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Abstract

DNA-encoded library (DEL) data, often with millions of data points, enables large
deep learning models to make real contributions in the drug discovery process (e.g.,
hit-finding). One recent success method of modeling DEL data [1], GCNN [2]
multi-class model, requires domain experts to create mutually exclusive classifi-
cation labels from multiple selection readouts of DEL data, which is not always
an optimal formulation. In this work, we designed a multi-label architecture that
directly models each selection data to eliminate the corresponding dependency
on human expertise. We selected effective choices for key modeling components
such as label reduction scheme from in silico evaluation. To assess its performance
in real-world drug discovery settings, we further carried out prospective wet lab
testing where the multi-label model shows consistent improvement in hit-rate
(percentage of hits in a proposed molecule list) over the current state-of-the-art
multi-class model.

1 Introduction

One of the major barriers in applying machine learning, especially deep learning, to drug discovery
problems is limited data. The recent advent of DNA-encoded libraries (DELs) with their massive
data size opens many new opportunities [3] [4] [5]. Training large deep learning molecular property
models becomes possible, and applying them to key stages (e.g., hit-finding, hit to lead) of the drug
discovery process has shown great promises [1].

The readout of an experimental DEL selection is DNA sequence counts [3], which are commonly
aggregated into disynthon representations to calculate enrichment scores with good signal-to-noise
properties [1]. Besides the primary DEL selection experiment (measuring binding signal called
“Target Enr” when protein target is present, i.e., on-target binding experiment), control selection
(measuring binding signal called “NTC Enr” when no protein target is present, i.e., No-Target Control
binding experiment) and additional counter-selections could be run to further reduce noise, for
example, inclusion of a known competitive inhibitor (measuring binding signal called “Competitor
Enr” when protein target is competitively inhibited) [1].

In McCloskey et al.’s work [1], data from those multiple DEL selections are combined to create
mutually exclusive labels corresponding to different experimental outcomes. These labels represent
logical combinations (e.g. AND/OR) of enrichment scores from the multiple experimental conditions
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as well as external side information such as hit frequency across targets denoted as “Target ratio” (to
identify promiscuous compounds that are unlikely to have specific interactions with the target). The
label derivation can be often summarized in a decision tree, which we call a column scheme. See an
example in Figure 1.

Figure 1: Example column scheme: derivation of class labels that are needed in GCNN multiclass
models. “NTC Enr” stands for molecule’s enrichment score in No-Target Control binding experiment,
“Target Enr” stands for a molecule’s enrichment score in on-target binding experiment, “Competitor
Enr” stands for a molecule’s enrichment score in on-target binding experiment but the protein target’s
desired binding pocket has been occupied by other molecules already, and “Target ratio” is statistic
quantifying how frequently a molecule binds to any protein target

A classification model can then be readily built with the derived classes. One major problem with this
approach is that in reality a molecule being categorized as one class can still be of another class (e.g.,
a promiscuous compound can still be a target competitive hit). Additionally, using labels derived
from multiple experiments, each with their own criteria and thresholds, requires the model to learn
a complicated latent structure for the human-crafted labels (fixed at training time, see Figure 1).
Our key insight is that the separate DEL experimental outcomes can be treated independently. In
this way, the label naturally matches with the physical meaning of each selection experiment—the
resulting model makes a prediction for each experimental outcome and these predictions can be
flexibly combined as needed in downstream applications. We summarize our contributions in this
paper as follows:

• we design and implement key components of a multi-label neural architecture that models
DEL data more naturally (Figure 2),

• we conduct in silico retrospective testing experiments and demonstrate this philosophy of
modeling each DEL selection experiment independently can bring better performance than
the multi-class architecture,

• to examine performance in real drug-discovery settings, we carry out wet lab prospective
testing experiments [6] for two protein targets, which showed superior performance of
multi-label models in hit-finding applications.

2 Results

In order to compare hit-finding performance with the current state-of-the-art GCNN multi-class
model [1], we selected two relatively hard protein targets: Tyrosine-protein kinase (c-KIT) and
Estrogen Receptor Alpha (ERa). In [1], c-KIT and ERa show relatively low hit rates (9.7% and 18.8%
respectively at concentration of 10uM), giving this study more room to improve. We trained two
types of graph neural networks to enable direct comparison: GCNN multi-class model used in [1]
and GCNN multi-label model developed in this study (see Figure 2).
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Figure 2: Modeling setup: the baseline is a GCNN multi-class model which requires a column
scheme designed by human expertise; this work reports a GCNN multi-label model that learns from
each selection individually.

Table 1: in silico retrospective evaluation against two c-KIT inhibitor datasets and five internal
ERa inhibitor datasets for GCNN multiclass model and two multilabel models with variation
on label reduction scheme: (a) simply using target enrichment label as final reduced label, i.e.,
Reduced-label = Target-Enr-label, (b) using Reduced-label = Target-Enr-label−NTC-Enr-label−
Competitor-Enr-label

actives@100 (↑) c-KIT-test0 c-KIT-test1

GCNN multiclass 27 59
GCNN multilabel (a) 28 61
GCNN multilabel (b) 29 57

actives@100 (↑) ERa-test0 ERa-test1 ERa-test2 ERa-test3 ERa-test4

GCNN multiclass 99 77 42 23 13
GCNN multilabel (a) 100 79 43 26 11
GCNN multilabel (b) 100 79 45 26 12

2.1 In silico evaluation

As a first step, we carried out in silico retrospective evaluation of our models against internal inhibitor
datasets. Specifically, we have five test datasets for ERa and two for c-KIT. We monitor a metric
that is closely related to hit-rate: the number of active molecules among the top 100 highest scoring
molecules in the test set (actives@100). Table 1 shows the results. Despite the slight improvement,
the GCNN multi-label models outperforms its multi-class counterpart for most of the test sets (6 out
of 7).

2.2 Wet-lab results

Improving hit-finding performance The training data follows the same preprocessing step with
disynthon aggregation (Methods section of [1]), which is mainly to denoise the raw DNA-sequencing
count data. During prospective experimental testing, each model type proposes a list of ∼ 200
molecules from the same commercially purchasable library (Mcule instock library [7] was used in this
study) and the percentage of hits is measured in wet lab. We limit human intervention in the molecule
list proposal by automating diversity selection and structural filtering into a streamlined pipeline, so
that the hit-rate difference should be mostly explained by model type difference. Simplified from
a two-step prospective testing approach [1], we use single-point inhibition assays evaluated at the
molecule concentration of 10uM in this study.
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(a) (b)

Figure 3: Prospective testing shows multilabel model outperformed multiclass model at all three
inhibition cut-offs for (a) c-KIT target and (b) ERa target. The legend "paper" stands for the hit-rates
reported in [1]. Note that for the multilabel model on ERa target we are still waiting to receive wet-lab
test results of remaining 50% of the proposed compounds. The corresponding hit-rate is estimated
from available wet-lab results so far.

(a) (b)

Figure 4: (a) Predictive probability distribution of hit molecules of an internal ERa inhibitor dataset
using GCNN multiclass model and GCNN multilabel model. (b) is a reliability diagram for these two
models

For both of the c-KIT and ERa protein targets, GCNN multilabel model outperformed GCNN
multiclass model at three different inhibition cut-off percentages (see Figure 3). Specifically for
c-KIT target, at 30% inhibition (enzyme remaining activity = 70%), multilabel model achieved 26.2%
hit rate whereas multiclass model had 20.9%; at 30% inhibition, multilabel model achieved 20.1% hit
rate whereas multiclass model had 17.4%. The hit rates achieved by multiclass model in [1] are also
included as additional reference; the difference between multiclass model in this study and multiclass
model in [1] come from recent improvements in model hyper parameters, difference in commercial
libraries to select molecule list from, difference in diversity and filtering strategies.

Pushing hits to high score region Why does the GCNN multilabel model achieve a better hit-
rate than the multiclass model? We notice that, via an internal ERa inhibitor dataset (test1) as a
demonstrating example, GCNN multiclass model has placed many active molecules in the middle
range of the score spectrum. This could be caused by unrealistic assumptions made in creating the
mutually exclusive labels. On the other hand, GCNN multilabel model tends to score the active
molecules (true inhibitors) more towards the high end compared with the GCNN multiclass model
(see Figure 4a). Figure 4b suggests GCNN multilabel model has an improved calibration especially
in the middle score region. This helps enrich the actives in the high score region.
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3 Selecting key components

There are several key components that are essential for multilabel neural architecture to work properly.
Below we disclose the our detailed choices in two important components: data sampling, label
reduction scheme

Data sampling strategy We design the data sampling as follows. Each selection experiment label
has a wide range of enrichment scores. We categorize each label into high enrichment and low
enrichment types and feed the model during training with equal chance of high vs low enrichment
data types. Furthermore, if we have 3 labels (i.e., 3 selection experiments), then the number of
all combinatorial types is 8. We make sure each training data batch has balanced example counts
between all these types.

Label reduction scheme Coming out of the GCNN multilabel model are multiple prediction scores
(one per selection experiment), so how to effectively combine them into a single prediction (i.e.,
reduced label) and use it for checkpoint selection as well as downstream tasks (e.g., propose molecule
list to find hits) are crucial for a successful multilabel model. Through in-silico evaluation, the final
label reduction scheme used in this study is:

Reduced-label = Target-Enr-label− NTC-Enr-label− Competitor-Enr-label (1)

4 Conclusion

In this study, we have presented a simple multilabel architecture for DEL data modeling, which
allows models to learn more naturally with the DEL data at hand than the current state-of-the-art
approach. An equally important aspect is that it helps eliminate the dependency on human-crafted
column scheme. This simple multilabel architecture not only shows improvements in retrospective
test datasets, but also, through web-lab prospective testing, brings real improvements in hit-finding
use-case. Although the fundamental reason behind the effectiveness of multilabel models is yet to
uncover, we observe that its improved calibration tends to score those active compounds towards
higher region than the GCNN baseline model does.
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