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Abstract
This paper investigates the training dynamics of
transformers by gradient descent through the lens
of non-linear regression tasks. The contextual
generalization here can be attained via the in-
context learning of the template function for each
task, where all template functions lie in a linear
space with m basis functions. We analyze the
training dynamics of multi-head transformers to
in-contextly predict unlabeled inputs given par-
tially labeled prompts where the labels contain
Gaussian noise and there may be only a few ex-
amples in each prompt which are not sufficient to
determine the template. We show that the training
loss for a shallow multi-head transformer con-
verge linearly to a global minimum. Moreover,
the transformer effectively learns to perform ridge
regression. To our knowledge, this study is the
first of showing that transformers can learn con-
textual (i.e., template) information to generalize
to unseen examples when prompts contain only a
small number of query-answer pairs.

1 Introduction

Transformers (Vaswani et al., 2017) have achieved tremen-
dous successes in their applications in machine learning,
particularly in natural language processing, by introduc-
ing self-attention mechanisms that enable models to capture
long-range dependencies and contextualized representations.
In particular, these self-attention mechanisms endow the
transformer with remarkable in-context learning (ICL) ca-
pabilities, allowing it to adapt to new tasks or domains by
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simply being provided prompts with a few examples that
demonstrate the desired behavior, without any explicit fine-
tuning or updating of the model’s parameters (Brown et al.,
2020).

A series of papers have empirically studied the underlying
mechanisms behind in-context learning in transformer mod-
els (Garg et al., 2022; Von Oswald et al., 2023; Wei et al.,
2023; Olsson et al., 2022; Xie et al., 2021; Chen & Zou,
2024; Agarwal et al., 2024), which have shown that trans-
formers can predict unseen examples after being prompted
on a few examples. The pioneering work of Garg et al.
(2022) showed empirically that transformers can be trained
from scratch to perform in-context learning of simple func-
tion classes, providing an theoretically tractable in-context
learning framework. Following this well-established frame-
work, several works have investigated various aspects of
in-context learning properties in transformers. Most perti-
nent to this work, Huang et al. (2023); Chen et al. (2024);
Li et al. (2024); Nichani et al. (2024) studied the training
dynamics of shallow transformers with softmax attention
in order to in-context learn simple tasks such as linear re-
gression (Huang et al., 2023; Chen et al., 2024), binary
classification tasks (Li et al., 2024) or causal graph (Nichani
et al., 2024). Their theoretical analysis showed that given
an arbitrary query token, how transformers learn to directly
apply the answer corresponding to it from the query-answer
pairs that appear in each prompt. Therefore, they all require
the sequence length of each prompt to be large enough so
that every query-answer pair has been seen in each prompt
with sufficiently high probability, whereas practical prompts
are often too short to contain many query examples. This
suggests that in-context learning can exploit inherent con-
textual information of the prompt to generalize to unseen
examples, which further raise the following intriguing theo-
retical question:

How do transformers learn contextual information from
more general function classes to predict unseen examples

given prompts that contain only partial examples?

In this paper, we answer the above question by analyzing
the training dynamics of a one-layer transformer with multi-
head softmax attention through the lens of non-linear regres-
sion tasks. In our setting, the template function for each
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task lies in the linear space formed by m arbitrary basis
functions that capture representation (i.e., features) of data.
Our goal is to provide insights on how transformers trained
by gradient descent (GD) acquire template information from
more general function classes to generalize to unseen ex-
amples when each prompt contains only a small number of
query-answer pairs. We summarize our contributions are as
follows.

Our Contributions:

• We first establish the convergence guarantee of a shallow
transformer with multi-head softmax attention trained
with gradient descent on general non-linear regression in-
context learning tasks. We assume each prompt contains
only a few (i.e., partial) examples with their Gaussian
noisy labels, which are not sufficient to determine the
template.

• We then analyze the transformer’s behavior at inference
time after training, and shows that the transformer decides
its generating template by performing ridge regression.
We also provide the iteration complexity for the trans-
former to reach ε-precision with respect to its own choice
preference of template given an arbitrary prompt at infer-
ence time.

• Our analysis framework allows us to overcome a hand-
ful of assumptions made in previous works such as the
large prompt lengths (Huang et al., 2023; Chen et al.,
2024; Li et al., 2024; Nichani et al., 2024), orthogonal-
ity of data (Huang et al., 2023; Chen et al., 2024; Li
et al., 2024; Nichani et al., 2024), restrictive initializa-
tion conditions (Chen et al., 2024), special structure of
the transformer (Nichani et al., 2024), and super wide
models (Li et al., 2024). Further, the function classes we
consider are a generalization of those considered in most
theoretical works (Huang et al., 2023; Chen et al., 2024;
Li et al., 2024; Wu et al., 2023; Zhang et al., 2023a).

To our best knowledge, this is the first work to analyze how
transformers learn contextual (i.e., template) information to
generalize to unseen examples when prompts contain only
a small number of query-answer pairs.

2 Problem Setup

In-context learning with representation. We consider
ICL of regression with unknown representation, similar to
the setup introduced in Guo et al. (2023). To begin, let
f : Rd → Rm be a fixed representation map that f(x) =
(f1(x), · · · , fm(x))⊤ for any x ∈ Rd. The map f can be
quite general, which can be regarded as a feature extractor
that will be learned by the transformer. We assume that
each ICL task corresponds to a map λ⊤f(·) that lies in
the linear span of those m basis functions in f(·), where

λ is generated by the distribution Dλ. Thus, for each ICL
instance, the (noisy) label of an input vk (∀k ∈ [K]) is given
as

yk = λ⊤(f(vk) + ϵk), λ ∼ Dλ, ϵk
i.i.d.∼ N (0, τIm)

(1)
where τ > 0 is the noise level.

The goal of ICL is to form predictions on query xquery

given in-context labels in Equation (1) on a few inputs,
known as prompts. In this paper, we use V to denote the
dictionary set that contains all K unit-norm distinct tokens,
i.e., V := {v1, · · · ,vK} ⊂ Rd with each token ∥vk∥2 = 1.
We assume that each prompt P = Pλ provides the first N
tokens (with N ≪ K) and their labels, and is embedded in
the following matrix

EP :=

(
v1 v2 · · · vN

y1 y2 · · · yN

)
:=

(
V
y⊤

)
∈ R(d+1)×N ,

(2)
where V := (v1, · · · ,vN ) ∈ Rd×N is the collection of
prompt tokens, and y := (y1, · · · , yN )

⊤ is the prompt label.
Given the prompt as the input, the transformer predicts the
labels for all the K tokens y1, · · · , yK in the dictionary set.

Transformer architecture(see Figure 1). We adopt a one-
layer transformer with multi-head softmax attention (Chen
et al., 2024) to predict the labels of all the tokens in the
dictionary, where H is the number of heads. Denote the
query embedding as

EQ :=

(
vN+1 vN+2 · · · vK

0 0 · · · 0

)
∈ R(d+1)×(K−N),

(3)
and denote the embedding of both the prompt and the query
as E := (EP ,EQ) ∈ R(d+1)×K . We define the output of
each transformer head as

headh(E) := W V
h EP ·softmax

(
(EP )⊤(W K

h )⊤WQ
h E

)
,

where h ∈ [H], WQ
h ∈ Rde×(d+1), W K

h ∈ Rde×(d+1), and
W V

h ∈ RK×(d+1) are the query, key, and value matrices,
respectively, and the softmax is applied column-wisely, i.e.,
given a vector input x, the i-th entry of softmax(x) is given
by exi/

∑
j e

xj . The attention map of the transformer T (E)
is defined as

T (E) := WO

 head1(E)
...

headH(E)

 ∈ RK×K , (4)

where WO is the output matrix. Following recent theoret-
ical literature to streamline analysis (Huang et al., 2023;
Nichani et al., 2024; Deora et al., 2023; Chen et al., 2024),
we assume that the embedding matrices take the following
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Figure 1. The structure of a one-layer transformer with multi-head softmax attention.

forms:

WO := (IK , · · · , IK) ∈ RK×HK ,

W V
h := (0,wh) ∈ RK×(d+1),

(W K
h )⊤WQ

h =

(
Qh 0
0 0

)
∈ R(d+1)×(d+1), ∀h ∈ [H],

where wh = (wh,1, · · · , wh,K)⊤ ∈ RK and Qh ∈ Rd×d

are trainable parameters for all h ∈ [H].

The prediction of the labels is provided by the diagonal
entries of T (E), which we denote by ŷ = (ŷ1, · · · , ŷK) ∈
RK . Note that ŷk takes the following form under our pa-
rameter specification:

∀k ∈ [K] : ŷk =
〈
y,

H∑
h=1

wh,k softmax(V ⊤Qhvk)
〉
.

(6)

Training via GD. Let θ = {Qh,wh}Hh=1 denote all train-
able parameters of T . Let ϵ := (ϵ1, · · · , ϵK) ∈ Rm×K

denote the noise matrix. Given training data over ICL in-
stances, the goal of training is to predict labels yk for all
vk ∈ V . Specifically, we train the transformer using gradi-
ent descent (GD) by optimizing the following mean-squared
population loss:

L(θ) := 1

2
Eλ,ϵ

[
1

K

K∑
k=1

(ŷk − yk)
2

]
. (7)

We apply different learning rates ηQ, ηw > 0 for updating
{Qh}Hh=1 and {wh}Hh=1, respectively, i.e., at the t-th (t ≥ 1)
step, we have

∀h ∈ [H] : Q
(t)
h = Q

(t−1)
h − ηQ∇Qh

L(θ(t−1)),

w
(t)
h = w

(t−1)
h − ηw∇wh

L(θ(t−1)).

Inference time. At inference time, given a prompt P =
Pλ with N examples, where λ may not be in the support
of the generation distribution Dλ, the transformer applies
the pretrained parameters and predicts the labels of all K
tokens without further parameter updating.

3 Theoretical Analysis

3.1 Training Time Convergence

In this section, we show that the loss L converges to its
minimum value at a linear rate during training, i.e., the
function gap

∆(t) := L(θ(t))− inf
θ

L → 0, t → ∞. (8)

We first state our technical assumptions. The following as-
sumption is on the distribution of generating the coefficient
vector λ for function maps.

Assumption 1 (Distribution Dλ of generating λ). Each
entry λi in (1) is drawn independently and satisfies E[λi] =
0 and E[λ2

i ] = 1 for all i ∈ [m].

The following assumption on V is mild to ensure our pa-
rameter initialization has good properties. See Appendix B
for a discussion on this assumption.

Assumption 2 (assumption on V ). There exists one row
vector x = (x1, · · · , xN )⊤ of V such that xi ̸= xj , ∀i ̸=
j.

To guarantee the convergence, we require the initialization
of the parameters satisfies the following condition:

Assumption 3 (parameter initialization). For all k ∈ [K],
B

(0)
k defined in (23) has full row rank.
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Choice of learning rates. Define

ζ0 := min
k∈[K]

{
λmin

(
B

(0)
k B

(0)⊤
k

)}
, (9)

where ∆(0) is the initial function gap (c.f. (8)), and B
(0)
k is

defined in (23). Assumption 3 indicates that ζ0 > 0. Let γ
be any positive constant that satisfies

γ ≥ ζ
−5/4
0

(
128

√
2√

2− 1

∥∥Z̄∥∥2
2

√
Hf̄maxK

3/2∆(0)

)1/2

.

(10)
We set the learning rates as

ηQ ≤ 1/L and ηw = γ2ηQ, (11)

where L is the smoothness constant of the loss specified in
(59).

We state our first main result as follows:
Theorem 1 (Convergence at training time). Suppose As-
sumptions 1, 2, 3 hold. We let w(0)

k = 0 and set the learning
rates as in Equation (11). Then for all t ∈ N, we have

∆(t) ≤
(
1− ηwζ0

2K

)t

∆(0). (12)

Theorem 1 shows that the training loss converges to its min-
imum value at a linear rate. This gives the first convergence
result for transformers with multi-head softmax attention
trained using GD to perform ICL tasks (see Table 1). Eq.
(12) also indicates that the convergence speed decreases
as the size K of the dictionary or the number H of atten-
tion heads increases, which is intuitive because training
with a larger vocabulary size or parameter number is more
challenging. However, small H will limit the expressive
capacity of the model (see Section B.4 for detailed discus-
sion), and we require H ≥ N to guarantee Assumption 3
holds, as stated in Proposition 1 below.

The proof of Theorem 1 is postponed to Appendix E. We
provide our proof idea in Appendix B.2.

The following proposition states that when H ≥ N , we can
guarantee that Assumption 3 holds with probability 1 by
simply initializing {Qh}Hh=1 using Gaussian distribution:
Proposition 1 (initialization of {Qh}Hh=1). Suppose As-
sumptions 1, 2 hold and H ≥ N . For any fixed β > 0, let
Q

(0)
h (i, j)

i.i.d.∼ N (0, β2), then Assumption 3 holds almost
surely.

The proof of Proposition 1 can be found in Appendix G.

3.2 Inference Time Performance

We let ZQ ∈ Rm×(K−N) denote

ZQ := (f(vN+1), · · · , f(vK)) ∈ Rm×(K−N). (13)

We assume that the coefficient vectors λ at inference time
are bounded.
Assumption 4 (boundedness of λ at inference time). We
assume that at inference time ∥λ∥2 ≤ B for some B > 0.

The following theorem characterizes the performance guar-
antee of the transformer’s output ŷ (after sufficient training)
at the inference time, whose proof is deferred to Appendix F.
Theorem 2 (inference time performance). Under the as-
sumptions in Theorem 1, for any ε > 0 and δ ∈ (0, 1), if
the number of training iterates T satisfies

T ≥
log

(
B2∆(0)(∥Z∥2+

√
τ(φ(δ,N))1/2)

2

/
(mτε)

)
log(1/(1− ηwζ0

2K ))
, (14)

where φ(δ,N) := 2
√
N log(1/δ) + 2 log(1/δ) +N , then

given any prompt P that satisfies Assumption 4 at the infer-
ence time, with probability at least 1− δ, the output of the
transformer ŷ satisfies

1

2K
∥ŷ − ŷ⋆∥22 ≤ ε, with ŷ⋆ :=

(
y(

ZQ
)⊤

λ̂

)
, (15)

where λ̂ is the solution of the following ridge regression
problem:

λ̂ := argmin
λ

{
1

2N

∑N
i=1(yi − λ⊤f(vi))

2 + mτ
2N ∥λ∥22

}
.

(16)

We argue in Appendix B.3 that Theorem 2 actually reflects
how the sequence length N affects the transformer’s prefer-
ence for choosing templates and its performance at inference
time. To be specific, the closer m is to N , the closer the
transformer’s choice of templates is to the best possible
choice, and the better the transformer’s prediction will be;
when N < m, the transformer tends to underfit by choosing
a λ with small ℓ2-norm; when N > m, the transformer
tends to overfit since it underestimates the noise level and
tries to capture noise when making prediction.

4 Conclusion

We analyze the training dynamics of a one-layer transformer
with multi-head softmax attention trained by gradient de-
scent to solve complex non-linear regression tasks using
partially labeled prompts. In this setting, the labels con-
tain Gaussian noise, and each prompt may include only a
few examples, which are insufficient to determine the un-
derlying template. Our work overcomes several restrictive
assumptions made in previous studies and proves that the
training loss converges linearly to its minimum value. Our
study provides the first analysis of how transformers can
acquire contextual (template) information to generalize to
unseen examples when prompts contain a limited number
of query-answer pairs.
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A Additional Related work

In-context learning. Recent research has investigated the theoretical underpinnings of transformers’ ICL capabilities
from diverse angles. For example, several works focus on explaining the in-context learning of the transformer from the
Bayesian perspective (Xie et al., 2021; Ahuja et al., 2023; Han et al., 2023; Jiang, 2023; Wang et al., 2023; Wies et al., 2024;
Zhang et al., 2023b; Jeon et al., 2024; Hahn & Goyal, 2023). Li et al. (2023) analyses the generalization and stability in
in-context learning of the transformer. Focusing on the expressive capacity of the transformer, Akyürek et al. (2022); Bai
et al. (2024) study the expressive power of the transformer on the linear regression task. Akyürek et al. (2022) shows by
construction that transformers can represent GD of ridge regression or the closed-form ridge regression solution. Bai et al.
(2024) extends Akyürek et al. (2022) and shows that transformers can implement a broad class of standard machine learning
algorithms in context. Dai et al. (2022); Von Oswald et al. (2023) show transformers could in-context learn GD.

More pertinent to our work, Guo et al. (2023) considers the ICL problems similar to ours, where the label depends on the
input through a basis of possibly complex but fixed template functions, composed with a linear function that differs in
each prompt. By construction, the optimal ICL algorithm first transforms the inputs by the representation function, and
then performs linear ICL on top of the transformed dataset. Guo et al. (2023) shows the existence of transformers that
approximately implement such algorithms, whereas our focus is on analyzing the training dynamics of transformers.

Training dynamics of transformers. A line of work initiated by Garg et al. (2022) aims to understand the ICL ability of
transformers from an optimization perspective. (Zhang et al., 2023a; Kim & Suzuki, 2024) analyse the training dynamics
of transformers with linear attention. Huang et al. (2023); Chen et al. (2024); Li et al. (2024) study the optimization
dynamics of one-layer softmax attention transformers performing simple in-context learning tasks (linear regression (Huang
et al., 2023; Chen et al., 2024) and binary classification (Li et al., 2024)). Table 1 provides a comparison with the existing
theoretical works that study the learning dynamics of transformers with softmax attention about the settings, training analysis
and generalization of in-context learning.

Among them Huang et al. (2023) was the first to study the training dynamics of softmax attention, where they give the
convergence results of a one-layer transformer with a single-head attention on linear regression tasks, assuming context
features come from an orthogonal dictionary and each token in the prompts is drawn from a multinomial distribution. In
order to the concentration property inherent to multinomial distributions, they require the sequence length N ≫ K3. Their
analysis indicates that the prompt tokens that are the same as the query will have dominating attention weights, which allows
the transformer to copy-paste the correct answer from those prompt tokens.

Li et al. (2024) studies the training of a one-layer single-head transformer in ICL on binary classification tasks. Same as
in Huang et al. (2023), they also require the data to be pairwise orthogonal. In addition, they require the width of their model
to be larger than the square of the number of data, and they need the number of examples in each prompt N = O(ε−2T ),
where ε is the precision and T is the number of iterations (Li et al., 2024, Theorem 3.3) to guarantee that the attention
weight summation on contexts with the same pattern as the query dominates that on other contexts. This indicates that Li
et al. (2024) shares the same copy-paste analysis as in Huang et al. (2023).

Chen et al. (2024) studies the dynamics of gradient flow for training a one-layer multi-head softmax attention model for
in-context learning of multi-task linear regression. They consider the linear tasks where they require the coefficient matrix to
have certain spectral properties. They also require the sequence length to be sufficiently large (Chen et al., 2024, Assumption
2.1). Moreover, they impose very restrictive initialization conditions (Chen et al., 2024, Definition 3.1). They also use the
copy-paste analysis framework as in Huang et al. (2023); Li et al. (2024), but the attention probability vector in their paper
is delocalized so that the attention is spread out to capture the information from similar tokens in regression tasks. Nichani
et al. (2024) analyzes the optimization dynamics of a simplified two-layer transformer with gradient descent on in-context
learning the latent causal graph.
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Reference
nonlinear
attention

multi
head

task
shift

GD
convergence

noisy
data

representation
learning

Wu et al. (2023) ✗ ✗ ✓ ✓ ✓ ✗
Zhang et al. (2023a) ✗ ✗ ✓ ✓ ✓ ✗
Huang et al. (2023) ✓ ✗ ✓ ✓ ✗ ✗

Li et al. (2024) ✓ ✗ ✓ ✓ ✓ ✗
Chen et al. (2024) ✓ ✓ ✗ ✗ ✓ ✗

Ours ✓ ✓ ✓ ✓ ✓ ✓

Table 1. Comparisons with existing theoretical works that study the learning dynamics of transformers in ICL. Note that the last column
refers to the fact that the response in our regression task is generated by a linearly weighted unknown representation (feature) model,
whereas the other works all consider linear regression tasks without an unknown representation model embedded in their response.

B Additional Discussion

B.1 Discussion on Assumption 2

Assumption 2 indicates that V has distinct tokens, i.e., vj ̸= vk when j ̸= k. It is worth noting that Assumption 2 is the only
assumption we have on the dictionary V . All other theoretical works in Table 1 impose somewhat unrealistic assumptions on
V . For example, Huang et al. (2023); Li et al. (2023); Nichani et al. (2024) assume that the tokens are pairwise orthogonal,
which is restrictive since it implies that the dictionary size K should be no larger than the token dimension d, whereas in
practice it is often the case that K ≫ d (Reid et al., 2024; Touvron et al., 2023). Further, Chen et al. (2024); Zhang et al.
(2023a); Wu et al. (2023) assume that each token is independently sampled from some Gaussian distribution, which also
does not align with practical scenarios where tokens are from a fixed dictionary and there often exist correlations between
different tokens.

B.2 Proof idea of Theorem 1

To prove Theorem 1, we first remove the expectation in the expression of the loss function L in (7) by reformulating it
to a deterministic form (see Lemma 4). With this new form, we show by induction that the loss function L is smooth
(Lemma 10) and satisfies the Polyak-Łojasiewicz condition (PL condition) under Assumption 2 (c.f. (47)). Provided with
both smoothness and PL condition, we are able to give our convergence result.

B.3 Discussion on Theorem 2

In Theorem 2, Equation (15) shows that after training, the transformer learns to output the given labels of the first N
tokens in each prompt, and more importantly, predicts the labels of the rest K − N tokens by implementing the ridge
regression given in Equation (16). Note that Akyürek et al. (2022) studied the expressive power of the transformer on the
linear regression task and showed by construction that transformers can represent the closed-form ridge regression solution.
Interestingly, here we show from the optimization perspective that transformers can in fact be trained to do so.

Two generalization capabilities. Theorem 2 captures two generalization capabilities that the pretrained transformer can
have. (i) Contextual generalization to unseen examples: Theorem 2 suggests that the transformer exploits the inherent
contextual information (to be further discussed in Appendix B.4) of the function template in the given prompt, and can
further use such information to predict the unseen tokens. (ii) Generalization to unseen tasks: Theorem 2 also suggests
that the pretrained transformer can generalize to a function map corresponding to any λ ∈ Rm at the inference time (albeit
satisfying Assumption 4), which is not necessarily sampled from the support of its training distribution Dλ.

We note that the contextual generalization that the transformer has here is different in nature from the prediction ability
shown in the previous work on in-context learning Huang et al. (2023); Chen et al. (2024); Li et al. (2024); Nichani et al.
(2024). Those work focuses on a setting where each prompt contains a good portion of tokens similar to the query token,
allowing the transformer to directly use the label of the corresponding answers from the prompt as the prediction. However,
in practical scenarios, prompts often contain only partial information, and our analysis sheds lights on explaining how
transformers generalize to unseen examples by leveraging ridge regression to infer the underlying template.

Beyond the above discovery, several questions are yet to be explored. For instance, how good is transformer’s choice of the
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underdetermined template? What’s the best choice we could expect? How close is transformer’s choice to the best possible
choice? We address these questions as follows.

Given any prompt P at inference time, since there is no label information about the rest K −N tokens, the best prediction
we could hope to have from the transformer shall be

ŷbest :=

(
y(

ZQ
)⊤

λ̂τ

)
, (17)

where ZQ is defined in (13), and λ̂τ satisfies:

λ̂τ := argminλ Eϵ̃

[
1

2N

∑N
i=1(yi − λ⊤ (f(vi) + ϵi))

2
]
, (18)

i.e., we hope the transformer outputs the given N labels as they are. For the rest K −N labels, the best we could hope for is
that the transformer estimates the coefficient vector λ by solving the above regression problem to obtain λ̂τ , and predict the
k-th label by λ̂⊤

τ f(vk) for k = N + 1, · · · ,K. Note that (18) is equivalent to the following ridge regression problem (see
Lemma 7 for its derivation):

λ̂τ = argminλ

{
1

2N

∑N
i=1(yi − λ⊤f(vi))

2 + τ
2 ∥λ∥

2
2

}
. (19)

The only difference between the two ridge regression problems (16) and (19) is the coefficient of the regularization term.
This indicates that at the training time, the transformer learns to implement ridge regression to predict the labels of the rest
K −N tokens, assuming the noise level is given by m

N τ . This observation also reflects how the sequence length N affects
the transformer’s preference for choosing templates and its performance at inference time:

• the closer m is to N , the closer the transformer’s choice of templates is to the best possible choice, and the better the
transformer’s prediction will be;

• when N < m, the transformer tends to underfit by choosing a λ with small ℓ2-norm;

• when N > m, the transformer tends to overfit since it underestimates the noise level and tries to capture noise when
making prediction.

B.4 Further Interpretation on Our Main Results

In this section, we provide more interpretation on our results, which may lead to useful insights into the in-context learning
ability of the transformer.

How does the transformer gain in-context ability? Guo et al. (2023) considers an in-context learning problem very
similar to ours, but from the perspective of expressive powers. They showed by construction that a good ICL algorithm
should compute the underlying representations fi (i ∈ [m]) and perform linear regression on the transformed dataset
{f(vi), yi}Ni=1 to learn the coefficients λ in-context. They further show the existence of transformers that approximately
implement such algorithms. Our work is from a different perspective, showing that (pre)training the transformer loss by GD
will naturally yield a solution with the aforementioned desirable property characterized in Guo et al. (2023).

Intuitively speaking, our pretrained transformer gains in-context ability by extracting and memorizing some “inherent
information” of all basic function maps fi (i ∈ [m]) during the training. Such information allows it to infer the coefficient
vector λ from the provided labels in each prompt and calculate inner product ⟨λ, f(vk)⟩ to compute yk given any token
vk ∈ V at inference time. To be more specific, the “inherent information” of all basic tasks could be described by the N -by-
K matrix A (c.f. (31)). During training, the transformer learns to approximate A:,k by

∑H
h=1 wh,ksoftmax(V ⊤Qhvk) for

each k ∈ [K].

To further elaborate the underlying idea, we take a look at a special case where the labels do not contain any noise, i.e.,
τ = 0, and N ≥ m. In this case, A becomes Z†Ẑ, and given any prompt P = Pλ, the coefficient vector λ could be
uniquely determined from the provided token-label pairs in the prompt. It is straightforward to verify that the label of each
token vk could be represented by the inner product of the given label vector y and the k-th column of Z†Ẑ, i.e.,

yk =
〈
y,Z†Ẑ:,k

〉
. (20)
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Comparing the above equation with (6), we can see that in order to gain the in-context ability, the transformer needs to learn
an approximation of Z†Ẑ:,k by

∑H
h=1 wh,ksoftmax(V ⊤Qhvk) for each k ∈ [K].

More generally, in the proof of Theorem 2, we show that

ŷ⋆
k = ⟨y,A:,k⟩ , (21)

comparing which with (6) suggests that a small training error implies that
∑H

h=1 wh,ksoftmax(V ⊤Qhvk) is close to A:,k.
In fact, this is the necessary and sufficient condition for the training loss to be small. A rigorous argument is provided in
Lemma 4.

The importance of multi-head mechanism. Multi-head mechanism is essential in our problem setting. In fact, it is
generally impossible to train a shallow transformer with only one attention head to succeed in the in-context learning task
considered in our paper. This is because, as we have discussed above, the key for the transformer to gain the in-context
learning ability is to approximate A:,k by

∑H
h=1 wh,ksoftmax(V ⊤Qhvk) for each k ∈ [K]. If H = 1, the transformer

could not approximate each A:,k by w1,ksoftmax(V ⊤Q1vk) in general since the entries of the latter vector are either all
positive or all negative. Proposition 1 indicates that when H ≥ N , the weights of the transformer with simple initialization
method satisfy our desired property that is crucial to guarantee the fast linear convergence. However, (12) implies that we
should not set H to be too large, since larger H yields slower convergence rate.

C Summary of Notations

Notation. Boldface small and capital letters denote vectors and matrices, respectively. Sets are denoted with curly capital
letters, e.g., W . We let (Rd, ∥·∥) denote the d-dimensional real coordinate space equipped with norm ∥·∥. Id is the identity
matrix of dimension d. The ℓp-norm of v is denoted by ∥v∥p, where 1 ≤ p ≤ ∞, and the spectral norm and the Frobenius
norm of a matrix M are denoted by ∥M∥2 and ∥M∥F , respectively. M † stands for the Moore-Penrose pseudoinverse of
matrix M , and M:,i stands for its i-th column vector. We let [N ] denote {1, . . . , N}. We denote by 0 a vector or a matrix
consisting of all 0’s. We allow the application of functions such as exp(·) to vectors or matrices, with the understanding that
they are applied in an element-wise manner. We let ⌊·⌋ denote the floor function. We use ei to denote the one-hot vector
whose i-th entry is 1 and the other entries are all 0. We lists some frequently used notation in our paper in Table 2.

We summarize the frequently used notations in Table 2.

notation meaning

K ∈ N+ total number of tokens
d ∈ N+ token dimension
m ∈ N+ number of basic tasks
H ∈ N+ number of attention heads
N ∈ N+ number of examples in each prompt

vk ∈ Rd, k ∈ [K] the k-th token
fi : Rd → R, i ∈ [m] the i-th basic task

λ ∈ Rm coefficient vector
yk = λ⊤(f(vk) + ϵk), k ∈ [K] the k-th label

Table 2. Notation

We introduce the following notations:

Z := (f(v1) · · · f(vN )) ∈ Rm×N , Z̄ :=
(
Z⊤Z +mτIN

)1/2 ∈ RN×N , f̄max := max
i∈[N ]

∥z̄i∥2 , (22)

where z̄i is the i-th column vector of Z̄ for i ∈ [N ]. We further define K-by-H matrix C
(t)
k (k ∈ [K], t ∈ N+) and N -by-H

matrix B
(t)
k as follows:

C
(t)
k := softmax(V ⊤Q

(t)
1 vk, · · · ,V ⊤Q

(t)
H vk) ∈ RN×H , B

(t)
k = Z̄C

(t)
k ∈ RN×H . (23)
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We further define shk ∈ RN as follows:

shk := softmax(V ⊤Qhvk) = (sh1k, · · · , shNk)
⊤, ∀k ∈ [K], h ∈ [H]. (24)

D Auxiliary Lemmas

In this section, we provide some useful facts that will be repeatedly used later on.

Lemma 1 (softmax gradient). For all j ∈ [N ], k ∈ [K] and h ∈ [H], we have

∂shjk
∂Qh

= shjk

N∑
i=1

shik(vj − vi)v
⊤
k , (25)

where shjk is defined in (24).

Proof. See the proof of Lemma A.1 in (Huang et al., 2023).

Lemma 2 (smoothness of softmax). For vectors ξ1, ξ2 ∈ Rl, we have

∥softmax(ξ1)− softmax(ξ2)∥1 ≤ 2 ∥ξ1 − ξ2∥∞ . (26)

Proof. See Corollary A.7 in (Edelman et al., 2022).

We also need to make use of the following form of Young’s inequality.

Lemma 3. For any x1, · · · ,xl ∈ Rp, we have ∥∥∥∥∥
l∑

i=1

xi

∥∥∥∥∥
2

2

≤ l

l∑
i=1

∥xi∥22 . (27)

E Proof of Theorem 1

We define

δθk :=

{∑H
h=1 wh,ks

h
k −

(
Z⊤Z +mτI

)−1
(zk +mτek) , if k ∈ [N ],∑H

h=1 wh,ks
h
k −

(
Z⊤Z +mτI

)−1
zk, if k ∈ [K] \ [N ].

(28)

We first give a reformat of the loss function to remove the expectation in the population loss.

Lemma 4 (reformat of the loss function). Under Assumption 1, the loss function L(θ) could be rewritten into the following
equivalent form:

L(θ) = 1

2K

K∑
k=1

∥∥∥(Z⊤Z +mτI
)1/2

δθk

∥∥∥2
2
+ L⋆ =

1

2K

K∑
k=1

∥∥Z̄δθk
∥∥2
2
+ L⋆, (29)

where

L⋆ =
1

2K

N∑
k=1

(
−
(
Z⊤zk +mτek

)⊤ (
Z⊤Z +mτI

)−1 (
Z⊤zk +mτek

)
+ ∥zk∥22 +mτ

)
+

1

2K

K∑
k=N+1

(
−
(
Z⊤zk

)⊤ (
Z⊤Z +mτI

)−1 (
Z⊤zk

)
+ ∥zk∥22

)
is a constant that does not depend on θ, and Z̄ is defined in (22).

Proof of Lemma 4. See Appendix H.1.
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Lemma 4 indicates that L⋆ is a lower bound of L. In the proof of Theorem 1 we’ll show that L⋆ is actually the infimum of
L, i.e., L⋆ = infθ L(θ).

Lemma 4 also indicates that in the noisy case, the necessary and sufficient condition for L(θ(t)) to converge to L⋆ during
training is

∀k ∈ [K] : δθ
t

k → 0, t → ∞. (30)

We define the following to matrices:

A :=
(
Z⊤Z +mτIN

)−1
(
Z⊤Ẑ + (mτIN ,0)

)
∈ RN×K , (31)

Â(θ) :=

(
H∑

h=1

wh,1s
h
1 , · · · ,

H∑
h=1

wh,KshK

)
∈ RN×K , (32)

where Ẑ := (z1, · · · , zK) ∈ Rm×K . Then by (28) we immediately know that (30) is equivalent to

Â(θ(t))−A → 0, t → ∞. (33)

To simplify the analysis, we introduce the following reparameterization to unify the learning rates of all parameters, and
we’ll consider the losses after reparameterization in the subsequent proofs.

Lemma 5 (reparameterization). Define

γ :=
√

ηw/ηQ, αh := wh/γ, ∀h ∈ [H], (34)

and let
ξ := {Qh,αh}Hh=1, ℓ(ξ) := L(θ). (35)

Then we have
ξ(t) = ξ(t−1) − ηQ∇ξℓ(ξ

(t−1)), ∀t ∈ [T ]. (36)

Proof of Lemma 5. See Appendix H.2.

We denote α as α := (αh,k)h∈[H],k∈[K] ∈ RH×K .

The following lemma bound the gradient norms by the loss function of the basic, which is crucial to the proof of Theorem 1.

Lemma 6 (upper bound of the the gradient norms). Suppose Assumption 1 holds and |α(t)
h,k| ≤ α. Then for all h ∈ [H], we

have ∥∥∥∥∥∂ℓ(ξ(t))∂Q
(t)
h

∥∥∥∥∥
F

≤ 2
√
2γαf̄max

√
ℓ(ξ(t))− L⋆. (37)

Proof of Lemma 6. See Appendix H.3.

The following lemma shows the equivalence between (18) and (19).

Lemma 7 (equivalence of the regression problems). Given any prompt Pλ := (v1, y1, · · · ,vN , yN ), we have the following
equivalence:

Eϵ

[
1

2N

N∑
i=1

(yi − λ⊤ (f(vi) + ϵi))
2

]
=

1

2N

N∑
i=1

(yi − λ⊤f(vi))
2 +

τ

2
∥λ∥22 . (38)

Proof of Lemma 7. See Appendix H.4.

Now we are ready to give the main proof.

12



In-Context Learning with Representations: Contextual Generalization of Trained Transformers

proof of Theorem 1. To prove Theorem 1, it suffices to prove that under the assumptions made in the theorem, we have:

Upper bound of the parameters:
∥∥∥α(t)

h

∥∥∥
2
≤ α, (39)

Lower bound of eigenvalues: λmin

(
B

(t)
k B

(t)⊤
k

)
≥ ζ0

2
, (40)

Linear decay of the loss: L(θ(t))− L⋆ ≤
(
1− ηQσ

2

)t (
L(θ(0))− L⋆

)
, (41)

where

σ :=
ζ0γ

2

K
, α :=

√
2K

4
∥∥Z̄∥∥

2

γζ0

√
L(θ(0))− L⋆, (42)

and γ,αh is defined in (34), ζ0 is defined in (9).

We prove (39),(40) and (41) by induction. It’s apparent that they all hold when t = 0.

We make the following inductive hypothesis:

Inductive hypothesis: when s ∈ [t− 1], (39),(40) and (41) hold.

Below we prove that (39),(40) and (41) hold when s = t by the following steps.

Step 1: verify the Polyak-Łojasiewicz condition.

We first compute the gradient of the loss w.r.t. α:

∀k ∈ [K] :
∂ℓ(ξ)

∂αk
=

1

2K

∂

∂αk

∥∥Z̄δθk
∥∥2
2
=

1

2K

∂

∂αk

∥∥Z̄ (γCkαk −A:k)
∥∥2
2

=
γ

K

(
Z̄Ck

)⊤
Z̄δθk =

γ

K
B⊤

k Z̄δθk, (43)

where the first equality follows from Lemma 4, Ck,Bk is defined in (23).

Let bhk denote the h-th column vector of Bk, h ∈ [H], i.e., Bk := (b1k, · · · , bHk ),

then for any k ∈ [K] and t ∈ N+, we have∥∥∥(bhk)(t) − (bhk)
(0)
∥∥∥
2
≤
∥∥Z̄∥∥

2

∥∥∥(shk)(t) − (shk)
(0)
∥∥∥
2

≤
∥∥Z̄∥∥

2

∥∥∥(shk)(t) − (shk)
(0)
∥∥∥
1

≤ 2
∥∥Z̄∥∥

2

∥∥∥V ⊤(Q
(t)
h −Q

(0)
h )vk

∥∥∥
∞

≤ 2
∥∥Z̄∥∥

2
max
j∈[N ]

|v⊤
j (Q

(t)
h −Q

(0)
h )vk|

≤ 2
∥∥Z̄∥∥

2

∥∥∥Q(t)
h −Q

(0)
h

∥∥∥
F
, (44)

where the third line uses Lemma 2, and that

∀h ∈ [H] :
∥∥∥Q(t)

h −Q
(0)
h

∥∥∥
F
≤

t−1∑
s=0

η

∥∥∥∥∥∂ℓ(ξ(s))∂Q
(s)
h

∥∥∥∥∥
F

≤
t−1∑
s=0

2
√
2ηγαf̄max

√
ℓ(ξ(s))− L⋆

≤ 2
√
2ηγαf̄max

√
L(θ(0))− L⋆

t−1∑
s=0

(√
1− ησ

2

)s

≤ 8
√
2γαf̄max

σ

√
L(θ(0))− L⋆, (45)
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where the second inequality follows from (37) and the third inequality follows from the inductive hypothesis and the fact
that ℓ(ξ(s)) = L(θ(s)), ∀s. Combining (45) with (44), we have

∥∥∥B(t)
k −B

(0)
k

∥∥∥
F
≤ 2

∥∥Z̄∥∥
2

√√√√ H∑
h=1

∥∥∥Q(t)
h −Q

(0)
h

∥∥∥2
F

≤
∥∥Z̄∥∥

2

√
H

16
√
2γαf̄max

σ

√
L(θ(0))− L⋆

≤
(
1− 1/

√
2
)√

ζ0, (46)

where the last inequality follows from (10).

(46) indicates that

∀x ∈ RK :
∥∥∥x⊤B

(t)
k

∥∥∥
2
≥
∥∥∥x⊤B

(0)
k

∥∥∥
2
−
∥∥∥x⊤(B

(t)
k −B

(0)
k )
∥∥∥
2
≥
√
ζ0/2,

which gives (40).

Therefore, we obtain the PL-condition as follows:∥∥∥∇θℓ(ξ
(t))
∥∥∥2
F
≥

K∑
k=1

H∑
h=1

(
∂ℓ(ξ)

∂αh,k

)2

=
γ2

K2

K∑
k=1

(
Z̄δ

(t)
k

)⊤
B

(t)
k B

(t)⊤
k Z̄δ

(t)
k

≥ ζ0γ
2

2K2

K∑
k=1

∥∥∥Z̄δ
(t)
k

∥∥∥2
2
=

ζ0γ
2

K︸ ︷︷ ︸
:=σ

(
ℓ(ξ(t))− L⋆

)
, (47)

where the equality comes from (43), the last equality follows from (29).

Step 2: prove the smoothness of the loss function.

We first give the following lemma that bounds the Lipschitzness of bhk and δθk, which will be used later on. For nota-
tion simplicity, we let B,Q,α denote B(θ),Q(θ),α(θ), respectively, and let B′,Q′,α′ denote B(θ′),Q(θ′),α(θ′),
respectively.

Lemma 8 (Lipschitzness of bhk and δθk). For all k ∈ [K] and h ∈ [H], and all transformer parameters θ,θ′, if
max{|αh,k|, |α′

h,k|} ≤ α, then we have∥∥bhk(θ)− bhk(θ
′)
∥∥
2
≤ 2

∥∥Z̄∥∥
2
∥Qh −Q′

h∥F , (48)∥∥∥δθk − δθ
′

k

∥∥∥
2
≤ 2γ

√
Hα

√√√√ H∑
h=1

∥Qh −Q′
h∥

2
F
+ γ

√
H ∥αk −α′

k∥2 . (49)

Proof. (48) follows from a similar argument in (44). Regarding the Lipschitzness of δθk, we have

∥∥∥δθk − δθ
′

k

∥∥∥
2
= γ

∥∥∥∥∥
H∑

h=1

αh,k(s
h
k(θ)− shk(θ

′)) +

H∑
h=1

(αh,k − α′
h,k)s

h
k(θ

′)

∥∥∥∥∥
2

≤ γ

H∑
h=1

|αh,k|
∥∥shk(θ)− shk(θ

′)
∥∥
2
+ γ

H∑
h=1

|αh,k − α′
h,k|

∥∥shk(θ′)
∥∥
2

≤ 2γ
√
Hα

√√√√ H∑
h=1

∥Qh −Q′
h∥

2
F
+ γ

√
H ∥αk −α′

k∥2 ,

where we use (44) again to bound the first term in the second line, and use the fact that
∥∥shk(θ′)

∥∥
2
≤ 1 and Cauchy-Schwarz

inequality to bound the second term in the second line.
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We also need the following lemma which bounds the norm of Bk and δθk.

Lemma 9 (upper bounds of bhk and δθk). For all k ∈ [K] and h ∈ [H], if max{|αh,k|, |α′
h,k|} ≤ α, then we have∥∥bhk∥∥2 ≤

∥∥Z̄∥∥
2
, (50)∥∥δθk∥∥2 ≤ γHα+ ∥A∥2 , (51)

where A is defined in (31).

Proof. (50) follows from ∥∥bhk∥∥2 ≤
∥∥Z̄∥∥

2

∥∥shk∥∥2 ≤
∥∥Z̄∥∥

2
.

(51) follows from ∥∥δθk∥∥2 ≤ γ

H∑
h=1

|αh,k|
∥∥shk∥∥2 + ∥Aek∥2 ≤ γHα+ ∥A∥2 .

As a consequence of Lemma 8 and Lemma 9, For all k ∈ [K], and all transformer parameters θ,θ′, if max{|αh,k|, |α′
h,k|} ≤

α, we have

∥∇αk
ℓ(ξ)−∇αk

ℓ(ξ′)∥2
(43)
=

γ

K

∥∥∥(Bk −B′
k)

⊤Z̄δθk +B′
k
⊤
Z̄(δθk − δθ

′

k )
∥∥∥
2

≤ γ

K

∥∥Z̄∥∥
2
∥Bk −B′

k∥F
∥∥δθk∥∥2 + γ

K

∥∥Z̄∥∥
2
∥B′

k∥F
∥∥∥δθk − δθ

′

k

∥∥∥
2

≤ γ

K
· 2
∥∥Z̄∥∥2

2
(2γHα+ ∥A∥2)

√√√√ H∑
h=1

∥Qh −Q′
h∥

2
F
+

γ2

K
H
∥∥Z̄∥∥2

2
∥αk −α′

k∥2 , (52)

from which we obtain the smoothness of the ℓ w.r.t. α as follows:

∥∇αℓ(ξ)−∇αℓ(ξ
′)∥2F

=

K∑
k=1

∥∇αk
ℓ(ξ)−∇αk

ℓ(ξ′)∥22

≤ 2K
( γ

K
· 2
∥∥Z̄∥∥2

2
(2γHα+ ∥A∥2)

)2 H∑
h=1

∥Qh −Q′
h∥

2
F + 2

γ4

K2
H2
∥∥Z̄∥∥4

2
∥α−α′∥2F

≤ 2

(
1

K

(
2γ
∥∥Z̄∥∥2

2
(2γHα+ ∥A∥2)

)2
+

γ4

K2
H2
∥∥Z̄∥∥4

2

)
∥ξ − ξ′∥22 , (53)

where the first inequality uses Young’s inequality (c.f. Lemma 3).

To obtain the smoothness of the loss function w.r.t. Qh, we first note that by (80) we have

∂ℓ(ξ)

∂Qh
=

γ

K

K∑
k=1

N∑
j=1

(
Z̄δθk

)⊤
zj · αh,ks

h
jk

N∑
i=1

shik(vj − vi)v
⊤
k . (54)

Therefore, if max{|αh,k|, |α′
h,k|} ≤ α, we have

15
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∥∥∥∥∂ℓ(ξ)∂Qh
− ∂ℓ(ξ′)

∂Qh

∥∥∥∥
F

≤ 2γf̄max

K

K∑
k=1

{ N∑
j=1

∥∥Z̄∥∥
2

∥∥∥δθk − δθ
′

k

∥∥∥
2
· αshjk(θ)

N∑
i=1

shik(θ)

+

N∑
j=1

∥∥Z̄∥∥
2

∥∥∥δθ′

k

∥∥∥
2
|αh,k − α′

h,k|shjk(θ)
N∑
i=1

shik(θ)

+

N∑
j=1

∥∥Z̄∥∥
2

∥∥∥δθ′

k

∥∥∥
2
α|shjk(θ)− shjk(θ

′)|
N∑
i=1

shik(θ)

+

N∑
j=1

∥∥Z̄∥∥
2

∥∥∥δθ′

k

∥∥∥
2
αshjk(θ

′)

N∑
i=1

|shik(θ)− shik(θ
′)|
}

≤
2γf̄max

∥∥Z̄∥∥
2

K

K∑
k=1

{∥∥∥δθk − δθ
′

k

∥∥∥
2
α+

∥∥∥δθ′

k

∥∥∥
2
|αh,k − α′

h,k|

+
∥∥∥δθ′

k

∥∥∥
2
α

N∑
j=1

|shjk(θ)− shjk(θ
′)|+

∥∥∥δθ′

k

∥∥∥
2
α

N∑
i=1

|shik(θ)− shik(θ
′)|
}

≤
2γf̄max

∥∥Z̄∥∥
2

K

K∑
k=1

{∥∥∥δθk − δθ
′

k

∥∥∥
2
α+

∥∥∥δθ′

k

∥∥∥
2
|αh,k − α′

h,k|

+ 2
∥∥∥δθ′

k

∥∥∥
2
α
√
N
∥∥shk(θ)− shk(θ

′)
∥∥
2

}
, (55)

where the third inequality uses Cauchy-Schwarz inequality. Combining the above inequality (55) with Lemma 8 and
Lemma 9, we have ∥∥∥∥∂ℓ(ξ)∂Qh

− ∂ℓ(ξ′)

∂Qh

∥∥∥∥
F

≤
2γf̄max

∥∥Z̄∥∥
2

K

{
αγ

√
H

2Kα

√√√√ H∑
h=1

∥Qh −Q′
h∥

2
F
+

√
K ∥α−α′∥F


+ (γHα+ ∥A∥2)

√
K
∥∥αh,: −α′

h,:

∥∥
2

+ (γHα+ ∥A∥2) · 2α
√
N · 2K ∥Q′

h −Qh∥F

}
, (56)

where the last line uses (44) to bound
∥∥shk(θ)− shk(θ

′)
∥∥
2
. The above inequality (56) further gives

H∑
h=1

∥∇Qh
ℓ(ξ)−∇Qh

ℓ(ξ′)∥2F

≤ 8 ·
γf̄max

∥∥Z̄∥∥
2

K

{
(2Kα)2

[
(αγH)2 + 4N (αγH + ∥A∥2)

2
] H∑
h=1

∥Qh −Q′
h∥

2
F

+K
[
(αγH)2 + (αγH + ∥A∥2)

2
]
∥α−α′∥2F

}
≤ 8γf̄max

∥∥Z̄∥∥
2
·max

{
1, (2

√
Kα)2

}[
(αγH)2 + 4N (αγH + ∥A∥2)

2
]
∥ξ′ − ξ∥22 , (57)

where the first inequality makes use of Young’s inequality (c.f. Lemma 3).

Combining the above two relations (53) and (57), we obtain the smoothness of ℓ w.r.t. ξ as follows:
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Lemma 10 (smoothness of the loss, noisy case). Let γ :=
√

ηw/ηQ. For all transformer parameters ξ, ξ′, if
max{|αh,k|, |α′

h,k|} ≤ α, then we have

∥∇ξℓ(ξ)−∇ξℓ(ξ
′)∥2 ≤ L ∥ξ − ξ′∥2 , (58)

where

L2 = 2

(
1

K

(
2γ
∥∥Z̄∥∥2

2
(2γHα+ ∥A∥2)

)2
+

γ4

K2
H2
∥∥Z̄∥∥4

2

)
+ 8γf̄max

∥∥Z̄∥∥
2
·max

{
1, (2

√
Kα)2

}[
(αγH)2 + 4N (αγH + ∥A∥2)

2
]
.

(59)

Step 3: verify (39). (43) implies
∂ℓ(ξ)

∂αh,k
=

γ

K
(bhk)

⊤Z̄δθk,

which, combining with (50), gives

∀k ∈ [K], h ∈ [H] :

(
∂ℓ(ξ)

∂αh,k

)2

≤ γ2

K2

∥∥Z̄∥∥2
2

∥∥Z̄δθk
∥∥2
2
.

Combining this with (29) we obtain ∥∥∥∥ ℓ(ξ)∂αh

∥∥∥∥2
2

≤
∥∥Z̄∥∥2

2

2γ2

K
(ℓ(ξ)− L⋆) ,

which indicates ∥∥∥∥∂ℓ(ξ)∂αh

∥∥∥∥
2

≤
∥∥Z̄∥∥

2
γ

√
2

K
(ℓ(ξ)− L⋆). (60)

Therefore, we have ∥∥∥α(t)
h

∥∥∥
2
=

∥∥∥∥∥α(0)
h − ηQ

t−1∑
i=0

∂ℓ(ξ(i))

∂αh

∥∥∥∥∥
2

≤
∥∥∥α(0)

h

∥∥∥
2
+ ηQ

t−1∑
i=0

∥∥∥∥∂ℓ(ξ(i))∂αh

∥∥∥∥
2

≤
∥∥∥α(0)

h

∥∥∥
2
+ ηQ

∥∥Z̄∥∥
2

√
2γ2

K

t−1∑
i=0

√
ℓ(ξ(i))− L⋆

≤
∥∥∥α(0)

h

∥∥∥
2
+ ηQ

∥∥Z̄∥∥
2

√
2γ2

(
L(θ(0))− L⋆

)
K

t−1∑
i=0

(√
1− ηQσ

2

)i

≤
∥∥∥α(0)

h

∥∥∥
2
+ ηQ

∥∥Z̄∥∥
2

√
2γ2

(
L(θ(0))− L⋆

)
K

· 4

ηQσ
,

where the second inequality follows from (60) and the third inequality follows from the induction hypothesis (41). (39)
follows from plugging σ defined in (42) into the above inequality and using the initializtion condition that α(0) = 1

γw
(0) =

0.

Step 4: give the linear convergence rate. Combining (39), (58) and Lemma 4.3 in (Nguyen & Mondelli, 2020), we have

ℓ(ξ(t))− L⋆ ≤ ℓ(ξ(t−1))− L⋆ + ηQ⟨∇ξℓ(ξ
(t−1)), ξ(t) − ξ(t−1)⟩+ L

2

∥∥∥ξ(t) − ξ(t−1)
∥∥∥2
2
, (61)

which indicates when ηQ ≤ 1/L, we have

ℓ(ξ(t))− L⋆ ≤ ℓ(ξ(t−1))− L⋆ − ηQ
2

∥∥∥∇ξℓ(ξ
(t−1))

∥∥∥2
F

(47)
≤
(
1− ηQσ

2

)(
ℓ(ξ(t−1))− L⋆

)
, (62)
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which, combined with the fact that L(θ(s)) = ℓ(ξ(s)) for all s (see Lemma 5), verifies (41).

Note that (29) implies that L⋆ ≤ L(θ) holds for all θ. And from (41) we know that L(θ(t)) → L⋆ as t → ∞. Therefore,
there must be

L⋆ = inf
θ

L(θ).

Consequently, (41) is equivalent to (12).

F Proof of Theorem 2

By (41) we know that L(θ(t)) → L⋆ as t → ∞. Thus from (29) we know that (30) and (33) hold.

By Sherman-Morrison-Woodbury formula, we have(
mτIN +Z⊤Z

)−1
=

1

mτ
IN − 1

mτ
Z⊤ (mτIm +ZZ⊤)−1

Z. (63)

Thus we have

A
(31)
=
(
Z⊤Z +mτIN

)−1
(
Z⊤Ẑ + (mτIN ,0)

)
(63)
=

1

mτ

(
IN −Z⊤ (mτIm +ZZ⊤)−1

Z
)(

Z⊤Ẑ + (mτIN ,0)
)

=
1

mτ

[
Z⊤Z̃ + (mτIN ,0)−Z⊤ (mτIm +ZZ⊤)−1 (

mτIm +ZZ⊤) Z̃
+mτZ⊤ (mτIm +ZZ⊤)−1

Z̃ −mτZ⊤ (mτIm +ZZ⊤)−1
(Z,0)

]
= (IN ,0) +Z⊤ (mτIm +ZZ⊤)−1

(0,ZQ)

=
(
IN ,Z⊤ (mτIm +ZZ⊤)−1

ZQ
)
, (64)

where ZQ is defined in (13).

On the other hand, it’s straightforward to verify that λ̂ defined in (16) yields the following closed form:

λ̂ =
(
mτIm +ZZ⊤)−1

Zy. (65)

Combining the above two equations, we obtain

A⊤y =

(
y(

ZQ
)⊤ (

mτIm +ZZ⊤)−1
Zy

)
=

(
y(

ZQ
)⊤

λ̂

)
= ŷ⋆,

where the last equality follows from (15).

Now we give the iteration complexity for the mean-squared error between the prediction ŷ and the limit point ŷ⋆ to be less
than ε.

Given any prompt P = Pλ, where λ satisfies Assumption 4, we have

yi = λ⊤(zi + ϵi) ∼ N (λ⊤zi, ∥λ∥22 τ).

Letting xi =
yi−λ⊤zi

∥λ∥2

√
τ

, we have xi ∼ N (0, 1). Define

Z =

N∑
i=1

∥λ∥22 τ(x
2
i − 1) =

∥∥y −Z⊤λ
∥∥2
2
−Nτ ∥λ∥22 .

By Laurent & Massart (2000, Lemma 1), we have

∀s > 0 : P
(
Z ≥ 2

√
N ∥λ∥22 τ

√
s+ 2 ∥λ∥22 τs

)
≤ exp (−s) .
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By letting s = log(1/δ) and using the definition of Z, we have

P
(∥∥y −Z⊤λ

∥∥2
2
≥ Nτ ∥λ∥22 + 2

√
N log(1/δ) ∥λ∥22 τ + 2 ∥λ∥22 τ log(1/δ)

)
≤ δ. (66)

Thus with probability at least 1− δ, we have

∥y∥2 ≤
∥∥Z⊤λ

∥∥
2
+
∥∥y −Z⊤λ

∥∥
2

≤
∥∥Z⊤λ

∥∥
2
+ ∥λ∥2

√
τ
(
N + 2

√
N log(1/δ) + 2 log(1/δ)

)1/2
≤ B

(
∥Z∥2 +

√
τ
(
N + 2

√
N log(1/δ) + 2 log(1/δ)

)1/2)
. (67)

where we use (66) in the second relation, and the third relation follows from Assumption 4.

On the other hand, by (29) we have

L(θ(t)) =
1

2K

∥∥∥Z̄(Â−A)
∥∥∥2
2
+ L⋆ ≥ mτ

2K

∥∥∥Â−A
∥∥∥2
2
+ L⋆,

which gives ∥∥∥Â−A
∥∥∥
2
≤
√

2K

mτ

(
L(θ(T ))− L⋆

)
≤
√

2K

mτ

(
L(θ(0))− L⋆

)(
1− γ2ηQζ0

2K

)T/2

. (68)

Thus we know that w.p. at least 1− δ, we have

1

2K
∥ŷ − ŷ⋆∥22 =

1

2K

∥∥∥∥(Â−A
)⊤

y

∥∥∥∥2
2

≤ 1

2K

∥∥∥Â−A
∥∥∥2
2
∥y∥22 ≤ ε,

where the last relation follows from (67), (68) and (14).

G Proof of Proposition 1

For notation simplicity we drop the superscript (0) in the subsequent proof.

Let Dk :=
(
V ⊤Q1vk, · · · ,V ⊤QHvk

)
∈ RN×H . Note that

Dk = V ⊤Q = V ⊤(q1, · · · , qH), where Q(i, j)
i.i.d.∼ N (0, β2 ∥vk∥22), ∀i ∈ [d], j ∈ [H]. (69)

This suggests the column vectors of Dk are i.i.d. and the density of each column vector is positive at any point x ∈ R(V ),
where R(V ) ⊂ RN is the row space of V .

Since Z̄ has full rank, to prove Bk has full rank a.s., we only need to argue that Ck(:, 1 : N) has full rank w.p. 1. Below we
prove this by contradiction (recall that by definition Ck = softmax(Dk), and we assume H ≥ N ).

Suppose w.p. larger than 0, there exists one of Ck(:, 1 : N)’s colomn vector that could be linearly represented by its other
N − 1 colomn vectors. Without loss of generality, we assume this colomn vector is Ck(:, 1) = softmax(Dk(:, 1)). Let
x = x(q1) := exp(Dk(:, 1)) = exp(V ⊤q1). Then x could be linearly represented by exp(Dk(:, i)), i = 2, · · · , N .

Let Ã := exp(Dk(:, 2 : N)), then w.p. larger than 0, x ∈ C(Ã), where C(Ã) is the column vector space of Ã. i.e., we have∫
RN×(m−1)

P(x ∈ C(Ã)|Ã)dµ(Ã) > 0,

which further indicates that there exists Ã ∈ RN×(N−1) such that P(x ∈ C(Ã)) > 0. Since the dimension of C(Ã) is at
most N − 1, there exists y ∈ RN , y ̸= 0 such that y⊥C(Ã). Therefore, we have

P(y⊤x = 0) > 0. (70)
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By Assumption 2, without loss of generality, we assume that u1 = (v11, v12, · · · , v1N )⊤ has different entries.

For any vector w = (w1, · · · , wd)
⊤ ∈ Rd, we let w̃ = (w2, · · · , wd)

⊤ ∈ Rd−1 denote the vector formed by deleting the
first entry of w. Let q1 = (q, q̃⊤

1 )
⊤. For any fixed q̃1 ∈ Rd−1, the function g(·|q̃1) : R → R defined by

g(q|q̃1) :=
N∑
i=1

yie
qv1i+q̃⊤

1 ṽi =

N∑
i=1

yie
q̃⊤
1 ṽieqv1i =

〈
y, exp(V ⊤q1)

〉
= ⟨y,x(q1)⟩

has finite zero points and thus {q ∈ R|g(q|q̃1) = 0} is a zero-measure set. Therefore, we have

P(⟨y,x⟩ = 0) =

∫
Rd−1

P(g(q|q̃1) = 0|q̃1)dµ(q̃1) = 0,

which contradicts (70).

Therefore, Ck(:, 1 : N) has full rank with probability 1.

H Proof of Key Lemmas

H.1 Proof of Lemma 4

We let ϵP := (ϵ1, · · · , ϵN ) ∈ Rm×N , ϵ := (ϵ1, · · · , ϵK) ∈ Rm×K . Recall that y = (y1, · · · , yN )⊤ ∈ RN . Then we have

y = (Z + ϵP )⊤λ, (71)

and

L(θ) = 1

K

K∑
k=1

Lk(θ) =
1

2
Eλ,ϵ

[
1

K

K∑
k=1

(ŷk − yk)
2

]
(72)

=
1

2K

K∑
k=1

Eλ,ϵ

∥∥y⊤âk − λ⊤(zk + ϵk)
∥∥2
2

=
1

2K

K∑
k=1

Eλ,ϵ

∥∥λ⊤(Z + ϵP )âk − λ⊤(zk + ϵk)
∥∥2
2

=
1

2K

K∑
k=1

Eλ,ϵ

[
(Z + ϵP )âk − (zk + ϵk)

]⊤
λλ⊤ [(Z + ϵP )âk − (zk + ϵk)

]
=

1

2K

K∑
k=1

Eϵ

[
(Z + ϵP )âk − (zk + ϵk)

]⊤ [
(Z + ϵP )âk − (zk + ϵk)

]
=

1

2K

K∑
k=1

Eϵ

[
∥Zâk − zk∥22 + 2(Zâk − zk)

⊤(ϵP âk − ϵk) +
∥∥ϵP âk − ϵk

∥∥2
2

]
, (73)

where the fifth line uses Assumption 1.

Note that for all k ∈ [K], we have
Eϵ(Zâk − zk)

⊤(ϵP âk − ϵk) = 0, (74)

and that

Eϵ

∥∥ϵP âk − ϵk
∥∥2
2
= mτ

(
∥âk∥22 + 1

)
− 2mτâkk1 {k ∈ [N ]} , (75)

where 1 {k ∈ [N ]} is the indicator function that equals 1 if k ∈ [N ] and 0 otherwise, and we have made use of the
assumption that ϵk

i.i.d.∼ N (0, τ2Im).
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Combining the above two equations with (73), we know that for k ∈ [N ], it holds that

Lk(θ) =
1

2

(
∥Zâk − zk∥22 +mτ ∥âk − ek∥22

)
.

Reorganizing the terms in the RHS of the above equation, we obtain that

Lk(θ) =
1

2

∥∥∥(Z⊤Z +mτI
)1/2 (

âk −
(
Z⊤Z +mτI

)−1 (
Z⊤zk +mτek

))∥∥∥2
2
+

1

2
ck, (76)

where ck = −
(
Z⊤zk +mτek

)⊤ (
Z⊤Z +mτI

)−1 (
Z⊤zk +mτek

)
+ ∥zk∥22 +mτ .

By a similar argument, we can show that for k ∈ [K]\[N ], it holds thet

Lk(θ) =
1

2

∥∥∥(Z⊤Z +mτI
)1/2 (

âk −
(
Z⊤Z +mτI

)−1
Z⊤zk

)∥∥∥2
2
+

1

2
c′k, (77)

where c′k = −
(
Z⊤zk

)⊤ (
Z⊤Z +mτI

)−1 (
Z⊤zk

)
+ ∥zk∥22.

(76), (77) together with (28) and the definition of L⋆ give (29).

H.2 Proof of Lemma 5

First, it holds that
Q

(t)
h = Q

(t−1)
h − ηQ∇Qh

ℓ(ξ(t−1)) = Q
(t−1)
h − ηQ∇Qh

ℓ(ξ(t−1)). (78)

Second, note that

w
(t)
h = w

(t−1)
h − ηw∇wh

L(θ(t−1))

= γα
(t−1)
h − γ2 · 1

γ
ηQ∇αh

ℓ(ξ(t−1))

= γ
(
α

(t−1)
h − ηQ∇αh

ℓ(ξ(t−1))
)
.

Dividing both sides of the above equality by γ, we have

α
(t)
h = α

(t−1)
h − ηQ∇αh

ℓ(ξ(t−1)). (79)

(36) follows from combining (78) and (79).

H.3 Proof of Lemma 6

In this proof we omit the superscript (t) for simplicity. We first compute the gradient of L w.r.t. Qh.

By (29) we know that

ℓ(ξ) = L(θ) = 1

2K

K∑
k=1

∥∥Z̄δk
∥∥2
2
,

and thus we have

∂ℓ(ξ)

∂Qh
=

1

K

K∑
k=1

N∑
j=1

∂

∂δjk

1
2

∥∥∥∥∥
N∑
i=1

δikz̄i

∥∥∥∥∥
2

2

 ∂δjk
∂Qh

=
γ

K

K∑
k=1

N∑
j=1

(
Z̄δk

)⊤
z̄j · αh,ks

h
jk

N∑
i=1

shik(vj − vi)v
⊤
k︸ ︷︷ ︸

:=Gh,jk

. (80)
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Note that ∥∥Gh,jk
∥∥
F
≤ 2αshjk, (81)

where we use the fact that
∥∥(vj − vi)v

⊤
k

∥∥
2
≤ 2 (recall that we suppose each vk has unit norm, k ∈ [K].) Combining (80)

and (81), we have ∥∥∥∥∂ℓ(ξ)∂Qh

∥∥∥∥
F

≤ γ

K

K∑
k=1

N∑
j=1

∥∥Z̄δk
∥∥
2
∥z̄j∥2

∥∥Gh,jk
∥∥
F

≤ 2γ

K

K∑
k=1

N∑
j=1

∥∥Z̄δk
∥∥
2
f̄maxαs

h
jk

≤ 2γf̄maxα

K

√
K

√√√√ K∑
k=1

∥∥Z̄δk
∥∥2
2

≤ 2
√
2γf̄maxα

√
ℓ(ξ)− L⋆, (82)

where f̄max is defined in (22) and the third line follows from Cauchy-Schwarz inequality. (82) gives the desired result.

H.4 Proof of Lemma 7

Lemma 7 can be verified by the following direct computation (recall that the noise in each label satisfies ϵi
i.i.d∼ N (0, τIm),

∀i ∈ [N ]):

Eϵ

[
1

2N

N∑
i=1

(yi − λ⊤ (f(vi) + ϵi))
2

]

= Eϵ

[
1

2N

N∑
i=1

(
(yi − λ⊤f(vi))

2 − 2λ⊤ϵi(yi − λ⊤f(vi)) + λ⊤ϵiϵ
⊤
i λ
)]

=
1

2N

N∑
i=1

(
(yi − λ⊤f(vi))

2 + τ ∥λ∥22
)

=
1

2N

N∑
i=1

(yi − λ⊤f(vi))
2 +

τ

2
∥λ∥22 .
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