

000 001 002 003 004 005 LOG-BIT DISTRIBUTED LEARNING WITH HARMONIC 006 MODULATION 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027

ABSTRACT

011 We consider distributed learning over a communication graph where decentralized
012 clients, as local data owners, exchange information only with their neighbors to train a system-level model, making communication complexity a critical
013 factor. To mitigate this complexity, we introduce a communication quantization
014 scheme based on Harmonic Modulation, in which high-dimensional vectors are
015 compressed and quantized prior to transmission, thereby substantially reducing
016 communication overhead. Building on this idea, we propose Log-Bit Gradient Descent
017 with Harmonic Modulation, where each sender compresses a d -dimensional vector into a single scalar, quantizes it into an m -bit binary code and transmits it
018 to the receivers for decoding. Under a sufficient condition, our method achieves
019 an $\mathcal{O}(1/t)$ convergence rate, where t denotes the number of iterations. Moreover,
020 we establish a conservative lower bound showing that only $\log_2(\mathcal{O}(d))$ bits per
021 communication are required, with d representing the vector dimension. Experimental
022 results on synthetic quadratic optimization, logistic regression, and **neural network training**
023 validate our approach. In logistic regression, LBGD-HarMo matches baseline accuracy while using $800\times$ fewer bits per iteration and nearly
024 two orders of magnitude less communication. **In neural network training, each**
025 **client transmits only 0.0001 MB per iteration while maintaining accuracy.**
026
027

028 1 INTRODUCTION 029

030 In recent years, the vast amount of data generated by physically decentralized systems has sparked
031 significant interest in federated and distributed learning (DL), where multiple devices, servers, or
032 organizations collaboratively train a shared model without directly sharing their raw data (Konečný
033 et al., 2016; McMahan et al., 2017; Mohri et al., 2019; Pillutla et al., 2022). The objective of
034 federated learning is to solve the following system-level optimization problem,
035

$$036 \min F(\mathbf{x}) = \sum_{i=1}^n f_i(\mathbf{x}) \quad (1)$$

037 where $\mathbf{x} \in \mathbb{R}^d$ represents parameters of a global model and $f_i(\mathbf{x}) : \mathbb{R}^d \rightarrow \mathbb{R}$ is the local loss
038 function from the data owned privately by $i \in \mathcal{V} = \{1, 2, \dots, n\}$. The agents share model updates
039 (such as gradients or parameters) with a central server, e.g., (Fallah et al., 2020; T. Dinh et al., 2020;
040 Li et al., 2020; Kairouz et al., 2021), which then aggregates these updates to improve the global
041 model. The strength of federated learning lies in its capacity to preserve data privacy, improve
042 scalability and reduce communication overhead, as opposed to methods that rely on centralizing all
043 data for training.
044

045 In the standard federated learning setup, the role of the central server may be replaced by fully dis-
046 tributed information aggregation mechanisms. The cost function $F(\mathbf{x})$ in (1) is inherently separable,
047 a feature long studied in distributed optimization (Tsitsiklis, 1984; Nedić & Ozdaglar, 2009; Duchi
048 et al., 2012). In such schemes, the agents in \mathcal{V} are connected via wired or wireless links that define a
049 communication graph. Each agent exchanges updates only with its immediate neighbors, aggregates
050 the received information through distributed averaging and refines its local model using its private
051 data, for example via distributed gradient descent. These algorithms provide excellent convergence
052 guarantees and scalability for convex problems. Moreover, in the machine learning setting, dis-
053 tributed learning enhances security and privacy by eliminating the need for a central server, which
may otherwise be malicious or vulnerable to attack (Li et al., 2020).

054 One of the central challenges in distributed learning is the high communication complexity. In both
 055 federated and decentralized settings, every update requires agents to exchange real-valued vectors
 056 whose dimension equals that of the model parameters. This quickly becomes a scalability bottle-
 057 neck, particularly for modern large-scale models (Seide et al., 2014). To alleviate this, two common
 058 strategies are employed: compression and quantization. Compression methods, such as Top- α spar-
 059 sification (Alistarh et al., 2018), reduce communication load by sending only a fraction of the vector
 060 entries, while quantization (Alistarh et al., 2017) lowers the bit-width of each transmitted entry
 061 by mapping continuous values onto a discrete set. While both are effective in practice, applying
 062 them naively, either alone or in combination, may result in instability or divergence in decentralized
 063 optimization (Arjevani et al., 2023). To counteract this, error-feedback mechanisms (Stich et al.,
 064 2018) are widely adopted, as they compensate for the bias induced by compression and quantization,
 065 thereby supporting higher compression ratios and the use of low-precision representations. **Further-**
 066 **more, most distributed algorithms suffer from slower convergence with sparse communication links,**
 067 **whereas single-scalar communication can outperform compression and quantization, especially in**
 068 **wireless sensor networks where bandwidth and energy constraints make high-dimensional commu-**
 069 **nication inefficient (Zhang et al., 2024; Joseph et al., 2025).**

070 In this paper, we introduce **Log-Bit Gradient Descent with Harmonic Modulation (LBGD-HarMo)**,
 071 a fully digital and distributed framework for learning over graphs. The method integrates three key
 072 components: (i) a harmonic modulation scheme that compresses high-dimensional updates into sin-
 073 **gle real-valued statistics, (ii) a quantizer that converts the compressed updates into binary represen-**
 074 **tations and (iii) a distributed primal-dual algorithm that enables local updates with quantized infor-**
 075 **mation. This design provides a principled solution to communication-efficient distributed learning**
 076 **over digital channels, while preserving strong theoretical convergence guarantees under convexity**
 077 **assumptions. The main contributions of this work are summarized as follows:**

- 078 • We prove that under standard connectivity (for the communication graph) and convexity
 079 (for the cost functions) assumptions, the LBGD-HarMo achieves the optimal $\mathcal{O}(1/t)$ con-
 080 vergence rate, while requiring only $\log_2(\mathcal{O}(d))$ bits of communication per iteration, where
 081 t denotes the number of iterations and d is the dimension of the decision variable.
- 082 • We conduct experiments on synthetic quadratic optimization, logistic regression **and neural**
 083 **network training tasks.** The results demonstrate that LBGD-HarMo achieves comparable
 084 convergence to representative decentralized baselines, including DSGD (Lian et al., 2017),
 085 CHOCO with Top- α compression (Koloskova et al., 2020a), MoTEF with Top- α (Islamov
 086 et al., 2025) and LBGD with Sign quantization, while requiring up to two orders of magni-
 087 tude fewer transmitted bits to reach the same target accuracy.

088 To the best of our knowledge, LBGD-HarMo is the first distributed optimization and learning frame-
 089 work that operates under logarithmic bit rates, thereby opening new avenues for both theoretical
 090 investigation and practical deployment.

091 **Large Language Models.** The authors used large language models solely for polishing the writing.
 092 They were not employed for retrieval, discovery, or research ideation.

094 2 PROBLEM DEFINITION

096 2.1 DISTRIBUTED LEARNING ON GRAPHS

098 We consider a system with n clients. Each agent $i \in \mathcal{V}$ possesses a private local dataset \mathbb{D}_i , a
 099 loss function $f_i : \mathbb{R}^d \rightarrow \mathbb{R}$ and a learning model $\mathbf{x}_i \in \mathbb{R}^d$. The agents are interconnected via a
 100 connected and undirected communication graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$. The system-level goal is described by
 101 the following optimization problem:

$$102 \min_{\mathbf{x}} F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x}_i; \mathbb{D}_i) \quad (2)$$

$$103 \text{s.t. } \mathbf{x}_i = \mathbf{x}_j, \quad \forall i, j \in \mathcal{V}.$$

106 Any optimal solution to (2) implies a learning model that is trained on the collection of all datasets
 107 $\mathbb{D}_i, i = 1, \dots, n$. We are interested in distributed algorithms that solve (2) with digital communica-
 108 tions, i.e., agents only share digital messages with neighbors on the graph \mathcal{G} .

108 2.2 QUANTIZED COMMUNICATION
109

110 Clearly, all communication taking place over the graph \mathcal{G} must be digital. An m -bit quantization
111 function (Kajiyama et al., 2021) for some $m \in \mathbb{N}_+$ is a mapping $q_m : \mathbb{R} \rightarrow \mathbb{R}$ which maps a
112 real value $a \in \mathbb{R}$ to a quantized value with finite levels. Given integer parameters $m_1, m_2 \in \mathbb{N}_+$
113 satisfying $m_1 + m_2 = m$, we define $K := 2^{m_1-1}$ and $l := 2^{-m_2}$ as the quantization boundary and
114 the quantization error, respectively. Then, $q_m(\cdot)$ is defined component-wise by

$$115 \quad q_m(a) = \begin{cases} K - \frac{l}{2}, & a > K; \\ 116 \\ 117 \quad I, & a \in (I - \frac{l}{2}, I + \frac{l}{2}); \\ 118 \\ 119 \quad -K + \frac{l}{2}, & a \leq -K. \end{cases} \quad (3)$$

120 where $I = \pm \frac{1}{2}l, \pm \frac{3}{2}l, \dots, \pm(K - \frac{1}{2}l)$. The quantization error always satisfies

$$123 \quad |q_m(a) - a|_\infty \leq \frac{l}{2}, \quad \forall |a| \leq K.$$

124 Next, the function $\tilde{q}_m : \mathbb{R} \rightarrow \{0, 1\}^m$ is a binary encoder that transforms the output of q_m into an
125 m -bit digital representation suitable for communication. That is,

$$126 \quad \tilde{q}_m(a) := \text{BinEncode}(q_m(a)), \quad (4)$$

127 where `BinEncode` maps each quantized value of $q_m(a)$ to one of 2^m pre-defined binary codes
128 shared among all clients.

129 2.3 RELATED WORK

130 **Decentralized Optimization.** Research on decentralized optimization began with the seminal work
131 of Tsitsiklis (1984), which analyzed distributed decision-making and optimization over networks.
132 Subsequent progress was achieved through gossip protocols, where clients iteratively average
133 information with neighbors, including randomized gossip (Kempe et al., 2003), fastest mixing gossip
134 (Xiao et al., 2004) and randomized analysis (Xiao & Boyd, 2004). These protocols highlighted
135 that local information exchanges along graph edges are sufficient for reaching global agreement.
136 Building on these insights, distributed (sub)gradient methods were developed to solve convex
137 programs. Nedić & Ozdaglar (2009) proved convergence under diminishing stepsizes and Johansson
138 et al. (2010) extended the analysis to randomized and asynchronous updates. At the same time,
139 distributed ADMM formulations were proposed for consensus and constrained optimization (Wei
140 & Ozdaglar, 2012; Iutzeler et al., 2013), while decentralized dual averaging schemes provided
141 topology-dependent convergence guarantees (Duchi et al., 2012; Nedić et al., 2015). In recent years,
142 these algorithmic foundations have been extended to machine learning applications. He et al. (2018)
143 investigated decentralized training for generalized linear models. Gao et al. (2024) introduced
144 compressed decentralized SGD for large-scale nonconvex learning.

145 **Communication Compression and Quantization.** Reducing communication overhead is a major
146 challenge in decentralized optimization. Two main directions have been explored: compression and
147 quantization. Compression-based methods aim to reduce the dimensionality of transmitted information.
148 For instance, Beznosikov et al. (2023) analyzed biased operators such as Top- α sparsification
149 and established convergence with error compensation. In addition, Wang et al. (2024) proposed
150 scalarized communication schemes and proved linear convergence for distributed linear equations.
151 Quantization-based methods, in contrast, focus on reducing bit precision. Thanou et al. (2012)
152 examined consensus under uniform quantization and introduced refinement strategies to improve
153 accuracy. Reisizadeh et al. (2019) proposed an encoding/decoding mechanism ensuring vanishing
154 consensus error and Doan et al. (2020a,b) developed unbiased random and adaptive quantization
155 rules with linear convergence guarantees. Kajiyama et al. (2020) further established linear convergence
156 via time-varying quantizers. In stochastic optimization, Bernstein et al. (2018) introduced the
157 `SignSGD` algorithm that communicates only gradient signs and Karimireddy et al. (2019) incorpo-
158 rated error-feedback to show that compressed updates can attain convergence rates comparable to
159 full-precision methods.

162

3 HARMONIC MODULATION

164

3.1 HARMONIC MODULATION

166 In this section, we propose the Harmonic Modulation (HarMo), which reduces each d -dimensional
 167 vector to a single scalar, then quantifies it into an m -bit digital representation. This drastic reduction
 168 in message size enables efficient decentralized communication while preserving convergence. In the
 169 following, we present a detailed formulation and analysis of the proposed HarMo.

170 We define some functions in our compression process: the harmonic compression sequence
 171 $\psi_{\text{HarMo}}(t)$, the HarMo encoder \mathcal{C}_E and its decoder counterpart \mathcal{C}_D .

172 **Harmonic Modulation Sequence $\psi_{\text{HarMo}}(t)$.** The HarMo sequence $\psi_{\text{HarMo}}(t) \in \mathbb{R}^d$ is defined as:

$$174 \quad 175 \quad \psi_{\text{HarMo}}(t) = \left[\sin\left(\frac{\pi}{d+1}t\right), \sin\left(\frac{2\pi}{d+1}t\right), \dots, \sin\left(\frac{d\pi}{d+1}t\right) \right]^\top, \quad 176 \quad (5)$$

177 where $t \in \mathbb{N}$ denotes the communication round or iteration index and d is the dimensionality of
 178 the original vector. This harmonic structure introduces periodicity and diversity across time steps,
 179 allowing the compressor to project high-dimensional information along varying directions with min-
 180 imal computational and memory cost. Notably, since $\psi_{\text{HarMo}}(t)$ is deterministically constructed and
 181 shared among all clients, it requires no additional communication, making it highly efficient in de-
 182 centralized, bandwidth-constrained settings. Importantly, the harmonic structure of $\psi_{\text{HarMo}}(t)$ is
 183 reminiscent of the basis functions used in the Fourier transform, enabling the system to approximate
 184 frequency-aware projections of the original signal. This analogy allows the compressor to implicitly
 185 exploit the spectral structure of the input, which is particularly beneficial for preserving informative
 186 components under aggressive quantization.

187 **HarMo Encoder \mathcal{C}_E .** The function $\mathcal{C}_E : \mathbb{R}^d \times \mathbb{N}_+ \rightarrow \{0, 1\}^m$ projects a d -dimensional real-valued
 188 vector $\mathbf{b} \in \mathbb{R}^d$ onto a scalar using $\psi_{\text{HarMo}}(t)$, then applies the quantization function \tilde{q}_m into an
 189 m -bits binary representation suitable for transmission. That is,

$$190 \quad 191 \quad \mathcal{C}_E(\mathbf{b}, t) := \tilde{q}_m(\psi_{\text{HarMo}}(t)^\top \cdot \mathbf{b}), \quad 192 \quad (6)$$

193 **HarMo Decoder \mathcal{C}_D .** The decoder function $\mathcal{C}_D : \{0, 1\}^m \times \mathbb{N}_+ \rightarrow \mathbb{R}^d$ first decodes the received m -
 194 bit binary message (e.g., $\mathcal{C}_E(\mathbf{b}, t)$) into a quantized scalar value. It then reconstructs a d -dimensional
 195 vector by expanding this scalar along $\psi_{\text{HarMo}}(t)$,

$$196 \quad 197 \quad \mathcal{C}_D(\{0, 1\}^m, t) := \psi_{\text{HarMo}}(t) \cdot \text{BinDecode}(\{0, 1\}^m), \quad 198 \quad (7)$$

199 where `BinDecode` recovers the quantized real-valued scalar from the corresponding m -bit binary
 200 representation.

201 **Definition 3.1.** The Harmonic Modulation Channel $\mathcal{C}_{\text{HarMo}} : \mathbb{R}^d \times \mathbb{N}_+ \rightarrow \mathbb{R}^d$ satisfies

$$202 \quad 203 \quad \mathcal{C}_{\text{HarMo}}(\mathbf{b}, t) = \mathcal{C}_D(\mathcal{C}_E(\mathbf{b}, t), t) = \psi_{\text{HarMo}}(t) \cdot (q_m(\psi_{\text{HarMo}}(t)^\top \cdot \mathbf{b})) \quad 204 \quad (8)$$

205 for some $m \in \mathbb{N}_+$.

206 The resulting vector $\hat{\mathbf{b}} = \mathcal{C}_{\text{HarMo}}(\mathbf{b}, t)$ is subsequently used in downstream computations such as
 207 consensus updates or local gradient steps. This separation of analog quantization and digital encod-
 208 ing enables both precision control and bandwidth efficiency, allowing each component of \mathbf{a} to be
 209 transmitted using exactly m bits.

210

3.2 PERSISTENT EXCITATION CONDITION

211 The Persistent Excitation (PE) condition captures the idea that even when only a scalar projection
 212 of a high-dimensional vector is transmitted at each step, the sequence of projection directions must
 213 vary over time to ensure that all dimensions are sufficiently explored. Without such variation, cer-
 214 tain components of the vector may be neglected, leading to biased or incomplete information. This
 215 concept has a natural connection with the Discrete Fourier Transform (DFT), which also represents
 signals through structured oscillatory components. The DFT, however, is defined on a finite time

window and transforms the entire signal within this limited horizon into complex-valued frequency components based on orthogonal bases. In contrast, PE relies on real-valued projections that evolve over time and can extend over an unbounded horizon. Whereas the DFT captures all information within its fixed window, PE ensures that the accumulated effect of projections over time, whether in a finite sliding window or over an infinite sequence, spans the full space even if individual directions are not orthogonal. This temporal coverage makes PE particularly suitable for sequential communication scenarios with compressed updates, enabling effective reconstruction of the original signal under communication constraints.

Lemma 3.1. *The HarMo sequence $\psi_{\text{HarMo}}(t)$ is uniformly bounded and persistently excited, i.e.,*

$$\alpha_2 \mathbf{I}_d \geq \sum_{t=k}^{k+N-1} \psi_{\text{HarMo}}(t) \cdot \psi_{\text{HarMo}}(t)^\top \geq \alpha_1 \mathbf{I}_d, \quad \forall k \geq 0 \quad (9)$$

for $\alpha_1 = \alpha_2 = \frac{(2d-1)!}{2}$ and $N = (2d-1)!$.

This result provides the theoretical foundation for using the HarMo sequence in compressed communication settings, ensuring that directional diversity is preserved over time despite transmitting only scalar information at each step. The detailed proof is provided in Appendix B.

4 LOG-BIT GRADIENT DESCENT WITH HARMONIC MODULATION

4.1 THE ALGORITHM

In this subsection, we propose a novel algorithm to address the communication bottleneck in fully decentralized federated learning. Specifically, we incorporate the HarMo into a distributed optimization framework. The resulting method, named **Log-Bit Gradient Descent with Harmonic Modulation (LBGD-HarMo)**, is summarized in Algorithm 1. In lines 6-7, inspired by the work in Kajiyama et al. (2021), the algorithm quantizes the error state and introduces a decaying coefficient g_t to scale the transmitted value before and after quantization, reducing quantization error. In lines 8-10, The compression process involves encoding θ into a single real number using the **HarMo Encoder** \mathcal{C}_E , followed by quantizing and encoding this value into an m -bits binary number for communication. In lines 13-14, the **HarMo Decoder** \mathcal{C}_D reconstructs the transmitted value back to a real vector, allowing the local updates to be performed. Lines 16-17 introduce a distributed filter and a distributed integrator. The filter σ tracks the local state x , while the integrator z tracks the term $(\kappa_0 g_t \hat{\theta}_i - \kappa_0 g_t \sum_{j \in \mathcal{N}_i} a_{ij} \hat{\theta}_j)$, which is used to balance local and global information. Our proposed algorithm shares a similar compression approach to other methods (Koloskova et al., 2020a; Liu et al., 2021; Yi et al., 2023; Islamov et al., 2025), in the sense of compressing and transmitting error states.

We introduce a weight matrix $[a_{ij}] \in \mathbb{R}^{n \times n}$ on $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ that satisfies $a_{ij} > 0$ if $(j, i) \in \mathcal{E}$ and $a_{ij} = 0$ otherwise. The Laplacian matrix \mathbf{L} is given by $[\mathbf{L}]_{ij} = -a_{ij}$ for $i \neq j$ and $[\mathbf{L}]_{ii} = \sum_{j=1}^n a_{ij}$. The neighbor set of node i is $\mathcal{N}_i = \{j \in \mathcal{V} \mid [\mathbf{L}]_{ij} \neq 0\}$.

In Algorithm 1, the vector $\mathbf{x}_i := [x_i^1, \dots, x_i^d]^\top \in \mathbb{R}^d$ represents model parameters of agent i . The global vector $\mathbf{x} := [\mathbf{x}_1; \dots; \mathbf{x}_n] \in \mathbb{R}^{nd}$ collects the model parameters of all clients across the network. Let the parameters $\kappa, \kappa_0, \alpha, \eta > 0$ be step size and tuning constants. We denote the local loss function of agent i as $f_i(\cdot)$ and its gradient by $\nabla f_i(\mathbf{x}_i) := \left[\frac{\partial f_i}{\partial x_i^1}, \dots, \frac{\partial f_i}{\partial x_i^d} \right]^\top \in \mathbb{R}^d$. Only the m -bits binary messages $\mathcal{C}_E \left(\frac{\mathbf{x}_{i,t} - \sigma_{i,t}}{g_t}, t \right)$ are transmitted over the communication network.

To simplify the analysis, we define the extended gradient mapping as:

$$\mathcal{H}(\mathbf{x}) := [\nabla f_1(\mathbf{x}_1); \dots; \nabla f_n(\mathbf{x}_n)] \in \mathbb{R}^{nd}, \quad \forall \mathbf{x} \in \mathbb{R}^{nd}. \quad (10)$$

4.2 CONVERGENCE RESULT

We analyze the convergence behavior of Algorithm 1 (LBGD-HarMo) and establish the following theoretical guarantee. First, we impose the following assumptions for the later analysis.

Assumption 4.1. The global cost function $F(\mathbf{x}) = \frac{1}{n} \sum_{i=1}^n f_i(\mathbf{x})$ is strongly convex, i.e., $F(\mathbf{x})$ satisfies

$$F(\mathbf{y}) \geq F(\mathbf{x}) + \nabla F(\mathbf{x})^\top (\mathbf{y} - \mathbf{x}) + \frac{\mu}{2} \|\mathbf{y} - \mathbf{x}\|^2, \forall \mathbf{x}, \mathbf{y} \in \mathbb{R}^d,$$

for some constant $\mu > 0$.

Assumption 4.2. The extended gradient mapping $\mathcal{H}(\cdot)$ in (10) is Lipschitz continuous, i.e.,

$$\|\mathcal{H}(\mathbf{x}) - \mathcal{H}(\mathbf{x}')\| \leq L_{\mathcal{H}} \|\mathbf{x} - \mathbf{x}'\|, \quad \forall \mathbf{x}, \mathbf{x}' \in \mathbb{R}^{nd}.$$

for some constant $L_{\mathcal{A}'} > 0$

Assumption 4.3. The graph \mathcal{G} is undirected, connected and time-invariant

Note that if Assumption 4.3 holds, the Laplacian matrix \mathbf{L} is symmetric positive semi-definite with eigenvalues $0 = \lambda_1 \leq \lambda_2 \leq \dots \leq \lambda_n$ and $\mathbf{1}^\top \mathbf{L} = \mathbf{0}$ by Mesbahi & Egerstedt (2010).

Theorem 4.1. Consider the DL problem (2) over a communication graph G and suppose Assumptions 4.1-4.3 hold. Then, for some $\kappa, \kappa_0, \eta, \beta, \alpha_0, \gamma > 0$ and sufficiently large bit-length

$$m \geq \tilde{m} = \mathcal{O}(\log_+ (d))$$

the model parameter $\mathbf{x}_{i,t}$ of each client i produced by Algorithm 1 (LBGD-HarMo) converges to a common model \mathbf{x}^* at a rate of $\mathcal{O}(1/t)$, i.e.

$$\|x_{\cdot \cdot} - x^{\star}\| = \mathcal{O}(1/t)$$

subsequent chapters the situation is discussed.

This theorem establishes the sublinear convergence rate of LBGD-HarMo under standard assumptions, providing a rigorous guarantee for its effectiveness. Notably, it highlights the fundamental role of logarithmic bit complexity in ensuring convergence of LBGD-HarMo, showing that only $\mathcal{O}(\log_2(d))$ bits are sufficient for reliable optimization. The complete proof is provided in Appendix C.

324 5 NUMERICAL RESULTS

326 5.1 EXPERIMENTAL SETUP

328 For all experiments, we evaluate each scheme in terms of convergence rate and communication
 329 complexity, reporting number of iterations and communication cost.

330 **Topologies.** The communication topologies considered in our experiments include the ring, torus,
 331 fully-connected network and the complex network Erdős–Rényi (ER) graph.

333 **Compressors and quantizers.** In addition to our proposed HarMo, we also compare against the
 334 Top- α (Alistarh et al., 2018) and the Sign quantizer (Bernstein et al., 2018). The details of these two
 335 methods are provided in the Appendix.

336 **Algorithms.** We compare our proposed **LBGD-HarMo** with several representative baselines, in-
 337 cluding **DSGD** (Lian et al., 2017), **CHOCO** (Koloskova et al., 2020a) and **MOTEF** (Islamov et al.,
 338 2025). We also evaluate **LBGD** combined with **Sign** quantizer (**LBGD-Sign**), where the local
 339 model $\theta_{i,t}$ is directly quantized using a standard Sign quantizer (Kajiyama et al., 2021) without
 340 additional compression. For all methods, the step sizes are carefully tuned to ensure fair conver-
 341 gence and detailed hyperparameter configurations are provided in Appendix D. Additionally, we
 342 include **FedAvg** (McMahan et al., 2017) as a centralized baseline for reference in neural network
 343 training.

344 5.2 SYNTHETIC QUADRATIC OPTIMIZATION PROBLEM

346 We consider a synthetic quadratic optimization problem to demonstrate the validity of the theoreti-
 347 cal results for Algorithm 1. This problem follows the classical setups in strongly convex optimiza-
 348 tion (Gao et al., 2024). For each client i , the local objective is defined as $f_i(\mathbf{x}_i) := \frac{1}{2}\|\mathbf{Q}_i\mathbf{x}_i - \mathbf{s}_i\|^2$,
 349 where $\mathbf{Q}_i = \frac{i^2}{n}\mathbf{I}_d \in \mathbb{R}^{d \times d}$ is positive definite to ensure strong convexity and $\mathbf{s}_i \sim \mathcal{N}\left(0, \frac{\rho^2}{i^2}\mathbf{I}_d\right)$
 350 introduces heterogeneity through the linear component (Koloskova et al., 2020b). To be consist-
 351 ent with prior works, Gaussian noise with variance σ^2 is added to the gradients. The quadratic
 352 form guarantees a unique minimizer and the heterogeneity across clients arises from differences in
 353 \mathbf{Q}_i and \mathbf{s}_i . We evaluate performance using two standard metrics: the *Optimality Error*, defined as
 354 $\frac{1}{n} \sum_{i=1}^n \|\mathbf{x}_{i,t} - \mathbf{x}^*\|^2$ measuring the deviation from the optimal solution \mathbf{x}^* and the *Consensus Error*,
 355 defined as $\frac{1}{n} \sum_{i=1}^n \|\mathbf{x}_{i,t} - \bar{\mathbf{x}}_t\|^2$ quantifying disagreement across clients, where $\bar{\mathbf{x}}_t = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_{i,t}$
 356 denotes the network average.

357 **Effect of number of clients and communication topologies.** Figure 1a and Figure 1b show that the
 358 number of clients has little effect on the performance of LBGD-HarMo. For network structures, the
 359 fully-connected topology achieves the best overall performance, as its dense connectivity minimizes
 360 consensus error and ensures more accurate results. These results confirm the robustness of LBGD-
 361 HarMo to both network size and topology.

371 Figure 1: Convergence performance of synthetic quadratic optimization problem under different
 372 settings: (a) varying the number of clients n ; (b) varying the communication topologies; (c) varying
 373 the quantization precision m . In these experiments, we fix the quantization precision to $m = 8$ in
 374 panels (a) and (b), use a ring topology in panels (a) and (c), and set the number of clients to 25 in
 375 panels (b) and (c), with dimension $d = 8$.

376 **Effect of quantization precisions.** In Figure 1c, we study the impact of different quantization
 377 precisions m on the convergence of our proposed LBGD-HarMo algorithm. As the quantization

precision m decreases, the number of communication cost is significantly reduced, thereby alleviating the communication burden across clients. However, in our experiments we found that $m = 3$ bits is the minimum precision that still ensures convergence, as lower precisions with higher quantization noise may lead to divergence. Moreover, the results with $m = 8$ and $m = 16$ bits are almost identical, indicating diminishing returns from further increasing precision. These findings are consistent with Theorem 4.1, which establishes convergence under finite but sufficiently large quantization levels.

Figure 2: Comparison of DSGD, CHOCO, MoTEF with Top- α ($\alpha = 0.125$), LBGD-Sign and LBGD-HarMo ($m = 8$ bits) on the synthetic quadratic optimization problem. The experiment is conducted with 25 clients connected over a ring topology, with detailed hyperparameter values provided in the appendix.

Comparison against other algorithms. As illustrated in Figure 2, LBGD-HarMo attains comparable convergence while clearly outperforming all baselines in terms of communication cost, achieving the same accuracy with far fewer transmitted bits. Although MoTEF exhibits linear speedup in the early stage, it still requires substantially more communication to reach higher-precision accuracy, highlighting the superior efficiency of LBGD-HarMo.

5.3 LOGISTIC REGRESSION WITH STRONGLY CONVEX REGULARIZER

We further evaluate our proposed Algorithm 1 on a logistic regression task with an ℓ_2 -regularizer. Specifically, the local objective function for each client i is given by $f_i(\mathbf{x}_i) = \frac{1}{m_i} \sum_{j=1}^{m_i} \log(1 + \exp(-b_{ij} \mathbf{a}_{ij}^\top \mathbf{x}_i)) + \frac{1}{2m_i} \|\mathbf{x}_i\|_2^2$, where $\mathbf{a}_{ij} \in \mathbb{R}^d$ represents the feature vector of the j -th data sample on client i , $b_{ij} \in \{-1, 1\}$ is the corresponding label and m_i denotes the number of samples assigned to client i . To examine the effect of data heterogeneity, we adopt two distribution settings: (i) *IID*, where samples are uniformly and randomly assigned, so each client holds a representative subset of the dataset; (ii) *Non-IID*, where samples are unevenly partitioned such that each client mainly contains data from a limited set of classes, inducing statistical heterogeneity. Each experiment is repeated three times and we evaluate the *Optimality Error* $f(\bar{\mathbf{x}}_t) - f(\mathbf{x}^*)$, where $\bar{\mathbf{x}}_t = \frac{1}{n} \sum_{i=1}^n \mathbf{x}_{i,t}$ denotes the average model across all n clients at iteration t and $f(\mathbf{x}^*)$ is computed using the *LogisticRegression* from scikit-learn (Pedregosa et al., 2011). Furthermore, we record the *per-iteration Communication Cost per node* and the *final Test Accuracy* and *Runtime* after training, providing a comprehensive evaluation of both communication efficiency and model performance. We first compare our approach against several representative algorithms. In addition, we compare the accuracy across different numbers of clients, various network topologies and both *IID* and *Non-IID* data distributions. The corresponding hyperparameter settings and experimental results are provided in Appendices D.4 and E.

Datasets. We conduct experiments on the *epsilon* dataset (Sonnenburg et al., 2008), a large-scale benchmark for binary classification consisting of 400,000 training samples, 100,000 validation samples and 2,000 features. The dataset’s high dimensionality and large sample size provide a rigorous testbed for communication-efficient algorithms.

Comparison against other algorithms. As shown in Figure 3a, LBGD with both the proposed HarMo and Sign quantizer achieves comparable convergence behavior to DSGD, CHOCO and MoTEF with Top- α , while maintaining stable and consistent performance across runs. More importantly, when the communication cost is measured in terms of communication cost in Figure 3b,

432 LBGD-HarMo significantly outperforms the baselines. Table 2 indicates that LBGD-HarMo re-
 433 duces the communication overhead to only 0.07 KB, compared with 281.25 KB for DSGD and
 434 56.25 KB for CHOCO and MoTEF with the Top- α compressor, even the LBGD-Sign still requires
 435 8.93 KB. These empirical findings are consistent with our theoretical guarantees, showing that the
 436 proposed approach substantially reduces communication cost while maintaining accuracy close to
 437 the baselines.

438 Table 1: **Per-client communication cost per iteration and the corresponding test accuracies and run-**
 439 **time for different algorithms under various compressors and quantizers in the Logistic Regression**
 440 **experiment. Experiments are conducted using a Top- α compressor with $\alpha = 0.1$, Sign quantizer**
 441 **with 1 bit and HarMo with $m = 16$ bits, evaluated on $n = 9$ clients arranged in a ring topology**
 442 **under IID data distribution.**

444	Algorithm	Method	Communication cost (KB)	Test accuracy (%)	Runtime (s)
445	DSGD	None	31.25	88.44	453.67
446	CHOCO	TOP- α	6.25	88.23	957.34
447	MoTEF	TOP- α	6.25	87.42	1497.01
448	LBGD	Sign	0.99	86.82	608.63
449	LBGD	HarMo	0.008	87.84	733.49

452 Figure 3: Comparison of Algorithm 1 (LBGD-HarMo), CHOCO, MoTEF with the Top- α com-
 453 pressor and LBGD with the Sign quantizer on ϵ in terms of iterations and communication
 454 cost, which respectively indicate the convergence rates and the total number of communication cost
 455 needed to achieve the same accuracy.

468 5.4 NEURAL NETWORK TRAINING

469 We further evaluate the proposed LBGD algorithm on the standard image classification task. Each
 470 client employs a neural network as the local model and trains it using the standard cross-entropy
 471 loss. To simulate both IID and Non-IID data distributions across federating clients, we adopt the
 472 Dirichlet-based partitioning strategy $\text{Dir}(p)$ (Hsu et al., 2019), where larger values of p correspond
 473 to more balanced (IID) data splits, while smaller values produce stronger data heterogeneity (Non-
 474 IID). Following the same evaluation metrics as in Section 5.3, we record the *Training Loss*, the
 475 *per-iteration Communication Cost per node*, the *final Test Accuracy* and the *Runtime* after training,
 476 providing a comprehensive evaluation of both communication efficiency and model performance.

477 **Dataset.** We evaluate our method on the *CIFAR-10* dataset (Krizhevsky, 2009), which is a widely
 478 used benchmark for image classification. CIFAR-10 consists of 60,000 color images of size 32×32
 479 across 10 classes, with 50,000 images for training and 10,000 for testing.

480 **Model.** We adopt ResNet-18 (He et al., 2016) as the backbone network for each client. ResNet-18
 481 is a lightweight residual convolutional neural network consisting of 18 layers, including one initial
 482 convolutional layer, four residual stages with two BasicBlocks each, and a final fully connected
 483 layer.

484 **Comparison against other algorithms.** To comprehensively evaluate the effectiveness of our pro-
 485 posed method, we compare **LBGD-HarMo** with several representative baselines. For the central-

ized setting, we adopt **FedAvg** (McMahan et al., 2017) as a benchmark. For the decentralized federated learning setting, we employ two widely used algorithms: **DSGD** (Lian et al., 2017), representing the standard decentralized optimization framework, and **CHOCO** (Koloskova et al., 2020a), which integrates communication compression in decentralized learning. Each compression scheme is applied independently to every layer of ResNet-18 to ensure fair comparison. We evaluate the test accuracy on each client and report the averaged performance over all clients.

Table 2: Per-client communication cost per iteration and the corresponding total training accuracies and runtime for different algorithms under various compressors and quantizers in the Neural Network Training experiment. Experiments are conducted using a Top- α compressor with $\alpha = 0.1$, Sign quantizer with 1 bit and HarMo with $m = 24$ bits, evaluated on $n = 9$ clients arranged in a ring topology under IID data distribution.

Algorithm	Method	Communication cost (MB)	Test accuracy (%)	Runtime (min)
FedAvg	None	804.60 (Central Server)	89.92	99
DSGD	None	178.80	90.09	84
CHOCO	TOP- α	35.76	87.03	209
LBGD	Sign	5.33	81.94	147
LBGD	HarMo	0.0001	86.69	203

From Table 2 and Figure 4, we can conclude that LBGD-HarMo requires considerably less communication cost compared to other algorithms and the training time for LBGD-HarMo is comparable to that of other compression algorithms. Furthermore, LBGD-HarMo achieves competitive test accuracy, meeting the performance standards while significantly reducing the communication overhead. These results suggest that LBGD-HarMo provides an effective balance between communication efficiency and model performance in decentralized neural network training.

Figure 4: Comparison of Algorithm 1 (LBGD-HarMo), FedAvg, DSGD, CHOCO with the Top- α compressor and LBGD with the Sign quantizer on the ResNet-18 training task over the *CIFAR-10* dataset, in terms of test accuracy and total communication cost.

6 CONCLUSIONS

In this paper, we proposed LBGD-HarMo, a novel log-bit quantization scheme with harmonic modulation for communication-efficient distributed learning over graphs. We developed provably convergent algorithm that compresses high-dimensional variables into log-bit transmissions while preserving convergence guarantees comparable to those of uncompressed methods. Both theoretical analysis and empirical results demonstrated that LBGD-HarMo substantially reduces communication cost. Furthermore, we showed that the bit-width m can be tuned to trade off communication overhead against learning performance, with even small values of m ensuring stable convergence.

A limitation of this work is that our analysis focuses on strongly convex objectives and future research will involve deriving explicit expressions for the relationship between convergence rate and parameters in the strongly convex case. Additionally, extending the theoretical analysis of LBGD-HarMo to non-convex objectives remains an important direction for future work.

540
541
ETHICS STATEMENT

542 This work focuses on the development of decentralized optimization algorithms for federated learning.
 543 Our study is entirely theoretical and experimental and does not involve human subjects, personally
 544 identifiable information, or sensitive data. The datasets used in our experiments are standard
 545 public benchmarks that are widely adopted in the machine learning community, ensuring compli-
 546 ance with privacy, fairness and ethical standards. No harmful applications or misuse of the proposed
 547 methodology are foreseen and our code will be released to facilitate transparency, reproducibility and
 548 future research. We confirm that this research adheres to the ICLR Code of Ethics.

549
550
REPRODUCIBILITY STATEMENT
551

552 All experiments are conducted on a server equipped with an Intel(R) Xeon(R) Platinum 8336C
 553 CPU @ 2.30GHz (32 cores, 2 threads per core) and nine NVIDIA GeForce RTX 4090 GPUs.
 554 The synthetic quadratic optimization experiments were implemented in MATLAB R2024a, while
 555 the logistic regression experiments were implemented in PYTHON 3.8. To ensure reproducibil-
 556 ity, we provide an anonymous GitHub repository containing all source codes and scripts neces-
 557 sary to replicate our results. Our implementation is based on open-source code from (Koloskova
 558 et al., 2020a) <https://github.com/epfml/ChocoSGD> and is available at <https://anonymous.4open.science/r/LBGD-HarMo>.

559
560
REFERENCES
561

562 Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
 563 Communication-efficient sgd via gradient quantization and encoding. *Advances in neural in-
 564 formation processing systems*, 30, 2017.

565 Dan Alistarh, Torsten Hoefer, Mikael Johansson, Nikola Konstantinov, Sarit Khirirat, and Cédric
 566 Renggli. The convergence of sparsified gradient methods. *Advances in Neural Information Pro-
 567 cessing Systems*, 31, 2018.

568 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the frequency
 569 moments. In *Proceedings of the twenty-eighth annual ACM symposium on Theory of computing*,
 570 pp. 20–29, 1996.

571 Brian D. O. Anderson. Exponential stability of linear equations arising in adaptive identification.
 572 *IEEE Transactions on Automatic Control*, 22(1):83–88, 1977.

573 Yossi Arjevani, Yair Carmon, John C Duchi, Dylan J Foster, Nathan Srebro, and Blake Woodworth.
 574 Lower bounds for non-convex stochastic optimization. *Mathematical Programming*, 199(1):165–
 575 214, 2023.

576 Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
 577 signsdg: Compressed optimisation for non-convex problems. In *International conference on
 578 machine learning*, pp. 560–569. PMLR, 2018.

579 Aleksandr Beznosikov, Samuel Horváth, Peter Richtárik, and Mher Safaryan. On biased compres-
 580 sion for distributed learning. *Journal of Machine Learning Research*, 24(276):1–50, 2023.

581 Thinh T Doan, Siva Theja Maguluri, and Justin Romberg. Convergence rates of distributed gradient
 582 methods under random quantization: A stochastic approximation approach. *IEEE Transactions
 583 on Automatic Control*, 66(10):4469–4484, 2020a.

584 Thinh T Doan, Siva Theja Maguluri, and Justin Romberg. Fast convergence rates of distributed
 585 subgradient methods with adaptive quantization. *IEEE Transactions on Automatic Control*, 66
 586 (5):2191–2205, 2020b.

587 John C. Duchi, Alekh Agarwal, and Martin J. Wainwright. Dual averaging for distributed optimiza-
 588 tion. *Foundations of Computational Mathematics*, 12(4):361–379, 2012.

594 Alireza Fallah, Aryan Mokhtari, and Asuman E. Ozdaglar. Personalized federated learning with the-
 595 oretical guarantees: A model-agnostic meta-learning approach. In *Neural Information Processing*
 596 *Systems*, 2020.

597

598 Yuan Gao, Rustem Islamov, and Sebastian U Stich. EControl: Fast distributed optimization with
 599 compression and error control. In *The Twelfth International Conference on Learning Representa-
 600 tions*, 2024.

601 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 602 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.
 603 770–778, 2016.

604 Lie He, An Bian, and Martin Jaggi. Cola: Decentralized linear learning. *Advances in Neural*
 605 *Information Processing Systems*, 31, 2018.

606

607 Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
 608 distribution for federated visual classification. *arXiv preprint arXiv:1909.06335*, 2019.

609

610 Rustem Islamov, Yuan Gao, and Sebastian U Stich. Towards faster decentralized stochastic op-
 611 timization with communication compression. In *The Thirteenth International Conference on*
 612 *Learning Representations*, 2025.

613 Franck Iutzeler, Pascal Bianchi, Philippe Ciblat, and Walid Hachem. Asynchronous distributed
 614 optimization using a randomized alternating direction method of multipliers. In *52nd IEEE con-
 615 ference on decision and control*, pp. 3671–3676. IEEE, 2013.

616 Björn Johansson, Maben Rabi, and Mikael Johansson. A randomized incremental subgradient
 617 method for distributed optimization in networked systems. *SIAM Journal on Optimization*, 20
 618 (3):1157–1170, 2010.

619

620 Geethu Joseph, Venkata Gandikota, Ayush Bhandari, Junil Choi, In-soo Kim, Gyoseung Lee,
 621 Michail Matthaiou, Chandra R Murthy, Hien Quoc Ngo, Pramod K Varshney, et al. Low-
 622 resolution compressed sensing and beyond for communications and sensing: Trends and oppor-
 623 tunities. *Signal Processing*, 235:110020, 2025.

624

625 Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 626 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
 627 vances and open problems in federated learning. *Foundations and trends® in machine learning*,
 628 14(1–2):1–210, 2021.

629

630 Yuichi Kajiyama, Naoki Hayashi, and Shigemasa Takai. Linear convergence of consensus-based
 631 quantized optimization for smooth and strongly convex cost functions. *IEEE Transactions on*
 632 *Automatic Control*, 66(3):1254–1261, 2020.

633

634 Yuichi Kajiyama, Naoki Hayashi, and Shigemasa Takai. Linear convergence of consensus-based
 635 quantized optimization for smooth and strongly convex cost functions. *IEEE Transactions on*
 636 *Automatic Control*, 66(3):1254–1261, 2021.

637

638 Sai Praneeth Karimireddy, Quentin Rebjock, Sebastian Stich, and Martin Jaggi. Error feedback
 639 fixes signsgd and other gradient compression schemes. In *International conference on machine*
 640 *learning*, pp. 3252–3261. PMLR, 2019.

641

642 D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information. In
 643 *44th Annual IEEE Symposium on Foundations of Computer Science (FOCS)*, pp. 482–491. IEEE,
 644 2003.

645

646 Anastasia Koloskova, Tao Lin, Sebastian U Stich, and Martin Jaggi. Decentralized deep learning
 647 with arbitrary communication compression. In *International Conference on Learning Represen-
 648 tations*, 2020a.

649

Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified
 650 theory of decentralized sgd with changing topology and local updates. In *International conference*
 651 *on machine learning*, pp. 5381–5393. PMLR, 2020b.

648 Jakub Konečný, H. Brendan McMahan, Felix X. Yu, Peter Richtárik, Ananda Theertha Suresh, and
 649 Dave Bacon. Federated learning: Strategies for improving communication efficiency: Strategies
 650 for improving communication efficiency. Workingpaper, ArXiv, October 2016.

651

652 Alex Krizhevsky. Learning multiple layers of features from tiny images. Master's thesis, Department
 653 of Computer Science, University of Toronto, 2009.

654

655 Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
 656 methods, and future directions. *IEEE Signal Processing Magazine*, 37(3):50–60, 2020.

657

658 Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
 659 algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
 660 gradient descent. *Advances in neural information processing systems*, 30, 2017.

661

662 Xiaorui Liu, Yao Li, Rongrong Wang, Jiliang Tang, and Ming Yan. Linear convergent decentralized
 663 optimization with compression. In *International Conference on Learning Representations*, 2021.

664

665 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 666 Communication-efficient learning of deep networks from decentralized data. In *Artificial intelligence
 667 and statistics*, pp. 1273–1282. PMLR, 2017.

668

669 H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 670 Communication-efficient learning of deep networks from decentralized data. *Proceedings of Interna-
 671 tional Conference on Artificial Intelligence and Statistics* Fort Lauderdale, 2017.

672

673 Mehran Mesbahi and Magnus Egerstedt. Graph theoretic methods in multiagent networks. *Princeton
 674 University Press*, 2010.

675

676 Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. Agnostic federated learning. *Proceed-
 677 ings of International Conference on Machine Learning*, 2019.

678

679 Angelia Nedić and Asuman Ozdaglar. Distributed subgradient methods for multi-agent optimiza-
 680 tion. *IEEE Transactions on Automatic Control*, 54(1):48–61, 2009.

681

682 Angelia Nedić, Soomin Lee, and Maxim Raginsky. Decentralized online optimization with global
 683 objectives and local communication. In *2015 American Control Conference (ACC)*, pp. 4497–
 684 4503. IEEE, 2015.

685

686 Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier
 687 Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vanderplas,
 688 Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard Duch-
 689 esnay. Scikit-learn: Machine learning in python. *J. Mach. Learn. Res.*, 12(null):2825–2830,
 690 November 2011. ISSN 1532-4435.

691

692 Krishna Pillutla, Sham M. Kakade, and Zaid Harchaoui. Robust aggregation for federated learning.
 693 *IEEE Transactions on Signal Processing*, 70:1142–1154, 2022.

694

695 Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, and Ramtin Pedarsani. An exact quan-
 696 tized decentralized gradient descent algorithm. *IEEE Transactions on Signal Processing*, 67(19):
 697 4934–4947, 2019.

698

699 Gesualdo Scutari, Francisco Facchinei, Jong-Shi Pang, and Daniel P Palomar. Real and complex
 700 monotone communication games. *IEEE Transactions on Information Theory*, 60(7):4197–4231,
 701 2014.

702

703 Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
 704 its application to data-parallel distributed training of speech dnns. In *Interspeech*, volume 2014,
 705 pp. 1058–1062. Singapore, 2014.

706

707 Soeren Sonnenburg, Vojtech Franc, Elad Yom-Tov, and Michele Sebag. Pascal large scale learn-
 708 ing challenge. In *25th International Conference on Machine Learning (ICML2008) Workshop.*,
 709 volume 10, pp. 1937–1953, 2008.

702 Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. *Advances in neural information processing systems*, 31, 2018.
 703
 704

705 Canh T. Dinh, Nguyen Tran, and Josh Nguyen. Personalized federated learning with moreau en-
 706 velopes. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in*
 707 *Neural Information Processing Systems*, volume 33, pp. 21394–21405. Curran Associates, Inc.,
 708 2020.

709 Dorina Thanou, Effrosyni Kokiopoulou, Ye Pu, and Pascal Frossard. Distributed average consensus
 710 with quantization refinement. *IEEE Transactions on Signal Processing*, 61(1):194–205, 2012.
 711

712 John N Tsitsiklis. Problems in decentralized decision making and computation. Technical report,
 713 Massachusetts Institute of Technology, 1984.
 714

715 Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
 716 Wright. Atomo: Communication-efficient learning via atomic sparsification. *Advances in neural*
 717 *information processing systems*, 31, 2018.

718 Lei Wang, Zihao Ren, Deming Yuan, and Guodong Shi. Distributed solvers for network linear
 719 equations with scalarized compression. *IEEE Transactions on Automatic Control*, 2024.
 720

721 Ermin Wei and Asuman Ozdaglar. Distributed admm for consensus optimization. *IEEE Transactions*
 722 *on Signal Processing*, 2012.

723 Lin Xiao and Stephen P. Boyd. Fast linear iterations for distributed averaging. *Systems & Control*
 724 *Letters*, 53(1):65–78, 2004.
 725

726 Lin Xiao, Stephen P. Boyd, and Persi Diaconis. Fastest mixing markov chain on a graph. *SIAM*
 727 *Review*, 46(4):667–689, 2004.

728 Xinlei Yi, Shengjun Zhang, Tao Yang, Tianyou Chai, and Karl Henrik Johansson. Communication
 729 compression for distributed nonconvex optimization. *IEEE Transactions on Automatic Control*,
 730 68(9):5477–5492, 2022.

731 Xinlei Yi, Shengjun Zhang, Tao Yang, Tianyou Chai, and Karl Henrik Johansson. Communication
 732 compression for distributed nonconvex optimization. *IEEE Transactions on Automatic Control*,
 733 68(9):5477–5492, 2023. doi: 10.1109/TAC.2022.3225515.

734 Guoxin Zhang, Wei Yi, Michail Matthaiou, and Pramod K Varshney. Direct target localization with
 735 low-bit quantization in wireless sensor networks. *IEEE Transactions on Signal Processing*, 72:
 736 3059–3075, 2024.
 737

738 A NOTATION

739 In this paper, $\|\cdot\|$ denotes the Euclidean norm. The notation $\mathbf{1}_n$ ($\mathbf{0}_n$), $\mathbf{1}_{n \times d}$ ($\mathbf{0}_{n \times d}$), \mathbf{I}_n and
 740 $\{\mathbf{e}_1, \dots, \mathbf{e}_d\}$ denote the one (zero) column, the one (zero) matrix, identity matrix and base vectors
 741 in \mathbb{R}^d , respectively. The expression $\text{blkdiag}(\mathbf{x}_1, \dots, \mathbf{x}_n)$ is a diagonal matrix with the i -th diagonal
 742 matrix being \mathbf{x}_i . The symbol \otimes denotes the Kronecker product, \odot denotes the Hadamard product,
 743 $\lceil \cdot \rceil$ denotes the ceiling operator. For a differentiable function, $\nabla(\cdot)$ denotes its gradient. For
 744 column vectors \mathbf{a} and \mathbf{b} , $[\mathbf{a}; \mathbf{b}]$ means $[\mathbf{a}^\top, \mathbf{b}^\top]^\top$. The notation $\mathcal{O}(\cdot)$ means the magnitude notation.
 745

746 B PROOF OF LEMMA 3.1. —— HARMO SEQUENCE SATISFIES THE 747 PERSISTENT EXCITATION (PE) CONDITION

748 **Lemma 3.1.** The HarMo sequence $\psi_{\text{HarMo}}(t)$ is uniformly bounded and persistently excited, i.e.,
 749

$$750 \quad \alpha_2 \mathbf{I}_d \geq \sum_{t=k}^{k+N-1} \psi_{\text{HarMo}}(t) \cdot \psi_{\text{HarMo}}(t)^\top \geq \alpha_1 \mathbf{I}_d, \quad \forall k \geq 0$$

751 for $\alpha_1 = \alpha_2 = \frac{(2d-1)!}{2}$ and $N = (2d-1)!$.
 752

756 *Proof.* Let the dimension be $d \in \mathbb{N}$ and define the Harmonic Modulation (HarMo) sequence
 757 $\psi_{\text{HarMo}}(t) \in \mathbb{R}^d$ as
 758

$$759 \quad \psi_{\text{HarMo}}(t) = \left[\sin\left(\frac{\pi t}{d+1}\right), \sin\left(\frac{2\pi t}{d+1}\right), \dots, \sin\left(\frac{d\pi t}{d+1}\right) \right]^\top. \quad (\text{B.1})$$

762 We aim to show that $\{\psi_{\text{HarMo}}(t)\}$ satisfies the persistent excitation (PE) condition
 763

$$764 \quad \alpha_2 \mathbf{I}_d \succeq \sum_{t=k}^{k+N-1} \psi_{\text{HarMo}}(t) \psi_{\text{HarMo}}(t)^\top \succeq \alpha_1 \mathbf{I}_d, \quad \forall k \geq 0 \quad (\text{B.2})$$

767 for some $0 < \alpha_1 \leq \alpha_2$ and all integers $N \geq N_0$.
 768

769 Consider the accumulated Gram matrix
 770

$$771 \quad M_N(k) := \sum_{t=k}^{k+N-1} \psi_{\text{HarMo}}(t) \psi_{\text{HarMo}}(t)^\top.$$

774 Its (i, j) -entry can be expressed as
 775

$$776 \quad [M_N(k)]_{i,j} = \sum_{t=k}^{k+N-1} \sin\left(\frac{i\pi t}{d+1}\right) \sin\left(\frac{j\pi t}{d+1}\right).$$

779 Applying the trigonometric identity $\sin(a) \sin(b) = \frac{1}{2}[\cos(a - b) - \cos(a + b)]$, we obtain
 780

$$781 \quad [M_N(k)]_{i,j} = \frac{1}{2} \sum_{t=k}^{k+N-1} \left[\cos\left(\frac{(i-j)\pi t}{d+1}\right) - \cos\left(\frac{(i+j)\pi t}{d+1}\right) \right].$$

785 When $i \neq j$, both cosine terms are periodic with integer multiples of $\frac{2(d+1)}{|i-j|}$ and $\frac{2(d+1)}{i+j}$, respectively.
 786 By choosing N as a common multiple of these periods, the summation vanishes and hence
 787 $[M_N(k)]_{i,j} = 0$. This shows that the Gram matrix is diagonal.
 788

789 For $i = j$, one has
 790

$$791 \quad [M_N(k)]_{i,i} = \sum_{t=k}^{k+N-1} \sin^2\left(\frac{i\pi t}{d+1}\right).$$

793 Since $\sin^2(x)$ has average value $\frac{1}{2}$ over its period, taking N as a multiple of the fundamental period
 794 $\frac{d+1}{i}$ yields
 795

$$796 \quad [M_N(k)]_{i,i} = \frac{N}{2}.$$

797 Thus, all diagonal entries coincide and the Gram matrix satisfies
 798

$$799 \quad M_N(k) = \frac{N}{2} \mathbf{I}_d.$$

802 Consequently, the HarMo sequence satisfies the PE condition (B.2) with $\alpha_1 = \alpha_2 = \frac{N}{2}$. A con-
 803 servative universal choice of N can be made by taking the least common multiple of all possible
 804 periods,
 805

$$806 \quad N = \text{lcm}\left\{\frac{2(d+1)}{s} : s = 1, 2, \dots, 2d-1\right\} = 2(d+1) \cdot \text{lcm}(1, 2, \dots, 2d-1),$$

808 which can be upper bounded by $(2d-1)!$. Therefore, the PE condition holds with constants $\alpha_1 =$
 809 $\alpha_2 = \frac{N}{2} = \frac{(2d-1)!}{2}$. \square

810 **C PROOF OF THEOREM 4.1. —— CONVERGENCE RATES OF**
 811 **LBGD-HARMO**
 812

813 **Theorem 4.1.** Consider the DL problem over a communication graph \mathcal{G} and suppose Assumptions
 814 4.1-4.3 hold. Then, for some $\kappa, \eta, g_0, \gamma > 0$ and sufficiently large bit-length
 815

$$816 \quad m \geq \tilde{m} = \mathcal{O}(\log_2(d)),$$

817 the model parameters $\mathbf{x}_{i,t}$ of each client i produced by Algorithm 1 (LBGD-HarMo) converge to a
 818 common model \mathbf{x}^* at a rate of $\mathcal{O}(1/t)$, i.e.,
 819

$$820 \quad \|\mathbf{x}_{i,t} - \mathbf{x}^*\| = \mathcal{O}(1/t),$$

821 where t denotes the iteration index.
 822

823 *Proof.* As illustrated in Algorithm 1, lines 16–18 can be rewritten as follows:
 824

$$825 \quad \begin{aligned} \boldsymbol{\sigma}_{i,t+1} &= \boldsymbol{\sigma}_{i,t} + \kappa_0 g_t \mathcal{C}_{\text{HarMo}}\left(\frac{\mathbf{x}_{i,t} - \boldsymbol{\sigma}_{i,t}}{g_t}, t\right), \\ 826 \quad \mathbf{z}_{i,t+1} &= \mathbf{z}_{i,t} + \kappa_0 g_t \mathcal{C}_{\text{HarMo}}\left(\frac{\mathbf{x}_{i,t} - \boldsymbol{\sigma}_{i,t}}{g_t}, t\right) - \kappa_0 g_t \sum_{j \in \mathcal{N}_i} \mathcal{C}_{\text{HarMo}}\left(\frac{\mathbf{x}_{j,t} - \boldsymbol{\sigma}_{j,t}}{g_t}, t\right), \\ 827 \quad \mathbf{x}_{i,t+1} &= \mathbf{x}_{i,t} - \kappa \left[\beta(\boldsymbol{\sigma}_{i,t} - \mathbf{z}_{i,t}) + \frac{\eta}{t+1} \nabla f_i(\mathbf{x}_{i,t}) \right], \\ 828 \quad g_t &= g_0 \gamma^t. \end{aligned} \quad (\text{C.1})$$

829 where $\mathcal{C}_{\text{HarMo}}\left(\frac{\mathbf{x}_{j,t} - \boldsymbol{\sigma}_{j,t}}{g_t}, t\right) = \mathcal{C}_{\text{D}}(\mathcal{C}_{\text{E}}\left(\frac{\mathbf{x}_{j,t} - \boldsymbol{\sigma}_{j,t}}{g_t}, t\right), t) = \boldsymbol{\psi}_{\text{HarMo}}(t) \cdot (q_m(\boldsymbol{\psi}_{\text{HarMo}}(t)^\top \cdot \frac{\mathbf{x}_{j,t} - \boldsymbol{\sigma}_{j,t}}{g_t})).$
 830

831 By recalling the relation established in Yi et al. (2022), we have
 832

$$833 \quad \boldsymbol{\sigma}_{i,t} - \mathbf{z}_{i,t} = \sum_{j \in \mathcal{N}_i} L_{ij} \boldsymbol{\sigma}_{j,t},$$

834 where L_{ij} denotes the (i, j) -th entry of the graph Laplacian matrix.
 835

836 For completeness, we briefly sketch the derivation. From the update rules in Algorithm 1, we sub-
 837 tract the two updates and obtain
 838

$$839 \quad \boldsymbol{\sigma}_{i,t+1} - \mathbf{z}_{i,t+1} = (\boldsymbol{\sigma}_{i,t} - \mathbf{z}_{i,t}) + \kappa_0 g_t \sum_{j \in \mathcal{N}_i} \mathcal{C}_{\text{HarMo}}\left(\frac{\mathbf{x}_{j,t} - \boldsymbol{\sigma}_{j,t}}{g_t}, t\right).$$

840 Since the update of $\boldsymbol{\sigma}_{j,t}$ satisfies
 841

$$842 \quad \boldsymbol{\sigma}_{j,t+1} = \boldsymbol{\sigma}_{j,t} + \kappa_0 g_t \mathcal{C}_{\text{HarMo}}\left(\frac{\mathbf{x}_{j,t} - \boldsymbol{\sigma}_{j,t}}{g_t}, t\right),$$

843 we have
 844

$$845 \quad \kappa_0 g_t \mathcal{C}_{\text{HarMo}}\left(\frac{\mathbf{x}_{j,t} - \boldsymbol{\sigma}_{j,t}}{g_t}, t\right) = \boldsymbol{\sigma}_{j,t+1} - \boldsymbol{\sigma}_{j,t}.$$

846 Substituting this identity gives
 847

$$848 \quad \boldsymbol{\sigma}_{i,t+1} - \mathbf{z}_{i,t+1} = (\boldsymbol{\sigma}_{i,t} - \mathbf{z}_{i,t}) + \sum_{j \in \mathcal{N}_i} (\boldsymbol{\sigma}_{j,t+1} - \boldsymbol{\sigma}_{j,t}). \quad (\text{C.2})$$

849 By telescoping the recursion equation (C.2) from $s = 0$ to $t - 1$, we obtain
 850

$$851 \quad \begin{aligned} \boldsymbol{\sigma}_{i,t} - \mathbf{z}_{i,t} &= (\boldsymbol{\sigma}_{i,0} - \mathbf{z}_{i,0}) + \sum_{s=0}^{t-1} \sum_{j \in \mathcal{N}_i} (\boldsymbol{\sigma}_{j,s+1} - \boldsymbol{\sigma}_{j,s}) \\ 852 \quad &= (\boldsymbol{\sigma}_{i,0} - \mathbf{z}_{i,0}) - \sum_{j \in \mathcal{N}_i} \boldsymbol{\sigma}_{j,0} + \sum_{j \in \mathcal{N}_i} \boldsymbol{\sigma}_{j,t}. \end{aligned}$$

864 With the standard initialization $\boldsymbol{\sigma}_{i,0} = \mathbf{z}_{i,0} = \mathbf{0}$, this simplifies to
 865

$$866 \boldsymbol{\sigma}_{i,t} - \mathbf{z}_{i,t} = \sum_{j \in \mathcal{N}_i} \boldsymbol{\sigma}_{j,t}.$$

868 Finally, by adopting the Laplacian notation, we can equivalently rewrite this relation as
 869

$$870 \boldsymbol{\sigma}_{i,t} - \mathbf{z}_{i,t} = \sum_{j \in \mathcal{N}_i} L_{ij} \boldsymbol{\sigma}_{j,t}. \quad (C.3)$$

873 Combining the relation in (C.3) with the update rule (C.1), the iteration can be equivalently ex-
 874 pressed in the following compact form:
 875

$$876 \boldsymbol{\sigma}_{t+1} = \boldsymbol{\sigma}_t + \kappa_0 \tilde{\mathbf{C}}_{\text{HarMo}}(\mathbf{x}_t - \boldsymbol{\sigma}_t, t) + \kappa_0 g_t \boldsymbol{\delta}_t,$$

$$877 \mathbf{x}_{t+1} = \mathbf{x}_t - \kappa \left[\beta \mathcal{L} \boldsymbol{\sigma}_t + \frac{\eta}{t+1} \mathcal{H}(\mathbf{x}_t) \right], \quad (C.4)$$

$$878 g_t = g_0 \gamma^t,$$

880 where $\tilde{\mathbf{C}}_{\text{HarMo}}(\mathbf{x}_t, t) := [\psi_{\text{HarMo}}(t) \psi_{\text{HarMo}}(t)^\top \mathbf{x}_{1,t}; \dots; \psi_{\text{HarMo}}(t) \psi_{\text{HarMo}}(t)^\top \mathbf{x}_{n,t}] \in \mathbb{R}^{nd}$, $\boldsymbol{\delta}_t :=$
 881 $\mathbf{C}_{\text{HarMo}} \left(\frac{\mathbf{x}_t - \boldsymbol{\sigma}_t}{g_t}, t \right) - \tilde{\mathbf{C}}_{\text{HarMo}} \left(\frac{\mathbf{x}_t - \boldsymbol{\sigma}_t}{g_t}, t \right) \in \mathbb{R}^{nd}$, $\mathcal{L} := \mathbf{L} \otimes \mathbf{I}_d \in \mathbb{R}^{nd \times nd}$ and $\mathcal{H}(\mathbf{x}) :=$
 882 $[\nabla f_1(\mathbf{x}_1); \dots; \nabla f_n(\mathbf{x}_n)] \in \mathbb{R}^{nd}$. Notably, (C.4) is obtained by noting that
 883

$$884 g_t \tilde{\mathbf{C}}_{\text{HarMo}} \left(\frac{\mathbf{x}_t - \boldsymbol{\sigma}_t}{g_t}, t \right) = \tilde{\mathbf{C}}_{\text{HarMo}}(\mathbf{x}_t - \boldsymbol{\sigma}_t, t).$$

887 By Scutari et al. (2014), as Assumptions 4.1–4.3, there exists a unique solution $\mathbf{x}^* \in \mathbb{R}^d$ such
 888 that $\mathcal{H}(\mathbf{1}_n \otimes \mathbf{x}^*) = \mathbf{0}_{nd}$. To facilitate the analysis, we introduce the state error variables $\bar{\boldsymbol{\sigma}}_t :=$
 889 $\boldsymbol{\sigma}_t - \mathbf{1}_n \otimes \mathbf{x}^*$, $\bar{\mathbf{x}}_t := \mathbf{x}_t - \mathbf{1}_n \otimes \mathbf{x}^*$, which represent the deviations of $\boldsymbol{\sigma}_t$ and \mathbf{x}_t from the steady-state
 890 solution \mathbf{x}^* . Substituting these definitions into the update rules, we obtain the following equivalent
 891 system:
 892

$$893 \bar{\boldsymbol{\sigma}}_{t+1} = \bar{\boldsymbol{\sigma}}_t + \kappa_0 \tilde{\mathbf{C}}_{\text{HarMo}}(\bar{\mathbf{x}}_t - \bar{\boldsymbol{\sigma}}_t, t) + \kappa_0 g_t \boldsymbol{\delta}_t,$$

$$894 \bar{\mathbf{x}}_{t+1} = \bar{\mathbf{x}}_t - \kappa \left[\beta \mathcal{L} \bar{\boldsymbol{\sigma}}_t + \frac{\eta}{t+1} \bar{\mathcal{H}}(\bar{\mathbf{x}}_t) \right], \quad (C.5)$$

$$895 g_t = g_0 \gamma^t,$$

896 where $\bar{\mathcal{H}}(\bar{\mathbf{x}}_t) := \mathcal{H}(\bar{\mathbf{x}}_t) - \mathcal{H}(\mathbf{1}_n \otimes \mathbf{x}^*)$.
 897

898 To analyze the convergence of the system, we introduce a projection-based decomposition of the
 899 state variables. Let $\mathbf{S} \in \mathbb{R}^{n \times (n-1)}$ be a matrix whose rows are eigenvectors corresponding to the
 900 nonzero eigenvalues of the graph Laplacian \mathbf{L} , and define the projection operators $\mathcal{S} := \mathbf{S} \otimes \mathbf{I}_d$, $\mathcal{I} :=$
 901 $\frac{1}{\sqrt{n}} \mathbf{1}_n \otimes \mathbf{I}_d$. By construction, these satisfy $\mathcal{S}^\top \mathcal{I} = \mathbf{0}_{(n-1)d \times d}$ and $\mathcal{S} \mathcal{S}^\top + \mathcal{I} \mathcal{I}^\top = \mathbf{I}_{nd}$. Then, for
 902 the state errors $\bar{\mathbf{x}}_t$, we introduce the decomposition $\bar{\mathbf{x}}_t^\perp := \mathcal{S}^\top \bar{\mathbf{x}}_t \in \mathbb{R}^{(n-1)d}$, $\bar{\mathbf{x}}_t^\parallel := \mathcal{I}^\top \bar{\mathbf{x}}_t \in \mathbb{R}^d$, so
 903 that
 904

$$905 \bar{\mathbf{x}}_t = \mathcal{S} \bar{\mathbf{x}}_t^\perp + \mathcal{I} \bar{\mathbf{x}}_t^\parallel. \quad (C.6)$$

907 Then it follows that the convergence of $\bar{\mathbf{x}}_t$ can be established by showing that both its consensus
 908 component $\bar{\mathbf{x}}_t^\parallel$ and disagreement component $\bar{\mathbf{x}}_t^\perp$ converge to the zero equilibrium, respectively.
 909

910 With the decomposition in (C.5) and the fact that $\mathcal{L} \mathcal{I} = \mathbf{0}_{nd \times d}$ and $\mathcal{I}^\top \mathcal{L} = \mathbf{0}_{d \times nd}$, we obtain the
 911 following equivalent dynamics:
 912

$$913 \bar{\boldsymbol{\sigma}}_{t+1} = \bar{\boldsymbol{\sigma}}_t + \kappa_0 \tilde{\mathbf{C}}_{\text{HarMo}}(\bar{\mathbf{x}}_t - \bar{\boldsymbol{\sigma}}_t, t) + \kappa_0 g_t \boldsymbol{\delta}_t,$$

$$914 \bar{\mathbf{x}}_{t+1}^\perp = \bar{\mathbf{x}}_t^\perp - \kappa \beta \mathcal{S}^\top \mathcal{L} \bar{\boldsymbol{\sigma}}_t - \frac{\kappa \eta}{t+1} \mathcal{S}^\top \bar{\mathcal{H}}(\bar{\mathbf{x}}_t), \quad (C.7)$$

$$915 \bar{\mathbf{x}}_{t+1}^\parallel = \bar{\mathbf{x}}_t^\parallel - \frac{\kappa \eta}{t+1} \mathcal{I}^\top \bar{\mathcal{H}}(\bar{\mathbf{x}}_t),$$

$$916 g_t = g_0 \gamma^t.$$

918 Besides, we can also obtain that
 919
 920

$$\|\mathcal{L}\bar{\sigma}_t\|^2 \leq 2\lambda_n^2\|\bar{x}_t - \bar{\sigma}_t\|^2 + 2\lambda_n^2\|\bar{x}_t^\perp\|^2. \quad (\text{C.8})$$

921 To separate the consensus and disagreement components, we define the projected error variables as
 922 $\bar{\sigma}_t^\perp := \mathcal{S}^\top \bar{\sigma}_t \in \mathbb{R}^{(n-1)d}$. Correspondingly, the variations of these projected variables are defined
 923 as

$$\begin{aligned} 924 \quad \Delta\bar{\sigma}_t^\perp &:= \bar{\sigma}_{t+1}^\perp - \bar{\sigma}_t^\perp = \kappa_0 \tilde{C}_{\text{HarMo}}(\bar{x}_t^\perp - \bar{\sigma}_t^\perp, t) + \kappa_0 g_t \mathcal{S}^\top \delta_t, \\ 925 \quad \Delta\bar{x}_t^\perp &:= \bar{x}_{t+1}^\perp - \bar{x}_t^\perp = -\kappa[\beta \mathcal{S}^\top \mathcal{L}\bar{\sigma}_t + \frac{\eta}{t+1} \mathcal{S}^\top \mathcal{H}(\bar{x}_t)], \\ 926 \quad \Delta\bar{x}_t^\parallel &:= \bar{x}_{t+1}^\parallel - \bar{x}_t^\parallel = -\frac{\kappa\eta}{t+1} \mathcal{I}^\top \bar{\mathcal{H}}(\bar{x}_t^\parallel) + \frac{\kappa\eta}{t+1} \mathcal{I}^\top (\bar{\mathcal{H}}(\bar{x}_t^\parallel) - \bar{\mathcal{H}}(\bar{x}_t)), \\ 927 \quad g_t &= g_0 \gamma^t. \end{aligned} \quad (\text{C.9})$$

930 Now we are ready to propose Lyapunov functions for system (C.7). Define $V_{1,t} = \frac{1}{2}\|\bar{x}_t^\perp\|^2$, then
 931

$$\begin{aligned} 933 \quad V_{1,t+1} - V_{1,t} &= \frac{1}{2}\|\bar{x}_{t+1}^\perp\|^2 - \frac{1}{2}\|\bar{x}_t^\perp\|^2 \\ 934 &= \frac{1}{2}\|\bar{x}_t^\perp - \kappa\beta \mathcal{S}^\top \mathcal{L}\bar{\sigma}_t - \frac{\kappa\eta}{t+1} \mathcal{S}^\top \bar{\mathcal{H}}(\bar{x}_t)\|^2 - \frac{1}{2}\|\bar{x}_t^\perp\|^2 \\ 935 &\leq \left(-\frac{1}{2}\kappa\beta\lambda_2\|\bar{x}_t^\perp\|^2 + \frac{1}{2}\kappa\beta\lambda_n\|\bar{\sigma}_t - \bar{x}_t\|^2 \right. \\ 936 &\quad \left. + \frac{1}{2}\frac{\kappa\eta}{t+1}(1+L_\mathcal{H}^2)\|\bar{x}_t^\perp\|^2 + \frac{1}{2}\frac{\kappa\eta}{t+1}L_\mathcal{H}^2\|\bar{x}_t^\parallel\|^2 \right) \\ 937 &\quad + \left(\kappa^2\beta^2\|\mathcal{L}\bar{\sigma}_t\|^2 + \left(\frac{\kappa\eta}{t+1}\right)^2 L_\mathcal{H}^2(\|\bar{x}_t^\perp\|^2 + \|\bar{x}_t^\parallel\|^2) \right) \\ 938 &\leq \left(-\frac{1}{2}\kappa\beta\lambda_2\|\bar{x}_t^\perp\|^2 + \frac{1}{2}\kappa\beta\lambda_n\|\bar{\sigma}_t - \bar{x}_t\|^2 \right. \\ 939 &\quad \left. + \frac{1}{2}\frac{\kappa\eta}{t+1}(1+L_\mathcal{H}^2)\|\bar{x}_t^\perp\|^2 + \frac{1}{2}\frac{\kappa\eta}{t+1}L_\mathcal{H}^2\|\bar{x}_t^\parallel\|^2 \right) \\ 940 &\quad + (2\kappa^2\beta^2\lambda_n\|\bar{x}_t - \bar{\sigma}_t\|^2 + 2\kappa^2\beta^2\lambda_n\|\bar{x}_t^\perp\|^2 \\ 941 &\quad \left. + \left(\frac{\kappa\eta}{t+1}\right)^2 L_\mathcal{H}^2(\|\bar{x}_t^\perp\|^2 + \|\bar{x}_t^\parallel\|^2) \right), \end{aligned} \quad (\text{C.10})$$

952 where the first inequality is obtained by
 953

$$\begin{aligned} 954 \quad \mathcal{L}\bar{x}_t &= \mathcal{L}(\mathcal{S}\mathcal{S}^\top + \mathcal{I}\mathcal{I}^\top)\bar{x}_t = \mathcal{L}\mathcal{S}\bar{x}_t^\perp, \\ 955 \quad \|\bar{\mathcal{H}}(\bar{x}_t)\|^2 &\leq L_\mathcal{H}^2\|\bar{x}_t\|^2 = L_\mathcal{H}^2\left(\|\bar{x}_t^\perp\|^2 + \|\bar{x}_t^\parallel\|^2\right), \end{aligned} \quad (\text{C.11})$$

956 derived from Assumption 4.2 and the last inequality is obtained by (C.8).
 957

958 Define $V_{2,t} := \frac{1}{2}\|\bar{x}_t^\parallel\|^2$, then
 959

$$\begin{aligned} 960 \quad V_{2,t+1} - V_{2,t} &= \frac{1}{2}\|\bar{x}_{t+1}^\parallel\|^2 - \frac{1}{2}\|\bar{x}_t^\parallel\|^2 \\ 961 &= \frac{1}{2}\|\bar{x}_t^\parallel - \frac{\kappa\eta}{t+1} \mathcal{I}^\top \bar{\mathcal{H}}(\bar{x}_t)\|^2 - \frac{1}{2}\|\bar{x}_t^\parallel\|^2 \\ 962 &\leq \left(-\frac{\kappa\eta}{t+1}(\mathcal{I}\bar{x}_t^\parallel)^\top [\mathcal{H}(\bar{x}_t + \mathbf{1}_n \otimes \mathbf{x}^*) \right. \\ 963 &\quad \left. - \mathcal{H}(\mathcal{I}\bar{x}_t^\parallel + \mathbf{1}_n \otimes \mathbf{x}^*) + \mathcal{H}(\mathcal{I}\bar{x}_t^\parallel + \mathbf{1}_n \otimes \mathbf{x}^*) \right. \\ 964 &\quad \left. - \mathcal{H}(\mathbf{1}_n \otimes \mathbf{x}^*)] + \left(\frac{\kappa\eta}{t+1}\right)^2 \|\bar{\mathcal{H}}(\bar{x}_t)\|^2 \right. \\ 965 &\quad \left. - \frac{\kappa\eta}{t+1}\|\bar{x}_t^\parallel\|^2 + \frac{\kappa\eta}{t+1}\|\bar{x}_t^\perp\|^2 \right) \\ 966 &\quad + \left(\frac{\kappa\eta L_\mathcal{H}}{t+1}\right)^2 (\|\bar{x}_t^\perp\|^2 + \|\bar{x}_t^\parallel\|^2), \end{aligned} \quad (\text{C.12})$$

972 where the second inequality is obtained by (C.6) and (C.11).
 973

974 By recalling Anderson (1977), we know $\bar{\mathbf{x}}_{e,t+1} = \bar{\mathbf{x}}_{e,t} - \kappa_0 \tilde{\mathbf{C}}_{\text{HarMo}}(\bar{\mathbf{x}}_{e,t}, t)$ is uniformly globally
 975 linearly stable for some $\kappa_0 > 0$, then there exist positive constants $C, \gamma_D < 1$ such that for any t
 976 and $N \in \mathbb{N}_+$, the solution satisfies

$$977 (\|\mathbf{x}_e(t+N)\|^2) \leq C (\|\mathbf{x}_e(t)\|^2) \gamma_D^N. \\ 978$$

979 We assume $\phi_t^{t+T}(\mathbf{x}_e(t))$ is the state of the system $\mathbf{x}_e(t+1) = \mathbf{x}_e(t) - \kappa_0 \Lambda \tilde{\mathbf{C}}_{\text{HarMo}}(\mathbf{x}_e(t), t)$ in
 980 $t+T$ moment for any $0 \leq T \leq N$ with the state in t moment is $\mathbf{x}_e(t)$. It is easy to verify that there
 981 exists some $L_\phi > 0$ that $\|\phi_t^{t+T}(\mathbf{x})\|^2 \leq L_\phi \|\mathbf{x}\|^2$ holds for any $\mathbf{x} \in \mathbb{R}^{(n-1)d}$ and $0 \leq T \leq N$.

982 We define a Lyapunov function $V_{e,t}(\mathbf{x}_e, t) := \sum_{j=0}^{N-1} \|\phi_t^{t+j}(\mathbf{x}_e)\|^2$ satisfying
 983

$$984 c_1 \|\mathbf{x}_e\|^2 \leq V_{e,t} \leq c_2 \|\mathbf{x}_e\|^2 \quad (\text{C.13}) \\ 985$$

986 for $c_1 = 1, c_2 = NL_\phi$.
 987

In addition, we have

$$988 \Delta V_{e,t} = \sum_{j=1}^N \|\phi_{t+1}^{t+j}(\mathbf{x}_e(t+1))\|^2 - \sum_{j=0}^{N-1} \|\phi_t^{t+j}(\mathbf{x}_e(t))\|^2 \\ 989 = \|\mathbf{x}_e(t+N)\|^2 - \|\mathbf{x}_e(t)\|^2 \\ 990 \leq -(1 - C\gamma_D^N) \|\mathbf{x}_e(t)\|^2 \leq -c_3 \|\mathbf{x}_e(t)\|^2 \\ 991 \\ 992 \\ 993 \quad (\text{C.14})$$

994 We choose a $N \in \mathbb{N}_+$ large enough and then $c_3 := 1 - C\gamma_D^N > 0$, i.e.,
 995

$$996 \sum_{j=1}^N \|\phi_{t+1}^{t+j}(\mathbf{x}_e - \kappa_0 \Lambda \tilde{\mathbf{C}}_{\text{HarMo}}(\mathbf{x}_e, t))\|^2 - \sum_{j=0}^{N-1} \|\phi_t^{t+j}(\mathbf{x}_e)\|^2 \\ 997 \\ 998 \leq -c_3 \|\mathbf{x}_e\|^2. \\ 999 \\ 1000 \quad (\text{C.15})$$

1001 In addition, we have

$$1002 \|\mathbf{x}_e - \kappa_0 \Lambda \tilde{\mathbf{C}}_{\text{HarMo}}(\mathbf{x}_e, t)\|^2 \leq \theta \|\mathbf{x}_e\|^2, \quad (\text{C.16}) \\ 1003$$

1004 for $\theta := 2 + 2L_\phi^2 \kappa_0^2 \lambda_n^2 > 0$.
 1005

1006 For the update rule C.14, letting $V_{3,t} := V_{e,t}(\bar{\mathbf{x}}_t - \bar{\sigma}_t, t)$, we obtain
 1007

$$1008 V_{3,t+1} - V_{3,t} = \sum_{j=1}^N \|\phi_{t+1}^{t+j}(\mathbf{x}_{t+1} - \bar{\sigma}_{t+1})\|^2 - \sum_{j=0}^{N-1} \|\phi_t^{t+j}(\mathbf{x}_t - \bar{\sigma}_t)\|^2 \\ 1009 \leq -c_3 \|\mathbf{x}_t - \bar{\sigma}_t\|^2 + c_4 \sqrt{n} \kappa \|\mathbf{x}_t - \bar{\sigma}_t\| \|\beta \mathcal{L} \bar{\sigma}_t\| \\ 1010 + \eta \frac{1}{t+1} \|\bar{\mathcal{H}}(\mathbf{x}_t)\| + \kappa_0 c_4 \sqrt{n} \|\mathbf{x}_t - \bar{\sigma}_t\| \|g_t \delta\| \\ 1011 + 3NL_\phi (\kappa^2 \|\beta \mathcal{L} \bar{\sigma}_t\|^2 + \kappa^2 \|\eta \frac{1}{t+1} \|\bar{\mathcal{H}}(\mathbf{x}_t)\|^2 + \kappa_0^2 \|g_t \delta\|^2) \\ 1012 \\ 1013 \leq -\left[\frac{c_3}{2} - \kappa \left(-c_4 \sqrt{n} \beta / r - c_4^2 \sqrt{n} \eta / r\right.\right. \\ 1014 \left.\left. - 2c_4 \sqrt{n} \beta \lambda_n^2 r\right)\right] \|\mathbf{x}_t - \bar{\sigma}_t\|^2 + \kappa \left((2c_4 \sqrt{n} \lambda_n^2 \beta r\right. \\ 1015 \left. + \frac{1}{t+1} \sqrt{n} \eta r L_\mathcal{H}^2) \|\mathbf{x}_t^\perp\|^2 + \frac{1}{t+1} \sqrt{n} \eta r L_\mathcal{H}^2 \|\mathbf{x}_t^\parallel\|^2\right) \\ 1016 + \kappa^2 NL_\phi (6\beta^2 \lambda_n^2 (\|\mathbf{x}_t - \bar{\sigma}_t\|^2 + \|\mathbf{x}_t^\perp\|^2) \\ 1017 + \frac{3}{t+1} \eta^2 L_\mathcal{H}^2 (\|\mathbf{x}_t^\perp\|^2 + \|\mathbf{x}_t^\parallel\|^2)) + C_1 g_t^2 \|\delta_t\|^2, \\ 1018 \\ 1019 \\ 1020 \\ 1021 \\ 1022 \\ 1023 \\ 1024 \\ 1025 \quad (\text{C.17})$$

1026 for $c_4 := NL_\phi \theta$ and $C_1 := \kappa_0^2 \left(\frac{2c_4^2}{c_3} + 3NL_\phi\right)$, where the first inequality is obtained by (C.13)-
 1027 (C.14) and the fact $\|\delta_t\|_\infty \leq \delta$ and the last inequality is obtained by (C.8) and Young's Inequality,
 1028 with $r > 0$ being an undetermined parameter to be chosen later.

Now we introduce some parameters $\xi_1, \xi_2, \dots > 0$ independent of β, η and r and some parameters $\zeta_1, \zeta_2, \dots > 0$ independent of κ as follows

$$\begin{aligned}\xi_1 &= \frac{\lambda_2}{2}, \xi_2 = \frac{1 + L_{\mathcal{H}}^2}{2} + \frac{n^2 L_{\mathcal{H}}^4}{\mu^2}, \\ \xi_3 &= 2c_4\sqrt{n}\lambda_n^2 + \sqrt{n}L_{\mathcal{H}}^2 + \frac{4n^{\frac{5}{2}}L_{\mathcal{H}}^4}{\mu^2}, \xi_4 = c_4\sqrt{n}, \\ \xi'_4 &= c_4^2\sqrt{n}, \\ \xi_5 &= \frac{\lambda_n}{2} + 2c_4\sqrt{n}\lambda_n^2, \\ \zeta_1 &= 2\beta^2\lambda_n^2 + \eta^2(4+p)L_{\mathcal{H}}^2 + 6\beta^2\lambda_n^2NL_{\phi}, \\ \zeta_2 &= \eta^2(4+p)L_{\mathcal{H}}^2, \zeta_3 = 2\beta^2\lambda_n^2 + 6\beta^2\lambda_n^2NL_{\phi}\theta.\end{aligned}$$

where

$$p = \frac{4L_{\mathcal{H}}^2 n}{\mu} + \frac{8n^{\frac{3}{2}}rL_{\mathcal{H}}^2}{\mu} > 0.$$

Then we define the total Lyapunov functions of system (C.7) as

$$V_t := V_{1,t} + pV_{2,t} + V_{3,t}.$$

By (C.13), it is bounded as

$$V_t \leq \frac{1}{2}\|\bar{x}_t^\perp\|^2 + \frac{p}{2}\|\bar{x}_t^\parallel\|^2 + c_2\|\bar{x}_t - \bar{\sigma}_t\|^2. \quad (\text{C.18})$$

We let $r \leq 1, \eta \leq \beta$ to simplify the following process, then by (C.10), (C.12) and (C.17), we have

$$\begin{aligned}V_{t+1} - V_t &\leq -\kappa(\xi_1\beta - \frac{\xi_2\eta}{t+1} - \xi_3\beta r)\|\bar{x}_t^\perp\|^2 \\ &\quad - \frac{1}{t+1}\kappa\left(p\eta\frac{\mu}{4n}\right)\|\bar{x}_t^\parallel\|^2 - \kappa\left(\frac{c_3}{2} - \xi_4\beta/r - \xi'_4\eta/r(t+1) - \xi_5\beta\right)\|\bar{x}_t - \bar{\sigma}_t\|^2 \\ &\quad + \kappa^2\left(\zeta_1\|\bar{x}_t^\perp\|^2 + \frac{1}{(t+1)^2}\zeta_2\|\bar{x}_t^\parallel\|^2 + \zeta_3\|\bar{x}_t - \bar{\sigma}_t\|^2\right) \\ &\quad + C_1g_t^2\|\delta_t\|^2.\end{aligned} \quad (\text{C.19})$$

Letting $r = \min\{\frac{\xi_1}{3\xi_3}, 1\}$, $\beta \leq \frac{c_3}{6(\xi_4/r + \xi_5)}$, $\eta \geq \frac{8n}{\mu\kappa}$ and $\kappa \leq \frac{1}{2}\min\{\frac{\xi_1\beta}{3\xi_1}, \sqrt{\frac{2p}{\zeta_2}}, \frac{c_3}{6\xi_3}\}$, with C.18, we can conclude that for $t \geq t_0 = \max\{\frac{3\xi_2\eta}{\xi_1\beta}, \frac{6\xi'_4\eta}{rc_3}, \frac{6p}{\kappa\xi_1\beta}, \frac{12pc_2}{\kappa c_3}\} - 1$, there holds

$$\Delta V_t \leq -\frac{2V_t}{t+1} + C_1g_t^2\|\delta_t\|^2,$$

which yields

$$\begin{aligned}V_t &\leq -\frac{2V_{t_0}}{(t+1)^2} + \sum_{\tau=t_0}^t \frac{2C_1}{(t+1-\tau)^2(\tau+1)^2}g_0^2\|\delta_t\|^2 \\ &\leq \frac{2V_{t_0} + 4C_1g_0^2\|\delta_t\|^2}{(t+1)^2} + o\left(\frac{1}{t^2}\right).\end{aligned} \quad (\text{C.20})$$

Now, assuming that

$$\left\|\frac{\bar{x}_t - \bar{\sigma}_t}{g_t}\right\|_\infty \leq \frac{K}{\sqrt{d\psi}} \quad (\text{C.21})$$

holds for $t \geq t_0$, where $\bar{\psi}$ is the uniform upper bound of $\|\psi(t)\|$. By the definition of \tilde{C}_{HarMo} , we know that there holds

$$\|\delta_t\| \leq \frac{l\sqrt{d}}{2}\bar{\psi}.$$

1080 Substituting it into equation C.20, by the definition of V_t , we have
 1081

$$1082 \frac{\|\bar{\mathbf{x}}_t - \bar{\sigma}_t\|_\infty^2}{g_t} \leq \frac{V_t}{g_t^2} \leq \frac{2V_{t_0} + 4C_1g_0^2\|\delta_t\|^2}{g_0^2} \leq \frac{2V_{t_0} + C_1g_0^2l^2d\bar{\psi}^2}{g_0^2}.$$

1085 Then, letting $g_0^2 = \frac{2V_{t_0}}{C_1d\bar{\psi}^2l^2}$, then it can be directly obtained that equation C.21 holds if
 1086

$$1087 \frac{K}{l} \geq 2C_1\bar{\psi}^2d, \quad (C.22)$$

$$1089 \Rightarrow m \geq \log_2(2C_1\bar{\psi}^2d).$$

1091 In one word, when the condition above is satisfied, we can obtain $V(t) = \mathcal{O}(\frac{1}{t^2})$ by equation C.20.
 1092 With the definition of V_t , Theorem 4.1 is proved.
 1093

□

1096 D EXPERIMENT DETAILS

1098 D.1 COMMUNICATION TOPOLOGY

1100 We consider four representative communication topologies in our experiments: the ring, torus, fully-
 1101 connected network and the Erdős–Rényi (ER) random graph, as illustrated in Figure 5. To further
 1102 evaluate the robustness of our algorithm under different network structures, we report in Table 3 the
 1103 average node degree of each topology.

1113 Figure 5: Illustration of different communication topologies with $n = 25$ clients: (a) Ring topology,
 1114 where each node connects to two immediate neighbors; (b) Torus topology, represented as a 5×5
 1115 periodic grid; (c) Fully-connected topology, where each node connects to all others; (d) ER graph,
 1116 modeling a complex network with probabilistic connectivity p_{er} .
 1117

1119 Table 3: Average node degree of different topologies.
 1120

Topology	Ring	Torus	Fully-connected	ER
Average node degree	2	4	$n - 1$	$p_{er} * (n - 1)$

1125 D.2 COMPRESSORS AND QUANTIZERS IN COMPARATIVE EXPERIMENTS

1127 **Top- α Compressor.** Following Alistarh et al. (2018); Stich et al. (2018), the biased Top- α operator
 1128 $\text{top}_\alpha : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is defined as

$$1129 \text{Top}_\alpha(\mathbf{x}) := \mathbf{x} \odot \mathbf{u}(\mathbf{x}), \quad (11)$$

1130 where $\mathbf{u}(\mathbf{x}) \in \{0, 1\}^d$ is a binary masking vector. The mask selects the $\lceil \alpha d \rceil$ entries of \mathbf{x} with the
 1131 largest absolute values, i.e., $\|\mathbf{u}(\mathbf{x})\|_1 = \lceil \alpha d \rceil$ and $(\mathbf{u})_i = 1$ if index i corresponds to one of these
 1132 largest coordinates. Formally, let π be a permutation such that
 1133

$$|\mathbf{x}_{\pi(1)}| \geq |\mathbf{x}_{\pi(2)}| \geq \dots \geq |\mathbf{x}_{\pi(d)}|,$$

1134 then $(\mathbf{u})_i = 1$ if $i \in \{\pi(1), \dots, \pi(\lceil \alpha d \rceil)\}$ and $(\mathbf{u})_i = 0$ otherwise.
 1135

1136 The Top- α operator therefore keeps only the top α fraction of coordinates and zeros out the rest,
 1137 which corresponds to a compression level of $\delta = \alpha$ (Stich et al., 2018). To transmit the compressed
 1138 vector, we need to send both the selected values and their indices, leading to a communication
 1139 cost of $2 \cdot 32 \lceil \alpha d \rceil$ bits (assuming 32-bit floating-point representation). Thus, Top- α reduces the
 1140 communication cost from $32d$ bits to $64 \lceil \alpha d \rceil$ bits per iteration.

1141 **Sign Quantizer** (Bernstein et al., 2018; Karimireddy et al., 2019). The biased (scaled) sign operator
 1142 $\text{Sign} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ is defined as

$$1143 \text{Sign}(\mathbf{x}) := \frac{\|\mathbf{x}\|_1}{d} \cdot \text{sgn}(\mathbf{x}), \quad (12)$$

1144 where $\text{sgn}(\mathbf{x})$ denotes the element-wise sign function. This operator replaces each entry of \mathbf{x} with
 1145 only its sign (i.e., $+1$ or -1), and rescales the whole vector by the average magnitude $\frac{\|\mathbf{x}\|_1}{d}$. The sign
 1146 operator is a $\delta = \frac{\|\mathbf{x}\|_1^2}{d\|\mathbf{x}\|_2^2}$ compression operator (Karimireddy et al., 2019). Regarding communication
 1147 cost, we only need to transmit $d + 32$ bits in total: d bits to indicate the sign of each coordinate and
 1148 32 bits to transmit the scaling factor $\|\mathbf{x}\|_1$. In comparison, transmitting the full-precision vector
 1149 requires $32d$ bits. Thus, the sign compressor reduces communication from $32d$ bits to $(d + 32)$ bits
 1150 per iteration.

1151 **Sketch** (Alon et al., 1996). Sketching compresses a high-dimensional vector by projecting it into
 1152 a much lower-dimensional space using a sketching matrix $R \in \mathbb{R}^{b \times d}$ with $b \ll d$. For any vector
 1153 $\mathbf{x} \in \mathbb{R}^d$, the sketch operator $\text{sk} : \mathbb{R}^d \rightarrow \mathbb{R}^b$ is defined as

$$1154 \text{sk}(\mathbf{x}) := R\mathbf{x} \in \mathbb{R}^b, \quad (13)$$

1155 which corresponds to multiplying \mathbf{x} by the sketching matrix R .

1156 To recover an unbiased estimate of \mathbf{x} from the compressed vector $\text{sk}(\mathbf{x})$, a desketching operator
 1157 $\text{desk} : \mathbb{R}^b \rightarrow \mathbb{R}^d$ is applied using the transpose of the same sketching matrix:

$$1158 \text{desk}(\mathbf{s}) := R^\top \mathbf{s} \in \mathbb{R}^d, \quad (14)$$

1159 where $\mathbf{s} = \text{sk}(\mathbf{x})$.

1160 Regarding communication efficiency, the client transmits the b -dimensional sketched vector $\text{sk}(\mathbf{x})$,
 1161 requiring $32b$ bits per iteration (each entry stored in 32-bit floating-point format), instead of the
 1162 original $32d$ bits. Since $b \ll d$, the sketch operator significantly reduces communication while still
 1163 preserving an unbiased estimate of the update direction.

1164 **Low-Rank** (Wang et al., 2018). Low-Rank method approximates a high-dimensional matrix-shaped
 1165 update by factorizing it into two much smaller matrices of rank r . Let $\mathbf{G} \in \mathbb{R}^{p \times n}$ denote a gradient
 1166 matrix reshaped from a d -dimensional update and assume $r \ll \min\{p, n\}$. The Low-Rank method
 1167 defines a mapping $\mathbb{R}^{p \times n} \rightarrow \mathbb{R}^{p \times r} \times \mathbb{R}^{r \times n}$, which projects \mathbf{G} into two low-dimensional factors.

1168 To construct a rank- r approximation, a random matrix $\mathbf{Q} \in \mathbb{R}^{n \times r}$ is sampled and the first projection
 1169 is computed as

$$1170 \mathbf{P} := \mathbf{G}\mathbf{Q} \in \mathbb{R}^{p \times r}. \quad (15)$$

1171 After orthonormalizing \mathbf{Q} , a second projection is formed:

$$1172 \mathbf{Q}^\top := \mathbf{P}^\top \mathbf{G} \in \mathbb{R}^{r \times n}. \quad (16)$$

1173 The reconstructed update is then given by

$$1174 \tilde{\mathbf{G}} := \mathbf{P}\mathbf{Q}^\top, \quad (17)$$

1175 which serves as a rank- r approximation of \mathbf{G} .

1176 Regarding communication efficiency, instead of transmitting the full $p \times n$ matrix (which requires
 1177 $32pn$ bits), the sender only transmits the two Low-Rank factors $\mathbf{P} \in \mathbb{R}^{p \times r}$ and $\mathbf{Q}^\top \in \mathbb{R}^{r \times n}$, requir-
 1178 ing a total of $32r(p + n)$ bits. Thus, when $r \ll \min\{p, n\}$, the communication cost is drastically
 1179 reduced.

1180 **We summarize here how the communication cost, computational complexity and storage complexity**
 1181 **of Top- α , Sign, Sketch, Low-Rank and HarMo are obtained. For Top- α , each iteration transmits the**

largest αd coordinates of a d -dimensional vector together with their indices, leading to a communication cost of $64\lceil\alpha d\rceil$ bits. Identifying these entries requires partial sorting, giving a computational complexity of $\mathcal{O}(d \log d)$. The storage complexity is dominated by the local model and the residual maintained by the compressor, resulting in $\mathcal{O}(d)$ storage. For the Sign operator, communication consists of d one-bit signs and a 32-bit scaling factor. Since only coordinate-wise sign extraction and a norm computation are required, the computational complexity is $\mathcal{O}(d)$ and storing the local model and residual again yields $\mathcal{O}(d)$ storage.

Table 4: Per-iteration communication cost (bit), computational complexity and storage complexity (per node) for different methods.

Method	Communication Cost	Computational Complexity	Storage Complexity
Top- α	$64\lceil\alpha d\rceil$	$\mathcal{O}(d \log d)$	$\mathcal{O}(d)$
Sign	$d + 32$	$\mathcal{O}(d)$	$\mathcal{O}(d)$
Sketch	$32b$	$\mathcal{O}(bd)$	$\mathcal{O}(bd)$
Low-Rank	$32r(p + n)$	$\mathcal{O}(rd)$	$\mathcal{O}(r(p + n))$
HarMo	m	$\mathcal{O}(d)$	$\mathcal{O}(d)$

Sketching compresses a d -dimensional vector into a b -dimensional sketch through a linear mapping implemented by a sketching matrix or equivalent hashing structure, resulting in a communication cost of $32b$ bits. Computing the sketch requires a matrix–vector multiplication of size $b \times d$, producing a computational complexity of $\mathcal{O}(bd)$. Storing the sketching matrix (or its hash parameters) requires $\mathcal{O}(bd)$ memory, which determines the overall storage complexity.

Low-Rank compression reshapes the d -dimensional vector into a matrix $\mathbf{G} \in \mathbb{R}^{p \times n}$ (with $pn = d$) and transmits two factor matrices of sizes $p \times r$ and $r \times n$, yielding a communication cost of $32r(p + n)$ bits per iteration. The dominant computation comes from forming the products \mathbf{GQ} and $\mathbf{P}^\top \mathbf{G}$, each costing $\mathcal{O}(rd)$, so the overall computational complexity is $\mathcal{O}(rd)$. Storing both Low-Rank factors requires $\mathcal{O}(r(p + n))$ memory in addition to the model parameters, giving a total storage complexity of $\mathcal{O}(r(p + n))$.

In contrast, HarMo communicates only a single m -bit scalar obtained by projecting the vector onto a harmonic direction and quantizing the result, yielding an m -bit communication cost per iteration. Both the projection and reconstruction require linear time in d , resulting in $\mathcal{O}(d)$ computational complexity. Since the harmonic direction is generated on the fly and no residual is maintained, HarMo stores only the local model parameters, achieving the minimal storage complexity of $\mathcal{O}(d)$ while providing substantially lower communication cost than all existing compression methods.

Figure 6: Illustration of LBGD-HarMo algorithm, where high-dimensional updates are compressed, quantized and transmitted as binary codes over the communication graph, then decoded, reconstructed and used for variable updates by neighboring clients.

Figure 7: Illustration of HarMo applied to 300 3-dimension vectors (before and after quantization).

D.3 HYPERPARAMETERS FOR SYNTHETIC QUADRATIC OPTIMIZATION PROBLEM

The parameters of the synthetic quadratic optimization problem are set as follows:

For the DSGD algorithm, we adopt a diminishing learning rate $\gamma_t = \frac{0.0036}{\sqrt{t}}$. For the CHOCO algorithm, we employ the Top- α compressor with $\alpha = 0.125$, a diminishing learning rate $\eta_t = \frac{0.2}{t+1}$ and a fixed consensus step size $\gamma = 0.08$. For the MoTEF algorithm, we adopt the Top- α compressor with $\alpha = 0.125$, a fixed learning rate $\gamma = 0.2$, a consensus step size $\eta = 0.0005$ and a momentum coefficient $\lambda = 0.005$. For the LBGD-Sign algorithm, we adopt the Sign quantizer (1 bit), the scaling factor $g_0 = 10$ with decay $\gamma = 0.9999$, the gradient step size $\kappa = 0.05$, the consensus step size $\kappa_0 = 0.005$, and the parameter $\eta = 5$. For the LBGD-HarMo algorithm, we set the quantizer parameters as $m \in \{3, 4, 8, 16\}$, the scaling factor $g_0 = 10$ with decay $\gamma = 0.9999$, the gradient step size $\kappa = 0.05$, the consensus step size $\kappa_0 = 0.005$ and the parameter $\eta \in \{0.022, 0.032, 0.035, 0.04, 0.05, 0.065\}$.

D.4 HYPERPARAMETERS FOR LOGISTIC REGRESSION WITH STRONGLY CONVEX REGULARIZER

The parameters of the logistic regression with strongly convex regularizer are set as follows:

For the DSGD algorithm, we adopt a learning rate $\gamma = 0.1$. For the CHOCO algorithm, we employ the Top- α compressor with $\alpha = 0.1$, a learning rate $\eta = 0.1$ and a fixed consensus step size $\gamma = 0.01$. For the MoTEF algorithm, we adopt the Top- α compressor with $\alpha = 0.1$, a fixed learning rate $\gamma = 0.5$, a consensus step size $\eta = 0.005$ and a momentum coefficient $\lambda = 0.05$. For the LBGD-Sign algorithm, we adopt the Sign quantizer (1 bit), the scaling factor $g_0 = 5$ with decay $\gamma = 0.99999$, the gradient step size $\kappa = 0.1$, the consensus step size $\kappa_0 = 0.01$, and the parameter $\eta = 5$. For the LBGD-HarMo algorithm, we set the quantizer parameters as $m \in \{12, 16\}$, the scaling factor $g_0 = 5$ with decay $\gamma = 0.99999$, the gradient step size $\kappa = 0.1$, the consensus step size $\kappa_0 = 0.01$, and the parameter $\eta \in \{0.022, 0.065, 0.085, 0.1\}$.

D.5 HYPERPARAMETERS FOR NEURAL NETWORK TRAINING

The parameters of the neural network training are set as follows:

The experimental parameters for neural network training are configured as follows. For FedAvg and DSGD, we use a learning rate of $\gamma = 0.1$. For CHOCO, we employ the Top- α compressor with $\alpha = 0.1$, a learning rate of $\eta = 1.60$, and a fixed consensus step size of $\gamma = 0.15$. For LBGD-Sign, we adopt the Sign quantizer (1 bit) with a scaling factor $g_0 = 5$ and decay $\gamma = 0.99999$, a gradient step size $\kappa = 0.25$, a consensus step size $\kappa_0 = 0.15$ and parameter $\eta = 5$. For LBGD-HarMo, we set the quantizer precision $m = 24$, the scaling factor $g_0 = 5$ with decay $\gamma = 0.99999$, the gradient step size $\kappa \in \{0.1, 0.25, 0.5\}$, the consensus step size $\kappa_0 \in \{0.01, 0.025, 0.05\}$ and $\eta = 5$.

1296

E ADDITIONAL EXPERIMENTS

1297

E.1 SYNTHETIC QUADRATIC OPTIMIZATION PROBLEM

1298

E.1.1 PARAMETER SENSITIVITY ANALYSIS

1302 We analyzed the sensitivity of the following parameters in the LBGD-HarMo algorithm: β , η , g_0 ,
 1303 γ , κ_0 and κ . The experimental results, shown in Figure 8, indicate that higher values of β enhance
 1304 convergence by improving the alignment between local updates and the consensus model, while
 1305 simultaneously reducing the communication burden. For η , increasing its value accelerates conve-
 1306 rgence, but it may lead to instability in later stages. In contrast, smaller values of η ensure smoother
 1307 convergence, albeit at the cost of slower progress. The initial step size g_0 directly influences the
 1308 convergence rate, with larger values facilitating faster convergence but risking overshooting, while
 1309 smaller values ensure more gradual updates. The decay factor γ dictates how rapidly the step size di-
 1310 minishes during iterations. Larger values of γ expedite convergence initially but may cause the step
 1311 size to decrease too quickly, ultimately slowing progress, whereas smaller values lead to smoother
 1312 updates without causing abrupt changes. The consensus step size κ_0 governs the speed of synchro-
 1313 nization with neighboring nodes. Larger values of κ_0 accelerate synchronization, but overly large
 1314 values can introduce instability. Finally, the local step size κ , determines the magnitude of local
 1315 updates. Larger values of κ result in faster convergence, but they may lead to overshooting, whereas
 1316 smaller values provide more controlled updates, improving stability.

1347 **Figure 8: Parameter sensitivity analysis showing the effect of different parameter values on the**
 1348 **convergence performance of algorithm 1.**

1350
1351 E.1.2 DIFFERENT VARIABLE DIMENSIONS

1352 We further examine the effect of dimensionality by evaluating LBGD-HarMo under $d \in$
 1353 $\{4, 8, 16, 100\}$. As shown in Fig. 9a, increasing the dimension leads to a moderate rise in both
 1354 optimality and consensus errors, which is consistent with the fact that higher-dimensional models
 1355 involve more parameters, so the aggregated updates tend to exhibit larger variation before reaching
 1356 consensus. Nonetheless, the convergence trend remains stable across all configurations, indicating
 1357 that LBGD-HarMo remains effective in higher-dimensional problems.

1388 Figure 9: Convergence performance of synthetic quadratic optimization problem under different
 1389 settings: (a) varying the variable dimension; (b) varying the HarMo sequence; (c) using the time-
 1390 varying topology; (d) varying the number of asynchronous client; (e) varying the communication
 1391 frequency, set the number of clients to 25 and quantization precisions to 8 bits.

1392
1393 E.1.3 DIFFERENT HARMONIC SEQUENCES

1394 We evaluate how different choices of projection vectors influence the performance of our algo-
 1395 rithm. In addition to the harmonic sequence $\psi_{\text{HarMo}}(t)$, we also test the cyclic coordinate vectors
 1396 $\psi_{e_i}(t) = e_i$ (where $i = 1 + (t \bmod d)$) and pseudo-random Gaussian vectors $\psi_{\text{Gaussian}}(t)$ drawn
 1397 from an isotropic distribution with a fixed seed. As shown in Figure 9b, all three choices yield very
 1398 similar convergence trajectories, indicating that the algorithm is largely insensitive to the specific
 1399 form of the projection direction as long as it provides sufficient directional variation over time. The
 1400 Gaussian vectors perform slightly more irregularly due to their stochastic nature, while the cyclic
 1401 vectors produce smooth but highly axis-aligned updates. The harmonic vector $\psi_{\text{HarMo}}(t)$ achieves
 1402 a desirable middle ground: it introduces rich directional variability through its frequency structure
 1403 while remaining fully deterministic and reproducible. This makes $\psi_{\text{HarMo}}(t)$ a particularly suitable

choice for large-scale decentralized optimization, combining stable empirical performance with theoretical tractability and ease of implementation.

E.1.4 TIME-VARYING TOPOLOGY

In the time-varying topology experiments, we used an Erdos-Renyi (ER) graph with a connection probability of $p_{er} = 0.1$ for each time step. For comparison, we also tested a fixed ER graph. As shown in Figure 9c, while the time-varying topology still converges, its performance is slightly degraded compared to the fixed topology. This performance drop can be attributed to the dynamic nature of the time-varying topology, which causes occasional disruptions in the network structure. These changes lead to temporary loss of connectivity or inconsistent communication between clients, which may slow down the consensus process and lead to a longer convergence time.

E.1.5 ASYNCHRONOUS UPDATE

In the asynchronous update experiments, we tested the effect of partial clients exchanging information with the rest of the clients in a non-fixed manner. We varied the number of these asynchronous clients and the communication frequency between them. As shown in Figure 9d and 9e, the algorithm is still able to converge, but as the number of asynchronous clients increases and the communication frequency decreases, performance is slightly affected. This degradation in performance can be attributed to the reduced synchronization between clients, which leads to delayed updates and a slower consensus process. However, the algorithm still maintains convergence, demonstrating robustness to changes in the update scheme.

E.1.6 DIFFERENT COMPRESSION RATIOS FOR CHOCO AND MoTEF ALGORITHMS

In this experiment, we compare the performance of the CHOCO (Koloskova et al., 2020a) and MoTEF (Islamov et al., 2025) algorithms under different compression ratios, specifically varying the parameter α . We selected $\alpha = 0.125$ (corresponding to retaining only one element) for comparison with our proposed algorithm. This choice of α strikes a balance between communication efficiency and algorithm performance.

Figure 10: Convergence performance of synthetic quadratic optimization problem under (a) varying the compression ratio α for CHOCO and (b) varying the compression ratio α for MoTEF.

E.1.7 CONVERGENCE ITERATIONS

We recorded the total number of iterations and communication cost for different experimental settings and algorithms to reach an Optimality Error of 10^{-3} . For quantization precisions of 3 and 4 bits, the optimality errors were observed to be 0.1 and 0.06, respectively, due to lower quantization precision. Additionally, for a variable dimension of 100, the optimality error reaches 10^{-2} . The table compares various experimental settings, with default values for the number of clients (25), communication topology (ring), quantization precision (8 bits) and communication ratio $\alpha = 0.125$ for CHOCO and MoTEF. Parameters were selected as outlined in Appendix D, with synchronization used for the updates. The settings are adjusted according to specific experimental conditions. The table 5 and table 6 provide the corresponding iteration counts and communication costs.

1458 Table 5: Total number of iterations and communication cost under **different experimental settings**
 1459 on the synthetic quadratic optimization problem.

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

Number of clients	Iteration	Communication cost (MB)
9	39,472	1.36
25	25,810	2.46
64	28,020	6.84
100	36,713	14.00
Topology	Iteration	Communication cost (MB)
Fully-connected	9,550	10.93
Torus	28,523	5.44
Fixed ER	38,233	4.38
Ring	25,810	2.46
Time-varying ER	79,554	9.10
Dimension	Iteration	Communication cost (MB)
4	17,056	1.67
8	25,810	2.46
16	31,354	2.99
100	33,105	3.16
Sequence	Iteration	Communication cost (MB)
ψ_{HarMo}	25,810	2.46
$\psi_{e_i}(t)$	24,224	2.31
$\psi_{\text{Gaussian}}(t)$	25,711	2.45
Number of asynchronous clients	Iteration	Communication cost (MB)
5	28,879	2.48
10	29,985	2.29
15	37,063	2.47
20	41,027	2.35
Comm. frequency	Iteration	Communication cost (MB)
2	29,985	2.29
4	42,545	2.84
6	56,287	3.58
8	69,185	4.29
Quantization precision (bit)	Iteration	Communication cost (MB)
3	47,653	4.54
4	38,717	3.69
8	25,810	2.46
16	24,789	4.73
Compression ratio α (CHOCO)	Iteration	Communication cost (MB)
0.125	38,074	29.05
0.375	37,118	84.96
0.625	33,939	129.47
0.875	33,546	179.15
Compression ratio α (MoTEF)	Iteration	Communication cost (MB)
0.125	4,180	3.19
0.375	3,812	8.72
0.625	3,775	14.40
0.875	3,687	19.69

1512 Table 6: Total number of iterations and communication cost under **different algorithms** on the
 1513 synthetic quadratic optimization problem.

Algorithm	Method	Iteration	Communication cost (MB)
DSGD	None	9,100	27.77
CHOCO	TOP- α	38,074	14.52
MoTEF	TOP- α	4,180	3.19
LBGD	Sign	46,707	22.27
LBGD	HarMo	25,810	2.46

1522
 1523 The table 7 presents the total number of iterations and communication cost under various hyperpa-
 1524 rameter values on the synthetic quadratic optimization problem to reach an optimality error of 10^{-3} .
 1525 The results are consistent with the parameter sensitivity analysis presented in Appendix E.1.1, show-
 1526 ing that our algorithm exhibits robustness across a range of hyperparameter values.
 1527

1528 Table 7: Total number of iterations and communication cost under **different hyperparameter val-**
 1529 **ues** on the synthetic quadratic optimization problem.

Value of hyperparameter β	Iteration	Communication cost (MB)
0.4	56,568	5.39
0.6	38,639	3.68
0.8	29,732	2.84
1.0	25,810	2.46

Value of hyperparameter η	Iteration	Communication cost (MB)
1.0	56,686	5.41
2.5	40,103	3.82
3.8	26,543	2.53
5.0	25,810	2.46

Value of hyperparameter g_0	Iteration	Communication cost (MB)
4	26,230	2.50
6	26,121	2.49
8	25,880	2.47
10	25,810	2.46

Value of hyperparameter γ	Iteration	Communication cost (MB)
0.999	divergence	/
0.9999	25,810	2.46
0.99999	25,907	2.47
0.999999	25,908	2.47

Value of hyperparameter κ	Iteration	Communication cost (MB)
0.010	84,927	8.10
0.025	70,111	6.69
0.038	32,599	3.11
0.050	25,810	2.46

Value of hyperparameter κ_0	Iteration	Communication cost (MB)
0.0010	27,100	2.58
0.0025	26,583	2.54
0.0038	26,486	2.53
0.0050	25,810	2.46

1566
1567

E.2 LOGISTIC REGRESSION WITH STRONGLY CONVEX REGULARIZER

1568
1569
1570
1571
1572
1573

We evaluate the performance of LBGD-HarMo on the logistic regression under varying system configurations, including different numbers of clients (4, 9, 16 and 25) and communication topologies (Fully-connected, Torus, ER and Ring), using both IID and Non-IID data distributions. As shown in Table 8, LBGD-HarMo consistently maintains stable test accuracy across all settings. These results demonstrate the robustness and scalability of LBGD-HarMo in decentralized optimization with strongly convex objectives across diverse network structures and data heterogeneity conditions.

1574
1575
1576
1577
1578

Table 8: Test accuracy (%) and Runtime (s) after the entire training process of logistic regression with strongly convex regularizer under different numbers of clients (4, 9, 16, 25), data distributions (IID vs Non-IID) and communication topologies (Fully-connected, Torus, Fixed / Time-varying ER and Ring). We use **LBGD-HarMo** with $m = 16$ bits for all cases.

Number of clients	Data distribution	Test accuracy (%)	Runtime (s)
4	IID	87.98	639.99
	Non-IID	87.64	640.04
9	IID	87.84	733.49
	Non-IID	87.63	734.12
16	IID	87.68	852.07
	Non-IID	87.49	852.65
25	IID	87.33	921.19
	Non-IID	87.17	922.05
Topology	Data distribution	Test accuracy (%)	Runtime (s)
Fully-connected	IID	88.10	740.16
	Non-IID	87.92	741.25
Torus	IID	87.99	736.95
	Non-IID	87.83	736.13
Fixed ER	IID	87.91	735.46
	Non-IID	87.72	735.92
Ring	IID	87.84	733.49
	Non-IID	87.63	734.12
Time-varying ER	IID	86.81	965.06
	Non-IID	86.69	966.48

1602

E.3 NEURAL NETWORK TRAINING PROBLEM

1603
1604
1605
1606
1607

Parameters of ResNet-18. ResNet-18 is a widely used convolutional neural network architecture composed of 18 layers, including convolutional, normalization and residual blocks. It contains approximately 11.2 million parameters, corresponding to a total size of about 44.7 MB.

1608
1609

Table 9: Parameter count and size of each layer in ResNet-18.

Layer	Number of Parameters	Size (MB)
Conv1 (7×7, 64)	9,408	0.036
BatchNorm1	128	0.0005
Layer1 (2×BasicBlock, 64)	147,456	0.59
Layer2 (2×BasicBlock, 128)	524,288	2.10
Layer3 (2×BasicBlock, 256)	2,097,152	8.39
Layer4 (2×BasicBlock, 512)	8,388,608	33.55
Fully Connected (512→10)	5,130	0.020
Total	11,172,170	44.7 MB

1620
 1621 **Data Distributions.** To simulate both IID and Non-IID data distributions across clients, we set
 1622 $p = 100000$ for the IID case and $p = 0.3$ for the Non-IID case and the resulting data are illustrated
 1623 in figure 11.
 1624

1625
 1626 Figure 11: **Visualization of data distributions across clients with different Dirichlet parameters:** the
 1627 left subfigure ($p = 100000$) corresponds to the IID case and the right subfigure ($p = 0.3$) corresponds
 1628 to the Non-IID case.
 1629

1630 We evaluate the performance of LBGD-HarMo under various configurations, following the same
 1631 experimental settings as in Appendix E.2 for the logistic regression task. As shown in Table 10,
 1632 LBGD-HarMo maintains stable test accuracy across all configurations, demonstrating robustness
 1633 to network variations. These results confirm the effectiveness of LBGD-HarMo in decentralized
 1634 non-convex optimization.
 1635

1636 Table 10: **Test accuracy (%) and Runtime (min) after the entire training process of neural network**
 1637 **training under different numbers of clients (4, 9, 16, 25), data distributions (IID vs Non-IID) and**
 1638 **communication topologies (Fully-connected, Torus, Fixed / Time-varying ER and Ring).** We use
 1639 **LBGD-HarMo** with $m = 24$ bits for all cases.
 1640

1641	Number of clients	1642 Data distribution	1643 Test accuracy (%)	1644 Runtime (min)
1645 4	1646 IID	1647 88.16	1648 158	1649
		1650 Non-IID	1651 86.61	1652 158
1653 9	1654 IID	1655 86.69	1656 203	1657
		1658 Non-IID	1659 85.17	1660 203
1661 16	1662 IID	1663 85.45	1664 270	1665
		1666 Non-IID	1667 84.10	1668 270
1669 25	1670 IID	1671 84.82	1672 354	1673
		1674 Non-IID	1675 83.04	1676 354
1677	Topology	1678 Data distribution	1679 Test accuracy (%)	1680 Runtime (min)
1681 Fully-connected	1682 IID	1683 86.96	1684 203	1685
		1686 Non-IID	1687 85.85	1688 203
1689 Torus	1690 IID	1691 86.88	1692 203	1693
		1694 Non-IID	1695 85.26	1696 203
1697 Fixed ER	1698 IID	1699 86.70	1700 204	1701
		1702 Non-IID	1703 85.23	1704 204
1705 Ring	1706 IID	1707 86.69	1708 203	1709
		1710 Non-IID	1711 85.17	1712 203
1713 Time-varying ER	1714 IID	1715 83.51	1716 258	1717
		1718 Non-IID	1719 82.36	1720 258

1674 **F LARGE LANGUAGE MODELS USAGE STATEMENT**
16751676 In compliance with the ICLR 2026 policy on the use of Large Language Models (LLMs), we hereby
1677 disclose their role in the preparation of this paper. We employed LLMs (ChatGPT, GPT-5 by Ope-
1678 nAI) for (1) polishing the English writing style to improve readability and conciseness, (2) generat-
1679 ing alternative phrasings and suggestions for smoother transitions, and (3) reformatting LaTeX code
1680 (tables, figures, equations and cross-references). All technical ideas, algorithmic designs, theoretical
1681 analyses and experimental implementations were developed entirely by the authors without LLM as-
1682 sistance. The LLMs were not used to generate new scientific content, results, or proofs, but served
1683 purely as a writing aid.1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727