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ABSTRACT

Data-driven deep learning methods like neural operators have advanced in solving
nonlinear temporal partial differential equations (PDEs). However, these methods
require large quantities of solution pairs—the solution functions and right-hand
sides (RHS) of the equations. These pairs are typically generated via traditional
numerical methods, which need thousands of time steps iterations far more than
the dozens required for training, creating heavy computational and temporal over-
heads. To address these challenges, we propose a novel data generation algorithm,
called HOmologous Perturbation in Solution Space (HOPSS), which directly gen-
erates training datasets with fewer time steps rather than following the traditional
approach of generating large time steps datasets. This algorithm simultaneously
accelerates dataset generation and preserves the approximate precision required
for model training. Specifically, we first obtain a set of base solution functions
from a reliable solver, usually with thousands of time steps, and then align them
in time steps with training datasets by downsampling. Subsequently, we propose a
”homologous perturbation” approach: by combining two solution functions (one
as the primary function, the other as a homologous perturbation term scaled by
a small scalar) with random noise, we efficiently generate comparable-precision
PDE data points. Finally, using these data points, we compute the variation in the
original equation’s RHS to form new solution pairs. Theoretical and experimental
results show HOPSS lowers time complexity. For example, on the Navier-Stokes
equation, it generates 10,000 samples in approximately 10% of traditional meth-
ods’ time, with comparable model training performance.

1 INTRODUCTION

Nonlinear temporal partial differential equations (temporal PDEs) serve as a core mathematical tool
for precisely characterizing continuous physical systems in the real world that evolve dynamically
over time. They possess exceptionally high application value across diverse real-world scenarios:
for instance, the Navier-Stokes equations (Temam (2024)) describe the motion states of atmospheric
fluids. Traditionally, solving PDEs has often relied on extensive domain expertise and computa-
tionally intensive numerical methods (e.g., the finite difference method Godunov & Bohachevsky
(1959), finite element methods Strang et al. (1973)). With the rapid advancement of deep learning,
a new physical dynamics modeling and prediction paradigm, such as neural operators, has sparked
widespread discussion. Deep learning models can unearth latent physical relationships from data
and predict future states at lower computational cost—a capability driving numerous breakthroughs
in physical dynamics research, modeling, and prediction.

Neural operators—especially transformer-based ones—show promise for accelerating PDE solu-
tions. But they rely heavily on large-scale training data, which comes from costly classical methods
(e.g., FEMHughes (2000)). This creates a hard-to-solve circular dependency issue (Brandstetter
et al. (2022)). This dependency becomes particularly problematic at industrial scales, as the high
computational overhead of data generation via traditional numerical solvers severely hinders real-
world applications (Zhang et al. (2025)). By accelerating dataset generation, we not only mitigate
the high costs of classical method-driven model order reduction but also enhance sample complexity.
Furthermore, efficient data generation supports broader generalization capabilities, which remains
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an underexplored area critical for robust real-world applications(Kochkov et al. (2021),Stachenfeld
et al. (2021)).

However, existing methods for generating PDE datasets exhibit notable limitations. Traditional nu-
merical methods(e.g., the Crank-Nicolson method)typically require iterating over thousands of time
steps to achieve solution convergence and stability, incurring significant temporal and computa-
tional overheads. While progress has been made in addressing linear time-independent PDEs (e.g.,
DiffOAS Dong et al. (2024), Wang et al. (2024)), these approaches rely on the linearity and time-
invariance of the equations. This renders them incompatible with the data needs of neural solvers
for nonlinear temporal PDE scenarios.

To address the challenges in forward modeling for nonlinear temporal PDEs, we propose a novel and
efficient data generation algorithm termed HOmologous Perturbation in Solution Space (HOPSS).
HOPSS simultaneously accelerates dataset generation while preserving the precision of the gener-
ated data. Specifically, HOPSS first generates a set of solution pairs under initial conditions, which
serves as base solution functions in the solution space. These base solution functions are typically
generated using a traditional solver to ensure high precision, and are then aligned to the time steps
required for model training. Next, the base functions are fed into the generator, where two solutions
are randomly selected: One is scaled by a small scalar, acting as the homologous perturbation term.
It is then combined with the other to generate a new solution, plus small random noise. Concur-
rently, HOPSS computes the right-hand side (RHS) of the physical equation, ensuring compliance
with the properties of the corresponding physical equation. A key advantage of HOPSS lies in its
ability to avoid extensive iteration over a large number of time steps; instead, it acts directly on the
time steps needed for training.

The distinct contributions of our work can be summarized as follows.

• We propose a novel data generation algorithm (HOPSS) tailored for nonlinear temporal
PDEs. This algorithm simultaneously accelerates dataset generation while preserving the
precision of the generated data—enabling the generation of large-scale nonlinear temporal
PDE datasets at affordable time costs and computing resources.

• We demonstrate that our proposed algorithm significantly lowers computational complexity
and shortens data generation time when solving nonlinear temporal PDEs. Notably, even
with only approximately 10% of the generation time required by existing methods, neu-
ral operators trained on HOPSS-generated data exhibit performance comparable to those
trained on data from conventional generation approaches.

2 RELATED WORK

2.1 DATA-DRIVEN DEEP LEARNING FOR SOLVING TEMPORAL PDES

Data-driven deep learning has become a transformative force in solving temporal PDEs, with key
advancements centered on efficient model architectures and hybrid computational paradigms. Neu-
ral operators stand out as a major breakthrough: the Fourier Neural Operator (FNOLi et al. (2021))
and Deep Operator Network (DeepONetLu et al. (2021))leverage deep learning to capture complex
spatiotemporal dependencies in PDE systems, outperforming conventional methods in efficiency for
time-evolving problems. Complementary efforts target bottlenecks in classical PDE solving—for
instance, studies exploring neural networks to accelerate linear equation system solutions directly
reduce the computational overhead of temporal PDE workflows. Additionally, data-driven solvers
have advanced via hybrid designs: works like Hsieh et al. (2019), Yang et al. (2016), and Kochkov
et al. (2021) propose data-optimized iterative schemes, merging machine learning with traditional
numerical techniques to boost efficiency for temporal PDE scenarios. Together, these directions
highlight a shift toward data-centric methods that address the unique spatiotemporal challenges of
temporal PDEs.

2.2 DATA GENERATION FOR PDE ALGORITHMS

Training data-driven PDE algorithms, particularly those targeting nonlinear temporal PDEs, de-
mands large-scale offline paired parametrized datasets. These datasets must capture complex spa-
tiotemporal dynamics—including nonlinear interactions (e.g., convection terms in Navier-Stokes
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equations) and transient behaviors—making their generation computationally intensive. Tradition-
ally, such datasets are produced exclusively via classical computational mathematics algorithms,
following a standardized numerical workflow tailored to solve nonlinear temporal PDEs.

Numerically solving nonlinear temporal PDEs relies on two-step discretization, which converts con-
tinuous nonlinear equations into a sequence of solvable linear (or linearized) systems (Morton &
Mayers (2005)). First, temporal discretization splits the PDE’s long-term evolution into discrete-step
iterative updates: explicit schemes (e.g., 4th-order Runge-Kutta, RK4 Hairer et al. (1993)) work for
stable, low-stiffness systems, while implicit schemes (e.g., Crank-Nicolson Crank & Nicolson) are
favored for stiff nonlinear systems to bypass strict time step constraints. Second, spatial discretiza-
tion approximates spatial derivatives via core techniques (e.g., Finite Difference, Finite Element,
Finite Volume Methods Strikwerda (2004); Hughes (2000); LeVeque (2002)), each tailored to spe-
cific needs like regular domains or conservation-focused transport PDEs. Notably, nonlinear terms
(e.g., quadratic velocity in fluid dynamics) require linearization (e.g., Newton-Raphson iteration) to
produce linear systems at each time step.

While traditional numerical methods for generating nonlinear temporal PDE datasets are highly ma-
ture, they demand substantial time and computational resources—largely due to the repeated solu-
tion of multiple matrix multiplications at each time step (Hao et al. (2022)). This inefficiency poses
a significant bottleneck to the advancement of data-driven deep learning algorithms for PDEs, as
large-scale dataset generation often becomes prohibitively costly. To address this challenge, emerg-
ing data generation methods have been proposed, with DiffOAS (Dong et al. (2024)), Wang et al.
(2024), and Brandstetter et al. (2022) being representative examples. However, DiffOAS is specifi-
cally designed for data generation of linear time-independent PDEs; it cannot be directly extended
to nonlinear temporal PDEs. A critical limitation is that DiffOAS relies heavily on the linear prop-
erties and steady-state characteristics of the target equations. This dependence renders it inadequate
for nonlinear temporal scenarios, as it fails to preserve the spatiotemporal dynamics and physical
precision required for training reliable data-driven solvers (Dong et al. (2024)).

3 PRELIMINARIES

3.1 NONLINEAR TEMPORAL DATA GENERATION

Our primary goal is to generate nonlinear temporal datasets, which are acquired by solving associ-
ated partial differential equation (PDE) problems. Numerical methods for PDE solving are catego-
rized into explicit and implicit schemes; these methods discretize PDE problems by mapping them
from infinite-dimensional function spaces to finite-dimensional spaces, ultimately resulting in either
a system of linear equations or a sequence of matrices. To illustrate this, we take the Navier-Stokes
equations 1 and the Crank-Nicolson method—a classic implicit scheme—as an example.

ut + v · ∇u = ν∇2u+ f, (1)

Generating datasets for temporal PDEs typically relies on the Crank-Nicolson (CN) scheme—an
implicit temporal discretization method ideal for balancing stability and efficiency. Its core principle
is to discretize the time derivative using a weighted average of solutions at two consecutive time
steps (tn and tn+1, where the time step ∆t = tn+1 − tn). For a temporal PDE with linear term
Lu = ν∇2u (where ∇2 denotes the Laplacian) and nonlinear term N(u) = −v · ∇u + f , the CN
scheme yields:

un+1 − un

∆t
=

1

2

(
Lun+1 +N(un+1)

)
+

1

2
(Lun +N(un)) , (2)

Since the nonlinear term at the tn+1 step is difficult to handle directly, a semi-implicit approach is
adopted: N(un+1) is replaced with N(un). Rearranging the equation ultimately gives:

un+1 =

(
1 + L

2∆t
)
un +N(un)

1− L
2∆t

, (3)

Here, un and un+1 are solutions at tn and tn+1; the nonlinear term N(u) uses un (known from
the previous step) to avoid complex coupling. Rearranging and solving the equation (often in the
frequency domain, where ∇2 becomes lap) gives un+1. To build the dataset, start from the initial
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condition u0, iterate this process for T time steps, and collect the spatiotemporal solution pairs
{(tn, un, fn)}Tn=0. The time complexity of dataset generation with CN is dominated by computing
multiple matrix multiplications at each time step. Let n = dimension of the spatial discretization,
T = total time steps, and N = number of data points. For sparse matrices, each computation solve
costs O(Nn2). Thus, the total complexity is O(TNn2).

3.2 NONLIEAR TEMPORAL DATASETS

Nonlinear temporal partial differential equations (PDEs) are fundamental mathematical tools for
describing complex spatiotemporal dynamic systems across science and engineering (e.g., fluid flow,
heat transfer, and chemical reactions). Their general form is typically expressed as:

∂u(x, t)

∂t
= L(u(x, t)) +N (u(x, t)) + f(x, t) x ∈ Ω, (4)

u(x, t) = g(x, t) x ∈ ∂Ω, (5)
∇u(x, t) · n = h(x, t) x ∈ ∂Ω, (6)

where: x = (x1, x2, ..., xd) ∈ Ω denotes the d-dimensional spatial coordinate (with Ω as the spatial
domain, e.g., Ω = [0, 1]2 for 2D problems), t ∈ [0, T ] is the time variable (with T as the total
time horizon), and u(x, t) is the unknown solution field (e.g., velocity for fluid flow, temperature for
heat transfer) that varies with both space and time. L(·) represents the linear spatial operator (e.g.,
L(u) = ν∇2u, where ν is the diffusion coefficient and ∇2 is the Laplacian operator describing linear
diffusion). N (·) is the nonlinear operator that introduces complexity (e.g., N (u) = −u · ∇u for
convection in Navier-Stokes equations, where the product of the solution u and its spatial gradient
∇u leads to nonlinearity). Finally, f(x, t) is the external source/sink term (e.g., a heat source in
thermal PDEs) that drives or modifies the system’s evolution. To ensure the uniqueness of the
solution, boundary conditions are imposed on the domain boundary ∂Ω: common types include
Dirichlet conditions (specifying u(x, t) = g(x, t) for x ∈ ∂Ω, where g is a given function) and
Neumann conditions (specifying ∇u(x, t) · n = h(x, t) for x ∈ ∂Ω, where n is the outward unit
normal vector of ∂Ω and h is a given function).

4 METHOD

In existing algorithms, we typically generate initial conditions and RHS of nonlinear temporal PDEs
randomly, then feed them into traditional solvers for such PDEs to obtain the solution function u(x).
However, taking the semi-implicit method as mentioned in 3.1 as an example, we have to iterate
over thousands of time steps to ensure solution stability —this demands significant computational
resources and time. Yet in practice, datasets used to train neural operators typically only require the
solution at a few to a dozen time steps. Thus, a natural question emerges: can we reduce the number
of iterations to accelerate dataset generation?

Thus, unlike traditional methods, HOPSS acts directly on training-level data, thereby avoiding iter-
ation over a large number of time steps. The specific process is as follows: we first generate a set
of solutions using a high-precision solver, then align them to the time steps required for training via
downsampling—these serve as the base solutions in our solution space. Next, the base functions are
fed into the generator, where two solutions are randomly selected: one is scaled by a small scalar to
act as the homologous perturbation term, and then combined with the other to generate a new solu-
tion, along with small random noise. Finally, based on these new solutions and their corresponding
physical equations, we compute the right-hand side (RHS) of the equation; these collectively form
new solution pairs. This strategy acts directly on training-level data, with the only exception being
the generation of base solutions. Thus, when generating new data, it avoids the need to iterate over
a large number of time steps.
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Figure 1: Overview of the HOPSS method. First, generating a series of solutions using the existing
method and downsampling as base solutions. Then, randomly select two base solutions and apply
the homologous perturbation to generate new solutions. Finally, calculating the RHS using the new
solutions.

The HOPSS method primarily comprises three key steps:

1. Base solution generation: In this phase, we generate high-precision solution functions
using a high-precision solver and format them to meet the requirements for model training.

2. Homologous perturbation in solution space: In this stage, we apply homologous pertur-
bation to the base solutions to generate a large number of new candidate solutions.

3. Computation of equation RHS: In this phase, we calculate the corresponding right-hand
side (RHS) of the physical equation based on the generated candidate solutions, ensuring
they satisfy the constraints of the target physical equation.

4.1 SOLUTION FUNCTIONS GENERATION

The HOPSS method generates a set of base functions by first producing solutions based on a des-
ignated distribution consistent with real-world physical scenarios—these base functions typically
number 100 to 500, denoted herein as Nbase. For the generation of these solutions, this paper
adopts existing high-precision methods. Subsequently, we downsample the generated solutions to
align them with the time steps required for training, reducing the number of time steps from several
thousand to several dozen. These processed solutions serve as the base functions of HOPSS and
constitute the foundational elements of its solution space.

4.2 HOMOLOGOUS PERTURBATION IN SOLUTION SPACE

The homologous perturbation process entails introducing small-scale functional perturbations to
existing base solution functions. Specifically, we randomly select two base solution functions: one
acts as the primary function ui, and the other as the homologous perturbation term, denoted uj .
To prevent the generated new solution function from exhibiting excessive fluctuations, we multiply
the perturbation term uj by a small constant µ (typically µ ≈ 10−3). After combining these two
functions, we further add small-scale time-invariant random noise ξ—specifically Gaussian noise
where ξ ∼ N (0, ςI) with ς ≈ 10−4—to enhance the robustness and diversity of the dataset. The
mathematical expression for this process is:

unew = ui + µ · uj + ξ. (7)

4.3 COMPUTE VARIATION OF RHS

To satisfy the constraints of the physical equations, we recompute the variation of the right-hand
side (RHS) at the training data level. Using the same discretization method as employed earlier,
we derive a system of equations corresponding to the target physical equation. We then substitute
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the newly generated unew and the primary function ui into this discretized system of equations—this
enables us to calculate the variation ∆f of the original RHS term fi, and further obtain the new RHS
term fnew. Subsequently, unew and fnew form new solution pairs, which serve as the new dataset.

Taking a burgers equation with a source term as an example (see Eq. 8):

∂u

∂t
+ uux = νuxx + f(x, t), (8)

We assume both (unew, fnew) and (ui, fi) satisfy Eq. 8. According to the generation rule for unew,
we introduce the transformation:

ui = unew − v, (9)

where v = µuj + ξ is a newly defined composite variable, with µ being a constant and ξ = ξ(x)
being a spatially dependent function.

By substituting ui = unew − v into Eq. 8 and rearranging terms, we can derive that unew satisfies the
same form of Burgers equation:

∂unew

∂t
+ unewunew,x = νunew,xx + fnew, (10)

where the unew,x = ∂unew

∂x , the unew,xx = ∂2unew

∂x2 and the new source term fnew is given by:

fnew = fi +
∂v

∂t
+ (unewv)x − vvx − νvxx︸ ︷︷ ︸

∆f

. (11)

5 THEORETICAL ANALYSIS

5.1 EXISTING METHOD

Solving temporal PDEs inherently involves spatiotemporal discretization, where the primary com-
putational expense stems from iterative time step evolution and the associated solution of spatially
discretized linear systems LeVeque (2007); Hughes (2000). Conventional numerical methods for
temporal PDEs typically combine temporal discretization (e.g., 4th-order Runge-Kutta (RK4) Hairer
et al. (1993), Crank-Nicolson (CN) scheme Crank & Nicolson) and spatial discretization (e.g., Fi-
nite Element Method (FEM) Hughes (2000), Finite Difference Method (FDM) LeVeque (2007));
the computational complexity of these methods is determined by the interplay of spatial grid scale,
time step count, and linear system solving cost.

Notably, for the semi-impact scheme, the cost of time iterations dominates the overall computa-
tional process: for the traditional method, with n as the space dimensions, this step exhibits a time
complexity of O(n2) Dong et al. (2024), and a linear system must be solved at each time step to
update the PDE solution. Given T total time steps, usually exceeding thousands, and n as the di-
mension of the spatially discretized linear system, the overall time complexity of the entire solving
process amounts to O(Tn2) for dense matrix scenarios. If N datapoints are generated, the all-time
complexity comes up to O(NTn2).

5.2 OUR HOPSS METHOD

According to the introduction referred to in 4, our method consists of three steps: base solution
generation, variational action, and RHS computation.

In the first step, we use traditional methods to generate Nb base solutions. According to the forward
analysis, its time complexity is O(NbTn

2). Since the cost of the downsampling step is far lower
than that of data generation, we reasonably ignore it. We then operate on training-level data, which
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typically has smaller T ′ (time steps) and n′ (spatial dimensions) than the T and n used in traditional
data generation. Typically, T ′ is T

1000 or smaller.

In the subsequent two steps, the time complexity is O(NnewT
′(n′)2) obviously. Since T ′ is much

smaller than T and can be approximated as a constant, the time complexity for subsequent new
data generation is approximately O(Nnew(n

′)2)—which is one order of magnitude lower than that
of traditional methods.

Thus, the total time complexity of the HOPSS method is O(NbTn
2 + Nnew(n

′)2) ≈ O(NbTn
2).

Consequently, the theoretical acceleration ratio of HOPSS depends on the gap between Nb (the
number of base solutions) and N (the number of samples required for generating an equivalent
dataset via traditional methods).

6 EXPERIMENT

In this chapter, we compare our proposed data generation method with existing data generation
methods.

6.1 EXPERIMENT SETUP

Our analysis focuses on two key performance indicators, both critical for evaluating the effectiveness
of data generation methods:

• Time cost of data generation

• Test loss of neural operator models trained on the generated data

In our experiments, we test two widely recognized and adopted neural operator models—among the
most prominent and prevalent in data-driven PDE algorithms:

• FNO (Fourier Neural OperatorLi et al. (2021))

• Transolver(Wu et al. (2024))

We also evaluate three types of PDE problems with significant applications in science and engineer-
ing:

• Navier-Stokes equations(Li et al. (2021))

• Burgers’ equation(Xie et al. (2013))

• KdV equation (Korteweg-de Vries equationShen (1993))

Baselines. The primary time cost of existing data generation methods stems from iterating over
thousands of time steps, despite only dozens of time steps being required for model training. We use
the traditional methods to generate solution functions, which serve as our baselines. The details of
the experiment are shown in AppendixB.1 and parameters of the generated dataset in AppendixB.3.

6.2 MAIN RESULT

Our main results across all datasets and models are presented in Table 1. Further details and hy-
perparameters are provided in the AppendixB.2. Based on these results, we draw the following
observations.

Firstly, the HOPSS method exhibits significant acceleration compared to traditional meth-
ods—particularly for the Navier-Stokes equations, where the acceleration ratio reaches 10 times.
The time cost of our method consists of three components: generating basis functions, perform-
ing homologous perturbation, and computing the RHS. Generating basis functions requires iterating
over thousands of time steps, which are then downsampled to dozens of time steps. The other stages
involve operating on data with dozens of time steps. Thus, the primary time cost of the entire pro-
cess lies in generating the basis functions. This implies that our HOPSS method can generate large
volumes of training data at low cost, underscoring the efficiency of our approach.

7
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Table 1: Performance comparison between traditional methods and HOPSS on different PDE prob-
lems. The first column lists the method used to generate the dataset and the number of training
instances. The first row represents the corresponding PDE problem and the training models.

Method
Navier-Stokes KdV Burgers

TIME(s) FNO Transolver TIME(s) FNO Transolver TIME(s) FNO Transolver

Tradition1000 1.20e4 6.7e−3 1.4e−2 2.16e3 8.7e−3 3.1e−2 4.29e4 6.1e−2 5.9e−2

HOPSS1000 1.22e3 7.6e−3 1.5e−2 1.08e3 1.7e−2 3.6e−2 2.15e4 6.2e−2 7.2e−2

HOPSS10000 1.38e3 3.3e−3 8.8e−3 1.09e3 9.8e−3 3.8e−2 2.16e4 4.7e−2 7.3e−2

Secondly, across different PDE problems and with various neural operators, datasets generated by
the HOPSS method exhibit comparable performance to those from traditional methods. For ex-
ample, in the case of the Navier-Stokes equations, Transolver and FNO achieve nearly identical
performance when trained on datasets of the same size. Moreover, as dataset sizes increase, our
method can even outperform traditional methods. This demonstrates that the HOPSS method simul-
taneously accelerates dataset generation while maintaining approximate precision.

6.3 HYPERPARAMENTS ANALYSIS

Table 2: Burgers equation hyperparameter test results. Left: Influence of perturbation level µ (with
fixed Gaussian noise and Nb = 100). Middle: Influence of the number of base solutions Nb (with
fixed Gaussian noise and µ = 10−3). Right: Influence of noise type (with fixed µ = 10−3 and
Nb = 500). Test loss is obtained from FNO.

Perturbation Level Test Loss
10−1 0.182
10−2 0.0787
10−3 0.0783
10−4 0.0784
10−5 0.0790

Nb Test Loss
100 0.0783
200 0.0652
300 0.0650
400 0.0639
500 0.0621

Noise Type Test Loss
Gaussian 0.0621

Perlin 0.0625
Multi sine 0.0624

Random walk 0.0622
Zero 0.0628

This section will show how to influence the dataset performance for the different hyperparameters.

Perturbation level µ: As illustrated in the first subtable, dataset performance degrades as the per-
turbation level increases. In this experiment, we fixed the noise type (Gaussian noise) and used 100
basis solutions for both the Burgers equation and the FNO model. When the perturbation level is
set to 0.1, the test loss reaches 0.182, indicating significant performance degradation. In contrast,
reducing the perturbation level to 0.001 lowers the test loss to 0.0783, a substantial improvement.
This suggests that excessively large perturbations may cause the generated data to become more
likely out-of-distribution, thereby undermining the model’s ability to learn meaningful patterns.

Number of base solutions Nb: Consistent with the results in the second subtable, dataset quality
exhibits a strong correlation with the number of base solutions. In this experiment, we fixed the
noise type (Gaussian noise) and set the perturbation level at 0.001—with tests conducted on both
the Burgers equation and the FNO model. As the number of base solutions increases from 100
to 500, the test loss decreases from 0.0783 to 0.0621, resulting in a performance improvement of
approximately 20%. This trend indicates that a larger number of base solutions helps construct a
more complete subspace of the solution space, thereby enhancing the quality of the dataset.

Noise type: From the third subtable, it is evident that noise type has a negligible impact on model
performance. The details of the noise are shown in AppendixD. In this experiment, we fixed the
number of basis solutions at 500 and set the perturbation level to 0.001—consistent across both the
Burgers equation setup and the FNO model. We evaluated five experimental scenarios: four distinct
noise types (Gaussian, Perlin, Multi-sine, and Random-walk noise) and a no-noise condition, and
the resulting test loss ranged from 0.621 to 0.628, no more than 5%. This consistency underscores
that our method demonstrates strong robustness to variations in noise type.

8
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6.4 TIME STEPS INFLUENCE ON TRADITIONAL METHOD

Table 3: Performance comparison under dif-
ferent time step sizes for the Navier-Stokes
problem in the traditional method

Time Step Sizes Time Cost (s) Test Loss

1× 10−3 11980.42 0.0067
2× 10−3 4380.12 0.024
5× 10−3 1317.47 0.106

In this section, we analyze the influence of differ-
ent time steps on the traditional method, focusing
specifically on two key metrics: dataset generation
time cost and the performance of the subsequently
trained models. As shown in Table 3, time steps ex-
ert a significant impact on both generation time cost
and model training performance. For time cost: as
the time step decreases from 5× 10−3 to 1× 10−3,
the generation time cost increases nearly 9-fold from
1317.47 s to 11980.42 s. In terms of model per-
formance, the FNO test loss decreases substantially
from 0.106 to 0.0067, representing a marked im-
provement in prediction accuracy. This observation reveals a clear trade-off: smaller time steps
yield better model performance but come at the cost of significantly higher dataset generation time.

6.5 ABLATION RESULT

Table 4: Ablation experiment results com-
paring datasets generated using different
methods

Method FNO Transolver
Mixup 0.312 1.53
HOPSS 0.0076 0.015

Finally, we performed an ablation study to illustrate
the critical impact of the solution generation com-
ponent in our HOPSS method on dataset quality.
As shown in Table 4, we evaluated datasets gener-
ated via the Mixup method and our HOPSS method
(for detailed implementation of Mixup, refer to Ap-
pendix C). Experimental results confirm the effec-
tiveness of HOPSS in high-quality dataset genera-
tion: when models are trained on Mixup-generated
data, the test errors for FNO and Transolver reach
0.312 and 1.53, respectively—values that indicate
the Mixup-generated dataset offers minimal training value. In contrast, our HOPSS method proves
effective in generating datasets efficiently while ensuring accurate model predictions.

7 CONCLUSION AND FUTURE WORK

Conclusion: In this paper, we propose the HOPSS method for generating datasets tailored to non-
linear temporal PDEs. Specifically, the method comprises three key steps: base solution generation,
homologous perturbation in the solution space, and computation of the equation’s right-hand side.
By acting directly on the dozens of time steps required for training and computing the corresponding
RHS, the HOPSS method accelerates the data generation process while preserving the precision of
the data used for model training. This approach effectively overcomes a major barrier in dataset
generation for nonlinear temporal PDEs.

Future Work : Building on HOPSS’s promising performance in accelerating nonlinear temporal
PDE dataset generation, we will advance the work via two targeted directions: First, we will op-
timize base solution selection to enhance solution space quality. Specifically, we will introduce
solution space coverage analysis and active learning: by quantifying initial base solution represen-
tativeness, we will develop a framework to filter optimal ones. This prioritizes filling coverage
gaps, boosting base solution diversity, and physical comprehensiveness to enhance perturbation and
dataset generalization. Second, we will develop a unified physics-informed metric for dataset qual-
ity, moving beyond over-reliance on indirect indicators like model test loss. This integrated metric
will encompass dual dimensions: physical consistency (e.g., adherence to PDE conservation laws,
error against high-precision references) and data utility (e.g., sample diversity, cross-PDE general-
ization capacity). These will be integrated into a unified pipeline for comprehensive dataset assess-
ment to guide HOPSS optimization.

9
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306, 1959.

Ernst Hairer, Syvert Norsett, and Gerhard Wanner. Solving Ordinary Differential Equations I: Non-
stiff Problems, volume 8. 01 1993. ISBN 978-3-540-56670-0. doi: 10.1007/978-3-540-78862-1.

Y. Hao, Z. Li, and G.E. Karniadakis. Data-efficient learning for pde solvers via physics-informed
redundancy reduction. Journal of Computational Physics, 462:111264, 2022. doi: 10.1016/j.jcp.
2022.111264.

Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning
neural pde solvers with convergence guarantees, 2019. URL https://arxiv.org/abs/
1906.01200.

Thomas JR Hughes. The Finite Element Method: Linear Static and Dynamic Finite Element Analy-
sis. Dover Publications, 2000. ISBN 9780486411811.

Dmitrii Kochkov, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner, and Stephan
Hoyer. Machine learning–accelerated computational fluid dynamics. Proceedings of the National
Academy of Sciences, 118(21), May 2021. ISSN 1091-6490. doi: 10.1073/pnas.2101784118.
URL http://dx.doi.org/10.1073/pnas.2101784118.

Randall J LeVeque. Finite Difference Methods for Ordinary and Partial Differential Equations:
Steady-State and Time-Dependent Problems. Society for Industrial and Applied Mathematics,
2007. doi: 10.1137/1.9780898717839.

R.J. LeVeque. Finite Volume Methods for Hyperbolic Problems. Cambridge University Press, 2002.
doi: 10.1017/CBO9780511791253.

Zongyi Li, Nikola Borislavov Kovachki, Kamyar Azizzadenesheli, Burigede liu, Kaushik Bhat-
tacharya, Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial
differential equations. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=c8P9NQVtmnO.

10

https://doi.org/10.1007/BF02127704
https://arxiv.org/abs/1906.01200
https://arxiv.org/abs/1906.01200
http://dx.doi.org/10.1073/pnas.2101784118
https://openreview.net/forum?id=c8P9NQVtmnO


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature Machine Intelligence, 3(3):218–229, March 2021. ISSN 2522-5839. doi: 10.1038/
s42256-021-00302-5. URL http://dx.doi.org/10.1038/s42256-021-00302-5.

K.W. Morton and D.F. Mayers. Numerical Solution of Partial Differential Equations: An Introduc-
tion. Cambridge University Press, 2005. doi: 10.1017/CBO9780511619688.

Samuel S Shen. Forced kdv equation. In A Course on Nonlinear Waves, pp. 147–187. Springer,
1993.

Kimberly L. Stachenfeld, Drummond B. Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias Pfaff,
Jonathan Godwin, Can Cui, Shi-Lin Ho, Peter W. Battaglia, and Alvaro Sanchez-Gonzalez.
Learned coarse models for efficient turbulence simulation. ArXiv, abs/2112.15275, 2021. URL
https://api.semanticscholar.org/CorpusID:245634354.

Gilbert Strang, George J Fix, et al. An analysis of the finite element method, volume 212. Prentice-
hall, 1973.

J.C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Society for Industrial
and Applied Mathematics (SIAM), 2nd edition, 2004. doi: 10.1137/1.9780898717839.

Roger Temam. Navier–Stokes equations: theory and numerical analysis, volume 343. American
Mathematical Society, 2024.

Hong Wang, Zhongkai Hao, Jie Wang, Zijie Geng, Zhen Wang, Bin Li, and Feng Wu. Ac-
celerating data generation for neural operators via krylov subspace recycling, 2024. URL
https://arxiv.org/abs/2401.09516.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver: A fast
transformer solver for pdes on general geometries, 2024. URL https://arxiv.org/abs/
2402.02366.

Huantian Xie, Dingfang Li, and Feng Li. A new numerical method of particular solutions for inho-
mogeneous burgers’ equation. Mathematical Problems in Engineering, 2013(1):974808, 2013.

Cheng Yang, Xubo Yang, and Xiangyun Xiao. Data-driven projection method in fluid simula-
tion. Computer Animation and Virtual Worlds, 27(3-4):415–424, 2016. doi: https://doi.org/
10.1002/cav.1695. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/
cav.1695.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, Keir Adams, Maurice Weiler, Xiner Li, Tianfan Fu, Yucheng
Wang, Alex Strasser, Haiyang Yu, YuQing Xie, Xiang Fu, Shenglong Xu, Yi Liu, Yuanqi
Du, Alexandra Saxton, Hongyi Ling, Hannah Lawrence, Hannes Stärk, Shurui Gui, Carl Ed-
wards, Nicholas Gao, Adriana Ladera, Tailin Wu, Elyssa F. Hofgard, Aria Mansouri Tehrani,
Rui Wang, Ameya Daigavane, Montgomery Bohde, Jerry Kurtin, Qian Huang, Tuong Phung,
Minkai Xu, Chaitanya K. Joshi, Simon V. Mathis, Kamyar Azizzadenesheli, Ada Fang, Alán
Aspuru-Guzik, Erik Bekkers, Michael Bronstein, Marinka Zitnik, Anima Anandkumar, Stefano
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A USAGE OF LLMS

Throughout the preparation of this manuscript, Large Language Models (LLMs) were utilized as a
writing and editing tool. Specifically, we employed LLMs to improve the clarity and readability of
the text, refine sentence structures, and correct grammatical errors. All final content, including the
core scientific claims, experimental design, and conclusions, was conceived and written by us, and
we take full responsibility for the final version of this paper.

B SPECIFIC EXPERIMENTAL DETAILS

B.1 HARDWARE SETUP

The data generation is running on Intel(R) Xeon(R) Silver 4316, and the models are training on a
GeForce RTX 4090 GPU with 24GB of memory.

B.2 MODEL SET

FNO1d: we employ 3 FNO layers with learning rate 0.0001, batch size 20, epochs 1000, modes 16,
and width 20.

FNO2d: we employ 4 FNO layers with learning rate 0.001, batch size 60, epochs 500, modes30,
and width 60.

Transolver Irregular Mesh: we set 3 hidden layers with 64 dimensions for each hidden layer,
batch size 4, heads 8, slice nums 32, learning rate 0.002, and epochs 1000.

Transolver Structured Mesh 2D: we set 3 hidden layers with 64 dimensions for each hidden layer,
batch size 8, heads 4, slice nums 32, learning rate 0.001, and epochs 500.

B.3 DATA

B.3.1 NAVIER-STOKES EQUATIONS

In this research, we delve into two-dimensional Navier-Stokes equations for a viscous, incompress-
ible fluid in vorticity form on the unit torus, which are governed by the equation(Li et al. (2021)).

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x, t), x ∈ (0, 1)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, 1)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, 1)2
(12)

where u ∈ C([0, T ];Hr
per((0, 1)

2;R2)) for any r > 0 is the velocity field, w = ∇ × u is the
vorticity, w0 ∈ L2

per((0, 1)
2;R) is the initial vorticity, ν ∈ R+ is the viscosity coefficient, and

f ∈ L2
per((0, 1)

2;R) is the forcing function. For our experimental setup, the dataset is generated by
the Crank-Nicolson method. We generate the dataset with gridsize = 128, T = 10, ν = 1e−4 and
∆t = 1e−3. Then we downsample the dataset to the gridsize = 64 and ∆t = 0.5 for training the
model. The force function is generated from a Gaussian Random Field (GRF) methodology, with
a time constant τ = 2.0 and a decay exponent α = 2.5. In the HOPSS method, we use 100 solution
functions as basis functions.

B.3.2 BURGERS EQUATIONS

In this research, we investigate one-dimensional Burgers equations, expressed as (Xie et al. (2013)):

∂u(x, t)

∂t
+ u(x, t)

∂u(x, t)

∂x
− 1

R

∂2u(x, t)

∂x2
= f(x, t). (13)

Here, u(x, t) denotes the velocity field; R is the Reynolds number, a dimensionless parameter char-
acterizing the ratio of inertial forces to viscous forces; and f(x, t) represents the time-dependent
forcing function. For our experimental setup, R is set to 1000, indicating a flow regime with
relatively strong inertial effects, while the forcing function f(x, t) is generated using a Gaussian

12
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Random Field (GRF) method with key parameters: τ = 7 (time scale, controlling the temporal
correlation of the random field), α = 2.5 (decay exponent, governing the spatial correlation decay
rate), and σ = 72 (variance, determining the amplitude of random fluctuations). For numerical dis-
cretization, the original spatial grid size (number of spatial sampling points) is 1024 with a time step
∆t = 5×10−3 (temporal resolution), which we downsample to a grid size of 64 and ∆t = 5×10−2

for model training, and in the HOPSS method, 500 solution functions are adopted as basis functions.

B.3.3 FORCED KDV EQUATIONS

We also study one-dimensional forced Korteweg-de-Vries (KdV) equations, expressed as (Shen
(1993)):

ut + λux + 2αuux + βuxxx = f ′(x), −∞ < x <∞ (14)

Where u(x, t) is the wave amplitude; λ is the linear advection coefficient; α is the nonlinear co-
efficient (governing wave steepening); β is the dispersion coefficient (counteracting steepening via
wave dispersion); and f ′(x) denotes the spatial derivative of the forcing function f(x). For our
experimental setup, coefficients are set as α = −0.5, β = −1.0, and λ = 0, configuring the equa-
tion to describe weakly nonlinear dispersive waves, while f ′(x) is directly generated via GRF with
parameters: τ = 5.0 (time scale), α = 2.5 (spatial decay exponent), and σ = 1.0 (variance of the
random field). For numerical discretization, the original spatial grid size is 512 with 10000 time
steps (total temporal sampling points), which are downsampled to a grid size of 64 and 20 time steps
for model training, and in the HOPSS method, 500 solution functions are used as basis functions.

C MIXUP METHOD

The mathematical equation can be expressed as :

unew =

Nb∑
i=0

αiui,

Nb∑
i=0

αi = 1 (15)

where ui is the solutions and αi is a constant. In our experiment, αi is sampled from a standard
Gaussian distribution and then normalized. Nb is set to 100.

D NOISY INTRODUCTION

We corrupt clean data x (a vector or the last dimension of a tensor) with several synthetic noise
models. A unified relative amplitude parameter ε = noise level is mapped to an absolute scale

A = ε ·max
i

|xi|, A > 0 (fallback A = 10−8 if max |xi| = 0). (16)

All raw noise patterns η̃ are rescaled to η = A η̃/max |η̃| (except the Gaussian case which is
sampled directly with variance A2). The noisy signal is x′ = x+ η.

D.1 GAUSSIAN NOISE

Standard i.i.d. zero-mean Gaussian (baseline):

η
(G)
i ∼ N (0, A2), x′i = xi + η

(G)
i . (17)

Parameters used: only ε (e.g. ε = 10−3). No spatial correlation; flat spectrum.

D.2 MULTI-SINE NOISE

A smooth low-frequency superposition of K sinusoidal modes with random coefficients and phases
over normalized coordinate s ∈ [0, 1] discretized into L points:

η̃(s) =

K∑
k=1

[
ak sin(2πks+ ϕk) + bk cos(2πks+ ψk)

]
, (18)

13
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With ak, bk ∼ U(−1, 1) and phases ϕk, ψk sampled uniformly (implemented as a single phase per
mode). Normalization:

η(MS)(s) = A
η̃(s)

maxs |η̃(s)|
.

Parameters: K = multi sine k = 8; relative amplitude ε. Result: band-limited (low-frequency)
non-Gaussian smooth perturbation.

D.3 PERLIN NOISE

One-dimensional Perlin procedural noise with C lattice cells (C +1 gradient points). Let s ∈ [0, 1],
t = sC, i = ⌊t⌋, u = t− i ∈ [0, 1). Random gradients Gi ∼ U(−1, 1). Use the quintic fade

fade(u) = 6u5 − 15u4 + 10u3.

Define endpoint contributions v0 = Giu, v1 = Gi+1(u− 1) and interpolate:

η̃(s) = v0 + (v1 − v0) fade(u), η(P)(s) = A
η̃(s)

maxs |η̃(s)|
.

Parameters: C = min(perlin cells, L− 1) with perlin cells = 32; relative amplitude ε.
Produces locally smooth, multi-scale, non-Gaussian structure.

D.4 RANDOM WALK NOISE

Cumulative uniform increments (strong correlation, non-stationary before centering):

δℓ ∼ U(−1, 1), η̃ℓ =

ℓ∑
j=1

δj , η̄ =
1

L

L∑
ℓ=1

η̃ℓ, η̂ℓ = η̃ℓ − η̄, η
(RW)
ℓ = A

η̂ℓ
maxℓ |η̂ℓ|

.

Parameters: only ε (no extra hyperparameter). Produces low-frequency drift-like perturbations after
mean removal.

Broadcast over higher dimensions. For tensors shaped (N,S) or (N,S, T ), the non-Gaussian
patterns are generated along the last axis (S) and broadcast to other leading dimensions; per-sample
independent noise can be obtained by generating a separate pattern per batch slice.
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