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ABSTRACT

Recent years have witnessed remarkable progress in autonomous driving, yet gen-
eralization to long-tail and open-world scenarios remains the primary bottleneck
for large-scale deployment. To address this, one line of research explores LLMs
and VLMs for their vision-language understanding and reasoning capabilities,
equipping AVs with the ability not only to interpret rare and safety-critical sit-
uations when generating driving actions. In parallel, another line investigates gen-
erative world models to capture the spatio-temporal evolution of driving scenes,
enabling agents to imagine and evaluate possible futures before acting. Inspired
by human intelligence, which seamlessly unites understanding and imagination
as a hallmark of AGI, this work explores a unified model that brings these two
capabilities together for autonomous driving. We present LMGenDrive, the first
framework that unifies LLM-based multimodal reasoning with generative world
models for end-to-end closed-loop autonomous driving. Given multi-view cam-
era inputs and natural-language instructions, our model generates both realistic
future driving videos and corresponding control signals. By coupling an LLM
with generative video capabilities, LMGenDrive gains complementary benefits:
future video prediction enhances the LLM’s spatio-temporal scene understanding,
while the LLM itself provides reasoning and instruction-following capabilities.
A progressive three-stage training strategy—ranging from vision pretraining to
multi-step long-horizon driving—is proposed to further improve stability and per-
formance. The resulting model can also operate in two complementary modes:
low-latency online planning and autoregressive offline video generation. Experi-
ments show that LMGenDrive significantly outperforms state-of-the-art methods
on challenging closed-loop driving benchmarks, improving instruction following,
spatio-temporal reasoning, and robustness to rare scenarios. Our work not only
sets a new state-of-the-art in autonomous driving, but also demonstrates that unify-
ing multimodal understanding and generation offers a foundational new paradigm
toward achieving embodied AGI.

1 INTRODUCTION

Remarkable progress in autonomous driving has been witnessed in recent years with an increasing
number of commercial autonomous vehicles (AVs) deployed on public roads. Amidst this momen-
tum, end-to-end autonomous driving has emerged as a particularly vibrant research direction. Unlike
traditional modular pipelines that separately handle perception, prediction, and planning with hand-
crafted interfaces, end-to-end models provide a holistic paradigm with potential to remove informa-
tion bottlenecks among modules, better align model optimization with system-level performance,
and scale effectively with large amounts of driving data.

Despite this progress, the problem of generalization remains the central bottleneck for the entire
autonomous driving community. As we approach the frontier of real-world deployment, the ability
to robustly handle long-tail edge cases and operate in open-world settings remains the defining chal-
lenge for AV systems. These scenarios can include rare but safety-critical events, distribution shifts
across regions, adversarial weather conditions, as well as complex social interactions and ambigu-
ous intent among agents. This challenge manifests across the autonomy stack: perception systems
struggle to identify open-set entities, while prediction and planning models falter in extrapolating to
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Figure 1: Comparison between existing works and ours. Prior works either leverage LLMs/VLMs
for multimodal understanding and reasoning, or adopt world models for video-based scene imagi-
nation, but treat these capabilities in isolation. In contrast, our proposed LMGenDrive unifies both
within a closed-loop end-to-end framework: the LLM interprets and reasons over multimodal in-
puts, while the world model simulates future scene evolution, together enabling instruction-guided
planning, spatio-temporal reasoning, and robust long-horizon driving.

nondeterministic and previously unseen behaviors. These generalization failures represent the last
barrier between research prototypes and truly scalable, globally deployable autonomous vehicles.

Amid this backdrop, large language models (LLMs) have emerged to demonstrate unprecedented
reasoning and generalization abilities that approach—if not exceed—human-level performance. Re-
cent models such as GPT-5 and DeepSeek-R1 (Guo et al., 2025) showcase robust capabilities in
commonsense reasoning, abstraction, and decision-making. Meanwhile, vision-language models
(VLMs) further extend this capacity to the multimodal domain, enabling unified interpretation of
textual and visual inputs (Wang et al., 2025b; Bai et al., 2025; Liu et al., 2023; Li et al., 2022;
Alayrac et al., 2022). Inspired by these vision-language understanding and reasoning capabilities,
a wave of research has begun exploring how to equip AV systems with LLMs and VLMs to ad-
dress the open-world, long-tail challenges in autonomous driving. As exemplified in works such as
LMDrive (Shao et al., 2024) and GPT-Driver (Mao et al., 2023a), these models act as the cognitive
brains to interprete ambiguous scenarios and guiding complex decision-making under uncertainty.
However, most existing LLM- or VLM-empowered driving methods follow the paradigm that maps
inputs directly to actions, falling short in explaining and capturing the temporal evolution of driving
scenes—an essential factor for robust and anticipatory planning.

Meanwhile, another stream of research, world model (Ha & Schmidhuber, 2018), has emerged to
simulate the spatio-temporal evolution of the scenes, as exemplified by video-based works such as
Genie-3 (Ball et al., 2025) and Pandora (Xiang et al., 2024). Their potential has also been actively
explored in the autonomous driving domain, enabling the agent to “imagine” different futures be-
fore committing to a plan. However, existing works either focus on solely generating high-fidelity
scenes (Hu et al., 2023a; Russell et al., 2025; Gao et al., 2023; 2024; Ji et al., 2025; Wang et al.,
2024a; Yang et al., 2024), or utilize world models as a plug-and-play forecasting module to rank
multiple possible plans (Wang et al., 2024b; Wang & Peng, 2025). The integration of joint video
generation and motion planning remains underexplored, limiting their ability to address critical chal-
lenges such as cumulative control errors, human-robot interaction, and the temporal consistency be-
tween generated actions and videos—factors that are essential for long-horizon problem solving in
real-world systems. Moreover, these models generally lack the rich reasoning priors and instruction
following capabilities uniquely offered by LLMs.

In contrast to existing models that specialize in either understanding or generation, human intel-
ligence is inherently capable of both understanding the present and imagining the future—a dual
capacity for perception and generation that underpins commonsense reasoning and long-horizon
decision-making, suggesting a natural path toward artificial general intelligence (AGI). While recent
studies (Deng et al., 2025; Shi et al., 2024; Chen et al., 2025; Liao et al., 2025) have shown encour-
aging results synergizing multimodal understanding and generation within a single model, whether
this principle extends to embodied agents—and autonomous driving in particular—remains an open
challenge. In this work, we propose LMGenDrive, the first framework that unifies LLM-based multi-
modal understanding with generative world models for closed-loop end-to-end autonomous driving.
Our unified model takes multi-view camera data and natural-language driving instructions as inputs,
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generating both multi-view future driving videos and control signals for the following timesteps.
Concretely, we integrate an LLM and a diffusion-based video generation model: the LLM interprets
and fuses visual observations with language instructions, producing learnable queries that capture
the evolving scene states, which then serve as conditioning signals for the diffusion model to gener-
ate realistic multi-view driving futures. Within this unified architecture, video generation enhances
the LLM’s spatio-temporal scene understanding, while the LLM imparts instruction-following and
reasoning capabilities to the world model—together yielding stronger and more robust closed-loop
driving performance.

To enable such a unified model, we also propose a curriculum three-stage training strategy for en-
hanced performance and stability. First, we pretrain a vision encoder for robust driving scene under-
standing. Next, the frozen encoder is integrated with the LLM and video generator, and fine-tuned
on single-step prediction to ground instruction following and immediate action outcomes. Finally,
training is extended to multi-step sequences, enhancing long-horizon reasoning and temporal mod-
eling for continuous driving scenarios. Once trained, the model can be applied in two modes: (1)
Online planning mode: the model solely predicts planning outputs, with the diffusion generation
component discarded to reduce latency; (2) Offline data generation mode: the model conducts au-
toregressive video generation, where the generated video and predicted control signal serve as input
for the next timestep, enabling extended and consistent driving video sequences.

To sum up, our contributions are threefold: (1) Unified closed-loop framework. We present LM-
GenDrive, the first framework that unifies LLM-based multimodal understanding with generative
world models for closed-loop end-to-end autonomous driving, bridging perception, reasoning, and
imagination within a single architecture; (2) Progressive training and dual modes. We introduce
a three-stage training pipeline—from vision pretraining in driving domain, to long-horizon multi-
step driving—and support two usage modes: online planning for low-latency operation, and offline
autoregressive video generation for extended sequences. (3) Through comprehensive experiments,
LMGenDrive achieves state-of-the-art closed-loop performance on challenging autonomous driving
benchmarks, improving instruction-following, spatio-temporal reasoning, and robustness to long-tail
scenarios. Beyond performance gains, it provides experimental evidence that unifying multimodal
understanding and generation yields complementary benefits, pointing toward a promising path for
embodied AGI.

2 RELATED WORKS

2.1 END-TO-END DRIVING

Much progress has been made in end-to-end autonomous driving, with many recent methods based
on imitation learning. UniAD (Hu et al., 2023b) unified full-stack driving tasks through query-based
interfaces, while ThinkTwice (Jia et al., 2023b) retrieved critical-region information to refine pre-
dictions. InterFuser (Shao et al., 2023a) used transformers to fuse multi-modal, multi-view sensor
data for richer scene understanding. ReasonNet (Shao et al., 2023b) leveraged both temporal and
global information of the driving scene to enhance perception, particularly in occlusion scenarios.
Para-Drive (Weng et al., 2024) proposed a fully parallel architecture with a shared BEV representa-
tion, and DriveTransformer (Jia et al., 2025) went further by discarding BEV features and using pure
transformers to aggregate sensor and query information. Diffusion models have also emerged for
modeling diverse driving behaviors. DiffusionPlanner (Zheng et al., 2025) applied a diffusion-based
policy for flexible, personalized driving, and DiffAD (Wang et al., 2025a) formulated perception
and decision-making as conditional image generation. Despite these advances, most approaches
still struggle with rare corner cases and lack the reasoning ability needed to generalize beyond the
training distribution.

2.2 MLLM FOR AUTONOMOUS DRIVING

Recent advances in large language models (LLMs) (Guo et al., 2025; Yang et al., 2025a; Touvron
et al., 2023a;b; Jaeger et al., 2023a; Jia et al., 2023a) and vision–language models (VLMs) (Bai et al.,
2025; Zhu et al., 2023; Liu et al., 2023; Wang et al., 2025b) have motivated integrating MLLMs into
autonomous driving for stronger reasoning and explainability. Early works like GPT-Driver (Mao
et al., 2023a) and LanguageMPC (Sha et al., 2023) convert driving scenes into textual inputs for
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Figure 2: Overview of our unified understanding and generation architecture. We start by encoding
the language instruction, multi-view RGB images, and the current action into the LLM. Two sets of
learnable queries, world query and action query, are then fed into the LLM, and ultimately used to
generate the future driving video and corresponding actions. The framework supports two operation
modes: (1) offline data generation mode, an autoregressive generation process is adopted, where the
last frame of the future video and the predicted action are used as inputs for the next timestep; (2)
online planning mode, real-world data are provided as inputs for the following timestep.

direct reasoning. Later methods employ VLMs to process images and videos: some focus on vi-
sual question answering for scene understanding and optional action output (e.g., DriveLM (Sima
et al., 2024), DriveGPT4 (Xu et al., 2023), DriveVLM (Tian et al., 2024)), while others predict
driving actions end-to-end (e.g., LMDrive (Shao et al., 2024), DriveMoE (Yang et al., 2025b), BEV-
Driver (Winter et al., 2025)). Agentic designs with hierarchical control, tool use, and memory, such
as Agent-Driver (Mao et al., 2023b) and AD-H (Zhang et al., 2024), further extend capability. How-
ever, most MLLM-based approaches emphasize planning or explanation and lack robust modeling
of how scenes and surrounding objects evolve over time—a key requirement for anticipating events
and ensuring safe, long-horizon decision-making.

2.3 WORLD MODELS FOR AUTONOMOUS DRIVING

The concept of a world model, a predictive model that simulates environment dynamics, has regained
attention. Video generation has become a leading paradigm, supported by advances in generative
modeling, large-scale video datasets, and wide applicability. In autonomous driving, temporally
grounded video prediction provides rich context for understanding and decision-making. Several
methods treat pure video generation as world modeling. GAIA (Hu et al., 2023a) conditions gen-
eration on image, text, and action inputs. GAIA-2 (Russell et al., 2025) extends this to multi-view
scenes, and MagicDrive (Gao et al., 2023) adds control signals such as HD maps and bounding
boxes. Vista (Gao et al., 2024) scales to internet-scale driving data, while CoGen3D (Ji et al., 2025)
predicts 3D-consistent representations before video synthesis to improve spatial coherence. Beyond
pure generation, DriveWM (Wang et al., 2024b) predicts alternative futures for conditional planning.
More recent work—DriveDreamer (Wang et al., 2024a), GenAD (Yang et al., 2024), and Prophet-
DWM (Wang & Peng, 2025)—jointly models videos and actions but still mainly uses open-loop
settings without direct feedback. The most related work is LAW (Li et al., 2024), which com-
bines world modeling with closed-loop planning. However, it supervises the world model only with
next-frame hidden features instead of full video generation, limiting its ability to simulate or create
synthetic data. It also lacks language model integration and thus cannot handle instruction following,
natural language grounding, or interactive human–AI communication in driving. To our knowledge,
this is the first framework to unify LLM-based commonsense reasoning with video world models
for closed-loop end-to-end autonomous driving.
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3 METHOD

3.1 OVERALL FRAMEWORK

In this work, we propose LMGenDrive, a framework that unifies textual understanding/reasoning,
future scene generation, and end-to-end planning. As illustrated in Figure 2, LMGenDrive is com-
posed of three major components: (1) a vision encoder that processes multi-view camera sensor
data for scene understanding and generating visual tokens; (2) a large language model and its asso-
ciated component (tokenizer, Q-Former, and adapters) that takes in the language instruction, input
visual tokens, world queries, and action queries, to predict the future driving scenes and actions;
(3) a multi-view world generator that takes future scene tokens from the LLM and multi-view im-
ages from the last frame as inputs, to generate future multi-view driving videos. We will introduce
the vision encoder in Section 3.2, the LLM with its associated components in Section 3.3, and the
multiview world generator in Section 3.4. Finally, we describe the training recipe in Section 3.5.

3.2 VISION ENCODER

The vision encoder is designed to perceive the environment by processing, fusing, and transform-
ing sensor data into visual tokens that can be consumed by the language model. Prior works (Shao
et al., 2024; Jaeger et al., 2023b) typically leverage both multi-view images and LiDAR sensor in-
puts, where the LiDAR inputs are encoded into bird’s-eye view (BEV) queries to extract information
from multi-view images. However, our setting focuses on autoregressive video generation—where
LiDAR is only available at the current frame but not in future frames. As a result, we replace Li-
DAR inputs with BEV positional encodings, enabling effective perception while maintaining com-
patibility with future video generation. The vision encoder consists of three parts: (1) In the sensor
encoding part, for each image input, a 2D backbone Resnet (He et al., 2016) is applied to extract
the image feature map, which is flattened to one-dimensional tokens. Tokens from different views
are then fused by a transformer encoder. (2) In the BEV decoder, BEV position encodings serve as
H×W queries to attend to the multi-view image features and generate BEV tokens. In addition, the
learnable queries and one extra query generate corresponding waypoint tokens and one traffic-light
token, respectively. The three types of visual tokens (BEV, waypoint, and traffic light) will be pre-
sented to the LLM, providing rich scene information. (3) Lastly, as the first-stage training, the vision
encoder is pretrained on perception tasks (BEV object detection, traffic light recognition, waypoint
prediction) by feeding the three types of tokens to additional prediction heads. Three loss terms,
including the detection loss (Shao et al., 2023b), the l1 waypoint loss and the cross-entropy traffic
light prediction loss, are applied respectively. Note that, following LMDrive (Shao et al., 2024),
once pretrained, these prediction heads are discarded and the encoder is frozen, serving as the vision
encoder for the large language model.

3.3 LLM FOR INSTRUCTION-FOLLOWING DRIVING AND SCENE UNDERSTANDING

As depicted in Figure 2, our system casts the LLM as the “brain” of the entire driving pipeline: it in-
gests sensor tokens emitted by the frozen vision encoder at every frame and parses natural-language
commands, to forecast upcoming maneuvers and emits conditioning features for subsequent video
generation. We adopt LLaMA (Touvron et al., 2023a) as the linguistic architecture due to its broad
success in both language-centric (Zheng et al., 2023; Geng et al., 2023) and vision-grounded (Liu
et al., 2023; Zhu et al., 2023) instruction-tuning settings.

Instruction and visual tokenization. As the model takes navigation instruction and multi-view
image as inputs, their tokenization is our first step. For the navigation instruction, we tokenize
them with the LLaMA tokenizer (Touvron et al., 2023a). For the multi-view images, each frame is
tokenized by the aforementioned vision encoder, and the resulting tokens are buffered together with
the most recent token history (up to Tmax frames) to curb cumulative error and maintain temporal
coherence during executing the driving instruction in the closed loop. For each frame, the pretrained
vision encoder outputs H×W BEV tokens, 4 waypoint tokens, and 1 traffic-light token. Passing all
visual tokens (about 2k per frame) to the LLM is computationally prohibitive. To compress them, we
use a Q-Former with 8 learnable queries per frame that attend to the raw tokens and distill them into
compact frame-level features. An MLP adapter then projects these features to the LLM’s embedding
dimension for seamless fusion with language tokens.
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Figure 3: Architecture of our world generator. We begin by fusing the world embedding obtained
from the LLM with multi-view RGB images. The fused multi-view world embedding is then injected
into the diffusion model with the cross-attention mechanism to generate multi-view future videos.

Action prediction. Together with the instruction and visual tokens, we feed N learnable action
query tokens into the LLM. After passing through the LLM and associated adapters, these queries
evolve into N latent feature vectors, each encoding the spatio-temporal context needed for motion
planning. A subsequent two-layer MLP maps these N feature vectors to N predicted waypoints
and outputs a binary flag indicating whether the current instruction has been completed. Finally,
the predicted waypoints are converted into low-level control commands—brake, throttle, and steer-
ing—through two independent PID controllers (Chen et al., 2020) that separately regulate longitu-
dinal velocity and lateral heading, ensuring accurate trajectory tracking.

3.4 MULTI-VIEW WORLD MODEL

While the LLM is responsible for instruction following and reasoning, autonomous driving also
requires modeling the visual dynamics of the environment. To this end, we introduce a multi-view
world model that generates future video frames conditioned on the LLM outputs. By aligning action
predictions with video generation, our framework jointly reasons about both the agent’s behavior
and the evolution of the surrounding world. Our video generation process additionally supports an
autoregressive mode (Xiang et al., 2024), which can be optionally enabled during inference: the
future action and frame predicted at the previous timestep can be fed back into the LLM as input for
the next prediction.

World Query Conditioning. As shown in Figure 2, in addition to the instructional tokens, visual
tokens, and action query mentioned above, the LLM also takes the world query as input. Passing
through the LLM, these world queries aggregate information from instructions, sensor inputs, and
the actions, thereby enabling the model to form an internal representation of the world dynamics.
Conceptually, these queries serve as a bridge to the world’s temporal evolution, and act as the con-
ditioning signal fed into the following world generator to synthesize future driving videos.

Multi-view Image Conditioning. As shown in Figure 3, besides using scene queries to capture
world evolution, we incorporate the last-frame multi-view images to supply fine-grained appearance
details and the initial world state. These images are encoded by a CLIP model into semantically
rich features that emphasize visual textures and appearance. During end-to-end training, these CLIP
features are fused with LLM representations through attention blocks. Self-attention aggregates and
aligns multi-view information into a unified space, and cross-attention injects LLM guidance. This
design not only provides an appearance prior for consistent video generation but also encourages the
LLM to focus on dynamic, motion-related representations.

World Generator. After the multi-view world fusion step, we obtain a set of multi-view world em-
beddings, each corresponding to one camera view. Taking these embeddings as the final condition-
ing feature, our world generator employs a U-Net (Ronneberger et al., 2015) diffusion architecture
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to produce future frames. For each view, the associated embedding is injected into the diffusion
process through a dedicated cross-attention module, ensuring that view-specific information is ef-
fectively transferred. The model follows the standard denoising diffusion process (Ho et al., 2020):
starting from pure Gaussian noise and progressively removing noise to generate a future video se-
quence. The output is a video tensor of shape Rv×t×h×w×3, where v is the number of views, t is
the temporal length, and h,w are the spatial resolution. Inspired by (Wang et al., 2024b; Guo et al.,
2023), we further augment the U-Net blocks with spatio-temporal transformers to better capture
temporal dynamics and spatial structure in driving scenes.

3.5 TRAINING RECIPE

We adopt a three-stage training strategy to progressively build the model’s perception, reasoning,
and generation capabilities. This curriculum ensures stable convergence and enables effective long-
horizon temporal modeling.

Stage 1: Vision Encoder Pretraining. We first pretrain the vision encoder on single-frame percep-
tion tasks using 3M expert-collected frames from CARLA (Shao et al., 2023a). Perception heads are
attached for object detection, traffic light classification, and waypoint regression. After convergence,
only the vision encoder is retained and frozen in later stages.

Stage 2: Single-Step Planning and Generation. Next, we jointly fine-tune the LLM and the video
generator for single-step prediction. The vision encoder is frozen to reduce memory usage. The
model takes as input a single-frame multi-view image, natural language instruction, action queries,
and world queries, to predict the next waypoint, the instruction completion flag, and the future
driving video. This stage enables the LLM to learn grounded instruction-following and understand
how the world evolves under given actions. Simultaneously, the world generator learns to synthesize
multi-view driving videos conditioned on the last frame and LLM-generated features.

Stage 3: Multi-Step Long-Horizon Training. We progressively expand training to 2–3-step se-
quences to strengthen long-horizon reasoning. Specifically, previously generated videos are au-
toregressively fed as input for the next step’s generation. To save memory, the video generator
is frozen while gradients still propagate, and the LLM remains fully trainable. This design en-
courages the LLM to capture temporal dependencies—such as other agents’ intentions, speed, and
interactions—over extended observation windows. As a result, the LLM develops stronger temporal
abstraction and inductive reasoning abilities for dynamic driving scenes.

Training Objectives. We apply three loss terms in the last two stages: (1) l1 waypoint regression
loss; (2) binary classification loss for instruction completion; (3) diffusion loss for video generation:

LDM = Et,ϵ

[
∥ϵθ(zt, c, t)− ϵ∥2

]
,

where zt is the noisy latent at timestep t, ϵ is the added Gaussian noise, and c denotes conditioning
features from the multi-view image and scene queries.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Training Details. During training, three synchronized RGB cameras (left, front, right) are resized
to 2242 pixels and sampled at 10 Hz, and an 8-frame temporal window is considered. The network
is tasked with predicting four future waypoints at t + {0.2, 0.4, 0.6, 0.8} s, along with eight future
video frames from t + 0.1 s to t + 0.9 s in 0.1-second increments. We optimize the model using
AdamW optimizer (Loshchilov & Hutter, 2018) with an initial learning rate of 1 × 10−5 on eight
NVIDIA H800 GPUs under DeepSpeed ZeRO-2; convergence is reached in roughly two days. Due
to GPU-memory constraints, the third training stage operates on one to three timesteps. The system
uses Vicuna-7B (Chiang et al., 2023) as the LLM backbone, Stable Diffusion 1.5 (Rombach et al.,
2022) for image generation, and AnimateDiff (Guo et al., 2023) for temporal modeling.

Benchmark. We implement and evaluate our approach using the open-source CARLA simulator
of version 0.9.10.1 (Dosovitskiy et al., 2017) on the LangAuto benchmark (Shao et al., 2024). The
LangAuto benchmark comprises test routes that traverse eight CARLA towns, span diverse weather
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settings, and contain deliberately misleading linguistic cues. It consists of three tracks, LangAuto,
LangAuto-Short, and LangAuto-Tiny, which varies in the route length. During evaluation, each
method controls the vehicle using only natural-language commands and visual observations.

Metric. Following the CARLA Leaderboard (CARLA Team, 2020) and LangAuto (Shao et al.,
2024), we report route completion (RC), infraction score (IS), and driving score (DS). RC measures
the fraction of the planned route completed before exceeding the deviation tolerance. IS penalizes
collisions and traffic-rule violations via a decaying factor. DS, the product of RC and IS, serves as
the primary overall indicator of safe and efficient driving. For generated videos, we further evaluate
perceptual quality using Fréchet Video Distance (FVD) and Fréchet Inception Distance (FID), which
assess temporal consistency and visual realism, respectively.

4.2 SOTA COMPARISON

Methods LangAuto LangAuto-Short LangAuto-Tiny

DS ↑ RC ↑ IS ↑ DS ↑ RC ↑ IS ↑ DS ↑ RC ↑ IS ↑
LMDrive (Shao et al., 2024) 10.7±3.8 16.2±4.9 0.63±0.04 14.2±4.4 20.1±4.4 0.72±0.04 20.1±4.1 24.7±5.1 0.75±0.03
AD-H† (Zhanget al., 2024) 44.0 53.2 0.83 56.1 68.0 0.78 77.5 85.1 0.91
BEVDriver (Winter et al., 2025) 48.9 59.7 0.82 66.7 77.8 0.87 70.2 81.3 0.87
Ours 62.2±3.3 74.5±4.1 0.85±0.04 77.1±4.1 87.9±3.5 0.88±0.03 84.1±3.6 92.5±4.0 0.92±0.04

Table 1: Performance comparison on the LangAuto benchmark. We report the metrics for 3 evalua-
tion runs. AD-H† leverages an extra model OPT-350M (Zhang et al., 2022) for low-level control.

The experimental results in Table 1 demonstrate that our method significantly outperforms existing
state-of-the-art approaches on the LangAuto benchmark. Specifically, LMDrive (Shao et al., 2024)
achieves a driving score (DS) of 10.7 in the LangAuto track, while AD-H (Zhang et al., 2024) and
BEVDriver (Winter et al., 2025) demonstrates improved DS values of 44.0 and 48.9, respectively.
Our method further push the performance to a higher level, with a DS of 62.2. In terms of route
completion (RC) and infraction score (IS), our approach also shows superior performance across
all three tracks: LangAuto, LangAuto-Short, and LangAuto-Tiny, showing the effectiveness of our
method in handling more complex driving scenarios with language instructions.

4.3 ABLATION STUDIES

Module design DS ↑ RC ↑ IS ↑
baseline 62.2±3.3 74.5±4.1 0.85±0.04

w/o world generator 53.4±2.2 65.8±4.2 0.80±0.01
w/o action queries 58.7±3.1 70.4±3.7 0.84±0.02

w/o visual pre-training 54.9±4.5 67.1±4.5 0.81±0.02
w/o stage-3 training 55.6±4.5 68.9±4.5 0.80±0.02

Table 2: Ablation study on the module design for planning
performance.

Module design FID↓ FVD↓
baseline 6.3 286

w/o multi-view fusion 7.8 371
world queries: 64 → 32 10.1 318
world queries: 64 → 16 11.6 424

Table 3: Ablation study on the module
design for generation performance.

Ablation Study on Module Design. As shown in Table 2, we conduct four ablation experiments to
quantify the contribution of each key component in our proposed LMGenDrive. (1) w/o world gen-
erator: Removing the world generator together with its world query sharply degrades DS to 53.4,
demonstrating that the multi-view world generator is crucial for enriching the LLM’s understanding
of spatio-temporal dynamics and strengthening future-scene reasoning. (2) w/o action queries: Re-
placing learnable action queries with an LMDrive-style autoregressive action prediction lowers DS
to 58.7, indicating that explicit action queries provide more structured supervision and lead to more
reliable planning. (3) w/o visual pre-training: Without the first-stage driving-oriented visual pre-
training, DS drops to 54.9, highlighting the importance of injecting driving-specific semantics into
the vision encoder to enhance downstream scene understanding. (4) w/o stage-3 training: Skip-
ping the Multi-Step Long-Horizon training stage reduces DS to 55.6, confirming that long-horizon
temporal modeling is essential for robust reasoning over extended driving contexts. Overall, all abla-
tions shows degraded DS, with missing world generator or long-horizon training causing the largest
drops, confirming these modules—along with visual pre-training and action queries—are vital for
accurate, safe planning in LMGenDrive.
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Left Front Right Left Front Right Left Front Right Left Front Right

Instruction: Turn right at the next 
intersection

Instruction: Slow down and stop Instruction:Maintain your current course 
until reaching the upcoming intersection

Figure 4: Visualization of multi-view future scenes generated by LMGenDrive, showing consistent
left-front-right views aligned with driving instructions.

Ablation Study on Generation Module Design. As shown in Table 3, we further investigate how
key components of the generation module influence video quality, measured by FID and FVD.
(1) w/o multi-view fusion: Removing the cross-view fusion increases FID from 6.3 to 7.8 and
FVD from 286 to 371, indicating that, without interaction among different camera views, the model
struggles to maintain spatial consistency. (2) world queries choices: Reducing the number of world
queries from 64 to 32 or 16 leads to a clear performance drop, with FID/FVD rising to 10.1/318
and 11.6/424, respectively. Overall, these results demonstrate that multi-view fusion and sufficient
world queries are critical for generating coherent, high-quality videos.

4.4 VISUALIZATION

To illustrate LMGenDrive’s capabilities, Figure 4 presents qualitative rollouts from the CARLA
simulator. The top row shows the initial multi-view observations as the conditioning inputs, while
the subsequent rows visualize three future steps generated by our multi-view world model in an
autoregressive manner. At each step, the model takes the previously generated multi-view frames
and predicts actions as input, to synthesize the next set of left, front, and right camera views. Each
panel displays these synchronized camera views together with the corresponding driving instruction.
The results show that LMGenDrive (1) preserves spatial consistency across views, (2) anticipates
dynamic agents such as crossing vehicles and pedestrians, and (3) aligns future scene evolution with
the given language instructions.

5 CONCLUSION

We introduced LMGenDrive, a unified framework that couples LLM-based multimodal under-
standing/reasoning with generative world models for closed-loop end-to-end autonomous driving.
Through synergistic integration of instruction following, spatio-temporal reasoning, and realistic
video generation, LMGenDrive significantly outperforms state-of-the-art methods on the CARLA
LangAuto benchmark. Ablation studies verify the necessity of each core module, and results un-
derscore the complementary benefits of unifying understanding and generation. This work offers
a solid step toward embodied AGI and provides a foundation for future exploration on real-world
deployment and broader cross-domain generalization.
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ference on Robot Learning, pp. 66–75. PMLR, 2020.

Jiuhai Chen, Zhiyang Xu, Xichen Pan, Yushi Hu, Can Qin, Tom Goldstein, Lifu Huang, Tianyi
Zhou, Saining Xie, Silvio Savarese, et al. Blip3-o: A family of fully open unified multimodal
models-architecture, training and dataset. arXiv preprint arXiv:2505.09568, 2025.

Wei-Lin Chiang, Zhuohan Li, Ziqing Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April
2023), 2(3):6, 2023.

Chaorui Deng, Deyao Zhu, Kunchang Li, Chenhui Gou, Feng Li, Zeyu Wang, Shu Zhong, Weihao
Yu, Xiaonan Nie, Ziang Song, et al. Emerging properties in unified multimodal pretraining. arXiv
preprint arXiv:2505.14683, 2025.

Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun. Carla: An
open urban driving simulator. In Conference on robot learning, pp. 1–16. PMLR, 2017.

Ruiyuan Gao, Kai Chen, Enze Xie, Lanqing Hong, Zhenguo Li, Dit-Yan Yeung, and Qiang
Xu. Magicdrive: Street view generation with diverse 3d geometry control. arXiv preprint
arXiv:2310.02601, 2023.

Shenyuan Gao, Jiazhi Yang, Li Chen, Kashyap Chitta, Yihang Qiu, Andreas Geiger, Jun Zhang,
and Hongyang Li. Vista: A generalizable driving world model with high fidelity and versatile
controllability. arXiv preprint arXiv:2405.17398, 2024.

Xinyang Geng, Arnav Gudibande, Hao Liu, Eric Wallace, Pieter Abbeel, Sergey Levine, and Dawn
Song. Koala: A dialogue model for academic research. Blog post, April, 1, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh
Agrawala, Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffu-
sion models without specific tuning. arXiv preprint arXiv:2307.04725, 2023.

David Ha and Jürgen Schmidhuber. World models. arXiv preprint arXiv:1803.10122, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

10

https://leaderboard.carla.org/
https://leaderboard.carla.org/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Anthony Hu, Lloyd Russell, Hudson Yeo, Zak Murez, George Fedoseev, Alex Kendall, Jamie Shot-
ton, and Gianluca Corrado. Gaia-1: A generative world model for autonomous driving. arXiv
preprint arXiv:2309.17080, 2023a.

Yihan Hu, Jiazhi Yang, Li Chen, Keyu Li, Chonghao Sima, Xizhou Zhu, Siqi Chai, Senyao Du,
Tianwei Lin, Wenhai Wang, et al. Planning-oriented autonomous driving. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17853–17862, 2023b.

Bernhard Jaeger, Kashyap Chitta, and Andreas Geiger. Hidden biases of end-to-end driving models.
2023a.

Bernhard Jaeger, Kashyap Chitta, and Andreas Geiger. Hidden biases of end-to-end driving models.
arXiv preprint arXiv:2306.07957, 2023b.

Yishen Ji, Ziyue Zhu, Zhenxin Zhu, Kaixin Xiong, Ming Lu, Zhiqi Li, Lijun Zhou, Haiyang Sun,
Bing Wang, and Tong Lu. Cogen: 3d consistent video generation via adaptive conditioning for
autonomous driving. arXiv preprint arXiv:2503.22231, 2025.

Xiaosong Jia, Yulu Gao, Li Chen, Junchi Yan, Patrick Langechuan Liu, and Hongyang Li.
Driveadapter: Breaking the coupling barrier of perception and planning in end-to-end autonomous
driving. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.
7953–7963, 2023a.

Xiaosong Jia, Penghao Wu, Li Chen, Jiangwei Xie, Conghui He, Junchi Yan, and Hongyang Li.
Think twice before driving: Towards scalable decoders for end-to-end autonomous driving. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
21983–21994, 2023b.

Xiaosong Jia, Junqi You, Zhiyuan Zhang, and Junchi Yan. Drivetransformer: Unified transformer
for scalable end-to-end autonomous driving. arXiv preprint arXiv:2503.07656, 2025.

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
training for unified vision-language understanding and generation. In International conference on
machine learning, pp. 12888–12900. PMLR, 2022.

Yingyan Li, Lue Fan, Jiawei He, Yuqi Wang, Yuntao Chen, Zhaoxiang Zhang, and Tieniu
Tan. Enhancing end-to-end autonomous driving with latent world model. arXiv preprint
arXiv:2406.08481, 2024.

Chao Liao, Liyang Liu, Xun Wang, Zhengxiong Luo, Xinyu Zhang, Wenliang Zhao, Jie Wu, Liang
Li, Zhi Tian, and Weilin Huang. Mogao: An omni foundation model for interleaved multi-modal
generation. arXiv preprint arXiv:2505.05472, 2025.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2018.

Jiageng Mao, Yuxi Qian, Junjie Ye, Hang Zhao, and Yue Wang. Gpt-driver: Learning to drive with
gpt. arXiv preprint arXiv:2310.01415, 2023a.

Jiageng Mao, Junjie Ye, Yuxi Qian, Marco Pavone, and Yue Wang. A language agent for autonomous
driving. arXiv preprint arXiv:2311.10813, 2023b.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp. 10684–10695, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Lloyd Russell, Anthony Hu, Lorenzo Bertoni, George Fedoseev, Jamie Shotton, Elahe Arani, and
Gianluca Corrado. Gaia-2: A controllable multi-view generative world model for autonomous
driving. arXiv preprint arXiv:2503.20523, 2025.

Hao Sha, Yao Mu, Yuxuan Jiang, Li Chen, Chenfeng Xu, Ping Luo, Shengbo Eben Li, Masayoshi
Tomizuka, Wei Zhan, and Mingyu Ding. Languagempc: Large language models as decision
makers for autonomous driving. arXiv preprint arXiv:2310.03026, 2023.

Hao Shao, Letian Wang, Ruobing Chen, Hongsheng Li, and Yu Liu. Safety-enhanced autonomous
driving using interpretable sensor fusion transformer. In Conference on Robot Learning, pp. 726–
737. PMLR, 2023a.

Hao Shao, Letian Wang, Ruobing Chen, Steven L Waslander, Hongsheng Li, and Yu Liu. Reason-
net: End-to-end driving with temporal and global reasoning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 13723–13733, 2023b.

Hao Shao, Yuxuan Hu, Letian Wang, Guanglu Song, Steven L Waslander, Yu Liu, and Hongsheng
Li. Lmdrive: Closed-loop end-to-end driving with large language models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15120–15130, 2024.

Weijia Shi, Xiaochuang Han, Chunting Zhou, Weixin Liang, Xi Victoria Lin, Luke Zettlemoyer,
and Lili Yu. Lmfusion: Adapting pretrained language models for multimodal generation. arXiv
preprint arXiv:2412.15188, 2024.

Chonghao Sima, Katrin Renz, Kashyap Chitta, Li Chen, Hanxue Zhang, Chengen Xie, Jens
Beißwenger, Ping Luo, Andreas Geiger, and Hongyang Li. Drivelm: Driving with graph vi-
sual question answering. In European Conference on Computer Vision, pp. 256–274. Springer,
2024.

Xiaoyu Tian, Junru Gu, Bailin Li, Yicheng Liu, Yang Wang, Zhiyong Zhao, Kun Zhan, Peng Jia,
Xianpeng Lang, and Hang Zhao. Drivevlm: The convergence of autonomous driving and large
vision-language models. arXiv preprint arXiv:2402.12289, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Tao Wang, Cong Zhang, Xingguang Qu, Kun Li, Weiwei Liu, and Chang Huang. Diffad: A unified
diffusion modeling approach for autonomous driving. arXiv preprint arXiv:2503.12170, 2025a.

Weiyun Wang, Zhangwei Gao, Lixin Gu, Hengjun Pu, Long Cui, Xingguang Wei, Zhaoyang Liu,
Linglin Jing, Shenglong Ye, Jie Shao, et al. Internvl3. 5: Advancing open-source multimodal
models in versatility, reasoning, and efficiency. arXiv preprint arXiv:2508.18265, 2025b.

Xiaodong Wang and Peixi Peng. Prophetdwm: A driving world model for rolling out future actions
and videos. arXiv preprint arXiv:2505.18650, 2025.

Xiaofeng Wang, Zheng Zhu, Guan Huang, Xinze Chen, Jiagang Zhu, and Jiwen Lu. Drivedreamer:
Towards real-world-drive world models for autonomous driving. In European Conference on
Computer Vision, pp. 55–72. Springer, 2024a.

Yuqi Wang, Jiawei He, Lue Fan, Hongxin Li, Yuntao Chen, and Zhaoxiang Zhang. Driving into
the future: Multiview visual forecasting and planning with world model for autonomous driving.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
14749–14759, 2024b.

Xinshuo Weng, Boris Ivanovic, Yan Wang, Yue Wang, and Marco Pavone. Para-drive: Parallelized
architecture for real-time autonomous driving. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 15449–15458, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Katharina Winter, Mark Azer, and Fabian B Flohr. Bevdriver: Leveraging bev maps in llms for
robust closed-loop driving. arXiv preprint arXiv:2503.03074, 2025.

Jiannan Xiang, Guangyi Liu, Yi Gu, Qiyue Gao, Yuting Ning, Yuheng Zha, Zeyu Feng, Tianhua
Tao, Shibo Hao, Yemin Shi, et al. Pandora: Towards general world model with natural language
actions and video states. arXiv preprint arXiv:2406.09455, 2024.

Zhenhua Xu, Yujia Zhang, Enze Xie, Zhen Zhao, Yong Guo, Kenneth KY Wong, Zhenguo Li, and
Hengshuang Zhao. Drivegpt4: Interpretable end-to-end autonomous driving via large language
model. arXiv preprint arXiv:2310.01412, 2023.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025a.

Jiazhi Yang, Shenyuan Gao, Yihang Qiu, Li Chen, Tianyu Li, Bo Dai, Kashyap Chitta, Penghao Wu,
Jia Zeng, Ping Luo, et al. Generalized predictive model for autonomous driving. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14662–14672,
2024.

Zhenjie Yang, Yilin Chai, Xiaosong Jia, Qifeng Li, Yuqian Shao, Xuekai Zhu, Haisheng Su, and
Junchi Yan. Drivemoe: Mixture-of-experts for vision-language-action model in end-to-end au-
tonomous driving. arXiv preprint arXiv:2505.16278, 2025b.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Zaibin Zhang, Shiyu Tang, Yuanhang Zhang, Talas Fu, Yifan Wang, Yang Liu, Dong Wang, Jing
Shao, Lijun Wang, and Huchuan Lu. Ad-h: Autonomous driving with hierarchical agents. arXiv
preprint arXiv:2406.03474, 2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang,
Zi Lin, Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica.
Judging llm-as-a-judge with mt-bench and chatbot arena, 2023.

Yinan Zheng, Ruiming Liang, Kexin Zheng, Jinliang Zheng, Liyuan Mao, Jianxiong Li, Weihao
Gu, Rui Ai, Shengbo Eben Li, Xianyuan Zhan, et al. Diffusion-based planning for autonomous
driving with flexible guidance. arXiv preprint arXiv:2501.15564, 2025.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

13


	Introduction
	Related works
	End-to-end driving
	MLLM for autonomous driving
	World models for autonomous driving

	Method
	Overall Framework
	Vision encoder
	LLM for instruction-following driving and scene understanding
	Multi-View World Model
	Training Recipe

	Experiments
	Experiment Setup
	SoTA Comparison
	Ablation studies
	Visualization

	Conclusion

