥2

= ∥xe (t+N) ∥2 − ∥xe(t)∥2

≤ −
(
1− CγND

)
∥xe(t)∥2 ≤ −c3∥xe(t)∥2

(C.14)

We choose a N ∈ N+ large enough and then c3 := 1− CγND > 0, i.e.,

N∑
j=1

∥ϕt+j
t+1

(
xe − κ̂ΛC̃HarMo (xe, t)

)
∥2 −

N−1∑
j=0

∥ϕt+j
t (xe) ∥2

≤ −c3∥xe∥2.

(C.15)

In addition, we have
∥xe − κ0ΛC̃HarMo (xe, t) ∥2 ≤ θ∥xe∥2, (C.16)

for θ := 2 + 2L2
cκ

2
0λ

2
n > 0.

For the update rule C.14, letting V3,t := Ve,t(x̄t − σ̄t, t), we obtain

V3,t+1 − V3,t =
N∑
j=1

∥ϕt+j
t+1(xt+1 − σ̄t+1)∥2 −

N−1∑
j=0

∥ϕt+j
t (xt − σ̄t)∥2

≤ −c3∥xt − σ̄t∥2 + c4
√
nκ∥xt − σ̄t∥∥βLσ̄t

+ η
1

t+ 1
H(xt)∥+ κ0c4

√
n∥xt − σ̄t∥∥gtδ∥

+ 3NLϕ(κ
2∥βLσ̄t∥2 + κ2∥η 1

t+ 1
H(xt)∥2 + κ20∥gtδ∥2)

≤ −[c3
2
− κ

(
− c4
√
nβ/r − c24

√
nη/r

− 2c4
√
nβλ2nr

)
]∥xt − σ̄t∥2 + κ

(
(2c4
√
nλ2nβr

+
1

t+ 1

√
nηrL2

H)∥x⊥
t ∥2 +

1

t+ 1

√
nηrL2

H∥x
∥
t ∥2

)
+ κ2NLϕ

(
6β2λ2n(∥xt − σ̄t∥2 + ∥x⊥

t ∥2)

+
3

t+ 1
η2L2

H(∥x⊥
t ∥2 + ∥x

∥
t ∥2)

)
+ C1g

2
t ∥δt∥2,

(C.17)

for c4 := NLφθ and C1 := κ20

(
2c24
c3

+ 3NLφ

)
, where the first inequality is obtained by (C.13)-

(C.14) and the fact ∥δt∥∞ ≤ δand the last inequality is obtained by (C.8) and Young’s Inequality,
with r > 0 being an undetermined parameter to be chosen later.
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Now we introduce some parameters ξ1, ξ2, · · · > 0 independent of β, η and rand some parameters
ζ1, ζ2, · · · > 0 independent of κ as follows

ξ1 =
λ2
2
, ξ2 =

1 + L2
H

2
+
n2L4

H
µ2

,

ξ3 = 2c4
√
nλ2n +

√
nL2

H +
4n

5
2L4

H
µ2

, ξ4 = c4
√
n,

ξ′4 = c24
√
n,

ξ5 =
λn
2

+ 2c4
√
nλ2n,

ζ1 = 2β2λ2n + η2(4 + p)L2
H + 6β2λ2nNLϕ,

ζ2 = η2(4 + p)L2
H, ζ3 = 2β2λ2n + 6β2λ2nNLϕθ.

where

p =
4L2

Hn

µ
+

8n
3
2 rL2

H
µ

> 0.

Then we define the total Lyapunov functions of system (C.7) as

Vt := V1,t + pV2,t + V3,t.

By (C.13), it is bounded as

Vt ≤ 1
2∥x̄

⊥
t ∥2 +

p
2∥x̄

∥
t ∥2 + c2∥x̄t − σ̄t∥2. (C.18)

We let r ≤ 1, η ≤ β to simplify the following process, then by (C.10), (C.12) and (C.17), we have

Vt+1 − Vt ≤ −κ(ξ1β −
ξ2η

t+ 1
− ξ3βr)∥x̄⊥

t ∥2

− 1

t+ 1
κ
(
pη

µ

4n

)
∥x̄∥

t ∥2 − κ
(
c3
2 − ξ4β/r − ξ

′
4η/r(t+ 1)− ξ5β

)
∥x̄t − σ̄t∥2

+ κ2
(
ζ1∥x̄⊥

t ∥2 +
1

(t+ 1)2
ζ2∥x̄∥

t ∥2 + ζ3∥x̄t − σ̄t∥2
)

+ C1g
2
t ∥δt∥2. (C.19)

Letting r = min{ ξ1
3ξ3
, 1}, β ≤ c3

6(ξ4/r+ξ5)
, η ≥ 8n

µκ and κ ≤ 1
2 min{ ξ1β3ζ1

,
√

2p
ζ2
, c3
6ζ3
}, with C.18, we

can conclude that for t ≥ t0 = max{ 3ξ2ηξ1β
,
6ξ′4η
rc3

, 6p
κξ1β

, 12pc2κc3
} − 1, there holds

∆Vt ≤ −
2Vt
t+ 1

+ C1g
2
t ∥δt∥2,

which yields

Vt ≤ −
2Vt0

(t+ 1)2
+

t∑
τ=t0

2C1

(t+ 1− τ)2(τ + 1)2
g20∥δt∥2

≤ 2Vt0 + 4C1g
2
0∥δt∥2

(t+ 1)2
+ o

(
1

t2

)
.

(C.20)

Now, assuming that ∥∥∥∥ x̄t − σ̄t

gt

∥∥∥∥
∞
≤ K√

dψ
(C.21)

holds for t ≥ t0, where ψ is the uniform upper bound of ∥ψ(t)∥.By the definition of C̃HarMo, we
know that there holds

∥δt∥ ≤
l
√
d

2
ψ.
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Substituting it into equation C.20, by the definition of Vt, we have∥∥∥∥ x̄t − σ̄t

gt

∥∥∥∥2
∞
≤ Vt
g2t
≤ 2Vt0 + 4C1g

2
0∥δt∥2

g20
≤ 2Vt0 + C1g

2
0l

2dψ
2

g20
.

Then, letting g20 =
2Vt0

C1dψ
2
l2

, then it can be directly obtained that equation C.21 holds if

K

l
≥ 2C1ψ

2
d,

⇒ m ≥ log2(2C1ψ
2
d).

(C.22)

In one word, when the condition above is satisfied, we can obtain V (t) = O
(

1
t2

)
by equation C.20.

With the definition of Vt, Theorem 4.1 is proved.

D EXPERIMENT DETAILS

D.1 COMMUNICATION TOPOLOGY

We consider four representative communication topologies in our experiments: the ring, torus, fully-
connected networkand the Erdős–Rényi (ER) random graph, as illustrated in Figure 5. To further
evaluate the robustness of our algorithm under different network structures, we report in Table 3 the
average node degree of each topology.

(a) Ring (b) Torus (c) Fully-connected (d) ER

Figure 5: Illustration of different communication topologies with n = 25 clients: (a) Ring topology,
where each node connects to two immediate neighbors; (b) Torus topology, represented as a 5 × 5
periodic grid; (c) Fully-connected topology, where each node connects to all others; (d) ER graph,
modeling a complex network with probabilistic connectivity per.

Table 3: Average node degree of different topologies.

Topology Ring Torus Fully-connected ER
Average node degree 2 4 n− 1 per ∗ (n− 1)

D.2 COMPRESSORS AND QUANTIZERS IN COMPARATIVE EXPERIMENTS

Top-α Compressor. Following Alistarh et al. (2018); Stich et al. (2018), the biased Top-α operator
topα : Rd → Rd is defined as

Topα(x) := x⊙ u(x), (11)

where u(x) ∈ {0, 1}d is a binary masking vector. The mask selects the ⌈αd⌉ entries of x with the
largest absolute values, i.e., ∥u(x)∥1 = ⌈αd⌉ and (u)i = 1 if index i corresponds to one of these
largest coordinates. Formally, let π be a permutation such that

|xπ(1)| ≥ |xπ(2)| ≥ · · · ≥ |xπ(d)|,
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then (u)i = 1 if i ∈ {π(1), . . . , π(⌈αd⌉)} and (u)i = 0 otherwise.

The Top-α operator therefore keeps only the top α fraction of coordinates and zeros out the rest,
which corresponds to a compression level of δ = α (Stich et al., 2018). To transmit the compressed
vector, we need to send both the selected values and their indices, leading to a communication
cost of 2 · 32⌈αd⌉ bits (assuming 32-bit floating-point representation). Thus, Top-α reduces the
communication cost from 32d bits to 64⌈αd⌉ bits per iteration.

Sign Quantizer (Bernstein et al., 2018; Karimireddy et al., 2019). The biased (scaled) sign operator
Sign : Rd → Rd is defined as

Sign(x) :=
∥x∥1
d
· sgn(x), (12)

where sgn(x) denotes the element-wise sign function. This operator replaces each entry of x with
only its sign (i.e., +1 or−1), and rescales the whole vector by the average magnitude ∥x∥1

d . The sign

operator is a δ = ∥x∥2
1

d∥x∥2
2

compression operator (Karimireddy et al., 2019). Regarding communication
cost, we only need to transmit d+ 32 bits in total: d bits to indicate the sign of each coordinate and
32 bits to transmit the scaling factor ∥x∥1. In comparison, transmitting the full-precision vector
requires 32d bits. Thus, the sign compressor reduces communication from 32d bits to (d+ 32) bits
per iteration.

Sketch (Alon et al., 1996). Sketching compresses a high-dimensional vector by projecting it into
a much lower-dimensional space using a sketching matrix R ∈ Rb×d with b ≪ d. For any vector
x ∈ Rd, the sketch operator sk : Rd → Rb is defined as

sk(x) := Rx ∈ Rb, (13)

which corresponds to multiplying x by the sketching matrix R.

To recover an unbiased estimate of x from the compressed vector sk(x), a desketching operator
desk : Rb → Rd is applied using the transpose of the same sketching matrix:

desk(s) := R⊤s ∈ Rd, (14)

where s = sk(x).

Regarding communication efficiency, the client transmits the b-dimensional sketched vector sk(x),
requiring 32b bits per iteration (each entry stored in 32-bit floating-point format), instead of the
original 32d bits. Since b ≪ d, the sketch operator significantly reduces communication while still
preserving an unbiased estimate of the update direction.

Low-Rank (Wang et al., 2018). Low-Rank method approximates a high-dimensional matrix-shaped
update by factorizing it into two much smaller matrices of rank r. Let G ∈ Rp×n denote a gradient
matrix reshaped from a d-dimensional updateand assume r ≪ min{p, n}. The Low-Rank method
defines a mapping Rp×n → Rp×r × Rr×n, which projectsG into two low-dimensional factors.

To construct a rank-r approximation, a random matrixQ ∈ Rn×r is sampledand the first projection
is computed as

P := GQ ∈ Rp×r. (15)
After orthonormalizingQ, a second projection is formed:

Q⊤ := P⊤G ∈ Rr×n. (16)

The reconstructed update is then given by

G̃ := PQ⊤, (17)

which serves as a rank-r approximation ofG.

Regarding communication efficiency, instead of transmitting the full p × n matrix (which requires
32pn bits), the sender only transmits the two Low-Rank factors P ∈ Rp×r andQ⊤ ∈ Rr×n, requir-
ing a total of 32r(p + n) bits. Thus, when r ≪ min{p, n}, the communication cost is drastically
reduced.

We summarize here how the communication cost, computational complexityand storage complexity
of Top-α, Sign, Sketch, Low-Rankand HarMo are obtained. For Top-α, each iteration transmits the

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

largest αd coordinates of a d-dimensional vector together with their indices, leading to a communi-
cation cost of 64⌈αd⌉ bits. Identifying these entries requires partial sorting, giving a computational
complexity of O(d log d). The storage complexity is dominated by the local model and the residual
maintained by the compressor, resulting in O(d) storage. For the Sign operator, communication
consists of d one-bit signs and a 32-bit scaling factor. Since only coordinate-wise sign extraction
and a norm computation are required, the computational complexity is O(d)and storing the local
model and residual again yields O(d) storage.

Table 4: Per-iteration communication cost (bit), computational complexity and storage complexity
(per node) for different methods.

Method Communication Cost Computational Complexity Storage Complexity
Top-α 64⌈αd⌉ O(d log d) O(d)
Sign d+ 32 O(d) O(d)
Sketch 32b O(bd) O(bd)
Low-Rank 32r(p+ n) O(rd) O(r(p+ n))

HarMo m O(d) O(d)

Sketching compresses a d-dimensional vector into a b-dimensional sketch through a linear mapping
implemented by a sketching matrix or equivalent hashing structure, resulting in a communication
cost of 32b bits. Computing the sketch requires a matrix–vector multiplication of size b × d, pro-
ducing a computational complexity of O(bd). Storing the sketching matrix (or its hash parameters)
requires O(bd) memory, which determines the overall storage complexity.

Low-Rank compression reshapes the d-dimensional vector into a matrix G ∈ Rp×n (with pn = d)
and transmits two factor matrices of sizes p × r and r × n, yielding a communication cost of
32r(p + n) bits per iteration. The dominant computation comes from forming the products GQ
and P⊤G, each costing O(rd), so the overall computational complexity is O(rd). Storing both
Low-Rank factors requires O(r(p+ n)) memory in addition to the model parameters, giving a total
storage complexity of O(r(p+ n)).

In contrast, HarMo communicates only a single m-bit scalar obtained by projecting the vector onto
a harmonic direction and quantizing the result, yielding an m-bit communication cost per iteration.
Both the projection and reconstruction require linear time in d, resulting in O(d) computational
complexity. Since the harmonic direction is generated on the fly and no residual is maintained,
HarMo stores only the local model parameters, achieving the minimal storage complexity of O(d)
while providing substantially lower communication cost than all existing compression methods.

Figure 6: Illustration of LBGD-HarMo algorithm, where high-dimensional updates are compressed,
quantizedand transmitted as binary codes over the communication graph, then decoded, recon-
structedand used for variable updates by neighboring clients.
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Figure 7: Illustration of HarMo applied to 300 3-dimension vectors (before and after quantization).

D.3 HYPERPARAMETERS FOR SYNTHETIC QUADRATIC OPTIMIZATION PROBLEM

The parameters of the synthetic quadratic optimization problem are set as follows:

For the DSGD algorithm, we adopt a diminishing learning rate γt = 0.0036√
t

. For the CHOCO
algorithm, we employ the Top-α compressor with α = 0.125, a diminishing learning rate ηt =
0.2
t+1and a fixed consensus step size γ = 0.08. For the MoTEF algorithm, we adopt the Top-α
compressor with α = 0.125, a fixed learning rate γ = 0.2, a consensus step size η = 0.0005and
a momentum coefficient λ = 0.005. For the LBGD-Sign algorithm, we adopt the Sign quantizer
(1 bit), the scaling factor g0 = 10 with decay γ = 0.9999, the gradient step size κ = 0.05, the
consensus step size κ0 = 0.005, and the parameter η = 5. For the LBGD-HarMo algorithm, we
set the quantizer parameters as m ∈ {3, 4, 8, 16}, the scaling factor g0 = 10 with decay γ =
0.9999, the gradient step size κ = 0.05, the consensus step size κ0 = 0.005 and the parameter
η ∈ {0.022, 0.032, 0.035, 0.04, 0.05, 0.065}.

D.4 HYPERPARAMETERS FOR LOGISTIC REGRESSION WITH STRONGLY CONVEX
REGULARIZER

The parameters of the logistic regression with strongly convex regularizer are set as follows:

For the DSGD algorithm, we adopt a learning rate γ = 0.1. For the CHOCO algorithm, we employ
the Top-α compressor with α = 0.1, a learning rate η = 0.1and a fixed consensus step size γ = 0.01.
For the MoTEF algorithm, we adopt the Top-α compressor with α = 0.1, a fixed learning rate
γ = 0.5, a consensus step size η = 0.005and a momentum coefficient λ = 0.05. For the LBGD-Sign
algorithm, we adopt the Sign quantizer (1 bit), the scaling factor g0 = 5 with decay γ = 0.99999,
the gradient step size κ = 0.1, the consensus step size κ0 = 0.01, and the parameter η = 5. For
the LBGD-HarMo algorithm, we set the quantizer parameters as m ∈ {12, 16}, the scaling factor
g0 = 5 with decay γ = 0.99999, the gradient step size κ = 0.1, the consensus step size κ0 = 0.01,
and the parameter η ∈ {0.022, 0.065, 0.085, 0.1}.

D.5 HYPERPARAMETERS FOR NEURAL NETWORK TRAINING

The parameters of the neural network training are set as follows:

The experimental parameters for neural network training are configured as follows. For FedAvg and
DSGD, we use a learning rate of γ = 0.1. For CHOCO, we employ the Top-α compressor with
α = 0.1, a learning rate of η = 1.60, and a fixed consensus step size of γ = 0.15. For LBGD-Sign,
we adopt the Sign quantizer (1 bit) with a scaling factor g0 = 5 and decay γ = 0.99999, a gradient
step size κ = 0.25, a consensus step size κ0 = 0.15and parameter η = 5. For LBGD-HarMo, we
set the quantizer precision m = 24, the scaling factor g0 = 5 with decay γ = 0.99999, the gradient
step size κ ∈ {0.1, 0.25, 0.5}, the consensus step size κ0 ∈ {0.01, 0.025, 0.05} and η = 5.
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E ADDTIONAL EXPERIMENTS

E.1 SYNTHETIC QUADRATIC OPTIMIZATION PROBLEM

E.1.1 PARAMETER SENSITIVITY ANALYSIS

We analyzed the sensitivity of the following parameters in the LBGD-HarMo algorithm: β, η, g0,
γ, κand κ0. The experimental results, shown in Figure 8, indicate that higher values of β enhance
convergence by improving the alignment between local updates and the consensus model, while
simultaneously reducing the communication burden. For η, increasing its value accelerates conver-
gence, but it may lead to instability in later stages. In contrast, smaller values of η ensure smoother
convergence, albeit at the cost of slower progress. The initial step size g0 directly influences the
convergence rate, with larger values facilitating faster convergence but risking overshooting, while
smaller values ensure more gradual updates. The decay factor γ dictates how rapidly the step size di-
minishes during iterations. Larger values of γ expedite convergence initially but may cause the step
size to decrease too quickly, ultimately slowing progress, whereas smaller values lead to smoother
updates without causing abrupt changes. The consensus step size κ0 governs the speed of synchro-
nization with neighboring nodes. Larger values of κ0 accelerate synchronization, but overly large
values can introduce instability. Finally, the local step size κ, determines the magnitude of local
updates. Larger values of κ result in faster convergence, but they may lead to overshooting, whereas
smaller values provide more controlled updates, improving stability.

(a) Sensitivity to β (b) Sensitivity to η

(c) Sensitivity to g0 (d) Sensitivity to γ

(e) Sensitivity to κ (f) Sensitivity to κ0

Figure 8: Parameter sensitivity analysis showing the effect of different parameter values on the
convergence performance of algorithm 1.
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E.1.2 DIFFERENT VARIABLE DIMENSIONS

We further examine the effect of dimensionality by evaluating LBGD-HarMo under d ∈
{4, 8, 16, 100}. As shown in Fig. 9a, increasing the dimension leads to a moderate rise in both
optimality and consensus errors, which is consistent with the fact that higher-dimensional models
involve more parameters, so the aggregated updates tend to exhibit larger variation before reaching
consensus. Nonetheless, the convergence trend remains stable across all configurations, indicating
that LBGD-HarMo remains effective in higher-dimensional problems.

(a) Variable dimension (b) HarMo sequence

(c) Time-varying topology (d) Asynchronous client

(e) Communication frequency

Figure 9: Convergence performance of synthetic quadratic optimization problem under different
settings: (a) varying the variable dimension; (b) varying the HarMo sequence; (c) using the time-
varying topology; (d) varying the number of asynchronous client; (e) varying the communication
frequency, set the number of clients to 25 and quantization precisions to 8 bits.

E.1.3 DIFFERENT HARMO SEQUENCES

We evaluate how different choices of projection vectors influence the performance of our algo-
rithm. In addition to the harmonic sequence ψHarMo(t), we also test the cyclic coordinate vectors
ψei(t) = ei (where i = 1 + (t mod d)) and pseudo-random Gaussian vectors ψGaussian(t) drawn
from an isotropic distribution with a fixed seed. As shown in Figure 9b, all three choices yield very
similar convergence trajectories, indicating that the algorithm is largely insensitive to the specific
form of the projection direction as long as it provides sufficient directional variation over time. The
Gaussian vectors perform slightly more irregularly due to their stochastic nature, while the cyclic
vectors produce smooth but highly axis-aligned updates. The harmonic vector ψHarMo(t) achieves
a desirable middle ground: it introduces rich directional variability through its frequency structure
while remaining fully deterministic and reproducible. This makes ψHarMo(t) a particularly suitable
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choice for large-scale decentralized optimization, combining stable empirical performance with the-
oretical tractability and ease of implementation.

E.1.4 TIME-VARYING TOPOLOGY

In the time-varying topology experiments, we used an Erdos-Renyi (ER) graph with a connection
probability of per = 0.1 for each time step. For comparison, we also tested a fixed ER graph. As
shown in Figure 9c, while the time-varying topology still converges, its performance is slightly de-
graded compared to the fixed topology. This performance drop can be attributed to the dynamic
nature of the time-varying topology, which causes occasional disruptions in the network struc-
ture. These changes lead to temporary loss of connectivity or inconsistent communication between
clients, which may slow down the consensus process and lead to a longer convergence time.

E.1.5 ASYNCHRONOUS UPDATE

In the asynchronous update experiments, we tested the effect of partial clients exchanging informa-
tion with the rest of the clients in a non-fixed manner. We varied the number of these asynchronous
clients and the communication frequency between them. As shown in Figure 9d and 9e, the algo-
rithm is still able to converge, but as the number of asynchronous clients increases and the com-
munication frequency decreases, performance is slightly affected. This degradation in performance
can be attributed to the reduced synchronization between clients, which leads to delayed updates
and a slower consensus process. However, the algorithm still maintains convergence, demonstrating
robustness to changes in the update scheme.

E.1.6 DIFFERENT COMPRESSION RATIOS FOR CHOCO AND MOTEF ALGORITHMS

In this experiment, we compare the performance of the CHOCO (Koloskova et al., 2020a) and
MoTEF (Islamov et al., 2025) algorithms under different compression ratios, specifically varying the
parameter α. We selected α = 0.125 (corresponding to retaining only one element) for comparison
with our proposed algorithm. This choice of α strikes a balance between communication efficiency
and algorithm performance.

(a) CHOCO with different compression-ratios (b) MoTEF with different compression-ratios

Figure 10: Convergence performance of synthetic quadratic optimization problem under (a) varying
the compression ratio α for CHOCO and (b) varying the compression ratio α for MoTEF.

E.1.7 CONVERGENCE ITERATIONS

We recorded the total number of iterations and communication cost for different experimental set-
tings and algorithms to reach an Optimality Error of 10−3. For quantization precisions of 3 and 4
bits, the optimality errors were observed to be 0.1 and 0.06, respectively, due to lower quantization
precision. Additionally, for a variable dimension of 100, the optimality error reaches 10−2. The
table compares various experimental settings, with default values for the number of clients (25),
communication topology (ring), quantization precision (8 bits)and communication ratio α = 0.125
for CHOCO and MoTEF. Parameters were selected as outlined in Appendix D, with synchronization
used for the updates. The settings are adjusted according to specific experimental conditions. The
table 5 and table 6 provide the corresponding iteration counts and communication costs.
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Table 5: Total number of iterations and communication cost under different experimental settings
on the synthetic quadratic optimization problem.

Number of clients Iteration Communication cost (MB)
9 39,472 1.36
25 25,810 2.46
64 28,020 6.84
100 36,713 14.00
Topology Iteration Communication cost (MB)
Fully-connected 9,550 10.93
Torus 28,523 5.44
Fixed ER 38,233 4.38
Ring 25,810 2.46
Time-varying ER 79,554 9.10
Dimension Iteration Communication cost (MB)
4 17,056 1.67
8 25,810 2.46
16 31,354 2.99
100 33,105 3.16
Sequence Iteration Communication cost (MB)
ψHarMo 25,810 2.46
ψei(t) 24,224 2.31
ψGaussian(t) 25,711 2.45
Number of asynchronous clients Iteration Communication cost (MB)
5 28,879 2.48
10 29,985 2.29
15 37,063 2.47
20 41,027 2.35
Comm. frequency Iteration Communication cost (MB)
2 29,985 2.29
4 42,545 2.84
6 56,287 3.58
8 69,185 4.29
Quantization precision (bit) Iteration Communication cost (MB)
3 47,653 4.54
4 38,717 3.69
8 25,810 2.46
16 24,789 4.73
Compression ratio α (CHOCO) Iteration Communication cost (MB)
0.125 38,074 29.05
0.375 37,118 84.96
0.625 33,939 129.47
0.875 33,546 179.15
Compression ratio α (MoTEF) Iteration Communication cost (MB)
0.125 4,180 3.19
0.375 3,812 8.72
0.625 3,775 14.40
0.875 3,687 19.69
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Table 6: Total number of iterations and communication cost under different algorithms on the
synthetic quadratic optimization problem.

Algorithm Method Iteration Communication cost (MB)
DSGD None 9,100 27.77
CHOCO TOP-α 38,074 14.52
MoTEF TOP-α 4,180 3.19
LBGD Sign 46,707 22.27
LBGD HarMo 25,810 2.46

The table 7 presents the total number of iterations and communication cost under various hyperpa-
rameter values on the synthetic quadratic optimization problem to reach an optimality error of 10−3.
The results are consistent with the parameter sensitivity analysis presented in Appendix E.1.1, show-
ing that our algorithm exhibits robustness across a range of hyperparameter values.

Table 7: Total number of iterations and communication cost under different hyperparameter val-
ues on the synthetic quadratic optimization problem.

Value of hyperparameter β Iteration Communication cost (MB)
0.4 56,568 5.39
0.6 38,639 3.68
0.8 29,732 2.84
1.0 25,810 2.46
Value of hyperparameter η Iteration Communication cost (MB)
1.0 56,686 5.41
2.5 40,103 3.82
3.8 26,543 2.53
5.0 25,810 2.46
Value of hyperparameter g0 Iteration Communication cost (MB)
4 26,230 2.50
6 26,121 2.49
8 25,880 2.47
10 25,810 2.46
Value of hyperparameter γ Iteration Communication cost (MB)
0.999 divergence /
0.9999 25,810 2.46
0.99999 25,907 2.47
0.999999 25,908 2.47
Value of hyperparameter κ Iteration Communication cost (MB)
0.010 84,927 8.10
0.025 70,111 6.69
0.038 32,599 3.11
0.050 25,810 2.46
Value of hyperparameter κ0 Iteration Communication cost (MB)
0.0010 27,100 2.58
0.0025 26,583 2.54
0.0038 26,486 2.53
0.0050 25,810 2.46
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E.2 LOGISTIC REGRESSION WITH STRONGLY CONVEX REGULARIZER

We evaluate the performance of LBGD-HarMo on the logistic regression under varying system con-
figurations, including different numbers of clients (4, 9, 16and 25) and communication topologies
(Fully-connected, Torus, ERand Ring), using both IID and Non-IID data distributions. As shown
in Table 8, LBGD-HarMo consistently maintains stable test accuracy across all settings. These re-
sults demonstrate the robustness and scalability of LBGD-HarMo in decentralized optimization with
strongly convex objectives across diverse network structures and data heterogeneity conditions.

Table 8: Test accuracy (%) and Runtime (s) after the entire training process of logistic regression
with strongly convex regularizer under different numbers of clients (4, 9, 16, 25), data distribu-
tions (IID vs Non-IID)and communication topologies (Fully-connected, Torus, Fixed / Time-varying
ERand Ring). We use LBGD-HarMo with m = 16 bits for all cases.

Number of clients Data distribution Test accuracy (%) Runtime (s)

4
IID 87.98 639.99
Non-IID 87.64 640.04

9
IID 87.84 733.49
Non-IID 87.63 734.12

16
IID 87.68 852.07
Non-IID 87.49 852.65

25
IID 87.33 921.19
Non-IID 87.17 922.05

Topology Data distribution Test accuracy (%) Runtime (s)

Fully-connected
IID 88.10 740.16
Non-IID 87.92 741.25

Torus
IID 87.99 736.95
Non-IID 87.83 736.13

Fixed ER
IID 87.91 735.46
Non-IID 87.72 735.92

Ring
IID 87.84 733.49
Non-IID 87.63 734.12

Time-varying ER
IID 86.81 965.06
Non-IID 86.69 966.48

E.3 NEURAL NETWORK TRAINING PROBLEM

Parameters of ResNet-18. ResNet-18 is a widely used convolutional neural network architec-
ture composed of 18 layers, including convolutional, normalizationand residual blocks. It contains
approximately 11.2 million parameters, corresponding to a total size of about 44.7 MB.

Table 9: Parameter count and size of each layer in ResNet-18.

Layer Number of Parameters Size (MB)
Conv1 (7×7, 64) 9,408 0.036
BatchNorm1 128 0.0005
Layer1 (2×BasicBlock, 64) 147,456 0.59
Layer2 (2×BasicBlock, 128) 524,288 2.10
Layer3 (2×BasicBlock, 256) 2,097,152 8.39
Layer4 (2×BasicBlock, 512) 8,388,608 33.55
Fully Connected (512→10) 5,130 0.020
Total 11,172,170 44.7 MB
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Data Distributions. To simulate both IID and Non-IID data distributions across clients, we set
p = 100000 for the IID case and p = 0.3 for the Non-IID caseand the resulting data s are illustrated
in figure 11.

Figure 11: Visualization of data distributions across clients with different Dirichlet parameters: the
left subfigure (p = 100000) corresponds to the IID caseand the right subfigure (p = 0.3) corresponds
to the Non-IID case.

We evaluate the performance of LBGD-HarMo under various configurations, following the same
experimental settings as in Appendix E.2 for the logistic regression task. As shown in Table 10,
LBGD-HarMo maintains stable test accuracy across all configurations, demonstrating robustness
to network variations. These results confirm the effectiveness of LBGD-HarMo in decentralized
non-convex optimization.

Table 10: Test accuracy (%) and Runtime (min) after the entire training process of neural network
training under different numbers of clients (4, 9, 16, 25), data distributions (IID vs Non-IID)and
communication topologies (Fully-connected, Torus, Fixed / Time-varying ERand Ring). We use
LBGD-HarMo with m = 24 bits for all cases.

Number of clients Data distribution Test accuracy (%) Runtime (min)

4
IID 88.16 158
Non-IID 86.61 158

9
IID 86.69 203
Non-IID 85.17 203

16
IID 85.45 270
Non-IID 84.10 270

25
IID 84.82 354
Non-IID 83.04 354

Topology Data distribution Test accuracy (%) Runtime (min)

Fully-connected
IID 86.96 203
Non-IID 85.85 203

Torus
IID 86.88 203
Non-IID 85.26 203

Fixed ER
IID 86.70 204
Non-IID 85.23 204

Ring
IID 86.69 203
Non-IID 85.17 203

Time-varying ER
IID 83.51 258
Non-IID 82.36 258
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In compliance with the ICLR 2026 policy on the use of Large Language Models (LLMs), we hereby
disclose their role in the preparation of this paper. We employed LLMs (ChatGPT, GPT-5 by Ope-
nAI) for (1) polishing the English writing style to improve readability and conciseness, (2) generat-
ing alternative phrasings and suggestions for smoother transitions, and (3) reformatting LaTeX code
(tables, figures, equationsand cross-references). All technical ideas, algorithmic designs, theoretical
analysesand experimental implementations were developed entirely by the authors without LLM as-
sistance. The LLMs were not used to generate new scientific content, results, or proofs, but served
purely as a writing aid.
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