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ABSTRACT

Previous research on the Llama-2 family of Large Language Models (LLMs)
suggested a correlation indicating the use of English as a intermediary language
within these models for tasks in non-English languages. We improve on this by
demonstrating a causal relationship. By intervening on the intermediate layers
during a forward pass, we show that projecting out the activations onto a subspace
corresponding to the correct prediction in English impairs the model’s ability to
make correct predictions on non-English translation tasks. Projecting out an unre-
lated English subspace, or a related subspace in a non-English language, has little
effect, demonstrating that this family of models store concepts that have a high
similarity to the corresponding concept in English in the residual stream.

1 INTRODUCTION

The dramatic abilities of Large Language Models (LLMs) using the transformer architecture
Vaswani et al. (2017); Phuong & Hutter (2022) are rather surprising, given the sole goal during
training is to predict the next word in a sequence. LLMs generalize to many out-of-distribution
tasks, and exhibit abilities typically associated with intelligence, such as solving difficult maths
problems, tool use, and demonstrating theory of mind Bubeck et al. (2023). Interestingly, models
predominantly trained on English data tend to perform well in other languages, even when other
languages constitute a tiny proportion of the training data K et al. (2020); Blevins & Zettlemoyer
(2022). Tianyi Tang et al. (2024) show that language-specific neurons in LLMs are responsible for
their multilingual capabilities, and that activating or deactivating these neurons can control the out-
put language. Additionally, Julen Etxaniz et al. (2023) show that LLMs trained predominately in
English can perform better on tasks in non-English by explicitly prompting the model to translate
to English, solving the task in English, and then translating back to the target language. Shi et al.
(2022) show that by using chain-of-thought Chu et al. (2023) prompting, models can perform vastly
better on even obscure languages.

1.1 LLAMA WORKS IN ENGLISH WENDLER ET AL. (2024)

Wendler et al. (2024) claim that the Llama-2 family of multilingual transformers “work in English”
by showing that on translation tasks between non-English languages, the model assigns a high prob-
ability to the corresponding answer in English midway through a forward pass. More precisely,
given the multi-shot translation prompt1 used by Wendler et al. (2024) from French (Français) to
Chinese (中文),

Français: " vertu" -中文: "德"
Français: " siège" -中文: "座"
Français: " neige" -中文: "雪"
Français: " montagne" -中文: "山"
Français: " fleur" -中文: "

1We modify the prompt provided in Wendler et al. (2024) slightly and prepend spaces to words using the
latin alphabet to aid with tokenization.
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Figure 1: The probability assigned both to the correct answer in Chinese, and in the latent language
English when translating from French to Chinese. Probability measured for every layer using logit
lens for Llama-2-7b. We sum the probability mass over not just the exact correct answer in Chinese,
but other semantically similar answers as well.

the model, using in-context-learning Brown et al. (2020) predicts the next token as花, the correct
translation of fleur (flower) from French to Chinese. Surprisingly, if the technique of logit lens
Nostalgebraist (2020) is used, and the residual stream midway through a forward pass is passed
through the unembedding stage of the model, a high probability is assigned to the corresponding
token flower in English (Figure 1). We refer to the language being translated from as the source
(here, French) the language being translated to as the target (Chinese) and the language we measure
the probability mid-way through the forward pass as the latent language.

This effect is observed regardless of which non-English languages are chosen for the source and
target, and only if the latent language is English. This is suggestive that the model is using English
as an intermediary language for translation tasks. However, this is only a correlation, and may just
be an artefact of tokenization, or that the vocabulary of the model is predominantly English.

1.2 MAIN CONTRIBUTION

For translation tasks between non-English languages on the Llama-2-7b model Touvron et al. (2023):

• We show a causal relationship between the unembedding vectors of the corresponding an-
swer in English and the downstream prediction of the model in the target language. By
computing the vector projection projS(hi) of the intermediate activations hi onto a sub-
space S corresponding to the correct prediction in English, and subtracting this projection
out, this impairs the model’s ability to make correct predictions on non-English translation
tasks. This effect is far weaker when projecting out a related subspace in a non-English
language, and not present at all when projecting out an unrelated subspace (using words
unrelated to that being translated), regardless of the language chosen to intervene with.

• Normally, steering vectors Turner et al. (2023) are obtained by computing a forward pass
over inputs of interest, and extracting vectors of interest from the activations. We show
a weak effect demonstrating that on translation tasks, we can cause the model to predict
a desired counterfactual translation into the target language by steering directly using the
unembedding vectors of the corresponding word in English. Note that this effect is not
robust, and can in may cases cause the model activations to diverge during a forward pass.
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2 PRELIMINARIES

2.1 MOTIVATION

LLMs are impressive in the capabilities that they have, but it is not at all clear how they can perform
the tasks they do. After training, the mechanism by which the model can make good predictions is
present, but buried amongst the weights of the network.

This motivates a more transparent approach to understanding the behaviour of models, and what the
field of mechanistic interpretability aims to achieve: A holistic understanding of how models can
perform particular tasks. Meng et al. (2022) show how to extract and modify particular facts known
by the model. Wang et al. (2022) demonstrate how particular attention heads in a transformer model
can learn how to solve simple in-context-learning tasks. Li et al. (2023) demonstrate that LLMs
internally construct models of the world to solve tasks. However, works like this are very costly
in terms of human time spent on analysis of models, and it is desirable to find more automatic
approaches to understanding models. Zhang & Nanda (2024) introduce activation patching, to take
the activations from a forward pass on corrupted input, patch them into the activations of a forward
pass on clean input, and observe the causal downstream effect. Todd et al. (2024) present function
vectors, a direction in latent space representing a particular function or operation, and use this to
steer the model on other such inputs.

2.2 TRANSFORMERS

The transformer architecture Vaswani et al. (2017) is a deep neural network trained on a large corpus
of text data, with the goal Radford et al. (2019); Brown et al. (2020) of predicting the next token in
a sequence. The training data is composed of strings of text, converted into a sequence of tokens
t1, . . . , tseq of length seq, where each token is a word or subword obtained using byte pair encoding
Sennrich et al. (2016). Each token is an integer in the range ti ∈ {1, . . . , dvocab}, where dvocab is the
size of the vocabulary for the model.

The model then converts these tokens into embeddings et1 , . . . , etseq ∈ Rdmodel , by using tokens to
index rows in the embedding matrix E ∈ Rdvocab×dmodel . Stacking these embeddings gives the first
hidden state H1 ∈ Rseq×dmodel .

ei = Eti,: H1
i,: = eti (1)

These embeddings are then passed through a series T1, T2, . . . , Tn of n layers called transformer
blocks. For each hidden state Hk, the subsequent hidden state Hk+1 is computed as Hk+1 =
Tk(H

k), giving us a sequence of hidden states, or activations, H1, . . . ,Hn+1. Following Elhage
et al. (2021), we refer to the sequence of hidden states as the residual stream.

Specific to the Llama-2 family of models Touvron et al. (2023), the transformers blocks Ti are
defined as2

Tk(H
k) = Zk + GLU(RMS(Zk))

where Zk = Hk + MHA(RMS(Hk))

where GLU is a Gated Linear Unit Shazeer (2020) using the Swish activation function, MHA is
the multi-head self-attention mechanism Vaswani et al. (2017), and RMS is the Root Mean Square
normalization operation Zhang & Sennrich (2019). Each of the internal components of Tk have a
set of learned weights specific to that layer.

The final hidden state Hn+1 is then RMS normalized, and then multiplied by the unembedding
matrix U ∈ Rdvocab×dmodel to obtain the logits L ∈ Rseq×dvocab :

L = U(RMS(Hn+1)) (2)

which are finally passed through a softmax Goodfellow et al. (2016) operation to obtain a set of
probability distributions P ∈ Rseq×dvocab , representing (for a given prefix t1, . . . , ti of the input

2We omit the details of positional embeddings. Llama-2 uses Rotary Positional Embedding (RoPE) Su et al.
(2023) which are performed inside the self-attention mechanism.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

sequence) the model’s prediction for the next token ti+1.

Pi,j =
exp(Li,j)∑
j′ exp(Li,j′)

≈ Pr(ti+1 = j|t1, . . . , ti) (3)

During inference we are only interested in the probability of the next unknown token tseq+1, given
by the last row p := Pseq,: ∈ Rdvocab , derived from the last logit vector l := Lseq,: ∈ Rdvocab .

We do not concern ourselves with the internal details of the self-attention mechanism, but focus only
on interventions that modify the hidden states H1, . . . ,Hn+1 between transformer blocks.

2.3 LOGIT LENS

The same argument can be made for transformers, which are also deep models with skip connections,
so it is reasonable to expect that the intermediary activations have an interpretable relationship to
the final logits (see Appendix A.1). Based on this idea, Nostalgebraist (2020) introduced logit lens:
During a forward pass, the hidden states h1 := H1

seq,:, . . . ,h
n+1 := Hn+1

seq,: associated with the last
token position/prediction of the next token are cached, and then fed through the final unembedding
stage of the model (comprised of an RMS normalization layer, followed by multiplying by the
unembedding matrix U ) to get increasingly better estimates3 l̂1, . . . , l̂n+1 of the logits l, from which
we can recover estimates of p using the softmax operation.

l = URMS(hn+1) ≈ l̂k = URMS(hk) (4)

pi =
exp(li)∑
i′ exp(li)

≈ exp(l̂k[i, j])∑
j′ exp(l̂

k[i, j′])
(5)

3 EXPERIMENTS

3.1 SUBSPACE REJECTION

To demonstrate Llama-2’s reliance on English as an intermediary language, we perform a series
of interventions on the residual stream of the model during a forward pass on translation tasks.
Information for prediction of the next token must be stored somewhere in the residual stream (it
being the only causal path from earlier layers to later layers). We hypothesise that for translation,
the information of the concept to translate is stored in a low-dimensional subspace S ⊆ Rdmodel of
the residual stream, and this subspace is similar to a set S = {Ui1,:, . . .Uim,:} of unembedding
vector(s) U·,: ∈ Rdmodel for the token(s) describing that concept in English. If so, replacement of hi

with the orthogonal projection projS⊥(h
i) of hi onto the orthogonal complement S⊥ of S should

affect the model’s ability to predict the correct answer in the target language.

projS⊥(hi) = hi − projS(h
i) = hi − S(STS)−1SThi (6)

As an abuse of notation, we write S as simply S, and define the subspace S as span(S). We call
hi
⊥S

:= projS⊥(hi) the rejection of hi from S. We intervene on the hidden layers hi between
transformer blocks during a forward pass and replace each hi ← hi

⊥S
during a forward pass over

layers of interest. We then observe the downstream effect on the model’s prediction on the target
language. We construct two kinds of subspaces to reject, Slang and S′

lang as follows:

• Slang(tsource): We translate the correct prediction token tsource from the source language to
the corresponding token tlang in language lang. We consider many such valid translations
for a given source word. For example, when translating livre (book) from French to En-
glish, we consider any of book, manuscript, volume or tome as valid translations. We also
considered valid translations with and without leading spaces. For clarity, we write spaces
as “_”. If the token ttarget is not present in the vocabulary (in that the tokenizer splits the to-
ken into subwords), we use only the first such token (under the assumption that if the model
correctly predicts the first subtoken, it will correctly predict the rest Pal et al. (2023)).

3Note by definition that l̂n+1 = l is exact.
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The subspace is then constructed as

Slang ={U [tlang] : t ≃ tlang} ∪ {U [_tlang] : t ≃ tlang}

where t ≃ tlang denotes that t and tlang are words with semantically identical or similar
meanings, but in different languages. For example, given the source word for translation
was livre (book), and potential translations of livre as book, manuscript, volume or tome,
the correpsonding subspace would be4

Slivre
en = Span{U ["book"],U ["_book"],U ["volume"],U ["_volume"],

U ["man"],U ["_manuscript"],U ["t"],U ["_t"]}

Here, U [x] denotes the unembedding vector U [ix], where ix is the index of the token x in
the vocabulary.

• S̄lang(tsource): Same as above, but we choose an incorrect translation tlang ̸≃ tsource in lang
of the word tsource, together with other words with similar meanings to tlang, also in language
lang.
Following the above example, we might choose the incorrect English translations dog,
canine and puppy for livre, giving the corresponding subspace

S̄livre
en = {U ["dog"],U ["_dog"],U ["can"],U ["_can"],U ["pu"],U ["_pu"]}

The incorrect translations were chosen by taking a dearrangement of the dataset, ensuring
that the correct answer was not chosen, and that the word was not present in the translation
prompt.

The subspaces are constructed in this way (with and without spaces) to deal with an artefact of the
tokenization process: Often a word may appear in the vocabulary with or without a leading space (or
sometimes both are present) and correspondingly, the model may choose to predict the word with or
without a leading space.

Wendler et al. (2024) observed the phenomena where the model has three distinct phases during a
forward pass: an initial phase where the model is not “thinking” in English, nor the target language
(layers 1 to 19), a middle phase where the model is “thinking” in English (layers 20 to 29), and
a final phase where the model is “thinking” in the target language (layers 30 to 32), as measured
using the logit lens probability (Figure 1).

We perform the intervention over all layers inside the interval [a, b], for some 1 ≤ a < b ≤ 32.
A sweep was performed over all possible intervals to perform the rejection intervention on with
English as the latent language (see Figure 5a), but we found that the choice of layer was not critical,
so long as it was sufficiently deep into the network to cover the region where the model ”thinks in
English”.

The critical point for where the intervention starts working is around the transition from the initial
to middle phase. Note that the rejection intervention does not completely destroy the model’s ability
to predict the correct answer, indicating that while the English subspace is important, it does not
fully contain all the information required for prediction. So, we fix the rejection intervention to be
performed on all layers, and compare to a baseline where no intervention is performed (Figure 2).

An alternative hypothesis is that the residual stream is fragile, and that any similar rejection inter-
vention would have a similar effect. To test this, we perform the same intervention for all choices
of source, latent and target languages (where the three languages are distinct), as well as performing
the rejection for the unrelated subspace S′

lang.

We find that the rejection intervention has broadly no effect for latent languages that are not English
(Figure 3), and no effect for unrelated subspaces in any language (Figure 4), which supports the
hypothesis that we are not just damaging the residual stream in general, but performing a targeted
intervention on the English subspace.

4Note that tome is not present in the vocabulary for Llama-2, so we only consider the first subtoken t, and
similar for manuscript.
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Figure 2: A plot of the average probability assigned to the correct answer in the target language when
translating from the source language, for all pairwise translations between French (FR), German
(DE), Chinese (ZH), English (EN), Spanish (EN) and Russian (RU). We see similar performance for
all languages, with slightly worse performance when translating from Chinese. Error bars are 95%
confidence intervals.

Figure 3: A plot of the average probability assigned to the correct answer in the target language
when translating from the source language, and rejecting the latent language, for all possible triplets
of (source, latent, target) languages. We see a stark drop in performance when rejecting the English
subspace, but little effect for other languages. Error bars are 95% confidence intervals.

Figure 4: Same figure as Figure 3, but for the unrelated subspace. We see little effect on the model’s
ability to predict the correct answer. Error bars are 95% confidence intervals.
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(a) (b)

(c) (d)

Figure 5: Translation tasks from source=French to target=Chinese, interventions in English.
(a) Probability assigned to correct answer with rejection intervention on related subspace (Sec-
tion 3.1).
(b) Probability of correct answer with steering intervention from related subspace, to unrelated sub-
space (Section 3.2).
(c) Same as (b), but probability of desired counterfactual answer corresponding to the unrelated
subspace we are steering towards (Section 3.2).
(d) Log-probability of the counterfactual answer, minus the log probability of the correct answer,
using steering intervention. Positive values indicate the model is more likely to predict the counter-
factual token over token corresponding to the correct translation.
Interventions performed between layers [a, b], sweeping over all options for 0 ≤ a < b < 32 (zero-
indexing layers), for model Llama-2-7b. Steering interventions use c = 8.

7
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3.2 STEERING TOWARDS A COUNTER-FACTUAL TRANSLATION

The next experiment we perform is to try and steer the model to give a desired counterfactual transla-
tion in the target language only by modifying the activations using the unembedding vectors in the la-
tent language. Given a source word tsource to translate, and subspaces Slang(tsource) and S̄lang(tsource)
as described in Section 3.1, we perform the intervention

hi ← hi − projS(hi) + c
1

|S̄|
∑
s∈S̄

s (7)

where c > 0 is a constant controlling the strength of the steering vector. We then observe the effect
on the model’s prediction by sweeping over layers to intervene on, as well as the size of the constant
c.

We found that the strength of the effect grows monotonically with c, up to the point where the
residual stream would diverge for c ≈ 10. As expected, the effect was strongest when using Uen,
but the choice of layer to intervene on is critical (and depends on the choice of c). We found the
strongest effect (the one that boosts the probability of the counterfactual word in the target language
the most) was to intervene on layers 13 to 18, and to choose c = 8. This is quite a large constant, as
the norm of the vector that we project out is≈ 4−5, so essentially we are adding a larger vector back
in to the one we projected out. For more reasonable values of c (around 1-2), the effect was barely
noticeable. This indicates that our steering intervention perhaps is not a suitable one, and that other
methods should be investigated. We plot both the probability of the correct answer in the target
language, and the probability of the counterfactual answer in the target language to demonstrate
the effect is both a suppression of the correct answer, and a boosting of the counterfactual answer
(Figure 5b).We also plot the difference in log-probabilities between the counterfactual and correct
answer (Figure 5d). See Appendix A.1 for plots of sweeps over choices of c, and for various choices
of languages.

3.3 CONCLUSION

Our results are somewhat mixed: We do confirm that to a degree, the LLama-2-7b model is using
English as an intermediary language, and that the unembedding vectors in English do explain some
of the model’s behaviour in translation tasks. Projecting out in English clearly has a much stronger
effect than projecting out in other languages, and the lack of effect for unrelated subspaces does
indicate this intervention is not just causing general damage to the model.

However, the effect is not as strong as we would have hoped. There is still a lot of probability mass
that the model assigns to the correct prediction after the rejection intervention. We would have liked
to have seen the model’s ability to predict the correct answer drop to near zero, but this was not the
case. This indicates that the model is storing concepts elsewhere in a subspace that is not easily
projected out, or that the model is able to recover from the intervention by using other information
stored in the residual stream.

3.4 FUTURE WORK

We also performed the same experiment for Llama-2-13b, Gemma-2-2b and Gemma-2-9b, see Ap-
pendix A. While the same effect was observed for Llama-2-13b as was for Llama-2-7b, which was
expected, the effect was much more destructive for the Gemma models. Any intervention, even
those in an unrelated subspace or a non-English language, quite badly affected the model’s ability to
predict the correct answer. However, the Gemma models were still more vulnerable to rejections in
English than any other language, causing the probability of prediction of the correct token to drop
to near zero. We are unsure what to make of this behaviour, perhaps Gemma tends to store concepts
in a less English-biased manner, or that the unembedding vectors are similar between languages, or
that the Gemma models are more fragile in general. We leave this to future work.

The steering effect that we used was also rather brute-force, and would quite drastically change
the activations midway through the network to something well outside the normal distribution. We
would like to explore other methods of steering the model using the unembedding vectors only that
are less destructive, while still being effective.

8
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IMPACT STATEMENT

This paper presents work whose goal is to better understand the internals of Large Language Models,
and how we can perform interventions on models in an interpretable fashion. We do not anticipate
any ethical concerns arising from this work, as we are exploring the already existing capabilities of
a pre-existing model.
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A APPENDIX

REPLICATION DETAILS

All code and datasets used for this paper can be found at [REDACTED]. Scripts are included to
replicate the main results, as well as to generate the plots.

DATASET DETAILS

In Wendler et al. (2024), the dataset was constructed by taking a corpus of words in English, and
translating them externally into other languages using DeepL. A similarly constructed dataset was
also used in the subsequent work by (Dumas et al.), which includes many more languages, as well
as a list of other possible translations. For each non-English language lang, we took the English
column and the lang column from their dataset, and prompted Claude 3.5 Sonnet as follows to
create a high-quality set of additional possible translation from English to language lang. Here, <x>
represents the translation of the English word x into language lang.

en <lang>
book <book>
cloud <cloud>
...
power <power>
summer <summer>

Generate for me a CSV file, first column is the word in english,
second column is the <lang> translation provided, and third is a
list of synonyms of this word-pair in <lang>. The list should be
formatted as a list of strings would be in python. Do not force
the synonyms, they should all be a suitable replacement for the
word, or a word strongly associated. For example, big and large
would be suitable synonyms. Apple and pear would not. Small and
tiny would be suitable. Bag and handbag would be okay, as well
as fire and flame. third, three and triple are all suitable.
Machine and car would not be. Generate as many as you can for
each entry, but no more than 10. If you can’t find any, that’s
okay, don’t force words just to make the list long. Some lists
can be short or even empty if the word is very unique and no
reasonable synonyms exist.

The original work included Japanese. We excluded as often the symbol for a word in Chinese and
Japanese were identical (for example, water is expressed as水 in both Chinese and Japanese), which
would make translation artificially easy.
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This gave us a dataset of words from English to Chinese, French, German, Russian and Spanish, and
vice-versa. We try all 120 permutations of distinct source, latent and target languages, and perform
the rejection intervention, both for the related subspace and the unrelated subspace.

We also slightly modify the prompt used by Wendler et al. (2024) (see Section 1.1) to deal with
tokenization: we add a space character before the word if the language is non-Chinese (as the vocab-
ulary of Llama-2-7b has many more tokens corresponding to a space character (e.g. "_hello"),
followed by a word, than just the word itself), but we do not add the space for Chinese (Chinese
tokens in the vocabulary are just the symbol itself, "好", or the sequence of bytes in the UTF-8
representation of the symbol, "<0xE5><0xA5><0xBD>"). We ignored Chinese characters that
could only be represented in the vocabulary as the raw UTF-8 sequence.

The prompt for each translation is fixed once and then used throughout the experiment. We use 4
words for the translation examples in the prompt, leaving the rest for translation. This was required
as to allow for both kv-caching of the shared prefix, as well as to perform inference on a large
number of words in parallel, to ensure the experiment was computationally feasible in a reasonable
amount of time.

A.1 SKIP CONNECTIONS

If models can make good predictions over a large class of domains, we would expect that somewhere
in the residual stream of the transformer, the model stores useful information for prediction of the
next token. In a standard feed-forward neural network, each pair of adjacent weight matrices have
permutation invariances Entezari et al. (2022), so we should not expect the intermediary activations
to have any clear resemblance to the final logits on the output.

It has been shown that deep vision neural networks pose a problem to train, due to gradients van-
ishing or exploding Pascanu et al. (2013). This was solved by adding skip connections He et al.
(2016), which allowed very deep models to be trained effectively. As a side effect, transformers
have been hypothesised to encourage the model to perform iterative inference: the intermediary ac-
tivations represent the models’ best current guess at the output midway through the forward pass,
which gradually move towards the model’s final prediction Jastrzębski et al. (2018). There are two
factors at play here:

• The presence of skip connections in the transformer breaks permutation invariances, so the
choice of basis for the intermediary activations is no longer arbitrary.

• Given some neural network fΘ with a skip connection, the operation performed is
x + fΘ(x). The addition of L2 weight decay Goodfellow et al. (2016) during training
encourages the weights of f to be small, so all else equal, the model will prefer weights Θ
such that x+ fΘ(x) is close to x.

REVERSE LENS

This technique had no improvement over adding the unembedding vectors directly into the residual
stream (Section 3.2), but we include it (and the code) for posterity. Tuned Lens (TL) is a technique
introduced by Belrose et al. (2023), which is identical to Logit Lens (LL), except for an extra learned
linear mapping is applied to the hidden layers hi prior to normalization and unembedding. This gives
a layer specific transformation TLi of the hidden state hi. We can write the operation of Tuned Lens
(and Logit Lens to compare) as

LL(hi) = URMS(hi)

TLi(h
i) = URMS(hi +Aih

i + bi)

RMS(x) =
x

µx
⊙ γ

µx =

√√√√dmodel∑
i=1

x2
i + ϵ

where Ai ∈ Rdmodel×dmodel and bi ∈ Rdmodel are the learned parameters of the tuned lens for layer
i, U ∈ Rdvocab×dmodel is the unembedding matrix, µx ∈ R is the scale factor for RMS norm, and
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γ ∈ Rdmodel is a learned parameter for RMS norm, taken from the final normalization layer of the
transformer. Here, ⊙ denotes elementwise multiplication. We do not concern ourselves with how
the weights Ai, bi are learned, but make use of the pretrained weights for Tuned Lens available at
AlignmentResearch (2023).

The idea behind tuned lens is that rather than unembedding hi directly, an approximation x 7→
x+Aix+ bi of the composition of the subsequent layers x 7→ (Tn ◦ Tn−1 . . . ◦ Ti)(x) is learned
and applied prior to normalization and unembedding, with the goal of aligning the semantics of the
hidden state hi with the input that U expects to operate on.

With this in mind, Reverse Lens is trying to run Tuned Lens backwards: Given a row of the unem-
bedding matrix Ui,:, what are the activations that Tuned Lens would map to this row? If Tuned Lens
can recover the logits from the residual stream, then by running it backwards, we should be able to
compute an approximation of the model’s internal representation of Ui,: at any particular layer.

Unfortunately, RMS norm is not invertible, and U is not square, so we cannot directly invert Tuned
Lens. To solve the first problem, note that for a fixed scale factor µx, RMS is a linear function, so
we can factor µx out, and the end result is the output logits will be scaled by µx. Since the argmax
is invarant to scaling, we end up absorbing µx elsewhere, and so we just set µx = 1 in the reverse
operation. For the second, we do not require the ability to invert an arbitrary logit vector, but only
vectors that correspond to a particular token that we wish to find the model’s internal representation
of. The logit Li,: in the ith sequence position in the output is computed as Li,: = (URMS(H))i ∝
(Ui,:) · (Hi,: ⊙ γ), the dot product of the ith row of U with the activations H (weighed by the
RMS norm parameter γ). Since the dot product of a vector with itself is large, and the unembedding
matrix U needs to be able to discriminate between many different tokens, we would expect the rows
of U are approximately orthogonal. So, the vector that U would map to the standard basis vector5

ei is approximately U :, i, the ith column of U . We can then use this as the target for the reverse
tuned lens operation.

We define the reverse tuned lens (RTL) for layer i as follows: Taking as input an index j ∈
{1, . . . , dvocab} and a cached scale factor µ ∈ R, we define the operation

RTLi(j, µ) = (I −Ai)
−1(RMS−1(U:,j , µ)− bi)RMS−1(x, µ) = µ(x · γ−1)

One can verify that argmaxk(TLi(RTLi(j, µ)))k = j for all layers i, scaling factors µ and indices
j, assuming that for every i, Ui,: ·Uj,: is maximised when j = i.

However, when this was used in practice (repeating the experiment in Section 3.2 with RTL instead
of the unembedding vectors directly), no appreciable difference in behaviour was observed. The
rejection effect was equally effective as before. We include the code for the Reverse Tuned Lens
operation, in the hope that perhaps it may be useful elsewhere.

FULL EXPERIMENTAL RESULTS FOR REJECTION

5Defined asei
i = 1 and ei

j = 0 for j ̸= i.
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Figure 6: A plot of the average probability assigned to the correct answer in the target language when
translating from the source language, for all pairwise translations between French (FR), German
(DE), Chinese (ZH), English (EN), Spanish (EN) and Russian (RU). We see similar performance for
all languages, with slightly worse performance when translating from Chinese. Error bars are 95%
confidence intervals, model is Llama-2-13b.

Figure 7: A plot of the average probability assigned to the correct answer in the target language
when translating from the source language, and rejecting the latent language, for all possible triplets
of (source, latent, target) languages. We see a stark drop in performance when rejecting the English
subspace, but little effect for other languages. Error bars are 95% confidence intervals, model is
Llama-2-13b.

Figure 8: Same figure as Figure 3, but for the unrelated subspace. We see little effect on the model’s
ability to predict the correct answer. Error bars are 95% confidence intervals, model is Llama-2-13b.
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Figure 9: A plot of the average probability assigned to the correct answer in the target language when
translating from the source language, for all pairwise translations between French (FR), German
(DE), Chinese (ZH), English (EN), Spanish (EN) and Russian (RU). We see similar performance for
all languages, with slightly worse performance when translating from Chinese. Error bars are 95%
confidence intervals, model is Gemma-2-2b.

Figure 10: A plot of the average probability assigned to the correct answer in the target language
when translating from the source language, and rejecting the latent language, for all possible triplets
of (source, latent, target) languages. We see a stark drop in performance when rejecting the English
subspace, but little effect for other languages. Error bars are 95% confidence intervals, model is
Gemma-2-2b.

Figure 11: Same figure as Figure 3, but for the unrelated subspace. We see little effect on the model’s
ability to predict the correct answer. Error bars are 95% confidence intervals, model is Gemma-2-2b.
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Figure 12: A plot of the average probability assigned to the correct answer in the target language
when translating from the source language, for all pairwise translations between French (FR), Ger-
man (DE), Chinese (ZH), English (EN), Spanish (EN) and Russian (RU). We see similar perfor-
mance for all languages, with slightly worse performance when translating from Chinese. Error
bars are 95% confidence intervals, model is Gemma-2-9b.

Figure 13: A plot of the average probability assigned to the correct answer in the target language
when translating from the source language, and rejecting the latent language, for all possible triplets
of (source, latent, target) languages. We see a stark drop in performance when rejecting the English
subspace, but little effect for other languages. Error bars are 95% confidence intervals, model is
Gemma-2-9b.

Figure 14: Same figure as Figure 3, but for the unrelated subspace. We see little effect on the model’s
ability to predict the correct answer. Error bars are 95% confidence intervals, model is Gemma-2-9b.
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Figure 15: The probability of Llama-2-7b predicting the correct translation, given the rejection
intervention on the related English subspace. The intervention was performed across all layers
{0, 1, . . . , 31} that lie in the interval (start, end). We sweep over all possible values 0 ≤ start <
end ≤ 31, as well as sweep over the choices for source and target languages. Columns sorted by
target language.

FULL EXPERIMENTAL RESULTS FOR STEERING

Here, we focus only on translating from Chinese to French and vice versa, and perform the steering
interventions with either German or English as the latent language. Grey regions either indicate an
invalid range for the intervention (the start layer is greater than the end layer), or that the residual
stream diverged to infinity, which results in a NaN value when fed into the final RMS norm.
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Figure 16: Same plot as Figure 15, but now plotting log-probabilities all over the same range −8 ≤
log p ≤ 0, and with every choice of latent language. Lower values mean a greater rejection effect.
Clearly visible is the greater rejection effect when the latent language is English. Columns sorted by
latent language.
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Figure 17: Same plot as Figure 16, but plotting log-probabilities with ranges determined per experi-
ment to make the effect more visible. As before, the range of values is much greater for the English
intervention, though interventions in other languages do have a small effect. Columns sorted by
latent language.
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Figure 18: Same plot as Figure 16, but now the intervention is the rejection on the subspace of an
unrelated word in the latent language, plotting log-probabilities with ranges determined per exper-
iment to make the effect more visible. This intervention as expected has very little effect on the
models prediction.
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Figure 19: The probability of Llama-2-7b predicting the correct translation, steering towards a dif-
ferent concept in English. The intervention was performed across all layers {0, 1, . . . , 31} that lie in
the interval (start, end). We sweep over all possible values 0 ≤ start < end ≤ 31, as well as sweep
over the choices for source and target and intervention languages. Lower values indicate a greater
steering effect, as we want to steer the model away from predicting the correct translation.
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Figure 20: The probability of Llama-2-7b predicting the correct translation, steering towards a dif-
ferent concept in German. The intervention was performed across all layers {0, 1, . . . , 31} that lie
in the interval (start, end). We sweep over all possible values 0 ≤ start < end ≤ 31, as well as
sweep over the choices for source and target and intervention languages. Lower values indicate a
greater steering effect, as we want to steer the model away from predicting the correct translation.
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Figure 21: Same plot as Figure 19, but now plotting probabilities of the counterfactual answer we
are steering towards, using English as the latent language. Higher values mean a greater steering
effect.
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Figure 22: Same plot as Figure 20, but now plotting probabilities of the counterfactual answer we
are steering towards, using German as the latent language. Higher values mean a greater steering
effect.
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Figure 23: Same plot as Figure 19, but now plotting the log-probabilities of the counterfactual
answer we are steering towards, minus the log-probabilities of the correct answer we are steering
away from. Intervention is performed with English as the latent language. Higher values mean a
greater steering effect.
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Figure 24: Same plot as Figure 23, but now with German as the latent language.
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