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ABSTRACT

Distributed Deep Learning (DDL) is essential for large-scale Deep Learning (DL)
training. Using a sufficiently large batch size is critical to achieving DDL runtime
speedup. In a large batch setting, the learning rate must be increased to compensate
for the reduced number of parameter updates. However, a large batch size may
converge to sharp minima with poor generalization, and a large learning rate
may harm convergence. Synchronous Stochastic Gradient Descent (SSGD) is
the de facto DDL optimization method. Recently, Decentralized Parallel SGD
(DPSGD) has been proven to achieve a similar convergence rate as SGD and to
guarantee linear speedup for non-convex optimization problems. While there was
anecdotal evidence that DPSGD outperforms SSGD in the large-batch setting, no
systematic study has been conducted to explain why this is the case. Based on a
detailed analysis of the DPSGD learning dynamics, we find that DPSGD introduces
additional landscape-dependent noise, which has two benefits in the large-batch
setting: 1) it automatically adjusts the learning rate to improve convergence; 2) it
enhances weight space search by escaping local traps (e.g., saddle points) to find
flat minima with better generalization. We conduct extensive studies over 12 state-
of-the-art DL models/tasks and demonstrate that DPSGD consistently outperforms
SSGD in the large batch setting; and DPSGD converges in cases where SSGD
diverges for large learning rates. Our findings are consistent across different
application domains, Computer Vision and Automatic Speech Recognition, and
different neural network models, Convolutional Neural Networks and Long Short-
Term Memory Recurrent Neural Networks.

1 INTRODUCTION
Deep Learning (DL) has revolutionized AI training across application domains: Computer Vision
(CV) (Krizhevsky et al., 2012; He et al., 2015), Natural Language Processing (NLP) (Vaswani et al.,
2017), and Automatic Speech Recognition (ASR) (Hinton et al., 2012). Stochastic Gradient Descent
(SGD) is the fundamental optimization method used in DL training. Due to massive computational
requirements, Distributed Deep Learning (DDL) is the preferred mechanism to train large scale Deep
Learning (DL) tasks. In the early days, Parameter Server (PS) based Asynchronous SGD (ASGD)
training was the preferred DDL approach (Dean et al., 2012; Li et al., 2014) as it did not require
strict system-wide synchronization. Recently, ASGD has lost popularity due to its unpredictability
and often inferior convergence behavior (Zhang et al., 2016b). Practitioners now favor deploying
Synchronous SGD (SSGD) on homogeneous High Performance Computing (HPC) systems. The
degree of parallelism in a DDL system is dictated by batch size: the larger the batch size, the
more parallelism and higher speedup can be expected. However, large batches require a larger
learning rate and overall they may negatively affect model accuracy because 1) large batch training
usually converges to sharp minima which do not generalize well (Keskar et al., 2016) and 2) large
learning rates may violate the conditions (i.e., the smoothness parameter) required for convergence
in nonconvex optimization theory (Ghadimi & Lan, 2013). Although training longer with large
batches could lead to better generalization (Hoffer et al., 2017), doing so gives up some or all of the
speedup we seek. Through meticulous hyper-parameter design (e.g., learning rate) tailored to each
specific task, SSGD-based DDL systems have enabled large batch training and shortened training
time for some challenging CV tasks (Goyal et al., 2017; You et al., 2017) and NLP tasks (You et al.,
2019) from weeks to hours or less. However, it is observed that SSGD with large batch size leads to
large training loss and inferior model quality for ASR tasks (Zhang et al., 2019b), as illustrated in
Figure 1a (red curve). In this paper we found for other types of tasks (e.g. CV) and DL models, large
batch SSGD has the same problem (Figure 1b and Figure 1c). The cause of this problem could be
that training gets trapped at saddle points since large batches reduce the magnitude of noise in the
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(a) LSTM, SWB300, BS 8192 (b) EfficientNet, CIFAR-10, BS 8192 (c) SENet-18, CIFAR-10, BS 8192

Figure 1: SSGD (red) does not converge in the large batch setting. Figure 1a plots the heldout-loss,
the lower the better. Figure 1b and Figure 1c plot the model accuracy, the higher the better. By
injecting Gaussian noise, SSGD might escape early traps but result in much worse model (blue)
compared to DPSGD (green) in the large batch setting. The detailed task descriptions and training
recipes are described in Section 4.3. BS stands for Batch-Size.

stochastic gradient and prevent the algorithm from exploring the whole parameter space. To solve this
problem, one may add isotropic noise (e.g., spherical Gaussian) to help SSGD escape from saddle
points (Ge et al., 2015). However, this is not a good solution for high-dimensional DL training as
shown in the blue curves of Figure 1. One possible reason is that the complexity of escaping a saddle
point by adding isotropic noise has a polynomial dependency on the dimension of the parameter
space, so adding such noise in a high dimensional space (such as deep learning) does not bring
significant benefits. In this paper, we have found that Decentralized Parallel SGD (DPSGD) (Lian
et al., 2017b) greatly improves large batch training performance, as illustrated in the green curves
in Figure 1. Unlike SSGD, where each learner updates its weights by taking a global average of all
learners’ weights, DPSGD updates each learner’s weights by taking a partial average (i.e., across a
subset of neighboring learners). Therefore, in DPSGD, each learner’s weights differ from the weights
of other learners.1 The key difference among SSGD, SSGD with Gaussian noise 2 and DPSGD is the
source of noise during the update, and this noise directly affects performance in deep learning. This
naturally motivates us to study Why decentralized training outperform synchronous training in the
large batch setting? More specifically, we try to understand whether their performance difference
is caused by their different noise. We answer these questions from both theoretical and empirical
perspectives. Our contributions are:

• We analyze the dynamics of DDL algorithms, including both SSGD and DPSGD. We show,
both theoretically and empirically, that the intrinsic noise in DPSGD can 1) reduce the
effective learning rate when the gradient is large to help convergence; 2) enhance the search
in weight space for flat minima with better generalization.

• We conduct extensive empirical studies of 12 CV and ASR tasks with state-of-the-art
CNN and LSTM models. Our experimental results demonstrate that DPSGD consistently
outperforms SSGD, across application domains and Neural Network (NN) architectures in
the large batch setting, without any hyper-parameter tuning. To the best of our knowledge,
we are unaware of any generic algorithm that can improve SSGD large batch training on
this many models/tasks.

The remainder of this paper is organized as follows. Section 2 details the problem formulation and
learning dynamics analysis of SSGD, SSGD+Gaussian, and DPSGD; Section 3 and Section 4 detail
the empirical results; and Section 5 concludes the paper.

2 ANALYSIS OF STOCHASTIC LEARNING DYNAMICS AND EFFECTS OF
LANDSCAPE-DEPENDENT NOISE

We first formulate the dynamics of an SGD based learning algorithm with multiple (n > 1) learners
indexed by j = 1, 2, 3, ...n following the same theoretical framework established for a single
learner (Chaudhari & Soatto, 2018). At each given time (iteration) t, each learner has its own
weight vector ~wj(t), and the average weight vector ~wa(t) is defined as: ~wa(t) ⌘ n

�1
Pn

j=1 ~wj(t).

1The detailed DPSGD algorithm and its learning dynamics are described in Section 2.
2We use the terms ”SSGD with Gaussian noise” and "SSGD⇤" interchangeably in this paper.
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Each learner j updates its weight vector according to the cross-entropy loss function L
µj(t)(~w) for

minibatch µj(t) that is assigned to it at time t. The size of the local minibatch is B, and the overall
batch size for all learners is nB. Two multi-learner algorithms are described below.

(1) Synchronous Stochastic Gradient Descent (SSGD): In the synchronous algorithm, the learner
j 2 [1, n] starts from the average weight vector ~wa and moves along the gradient of its local loss
function L

µj(t) evaluated at the average weight ~wa:

~wj(t+ 1) = ~wa(t)� ↵rL
µj(t)(~wa(t)), (1)

where ↵ is the learning rate.

(2) Decentralized Parallel SGD (DPSGD): In the DPSGD algorithm (Lian et al., 2017a), learner j
computes the gradient at its own local weight ~wj(t). The learning dynamics follows:

~wj(t+ 1) = ~ws,j(t)� ↵rL
µj(t)(~wj(t)). (2)

where ~ws,j(t) is the starting weight set to be the average weight of a subset of “neighboring" learners
of learner-j, which corresponds to the non-zero entries in the mixing matrix defined in (Lian et al.,
2017a) (note that ~ws,j = ~wa if all learners are included as neighbors).

By averaging over all learners, the learning dynamics for the average weight ~wa for both SSGD
and DPSGD can be written formally the same way as: ~wa(t + 1) = ~wa(t) � ↵~ga, where ~ga =
n
�1

Pn
j=1 ~gj is the average gradient and ~gj is the gradient from learner-j. The difference between

SSGD and DPSGD is the weight at which ~gj is computed: ~gj ⌘ rL
µj(t)(~wa(t)) is computed at ~wa

for SSGD; ~gj ⌘ rL
µj(t)(~wj(t)) is computed at ~wj for DPSGD.

By projecting the weight displacement vector �~wa ⌘ ↵~ga onto the direction of the gradient ~g ⌘
rL(~wa) of the overall loss function L at ~wa, we can write the learning dynamics as:

~wa(t+ 1) = ~wa(t)� ↵e~g + ~⌘, (3)

where ↵e ⌘ ↵~ga · ~g/||~g||2 is an effective learning rate and ~⌘ = �↵~ga + ↵e~g is the noise term that
describes the stochastic weight dynamics in directions orthogonal to ~g. The noise term has zero mean
h~⌘iµ = 0 and its strength is characterized by its variance �(t) ⌘ ||~⌘||2. � and ↵e are related by the
equality: ↵2

e||~g||2 +� = ↵
2||~ga||2, which indicates that a higher noise strength � leads to a lower

effective learning rate ↵e.

The noise strength � (and hence ↵e) is different in SSGD and DPSGD. The DPSGD noise �DP is
larger than the SSGD noise �S by an additional noise �(2)(> 0) that originates from the difference
of local weights (~wj) from their mean (~wa): �DP = �S +�(2), see Appendix B for details. By
expanding �(2) w.r.t. �~wj ⌘ ~wj � ~wa, we obtain the average �(2) over minibatch ensemble {µ}:

h�(2)iµ ⌘ ↵
2h||n�1

nX

j=1

[rL
µj (~wj)�rL

µj (~wa)]||2iµ ⇡ ↵
2
X

k,l,l0

HklHkl0Cll0 , (4)

where Hkl = r2
klL is the Hessian matrix of the loss function and Cll0 = n

�2
Pn

j=1 �wj,l�wj,l0

is the weight covariance matrix. It is clear that �(2) depends on the loss landscape – it is larger in
rough landscapes and smaller in flat landscapes.

It is important to stress that the noise ~⌘ in Eq.3 is not an artificially added noise. It is intrinsic to
the use of minibatches (random subsampling) in SGD-based algorithms and is enhanced by the
difference among different learners in DPSGD. The noise strength � varies in weight space via
its dependence on the loss landscape, as explicitly shown in Eq.4. However, besides its landscape
dependence, SGD noise also depends inversely on the minibatch size B (Chaudhari & Soatto, 2018).
With n synchronized learners, the noise in SSGD scales as 1/(nB), which is too small to be effective
for a large batch size nB. A main finding of our paper is that the additional landscape-dependent
noise �(2) in DPSGD can make up for the small SSGD noise when nB is large and help enhance
convergence and generalization in the large batch setting.

In the following, we investigate the effects of this landscape-dependent noise for SSGD and DPSGD
using the MNIST dataset where each learner is a fully connected network with two hidden layers (50
units per layer). We focus on the large batch setting using nB = 2000 in the experiments.
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2.1 NOISE IN DPSGD REDUCES EFFECTIVE LEARNING RATE TO HELP CONVERGENCE

First, we study a case with a large learning rate ↵ = 1. In this experiment, we used n = 5, and
~ws,j = ~wa for DPSGD. As shown in the upper panel of Fig. 2(a), DPSGD converges to a solution
with low loss (2.1% test error), but SSGD fails to converge. As shown in Fig. 2(a) (lower panel),
the effective learning rate ↵e is reduced in DPSGD during early training (0  t  700) while
↵e in SSGD remains roughly the same as ↵. This reduction of ↵e caused by the stronger noise
� in DPSGD is essential for convergence by avoiding overshoots when gradients are large in the
beginning of the training process. In the later stage of the training process when gradients are smaller,
the landscape-dependent DPSGD noise decreases and ↵e increases back to be ⇡ ↵. To show the
importance of the landscape-dependent noise, we introduce a variant of SSGD, SSGD⇤, by injecting
a Gaussian noise with a constant variance to weights in SSGD. However, most choices of this injected
noise fail to converge. Only by fine tuning the injected noise strength can SSGD⇤ converge, but to an
inferior solution with much higher loss and test error (5.7%). The poor performance is likely due to
the persistent reduction of ↵e even in the later stage of training (see Fig. 2(a) (lower panel)) since the
added Gaussian noise in SSGD⇤ is independent of the loss landscape.

This insight on reducing learning rate is consistent with nonconvex optimization theory (Ghadimi
& Lan, 2013; Lian et al., 2017b). When we use a larger batch size, stochastic gradient has smaller
variance, and nonconvex optimization is able to choose a larger learning rate without affecting its
convergence. However, the learning rate should be limited by 1/ls where ls is the smoothness
parameter. In the very large batch setting, the learning rate under the linear scaling rule (Goyal et al.,
2017) may indeed exceed this limit (1/ls). Here, we show that these conflicting requirements can be
resolved in DPSGD where the enhanced landscape-dependent noise adaptively adjusts the effective
learning rate by reducing ↵e when the loss landscape is rough with large gradients and restoring to
the original large ↵ when the landscape is smooth. In Appendix E, we consider a simple synthetic
problem where we show that the larger noise in DPSGD allows the algorithm to escape saddle points
in the loss function landscape while the SSGD algorithm gets stuck for a long time.
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Figure 2: Comparison of different multi-learner algorithms, DPSGD (green), SSGD (red), and
SSGD⇤ (blue). (a) For a large learning rate ↵ = 1, the lowered effective learning rate ↵e in DPSGD
in the beginning of training allows DPSGD to converge while SSGD fails to converge. SSGD⇤ also
converges but to an inferior solution. (b) For a smaller ↵ = 0.2, DPSGD finds a flatter minimum with
a lower test error than SSGD. SSGD⇤ has the worst performance. See text for detailed description.

2.2 NOISE IN DPSGD ENHANCES SEARCH TO FIND FLAT MINIMA WITH BETTER
GENERALIZATION

Next, we consider a case with a smaller learning rate ↵ = 0.2. Here we used n = 6 and ~ws,j(t) in
DPSGD is the average weight of 2 neighbors on each side. In this case, both SSGD and DPSGD
can converge to a solution, but their learning dynamics are different. As shown in Fig. 2(b) (upper
panel), while the training loss L of SSGD (red) decreases smoothly, the DPSGD training loss (green)
fluctuates widely during the time window (1000-3000) when it stays significantly above the SSGD
training loss. As shown in Fig. 2(b) (lower panel), these large fluctuations in L are caused by the
high and increasing noise level in DPSGD. This elevated noise level in DPSGD allows the algorithm
to search in a wider region in weight space. At around time 3000(batch), the DPSGD loss decreases
suddenly and eventually converges to a solution with a similar training loss as SSGD. However,
despite their similar final training loss, the DPSGD loss landscape is flatter (contour lines further
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CIFAR10
EfficientNet-B0 SENet-18 VGG-19 ResNet-18 DenseNet-121 MobileNet

Size 11.11 MB 42.95 MB 76.45 MB 42.63 MB 26.54 MB 12.27 MB
Time 2.92 Hr 1.58 Hr 1.08 Hr 1.37 Hr 5.48 Hr 1.02 Hr

CIFAR10 SWB300 SWB2000
MobileNetV2 ShuffleNet GoogleNet ResNext-29 LSTM LSTM

Size 8.76 MB 4.82 MB 23.53 MB 34.82 MB 164.62 MB 164.62 MB
Time 1.96 Hr 2.46 Hr 5.31 Hr 4.55 Hr 26.88 Hr 203.21 Hr

Table 1: Evaluated workload model size and training time. Training time is measured when running
on 1 V100 GPU. CIFAR-10 is trained with batch size 128 for 320 epochs. SWB-300 and SWB-2000
are trained with batch size 128 for 16 epochs.

apart) than SSGD landscape. Remarkably, the DPSGD solution has a lower test error (2.3%) than the
test error of the SSGD solution (2.6%). We have also tried the SSGD⇤ algorithm, but the performance
(3.9% test error) is worse than both SSGD and DPSGD.

To understand their different generalization performance, we studied the loss function landscape
around the SSGD and DPSGD solutions. The contour plots of the loss function L around the two
solutions are shown in the two right panels in Fig. 2(b). We found that the loss landscape near
the DPSGD solution is flatter than the landscape near the SSGD solution despite having the same
minimum loss. Our observation is consistent with (Keskar et al., 2016) where it was found that SSGD
with a large batch size converges to a sharp minimum which does not generalize well. Our results are
in general agreement with the current consensus that flatter minima have better generalization (Hinton
& van Camp, 1993; Hochreiter & Schmidhuber, 1997; Baldassi et al., 2016; Chaudhari et al., 2016;
Zhang et al., 2018b). It was recently suggested that the landscape-dependent noise in SGD-based
algorithms can drive the system towards flat minima (Feng & Tu, 2020). However, in the large batch
setting, the SSGD noise is too small to be effective. The additional landscape-dependent noise �(2)

in DPSGD, which also depends inversely on the flatness of the loss function (see Eq. 4), is thus
critical for the system to find flatter minima in the large batch setting.
3 EXPERIMENTAL METHODOLOGY
We implemented SSGD and DPSGD using PyTorch, OpenMPI, and NVidia NCCL. We run experi-
ments on a cluster of 8-V100-GPU x86 servers. For CV tasks, we evaluated on CIFAR-10 (50,000
samples, 178MB). For ASR tasks, we evaluate on SWB-300 (300 hours training data, 4,000,000 sam-
ples, 30GB) and SWB-2000 (2000 hours training data, 30,000,000 samples, 216GB)3. We evaluate
on 12 state-of-the-art NN models: 10 CNN models and 2 6-layer bi-directional LSTM models. We
summarize the model size and training time in Table 1. We refer readers to Appendix D for software
implementation, hardware configuration, dataset and Neural Network (NN) model details.

4 EXPERIMENTAL RESULTS
All the large batch experiments are conducted on 16 GPUs (learners) if not stated otherwise. Batches
are evenly distributed among learners, e.g., each learner uses a local batch size of 128, when the
overall batch size is 2048. A learner randomly picks a neighbor with which to exchange weights in
each iteration (Zhang et al., 2020).
4.1 SSGD AND DPSGD COMPARISON ON CV TASKS

For CIFAR-10 tasks, we use the hyper-parameter setup proposed in (Liu, 2020): a baseline batch
size 128 and learning rate 0.1 for the first 160 epochs, learning rate 0.01 for the next 80 epochs, and
learning rate 0.001 for the remaining 80 epochs. Using the same learning rate schedule, we keep
increasing the batch size up to 8192. Table 2 records test accuracy under different batch sizes. Model
accuracy consistently deteriorates beyond batch size 1024 because the learning rate is too small for
the number of parameter updates.

To improve model accuracy beyond batch size 1024, we apply the linear scaling rule (i.e., linearly
increase learning rate w.r.t batch size) (He et al., 2015; Zhang et al., 2019a; Goyal et al., 2017; Zhang
et al., 2016b;a). We use learning rate 0.1 for batch size 1024, 0.2 for batch size 2048, 0.4 for batch
size 4096, and 0.8 for batch size 8192. Table 3 compares SSGD and DPSGD performance running
with 16 GPUs (learners). SSGD and DPSGD perform comparably up to batch size 4096. When the
batch size increases to 8192, DPSGD outperforms SSGD in all but one case. Most noticeably, SSGD

3SWB-2000 training is more challenging than ImageNet. It takes over 200 hours on 1 V100 GPU to finish
training SWB-2000. SWB-2000 has 32,000 highly unevenly distributed classes whereas ImageNet has 1000
evenly distributed classes.
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Batch Size
128 256 512 1024 2048 4096 8192

EfficientNet-B0 87.51 89.32 91.28 91.92 90.62 88.00 84.85
SENet-18 95.18 94.84 94.83 94.52 93.83 92.94 91.69
VGG-19 93.51 93.78 93.35 93.12 92.64 91.82 87.76
ResNet-18 95.44 95.26 95.08 94.59 94.96 92.98 91.24
DenseNet-121 95.06 95.27 95.42 95.11 94.81 93.09 92.34
MobileNet 89.53 90.96 92.39 92.24 91.22 89.54 86.59
MobileNetV2 90.52 92.93 94.17 94.99 93.71 91.97 89.81
ShuffleNet 90.4 92.27 92.82 93.15 91.94 90.59 87.81
GoogleNet 94.99 95.06 94.97 95.32 94.05 92.78 91.09
ResNext-29 95.35 95.66 95.31 95.42 94.24 93.00 91.06

Table 2: CIFAR-10 accuracy (%) with different batch size. Across runs, learning rate is set as 0.1
for first 160 epochs, 0.01 for the next 80 epochs and 0.001 for the last 80 epochs. Model accuracy
consistently deteriorates when batch size is over 1024. Bold text in each row represents the highest
accuracy achieved for the corresponding model, e.g., EfficientNet-B0 achieves highest accuracy at
91.92% with batch size 1024.

Eff-B0 SE-18 VGG Res-18 Dense-121 Mobile MobileV2 Shuffle Google ResNext-29

bs=128 Baseline 87.51 95.18 93.51 95.44 95.06 89.53 90.52 90.40 94.99 95.35
lr=0.1
bs=1024 SSGD 91.92 94.52 93.12 94.59 95.11 92.24 94.99 93.15 95.32 95.42
lr=0.1 DPSGD 91.69 94.55 93.15 94.98 95.12 92.52 94.36 93.55 95.18 95.72
bs=2048 SSGD 91.69 94.36 92.64 94.96 95.11 91.72 94.24 92.91 94.76 94.19
lr=0.2 DPSGD 91.06 94.70 93.05 94.86 95.32 92.72 94.51 92.89 94.80 95.30
bs=4096 SSGD 91.62 94.28 92.68 94.30 94.72 91.68 94.25 92.67 94.36 93.21
lr=0.4 DPSGD 91.23 94.58 92.72 94.78 95.24 92.03 94.12 92.20 94.99 94.32
bs=8192 SSGD 10 10 87.11 92.70 92.79 91.10 93.22 92.09 93.72 92.38
lr=0.8 DPSGD 91.13 90.48 90.52 94.34 94.79 91.80 93.09 92.36 93.84 92.55

Table 3: CIFAR-10 comparison for batch size 2048, 4096 and 8192, with learning rate set as 0.2,
0.4 and 0.8 respectively. All experiments are conducted on 16 GPUs (learners), with batch size per
GPU 128, 256 and 512 respectively. Bold texts represent the best model accuracy achieved given the
specific batch size and learning rate. When batch size is 8192, DPSGD significantly outperforms
SSGD. The batch size 128 baseline is presented for reference. bs stands for batch-size, lr stands for
learning rate.
diverges in EfficientNet-B0 and SENet-18 when the batch-size is 8192. Figure 6 in Appendix C
details model accuracy progression w.r.t epochs in each setting.

To better understand the loss landscape in SSGD and DPSGD training, we visualize the landscape
contour 2D projection and Hessian 2D projection, using the same mechanism as in (Li et al., 2018).
For both plots, we randomly select two N -dim vectors (where N is the number of parameters in
each model) and multiply with a scaling factor evenly sampled from -0.1 to 0.1 in a K ⇥K grid to
generate K

2 perturbations of the trained model. To produce a contour plot, we calculate the testing
data loss of the perturbed model at each point in the K ⇥K grid. Figure 3 depicts the 2D contour
plot for representative models (at the end of the 320th epoch) in a 50 ⇥ 50 grid. DPSGD training
leads not only to a lower loss but also much more widely spaced contours, indicating a flatter loss
landscape and more generalizable solution. For the Hessian plot, we first calculate the maximum
eigen value �max and minimum eigen value �min of the model’s Hessian matrix at each sample point
in a 4x4 grid. We then calculate the ratio r between |�min| and |�max|. The lower r is, the more likely
it is in a convex region and less likely in a saddle region. We then plot the heatmap of this r value
in this 4x4 grid. The corresponding models are trained at the 16-th epoch (i.e. the first 5% training
phase) and the corresponding Hessian plot Figure 4 indicates DPSGD is much more effective at
avoiding early traps (e.g., saddle points) than SSGD.

Summary DPSGD outperforms SSGD for 9 out of 10 CV tasks in the large batch setting. Moreover,
SSGD diverges on the EfficientNet-B0 and SENet-18 tasks. DPSGD is more effective at avoiding
early traps (e.g., saddle points) and reaching better solutions than SSGD in the large batch setting.

4.2 SSGD AND DPSGD COMPARISON ON ASR TASKS
For the SWB-300 and SWB-2000 tasks, we follow the same learning rate schedule proposed in
(Zhang et al., 2019a): we use learning rate 0.1 for baseline batch size 256, and linearly warmup
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(a) VGG-S (b) VGG-DP (c) ResN-S (d) ResN-DP (e) DenseN-S (f) DenseN-DP
Figure 3: CIFAR-10 2D contour plot. The more widely spaced contours represent a flatter loss
landscape and a more generalizable solution. The distance between each contour line is 0.005 across
all the plots. We plot against the model trained at the end of 320th epoch. VGG: VGG-19, ResN:
ResNet-18, DenseN: DenseNet-121, -S: -SSGD, -DP: -DPSGD

(a) VGG-S (b) VGG-DP (c) ResN-S (d) ResN-DP (e) Dense-S (f) Dense-DP

Figure 4: CIFAR-10 Hessian heatmap on a 4x4 grid. The lower value (i.e. a cooler color) indicates
the corresponding point is less likely in a saddle. We plotted against the models at the end of the 16th
epoch. DPSGD is much more effective at avoiding early traps (e.g., saddle points) than SSGD. VGG:
VGG-19, ResN: ResNet-18, DenseN: DenseNet-121, -S: -SSGD, -DP: -DPSGD

learning rate w.r.t the baseline batch size for the first 10 epochs before annealing learning rate by 1p
2

for the remaining 10 epochs. For example, when using a batch size 2048, we linearly warmup the
learning rate to 0.8 by the end of the 10th epoch before annealing. Table 4 illustrates heldout loss
for SWB-300 and SWB-2000. In the SWB-300 task, SSGD diverges beyond batch size 2048 and
DPSGD converges well until batch size 8192. In the SWB-2000 task, SSGD diverges beyond batch
size 4096 and DPSGD converges well until batch size 8192. Figure 7 in Appendix C details heldout
loss progression w.r.t epochs.

Summary For ASR tasks, SSGD diverges whereas DPSGD converges to baseline model accuracy in
the large batch setting.

4.3 NOISE-INJECTION AND LEARNING RATE TUNING

In 4 out of 12 studied tasks, a large batch setting leads to a complete divergence in SSGD: EfficientNet-
B0, SENet-18, SWB-300 and SWB-2000. As discussed in Section 2, the intrinsic landscape-
dependent noise in DPSGD effectively helps escape early traps (e.g., saddle points) and improves
training by automatically adjusting learning rate. In this section, we demonstrate these facts by
systematically adding Gaussian noise (the same as the SSGD

⇤ algorithm in Section 2) and decreasing
the learning rate. We find that SSGD might escape early traps but still results in a much inferior
model compared to DPSGD.
Noise-injection In Figure 1, we systematically explore Gaussian noise injection with mean 0 and
standard deviation (std) ranging from 10 to 0.00001 via binary search (i.e. roughly 20 configurations
for each task). We found in the vast majority of the setups, noise-injection cannot escape early traps.
In EfficientNet-B0, only when std is set to 0.04, does the model start to converge, but to a very
bad loss (test accuracy 22.15% in SSGD vs 91.13% in DPSGD). In SENet-18, when std is set to
0.01, the model converges to a reasonable accuracy (84.86%) but still significantly lags behind its
DPSGD counterpart (90.48%). In the SWB-300 case, when std is 0.01, SSGD shows an early sign of

SWB-300 SWB-2000
bs2048 bs4096 bs8192 bs2048 bs4096 bs8192

SSGD 1.58 10.37 10.37 1.46 1.46 10.37
DPSGD 1.59 1.60 1.66 1.45 1.47 1.47

Table 4: Heldout loss comparison for SSGD and DPSGD, evaluated on SWB-300 and SWB-2000.
There are 32000 classes in this task, a held-out loss 10.37 (i.e. ln

32000) indicates a complete
divergence. bs stands for batch size.
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Eff-B0 SE-18 VGG Res-18 Dense-121 Mobile MobileV2 Shuffle Google ResNext-29

lr=0.8 SSGD 10.00 10.00 87.11 92.7 92.79 91.10 93.22 92.09 93.72 92.38
DPSGD 91.13 90.48 90.52 94.34 94.79 91.80 93.09 92.36 93.84 92.55

lr=0.4 SSGD 88.61 92.84 91.06 91.98 93.42 91.13 93.11 91.54 92.85 89.70
DPSGD 89.80 94.00 91.93 93.91 94.32 91.38 93.14 91.68 93.49 92.79

lr=0.2 SSGD 88.03 92.41 90.51 92.13 92.98 88.38 91.68 90.14 92.44 91.31
DPSGD 87.69 93.11 91.59 93.30 94.28 89.18 92.52 90.13 93.41 91.79

Table 5: CIFAR-10 with batch size 8192. By reducing learning rate, SSGD can escape early traps
but still lags behind DPSGD. Bold text in each column indicates the best accuracy achieved for that
model across different learning rate and optimization method configurations. DPSGD consistently
delivers the most accurate models.

SWB-300 (bs4096) SWB-300 (bs8192) SWB-2000 (bs 8192)

lr⇤=0.1 SSGD 10.37 10.37 10.37
DPSGD 1.60 1.66 1.47

lr=0.05 SSGD 10.37 10.37 10.37
DPSGD 1.65 1.73 1.48

lr=0.025 SSGD 1.76 10.37 1.51
DPSGD 1.77 1.80 1.52

lr=0.0125 SSGD 1.92 2.05 1.58
DPSGD 1.94 2.00 1.59

Table 6: Decreasing learning rate for SWB-300 and SWB-2000 (bs stands for batch-size). Bold text in
each column indicates the best held-out loss achieved across different learning rate and optimization
method configurations for the corresponding batch size. DPSGD consistently delivers the most
accurate models. *The learning rate used here corresponds to batch size 256 baseline learning rate,
and we still adopt the same learning rate warmup, scaling and annealing schedule. Thus when this
learning rate reduces by x, the overall effective learning rate also reduces by x.

converging for the first 3 epochs before it starts to diverge. In the SWB-2000 case, we didn’t find
any configuration that can escape early traps. Figure 1 characterizes our best-effort Gaussian noise
tuning and its comparison against SSGD and DPSGD. A plausible explanation is that Gaussian noise
injection escapes saddle points very slowly, since Gaussian noise is isotropic and the complexity for
finding local minima is dimension-dependent (Ge et al., 2015). Deep Neural Networks are usually
over-parameterized (i.e., high-dimensional), so it may take a long time to escape local traps. In
contrast, the heightened landscape-dependent noise in DPSGD is anisotropic (Chaudhari & Soatto,
2018; Feng & Tu, 2020) and can drive the system to escape in the right directions.
Learning Rate Tuning Table 5 and Table 6 compare model quality (measured in either test accuracy
or held-out loss) for different learning rates in the large batch size setting, for CV and ASR tasks. By
using a smaller learning rate, SSGD can escape early traps, yet it consistently lags behind DPSGD in
the large batch setting.

Summary By systematically introducing landscape-independent noise and reducing the learning rate,
SSGD could escape early traps (e.g., saddle points), but results in much inferior models compared to
DPSGD in the large batch setting.
4.4 END-TO-END RUN-TIME COMPARISON AND ADVICE FOR PRACTITIONERS

Please refer to Appendix F.

5 CONCLUSION
In this paper, we investigate why DPSGD outperforms SSGD in the large batch training. Through
detailed analysis on small-scale tasks and an extensive empirical study of a diverse set of modern DL
tasks, we conclude that the landscape-dependent noise, which is strengthened in the DPSGD system,
brings two benefits in the large batch setting: (1) It adaptively adjusts the effective learning rate
according to the loss landscape, helping convergence. (2) It enhances search in weight space to find
flat minima with better generalization. Based on our findings, we recommend that DDL practitioners
consider DPSGD as an alternative when the batch size must be kept large, e.g., when a shorter run
time to reach a reasonable solution is desired.
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