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ABSTRACT

The effectiveness of Visual Brain-Machine Interfaces (BMIs) is significantly
dependent on the accurate detection and interpretation of electroencephalogra-
phy (EEG) biomarkers, which frequently exhibit variability due to physiological
changes and environmental disturbances over time. Traditional EEG signal en-
hancement strategies largely concentrate on signal processing techniques such as
feature extraction and filtering; however, these approaches often do not adequately
address the inherent sources of variability that affect biomarker stability over time.
To surmount these challenges, we have developed the Visual Evoked Potential
Booster (VEP Booster), a novel closed-loop artificial intelligence framework de-
signed to produce reliable and stable EEG biomarkers under visual stimulation
protocols. Our system utilizes a Deep Convolutional Generative Adversarial Net-
work (DCGAN) to refine stimulus images based on real-time feedback from hu-
man EEG signals, thereby creating visual stimuli that are specifically tailored to
the characteristic preferences of neurons in the primary visual cortex. We evalu-
ated the efficacy of this system through the implementation of steady-state visual
evoked potential (SSVEP) protocols in nine human subjects. In our evaluations,
both the SSVEP biomarker amplitude and the single-trial SSVEP binary classi-
fication experiments, encompassing intra- and inter-temporal analyses, exhibited
statistically significant enhancements when employing the VEP Booster. These
encouraging outcomes underscore the potential for broad applications in clinical
and technological domains.

1 INTRODUCTION

Visual Brain-Machine Interfaces (BMIs) have emerged as key technologies that bridge neural activ-
ity with external devices, enabling transformative applications in neurorehabilitation (Astrand et al.,
2014), diagnosis of brain disorders (Zhang et al.| [2024), and human-computer interaction (Chen
et al, |2015; Zhu et al., [2022). The performance of visual BMIs critically depends on the detection
and interpretation of reliable and stable electroencephalography (EEG) biomarkers. However, in
real-life scenarios, EEG biomarkers often exhibit significant variability over time, which poses a
major challenge to consistent BMI performance (Lotte et al.,[2018).

The instability of EEG biomarkers is mainly due to several factors (Buzsaki et al.l 2012), including
minute differences in electrode placement, amplitudes attenuations due to change in physiological
and psychological states of subjects, environmental noise and individual differences. These factors
lead to significant variations in the EEG signals at different time points.

Despite significant advancements, most current EEG signal enhancement algorithms remain focused
on signal processing techniques such as filtering (Sane1 & Chambers||[2013;|Agarwal et al.|2017;He
et al.| 2004) denoising (Luckl} 2014; Makeig et al.l [1996). Additionally, feature extraction methods
are applied to transform the enhanced signals into meaningful representations. While these meth-
ods can effectively reduce noise and emphasize certain features, they often overlook the inherent
temporal dynamics of EEG biomarkers. This oversight means they cannot fundamentally address
the issue of biomarker instability over time. As a result, models trained earlier data may experience
performance degradation when applied at later times, a challenge that remains urgent to resolve.

In this work, we introduce the Visual Evoked Potential Booster (VEP Booster), a novel closed-
loop artificial intelligence framework that fundamentally differs from existing methodologies. Our
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Figure 1: Overview of the VEP Booster from a closed-loop perspective. The system comprises a
pre-trained Generative Adversarial Network (GAN), a latent vector generator, and an EEG decoder,
as demonstrated on the left-hand side of the figure. As the system interacts with a participant, event-
related EEG biomarkers are significantly enhanced, while background noise oscillation is reduced,
as demonstrated on the right-hand side of the figure.

Background noise oscillations

approach signifies a conceptual breakthrough by shifting from passive signal processing to active
EEG biomarker sources (Bashivan et al.| 2019} |Ponce et al|2019) through stimulus optimization.
Instead of filtering or decoding EEG signals post hoc, the essence of a VEP booster lies in identifying
the visual stimulus feature preferences of neurons under a specific visual paradigm. It capitalizes
on the intrinsic preferences of specific neurons to generate optimal stimuli, thereby enhancing the
activations of neurons that generate reliable EEG biomarkers.

As shown in Figure [T] our approach leverages a Deep Convolutional Generative Adversarial Net-
work (DCGAN) within a closed-loop system to generate and refine visual stimuli based on real-time
EEG feedback. As aresult, the amplitude of the EEG biomarkers is increased, which improves their
resistance to the effects of background oscillations in the brain across different time periods.

We validated the efficacy of the VEP Booster through a series of experiments employing SSVEP
protocols with nine human participants. The results demonstrated a significant average increase of
106% in SSVEP biomarker values across individuals (ranging from 28% to 295%). For algorithm
evaluations, in single-trial cross-time experiments conducted between 10AM and 10PM, the VEP
Booster statistically improved the SSVEP binary classification accuracy of the Compact Convolu-
tional Neural Network (CCNN) (Ravi et al.| 2020), EEGNet (Lawhern et al., [2018) and SSVEPNet
models (Pan et al., 2022a).Our key contributions are as follows:

* Algorithm: We develop and validate a novel closed-loop Al framework that actively generates
reliable and stable EEG biomarkers through optimized visual stimuli, addressing major challenges
of visual EEG biomarker signal variations across time.

» Applications: To demonstrate the feasibility of our proposed framework, we have developed
a comprehensive SSVEP EEG biomarker enhancement system. By improving the stability and
reliability of SSVEP biomarkers, our system lays a solid foundation for practical applications and
has the potential to make a profound impact on technological applications such as human-computer
interaction.

» Dataset: We will open-source the cross-time SSVEP EEG dataset (containing 4500 data samples
collected from three participants), contributing valuable resources to the community for exploring
visual brain-machine interfaces.

2 RELATED WORK

Existing visual BMI EEG processing algorithms can generally be divided into three categories. The
first category relies on traditional signal processing techniques. Methods such as Canonical Correla-
tion Analysis (CCA) (Zhang et al.||2011)) and Task-Discriminant Component Analysis (TDCA) (Liu
et al.l [2021) have achieved significant success in detecting steady-state visual evoked potentials
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(SSVEPs). In a recent study, the binocular Task-Related Component Analysis (b TRCA) algorithm
in visual BMIs achieved impressive information transmission rates (Sun et al.| 2024).

The second category includes machine learning approaches utilizing deep neural networks (DNNs)
to extract EEG biomarkers. DNNs are particularly effective at capturing spatial and temporal de-
pendencies in EEG data (Pan et al.l [2022b; [Liu et al.| 2023). For instance, [Kwak et al.| (2017)
demonstrated that convolutional neural networks (CNNs) outperform traditional methods like CCA
and its variants, achieving high classification accuracy in both static and ambulatory settings. Re-
cently, the application of large language models and transformer architectures to EEG data (Yiet al.,
2024; Jiang et al., [2024; Duan et al.} [2023)is promising and exciting. Pre-trained transformer mod-
els offer a robust framework for interpreting EEG signals by leveraging universal patterns across
various tasks.

The third category Spiking Neural Networks (SNNs), utilize surrogate-gradient descent learning
to reconstruct EEG biomarker sources and show potential for augmenting EEG signal data (Sin-
ganamalla & Lin| 2021). The results indicate improvements in tasks such as Steady-State Visual
Evoked Potentials (SSVEP) and motor imagery. Additionally, biologically-motivated Spiking Re-
current Neural Networks (SRNNs) employ the FORCE method to train network dynamics to align
with EEG dynamics (loannides et al., [2022]).

3 THE VEP BOOSTER

3.1 MATHEMATICAL MODEL

The primary objective of the VEP booster is to generate images that elicit the strongest EEG
biomarker responses under a visual stimulus protocol. For a single loop, the system works as fol-
lows: 1) a generator generates visual stimulus images; 2) we record the human participant’s EEG
signals under each visual stimulus protocol with the generated images; 3) an EEG decoder scores
the generated images based on the EEG biomarker values; 4) a latent generator generates the latent
inputs (for the DCGAN) for the next iteration, which based on the latent vectors of images with
highest EEG biomarker values.

As illustrated in Figure|l] the system comprises of four interconnected sub-systems:

* 1) Generator, denoted as GG; Without loss of generality, we use a pre-trained Generative Adver-
sarial Network (GAN) to implement the generative model G : Z — X', where Z is the latent space,
and X is the space of visual stimuli. G is defined by parameters ¢,, with the optimization objective
to minimize the discrepancy between the generated visual stimuli and the dataset visual stimuli.

* 2) EEG Decoder, denoted as D; Formally, D is the mapping from EEG signals to scores, D :
& — R, outputting a real-number score indicating the effectiveness of the stimulus. D is defined by
parameters 64, with the goal to accurately predict the quality and the differences of the visual stimuli
corresponding to the given EEG signals.

¢ 3) Latent Generator, denoted as L; L be a function that modifies the latent vectors z from the
distribution p(z) based on the scores derived from the EEG decoder, formulated by:

n

Zmutated = ATG MAX Z feature; (2) + 9, (1)
i=1

where feature; (z) are functions returning the various feature scores of the EEG signals associated
with latent vector z, and ¢ is a mutation vector where each element ¢; is drawn from a normal
distribution (0, o) with probability p, representing the mutation rate. The variance o2 controls
the extent of mutation. The number of feature vectors depends on visual protocols.

* 4) Human Subject, who actively participates in the closed-loop process. We define an EEG
Signal Model f, which is the mapping from visual stimuli to EEG signals from the human brain,
f X — &, where & represents the EEG signal space. This mapping is typically constrained by the
neurophysiological processes of the brain and can be highly nonlinear and complex.

The above four sub-systems operate in a closed-loop manner to optimize the following goal:

ngzxx ]EZNP(Z) [D(f<G(L(Z» a); 99)% 9d))]7 2
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Figure 2: The system implementation. The process involves four main steps: (1) Utilization of
a pre-trained DCGAN to create visual stimuli; (2) Presentation of these stimuli to subjects during
EEG recording sessions, following Steady State Visual Evoked Potential (SSVEP) protocols; (3)
Decoding and analysis of the EEG data to evaluate the efficacy of the generated images; (4) Selection
and use of the top two performing image latent vectors from the current iteration to refine and
generate input vectors for the subsequent iteration.

where p(z) is the prior distribution of the latent space. This goal facilitates the development of a
GAN capable of generating visual neuron preferred stimulus from real data by continuously mod-
ifying latent vectors based on feedback from the EEG decoder. This forms the basis of a dynamic
and iterative learning process that is crucial for maximising the EEG biomarker responses.

3.2 SYSTEM IMPLEMENTATION

To demonstrate the feasibility of our proposed framework, we conduct a case study using a SSVEP
stimulation protocol. Our objective is to elicit the most robust EEG biomarker responses under
the SSVEP protocol. We collected EEG data using a dry wearable device (developed by BrainUp
research Lab), which has seven channels and can capture neural activity across a wide visual area.

Our system, depicted in Figure[2] includes a pre-trained DCGAN with five layers of specified shapes.
To customize the model for our purposes, we create a custom training dataset that featured visual
stimuli with variations in brightness, stripe patterns, and checkerboards. The discriminator is con-
structed as a convolutional neural network, specifically designed to process images with dimensions
64 x 64 x 3 (width x height x channels). It incorporates four strided convolutional layers, which
sequentially reduce the resolution of the input image. And the generator in the DCGAN framework
utilizes a latent vector of length 100, sampled from a standard normal distribution. This vector is
processed through a series of transposed convolutional layers to construct an image. More training
details are provided in Appendix [A.T]

The EEG decoder employs a rapid Fast Fourier Transform (FFT) approach, in conjunction with
Signal-to-Noise Ratio (SNR) calculations at the target frequency, both as feature extraction tech-
niques. The FFT feature highlights the maximal response within V1 to the target frequency, effec-
tively identifying the most significant neuronal activation triggered by a specific visual stimulus.
Conversely, the SNR feature quantitatively assesses the contrast between the amplitude of the target
frequency and the energy of the background oscillations. This metric provides insights into the sig-
nal’s stability, offering an indication of the robustness and clarity of the neuronal response relative
to background noise. Based on these two features, a score is calculated for each image using the
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following equation:
Score = Normyse (FFT(x(t), farget)) +Normgn, (SNR(x(t), furget)) 3)

where Norm gy, is the normalization function of target frequency FFT amplitude, N ormg,, is
a normalization function of target frequency SNR.z(t) represents the EEG data trial in the time
domain and fiarge is the target frequency. The maximum value used for normalization is taken from
the values of the eighth iteration.

The latent vector generator algorithm is built based on Equation [T} which n equals two. One la-
tent vector originates from an image with the highest FFT value of the EEG signal, while another
latent vector is derived from an image with the highest SNR value of the EEG signal. These two
latent vectors are combined to obtain the optimal latent vectors. The optimal latent vector is then
used to generate eight individual offspring vectors. In each offspring, a portion of the latent vector
is replaced with random numbers drawn from a a zero-centered Gaussian distribution to serve as
mutation vectors. The proportion of the vector that is replaced varies among offspring, ranging from
p = 0% to 80%. Additionally, ten individual offspring vectors are generated using the interpolation
process between the best FFT and SNR latent vectors. Therefore, the total generated latent vector
is 20 for the next iteration. This introduces variability and potentially novel feature representations
into the generative process.

4 RESULTS

4.1 EXPERIMENTAL SETUP

We conducted an experiment involving nine human participants (6 males and 3 females). At the
first iteration, a trained generator produced 50 images. Through an image pre-check process (details
are described in Appendix[A.2)), the five most diverse images were selected for further testing using
a SSVEP protocol at 4 Hz. The reason for selecting 4 Hz is that it is the frequency of the brain’s
background noise, which aids significantly in evaluating whether the testing system can effectively
evoke the target frequency while suppressing the background noise. Each image was presented for
a specified duration (125 milliseconds) per trial. Each trial lasted two seconds. After completing
30 trials, participants were allowed a 30-second period to return to resting states. Then the latent
generator used two best images (decided by an EEG decoder) to produce 20 new images for subse-
quent iterations in the experiment loop. The experimental picture is shown at Figure[3|(a), depicting
a typical experimental configuration, in which a participant outfitted with an dry electrode EEG
device (BrainUp research Lab developed with 7 recording channels) while engaged with a visual
stimulus presented on a computer screen. The electrode location is based on 10-20 system: Ol,
02,T5, P3, P4, T6 and Pz, which mainly cover V1 areas. The experimental details are described in

Appendix [A.3]
4.2 VEP BOOSTER RESULTS

Figure 3| (b) presents an analysis of SSVEP responses, comparing the outputs from the VEP Booster
with natural responses. The response (EEG biomarker) is calculated by normalizing two feature
values (FFT and SNR) and adding them together. The data is calculated by average the results of
nine human subjects with standard variations.The data illustrates a distinct trend: responses by the
VEP Booster (indicated by red triangles) demonstrate a consistent upward trajectory, suggesting an
enhancement in the SSVEP responses. Conversely, the naturally observed responses (represented by
gray circles) exhibit substantial variability at lower band. At the last iteration loop, the mean SSVEP
response generated by the VEP Booster is 106% higher than the natural ones, with the improvement
ranging from 28% to 295%. It is noteworthy that there is a plateau point, where the SSVEP response
stabilizes. A slight decline following the plateau may be attributed to neural adaption.

Figure [3| (c) illustrates the heat maps of the VEP Booster and natural experimental results of all
trials and iterations, respectively. These panels clearly demonstrate that the SSVEP responses in-
crease with each iteration in the VEP Booster simulations, depicted by an escalating intensity in the
heat map. In contrast, the heat maps from natural trials show consistently low random values across
the iterations. This distinct pattern suggested the capability of the proposed VEP Booster in suc-
cessfully generating images that preferentially activate biological visual cortex V1, thereby eliciting
increasingly strong EEG biomarker related neuron responses.
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Figure 3: (a) A participant outfitted with an EEG device, actively engaging with a visual stimulus
displayed on a computer screen. (b) A comparative analysis of SSVEP (Steady State Visual Evoked
Potentials) responses elicited by VEP Booster-generated images versus natural images. The graph
presents average values from multiple trials (5 images x 30 trials each) with standard deviations in-
dicated. (c) Heat maps representing the aggregate SSVEP responses to both VEP Booster-generated
and natural images from all trial iterations, illustrating the spatial distribution of neural activity.

4.3 SSVEP EEG RESULTS

We initiated our investigation by analyzing how the VEP Booster adapts visual stimuli over succes-
sive iterations. Figure[[a) illustrates the iterative changes in the stimulus images, showing how the
system refines the visual inputs to better align with the neuronal preferences of the primary visual
cortex. More details of VEP generated images are in Appendix[A.4]

As depicted in Figure f[b), there was a significant increase in the EEG biomarker values with each
iteration, indicating that the VEP Booster successfully enhances neural responses. Each panel dis-
plays EEG traces with the black line representing the mean amplitude of all trials within that respec-
tive iteration. The red vertical dashed line indicates the offset of the visual stimulus. Accompanying
each EEG trace, brain topography maps provide a spatial representation of neural activity, empha-
sizing regions of significant activation. The data reveals a progressive enhancement in signal quality
as indicated by the signal-to-noise ratio (SNR) values across the iterations. Starting from an SNR of
1.51 in the first iteration, there is a clear trend of increasing SNR, reaching up to 2.75 in the eighth
iteration. Moreover, the amplitude of the EEG responses also shows a significant increase, from 123
1V in the first iteration to 503 pV in the eighth, which supports the SNR findings.

4.4 EEG BIOMARKER ACROSS NINE SUBJECTS

The efficacy of the Visual Evoked Potential (VEP) Booster was systematically evaluated across nine
subjects to verify its generalizability and robustness in enhancing EEG biomarkers. As depicted in
Figure [5{(a), violin plots illustrate a notable increase in both amplitude and SNR from the first to the
last iteration across all participants. For instance, Subject 1 exhibited an increase in amplitude from
111.1 to 255.2 and in SNR from 1.32 to 2.66, while Subject 9 showed enhancements from 60.98 to
108.74 in amplitude and from 1.81 to 1.91 in SNR. This uniform elevation is particularly evident
in the amplitude measures, where the median values shift markedly upwards, accompanied by a
broadening in the distribution of the last iteration values, indicating a pronounced and consistent
enhancement in response to the VEP Booster. Furthermore, Figure [5(b) reinforces these findings
by providing a detailed analysis per subject, demonstrating not only significant improvements in
amplitude and SNR values but also consistency across trials. The overlay of improvement bars on the
line plots quantifies these enhancements, with the most significant observed increase in amplitude
being for Subject 4, from 245.3 to 503.8, and the greatest improvement in SNR for Subject 6, from
2.32 to 3.36. The T-test results indicated in the charts (T = -3.97, p = 0.004 and T = -4.05, p =
0.004), significantly below the conventional significance level of 0.05, strongly support rejecting the
null hypothesis that there is no difference between the two iterations.
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Figure 4: (a) A brief summary of how image evolves; (b) Sequential EEG data and brain topography
from eight iterations for a participant. Each panel displays the EEG responses for a single iteration,
with the black line representing the average amplitude of all trials within that iteration. The corre-
sponding brain topography maps illustrate the distribution of neural activities. The amplitude (Amp)
and signal-to-noise ratio (SNR) for each iteration are noted, demonstrating a progression in response
clarity and strength across the sessions.

4.5 CROSS-TIME CHANGES IN EEG BIOMARKERS AND KERNEL DENSITY DISTRIBUTION

Three subjects were enrolled to participate in cross-time EEG biomarker change experiments, which
were conducted over a 12-hour period, commencing at 10 AM and concluding at 10 PM. During
this period, the total experiment number is five, each subject participated in two sets of steady-state
visual evoked potential (SSVEP) experiments, with a two-hour interval between each experiment.
The initiation times for the experiments were randomized. For each experiment set, images from the
initial (control) and final (VEP booster-enhanced) iterations were selected for analysis. Each image
was presented in thirty trials, with each trial consisting of a one-second stimulation period followed
by a one-second resting period.

Over the time course of 10 hours, by average the three human subject results, Figure [6fa) displays
the EEG biomarker values for the VEP booster images consistently exceeded those of the natural
images. The statistically significant T-test results, T =-3.97, p = 0.01, augment the evidence support-
ing the superiority of the VEP booster images. Additionally, despite variations in brain state over
time affecting both sets of image indices. The VEP booster images indices exhibited less variations
(0.065) compared to the natural images’ indices (0.0691). This demonstrates that the VEP booster
images produce biomarkers that are stable and less affected by background brain oscillations and
other factors.

Notably, between 4-hr and 6-hr here was a significant decline with natural image-based EEG indices
dropping by 20% (from 0.92 to 0.74) and VEP booster-based EEG indices biomarkers only declining
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Figure 5: (a) Violin plots demonstrating the distributions of amplitude and SNR values for all
participants before and after using the VEP Booster, showing marked improvements.(b) Detailed
improvements per subject illustrated through line and bar plots, highlighting consistent and signifi-
cant increases in amplitude and SNR across iterations.
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Figure 6: (a) SSVEP EEG biomarker indices recorded from 10:00 to 22:00, showing the responses
to VEP booster images (red) and natural images (blue). (b)Kernel density estimates of the data
reveal distinct distribution patterns for biomarker indices.

by 7% (from 0.99 to 0.92). One of the reasons is due to changes in the brain’s background oscilla-
tions within this time period. Since the VEP booster image can induces stronger EEG biomarkers
(with SSVEP natural images, the SSVEP biomarker was 123uV with an SNR of 1.51, and with VEP
booster images, the SSVEP biomarker increased to 503uV with an SNR of 2.75), it is less affected
by background oscillations.

Figure[f[b) depicts the kernel density distribution for VEP booster images (depicted in blue) showed
a prominent peak around the index of 1, whereas the distribution for natural images (depicted in or-
ange) was broader with a peak around 0.6. These results indicated that EEG signals from VEP
booster images had higher indices concentrated in a narrower range with lower variability in com-
parison to those from natural images. These results indicated that VEP booster has improved sta-
tionarity and less variability in EEG signals.

4.6 INTRA-SEGMENT TRAINING AND VALIDATION

To further substantiate the efficacy of the VEP Booster, we conducted a binary classification task
utilizing Steady-State Visual Evoked Potentials (SSVEP). The objective was to determine whether
human subjects were under SSVEP stimulation. For this task, we selected multiple neural network
models. Given that our study spanned five distinct time periods, we compiled a dataset comprising
4500 trials (more details are in Appendix [A-3] By training and testing the model on 80% and 20%
splits within the all time periods data, the strategy focuses on capturing and adapting to the nuances
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Table 1: Comparison of different neural network accuracy across multiple time points

Time periods VEP Booster Condition CCNN (%) EEGNet (%) SSVEPNet (%)
10am-12am Without 88.80 +£9.94  89.44 £ 9.84 87.78 +13.90
With 87.224+11.33 85.56 +12.35 91.11 +8.85
12am-2pm Witl_wut 88.33+£10.00 91.67 £ 8.61 88.33 +5.93
With 94.444+7.86  93.34 £6.24 88.89 4 8.96
2pm-4pm Without 78.334+£9.03 83.89+11.97 80.56 £ 12.42
With 82.22 +£10.92 87.22 +12.50 88.89 + 8.96
Apm-6pm Without 91.11+8.32 90.56 +10.48  88.89 +11.65
With 93.33 £8.71  95.00 £ 7.33 93.33 £ 8.16
6pm-8(10)pm Witl_mut 91.67+£9.13  90.55 +8.54 91.67 + 8.61
With 95.56 +5.15  96.11 +£6.71 88.89 4+ 12.04
10am-10pm Without 86.44 + 0.6 88.15+ 1 87.86 =1
With 91 +£0.7 91.24 0.6 92.12+0.9
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Figure 7: Comparison of CCNN classification accuracy across different time periods with and with-
out the VEP Booster.

within a single period. We conducted five-fold cross-validation to validate the models’ performance.
The results, showing mean and standard deviation of accuracy, are detailed in the table below.

The practical utility of the VEP Booster in enhancing neural network performance is clearly evi-
denced through a systematic comparison of classification accuracies across multiple time points, as
summarized in Table 1. Notably, for the SSVEPNet, the mean accuracy across all the time periods
are above 88%, while without VEP booster, the accuracy range from 81% to 91% with a considerable
variations. This trend persisted throughout the experiment, culminating in the 10am-10pm overall
comparison where the introduction of the VEP Booster led to an increase in accuracies: CCNN from
86.44% to 91%, EEGNet from 88.15% to 91.24%, and SSVEPNet from 87.86% to 92.12%.

4.7 INTER-SEGMENT TRAINING AND VALIDATION

Also, we tests the model’s generalization capability with only a single time period data. The struc-
tured testing involved training the model on a dataset from a single time period (900 samples) and
validating it across subsequent periods. The results, Figure [7depicted in the provided heatmap com-
parisons, clearly highlight the VEP Booster’s effectiveness. When employing the CCNN with VEP
Booster, the difference Heatmap highlights the improvement in accuracy with increases ranging
from 1% to 11% in accuracy points. At T3 time period case, the overall accuracy across all time
perods is above 81%, while at control set the accuracy varies between 75% and 81%. In addition,
the other two neual networks results are shown at Appendix [A.6]

4.8 VEP BOOSTER CONVERGENCE AND FEATURE REPRESENTATION

We employed Kernel Principal Component Analysis (KPCA) as our dimensionality reduction tech-
nique to transform the latent vectors from a high-dimensional space (100 dimensions) to a more
manageable three-dimensional space. Therefore, we explore the dynamics of a VEP Booster within
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Figure 8: Trajectories of three human subject latent vectors in a 3D latent space visualized across
different iterations. The visualization illustrates the convergence patterns from initial (’Start’) to
final CEnd’) positions for selected groups (iteration 1 and 7) over multiple iterations.

the framework of a DCGAN, particularly focusing on the trajectory of latent vectors in a high-
dimensional space. First, the trajectories in the latent space provide compelling evidence of the
system’s ability to converge towards stable solutions. By examining the start and end points of
these trajectories, as highlighted in the accompanying visualizations, we observe that the network
systematically refines its internal representations towards more compact areas of the latent space.
This convergence is not only rapid but also consistent across different initialization conditions, un-
derlining the robustness of our model in finding optimal solutions. Second, the trajectory paths
provide insight into the representation of information by DCGANSs and offer a reflection of how
the biological visual system encodes such information. It help us to understand and develop the
bio-inspired neural network learns to capture and replicate key aspects of biological visual neural
network information representation.

5 CONCLUSION

In this paper, we introduced the VEP Booster, a novel closed-loop Al framework designed to opti-
mize reliable and stable EEG biomarkers. Utilizing a SSVEP protocol, our findings demonstrate that
this system can robustly evoke individual biomarkers compared to natural states for all individuals.
In the context of single-trial Steady-State Visual Evoked Potential (SSVEP) binary classification ex-
periments, both intra- and inter-temporal analyses with the Visual Evoked Potential (VEP) Booster
yielded statistically significant enhancements.

Also, our results have led us to identify several key factors that are critical for the effective operation
of the system. First, the optimization of the DCGAN and EEG decoder must be synchronized to
ensure that the decoder can detect subtle differences in generated images. Second, it is essential to
balance the GAN loss and the EEG decoder capabilities to prevent either aspect from dominating
the learning process, which could result in underfitting one side of the model.

Regarding board applications, the VEP booster’s core capability is to generate customized visual
stimuli based on real-time EEG feedback, which is fundamental not only for SSVEP but also for
other types of visual protocols such as flash VEPs (fVEPs) and Event-related Potentials (ERPs),
which enabling a broader application scope of visual stimulation protocols. This system’s perfor-
mance highlights its utility in providing tailored therapeutic interventions, promising a shift towards
more personalized and effective treatment strategies in neurological care.

6 REPRODUCIBILITY STATEMENT

We will release the code and usage instructions to the public upon acceptance.
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A APPENDIX

A.1 IMPLEMENTATION DETAILS

The dataset was programmatically synthesized using a Python script and consists of images stan-
dardized to a resolution of 1024x1024 pixels against a black background. This dataset is categorized
into three distinct groups, with each group containing approximately 60 images. The first category
encapsulates a gradational luminance shift from black to white. The second category comprises
images with uniformly spaced black and white striped patterns. The third category features images
with a progressively dense checkerboard grid.

The discriminator is constructed as a convolutional neural network, specifically designed to process
images with dimensions 64 x 64 x 3 (width x height x channels). It incorporates four strided
convolutional layers, which sequentially reduce the resolution of the input image. The layers are
configured as follows:

12
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» Layer 1: Convolutional layer, accepting an input of 64 x 64 x 3, producing an output of
32 x 32 x 64.

* Layer 2: Strided convolutional layer, outputting 16 x 16 x 128.
* Layer 3: Strided convolutional layer, further reducing to 8 x 8 x 256.

* Layer 4: Strided convolutional layer, with a final output of 4 x 4 x 512.

Each convolutional layer, except the first, is followed by batch normalization and a LeakyReLU
activation function to improve training stability and introduce non-linearity. The output of the final
layer is passed through a sigmoid activation function, yielding a single scalar value. This scalar
represents the probability that the input image is classified as real.

The generator in the Deep DCGAN framework utilizes a latent vector of length 100, sampled from
a standard normal distribution. This vector is processed through a series of transposed convolutional
layers to construct an image:

* Layer 1: Transposed convolutional layer, converts the latent vector into a 4 x 4 x 1024
feature map.

* Layer 2: Transposed convolutional layer, upscales to 8 x 8 x 512.
* Layer 3: Transposed convolutional layer, further enlarges to 16 x 16 x 256.
* Layer 4: Transposed convolutional layer, increases resolution to 32 x 32 x 128.

* Final Layer: Transposed convolutional layer, producing a full-resolution image of 64 X
64 x 3.

Batch normalization and ReLU activations are used in each layer, except in the final layer, where a
tanh activation function is used to normalize the image pixels between -1 and 1. This architecture
allows the generator to transform a simple distribution into complex data structures that mimic
the training images. All experiments were conducted on a computer running Linux Ubuntu 22.04
system, Python version 3.8 and pyTorch 1.10 . The hardware components are as follows: CPU: Intel
Xeon 6230 2.1GHz MEM: DDR4 1 TB DISK: 8 TB GPU: Quadro RTX 6000, 24 GB.

A.2 IMAGE PRE-CHECK PROCESS

The image pre-check process extract a suite of five distinct features: standard deviation of pixel
values, edge count determined through the Sobel operator, energy of the high-frequency component
from Haar wavelet decomposition, mean frequency from the Fourier transform, and skewness of the
pixel intensity histogram. These features encapsulate various aspects of the texture of the image, the
information about the edges, the frequency content, and the distribution characteristics. Based on
these feature values, it computes the total pairwise Euclidean distances between the feature vectors
of the selected images. This metric serves as a quantitative measure of diversity, with the assumption
that a higher sum of distances indicates greater dissimilarity among images.

A.3 EEG RECORDING EXPERIMENTAL AND VISUAL STIMULATION PROTOCOL SETUP

The wearable EEG acquisition system comprised nine channels, including seven for EEG acqui-
sition, one for reference, and one for bias. The microcontroller unit (MCU) served as the control
unit, interfacing with the analog-to-digital converter (ADC) via serial input/output and communi-
cating with the workstation using Bluetooth 5.0 protocol. Raw EEG signals were filtered using a
50 Hz band stop filter and sampled at 250 Hz. The amplitude and amplitude of the steady-state
visually evoked potential (SSVEP) at the target frequency of 4 Hz, along with the signal-to-noise
ratio (SNR), were analyzed using Fast Fourier Transform (FFT). For each stimulation frequency, the
EEG data from each trial were segmented into equal epochs starting from the initial timestamp.

Data collection involved nine healthy subjects (aged 22-36 years; 3 females and 6 males). The
recordings were conducted in a quiet, dimly lit environment, isolated from known sources of elec-
trical interference. Informed consent was obtained from all participants and the experimental proce-
dures were approved by the Ethics Committee.
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The generated image in eight iterations

Iteration 1 2 3 4 5 6 7 8

Figure A.1: The VEP generated images across eight iterations of a participant.

The stimulus images consisted of a square that underwent a on-off modulation of temporal contrast
100%, displayed in the center of an LCD screen with a resolution of 2560 x 1600 pixels, positioned
60 cm from the subjects’ eyes. The stimuli had a visual angle of approximately 6° x 6°. The stimulus
was presented at a flicker frequency of 4 Hz (125 ms on and 125 ms off), which was used to detect
the response at this specific frequency. Each iteration consisted of 30 trials with a 30-ms interval
between the trials, with up to 8 iterations conducted.

The normalized index and amplitude of SSVEP were analyzed using the Python toolbox. The data
was presented by mean#s.t.d. The shielding area in the mean response indicates the 95% confidence
interval.

A.4 THE VEP BOOSTER GENERATED IMAGES

For a single human participant, the VEP booster generated images of eight iterations are in Fig-

ure[A Tl

A.5 CROSS TIME TRAINING DATASET

This dataset comprises electroencephalography (EEG) data collected using a wireless dry-electrode
system with a sampling rate of 250 Hz. It includes experimental data from three subjects, each
participating in experiments across five different time periods (from 10:00 AM to 10:00 PM at two-
hour intervals). In each time period, subjects completed two sets of experiments: a control group
and a Visual Evoked Potential (VEP) group. Due to wireless transmission, some data points may be
missing, resulting in approximately 500 data points per trial.

In this study, electroencephalography (EEG) data were collected from three subjects who partici-
pated in experiments across five different time periods, scheduled every two hours from 10:00AM
to 10:00PM. The experimental design employed a Steady-State Visual Evoked Potential (SSVEP)
paradigm using five natural images as stimuli. Each image was presented in 30 trials lasting 2 sec-
onds each, resulting in 150 trials for the control group per time period. In addition, a VEP group was
included, where subjects were shown five images generated by a VEP enhancer, also in 30 trials per
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Figure A.2: Comparison of classification accuracy across different time periods with and without

the VEP Booster (SVEPNet, EEGNet and CCNN).

image with each trial lasting 2 seconds (comprising 1 second of SSVEP stimulation and 1 second
of resting state), yielding another 150 trials per time period. This led to a total of 300 trials per time
period per subject, amounting to 1,500 trials per subject over all time periods and 4,500 trials across
all subjects. The EEG data were stored in .npy (NumPy array) files with dimensions (30, 8, 500),
where 30 represents the number of trials per time period, 8 denotes the number of channels (the first
seven are EEG data channels and the eighth is a marker channel without data), and 500 indicates the
number of data points per trial, which may slightly vary due to missing data.

A.6 FULL RESULTS ON INTER-SEGMENT TRAINING AND VALIDATION

The full results are shown at Figure[A.2]
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