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ABSTRACT

Semantic image segmentation enjoys a wide range of applications such as au-
tonomous vehicles and medical imaging while it is typically accomplished by
deep neural networks (DNNs). Nevertheless, DNNs are known to be fragile to
input perturbations that are adversarially crafted or occur due to natural variations,
such as changes in weather or lighting conditions. This issue of lack of robust-
ness prevents the application of learning-based semantic segmentation methods
on safety-critical applications. To mitigate this challenge, in this paper, we pro-
pose a new robust training algorithm, called MRTAdapt, for Model-based Robust
Adaptive training, to enhance the robustness of DNN-based semantic segmenta-
tion methods against natural variations that leverages model-based robust training
algorithms and generative adversarial networks. Natural variation effects are mini-
mized from both image and label sides. We provide extensive experimental results
on both real-world and synthetic datasets demonstrating that the proposed training
algorithm result in robust models that outperform multiple state-of-the-art models
under various natural variations.

1 INTRODUCTION

In recent years, computer vision has become one of the most promising research areas in deep
learning because it has empowered a great amount of industry-level applications. In the context
of computer vision, semantic segmentation is a core task formulated as a dense labeling problem
Luc et al. (2016), targeting to allocate every pixel with a label Hsin et al. (2019) of what is being
represented. There are many applications now being used have made great progress with the help of
semantic segmentation, such as medical image processing Xue et al. (2018), autonomous vehicles
Zhao et al. (2018) and robotics Wang et al. (2019). However, many applications of semantic seg-
mentation are life-critical, which means that low model accuracy may pose direct threat to human
safety Oakden-Rayner et al. (2020). Therefore, it is critical to design training algorithms that can
enhance robustness of segmentation methods against input perturbations.

A significant number of researches focusing on the robustness of computer vision have been con-
ducted in recent years Arnab et al. (2018) Kamann & Rother (2020) Robey et al. (2020) Tramer et al.
(2020). However, the majority of existing works focus on image classification tasks Hendrycks &
Dietterich (2019). Robust semantic segmentation methods against adversarial attacks have been pro-
posed in Hsin et al. (2019) Xue et al. (2018) Hung et al. (2018) Xie et al. (2017). Work conducted
by Goodfellow et al. (2015) proved that neural networks can be easily misled by some intentionally
designed yet imperceptible perturbations to generate an incorrect answer with high confidence. In
computer vision, adversarial attacks apply pixel-level changes onto the image that lead the model
to wrong predictions, where the attacked image looks perceptually similar to the original one Ma
et al. (2020). Perturbation-based robust training algorithms have already tackled this problem. Nev-
ertheless, in real life, there may be changes that raised by some out-of-distribution variations such
as snow weather or extreme brightness that can not be represented using small pixel-level changes.

Current works on robustness mainly focus on adapting the domain gap on a single side, i.e., either
from image or label side. For instance, Robey et al. (2020) proposed a model-based robust learning
architecture which is applied on Convolutional Neural Networks(CNN) to maintain high prediction
accuracy under natural variations for image classification tasks. Yet it is highly dependent on the
performance of the natural variation model that capture the changes from source to target domain,
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which makes the algorithm less robust and less scalable in semantic segmentation task. Meanwhile,
AdaptSegNet proposed by Tsai et al. (2020) minimizes the distribution gap on the output side. In
this paper, we build upon Robey et al. (2020) to design a new robust training algorithm for semantic
segmentation tasks. The objective is to build a segmentation model that generates high accuracy
predictions under natural variation effects. Our method also utilize the idea from Tsai et al. (2020)
that images from different domains with great appearance difference may share some similarity
on the label side such as spatial layout and local context. We showed that the semantic feature
map of an image under any natural variations remains unchanged which we refer to as semantic
meaning invariance. Our proposed training algorithm minimizes the gap on both image and label
side. On image side, the model-based robust training algorithm is applied to train a model using
the simulated target domain images to enhance robustness. On label side, we apply generative
adversarial networks (GANs) to minimize the feature map gap between simulated natural variation
images and target domain images. We have also included extensive comparisons showing that our
method outperforms related state-of-the-art works in domain adaptation.

Our contributions are: 1) We propose MRTAdapt, a new model-based training algorithm to enhance
robustness of DNN-based semantic segmentation methods against natural variations. 2) We build on
top of generative adversarial networks and model-based robust training algorithms to minimize the
gap on both image and label side to enhance robustness. 3) Our results on Cityscapes Cordts et al.
(2016) and Synthia Ros et al. (2016) datasets show that our method outperforms multiple state-of-
the-art domain adaptation techniques, such as AdaptSegNet Tsai et al. (2020), ADVENT Vu et al.
(2019) and FDA Yang & Soatto (2020).

2 RELATED WORK

Semantic Segmentation. In the past decades, Convolution Neural Networks(CNN) are widely used
in semantic segmentation. Current state-of-the-art semantic segmentation frameworks are mostly
developed from Fully Convolutional Network (FCN) by Long et al. (2015). ResNet proposed by He
et al. (2015) used a residual block to sum the nonlinear activation output and identity mapping, which
is proved to improve the gradient propagation and increase the accuracy of semantic segmentation.
DenseNet Huang et al. (2018a) builds upon ResNet and uses the concatenation of previous feature
maps called dense block. This gives each layer in DenseNet information from all preceding layers.
Jégou et al. (2017) extended DenseNet into FCN architecture. SegNet proposed by Badrinarayanan
et al. (2017) introduces the deep convolution encoder-decoder architecture to the field of semantic
segmentation. Also, in Zhou et al. (2015), it is proved that empirical size of receptive field is much
smaller than the theoretical size. Chen et al. (2016) and Yu & Koltun (2016) used dilated convolution
to enlarge the receptive field. ParseNet by Liu et al. (2015) adds global context to CNNs for semantic
segmentation. He et al. (2014) introduced spatial pyramid pooling in DCNN. PSPNet introduced
by Zhao et al. (2017) uses a novel global pyramid pooling module to capture both global context
information. Duta et al. (2020) extended the idea by combining both local and global Pyramidal
Convolution blocks in the neural network model. Chen et al. (2017b) introduced atrous spatial
pyramid pooling. Depth image is also used along with original RGB information for semantic
segmentation by Wang et al. (2019). For actual applications, Zhao et al. (2018) proposed ICNet for
real-time semantic segmentation accomplishing fast inference without sacrificing too much quality
left behind. Azimi et al. (2020) proposed aerial perspective dataset for dense semantic segmentation.

Domain Adaptation. Combining with the techniques of Generative Adversarial Network (GAN)
Goodfellow et al. (2014), Ganin & Lempitsky (2015) proposed DANN to reduce the distribution
gap between different domains by using discriminator to make the prediction cannot be identified
between source and target domain. Pan et al. (2020) first separate target domain into splits based on
entropy-based ranking and then deploy self-supervised adaptation technique to reduce the domain
gap between synthetic data and real images. PIT proposed by Lv et al. (2020) constructs pivot
information shared across domains. Chen et al. (2019) used depth image as guided information to
build adaptation method from synthetic to real dataset. In the field of utilizing synthetic datasets to
auxiliate the training process of real-world images, MUNIT proposed by Huang et al. (2018b) learn
conditional distribution of target domain which can separate domain-invariant semantic content of an
image from domain-specific properties. Vu proposed ADVENT model which maximize prediction
certainty in target domain by introducing entropy loss Vu et al. (2019). Zhu proposed CycleGAN
Zhu et al. (2020) which was trying to learn a mapping such that the distribution of generated image is
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indistinguishable from the target domain distribution using adversarial loss. AdaptSegNet proposed
by Tsai et al. (2020) aimed to reduce the gap between the outputs from source and target domain
given that images might be very different in appearance. FDA proposed by Yang & Soatto (2020)
uses Fast Fourier Transform(FFT) to adapt source and target domain.

Robustness. As for robustness against corrupted images, Hendrycks & Dietterich (2019) established
rigorous benchmarks for image classification and proposed a series of image corruption examples.
Kamann & Rother (2020) showed that robustness increases with the performance of the semantic
segmentation model and dense prediction cell was only designed to improve performance on clean
data. Regarding robustness on semantic segmentation, Arnab et al. (2018) did the first evaluation
of adversarial attacks on semantic segmentation and analyzed multi-scale processing. Robey et al.
(2020) proposed model-based robust training architecture focusing on the topic of image classifi-
cation. Wong & Kolter (2020) bridged the gap between real-world perturbations and adversarial
defenses by learning perturbation sets from data, through common image corruptions.

3 METHOD

In this section we propose a new robust training algorithm for semantic segmentation tasks. Par-
ticularly, in section 3.1, we define the semantic segmentation task and the natural variations. In
section 3.2, we give the outline of our proposed algorithm. In section 3.3, we define semantic mean-
ing invariance and clarify its connection to our algorithm. In section 3.4, we introduce the detailed
training procedure of our model-based robust adaptive training algorithm(MRTAdapt).

3.1 SEMANTIC SEGMENTATION AND NATURAL VARIATION

Consider an input x ∈ RH×W×3 representing an RGB image with three channels and its correspond-
ing label map y ∈ RH×W which is annotated for every pixel in the image. A semantic segmentation
task is to train a neural network that generates pixel-wise segmentation feature map ŷ ∈ RH×W .
We assume the dataset is drawn i.i.d. from distribution (x, y) ∼ P. The optimization objective in
semantic segmentation is to find the best weight w that minimizes the loss function L(x, y;w) with
respect to input x, label y and weight w, which can be written as:

min
w

1

n

n∑
j=1

[
L(x, y;w)

]
(1)

Next we denote by δ ∈ ∆ a natural variation applied to x that is derived from a nuisance space
∆. A model of natural variation can be learned from the difference of source and target domain
images. Particularly, we denote the natural variation model that transforms the input image x from
the source domain into an image in the (perturbed) target domain as V (x, δ). Note that, in general,
it is hard to write a natural variation model learned from data into an analytical form because there
is no closed form expression capturing the natural perturbation. Natural variation model can be
customized regarding the needs of each dataset. In this paper, our goal is to design a semantic
segmentation method that is robust to natural variations δ.

3.2 ALGORITHM OVERVIEW

Our proposed model-based robust adaptive training algorithm (MRTAdapt) shown in Figure 1 has
two modules: a segmentation network G using a model-based robust training algorithm to enhance
robustness on image side, and a discriminator network D to enhance robustness on label side. Two
sets of images from source and target domain will have the notation of Is and It, while the image
generated using natural variation model will be denoted as Inv . After using source domain images to
train the model, we transform images from source domain with natural variation model. Then we use
simulated natural variation images to find the highest segmentation loss by applying the model-based
robust training algorithm to optimize the segmentation network. Then we predict the segmentation
softmax output for the unlabeled target domain images It by forwarding the target images into the
same segmentation network. To minimize the gap between the output of natural variation images and
target domain images, we use these two predictions as the input to the discriminator to distinguish
whether the feature map generated by segmentation network is from natural variation model or target
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Figure 1: Model-Based Robust Adaptive Training Algorithm (MRTAdapt)

domain. Using an adversarial loss for discriminator, the loss will back-propagate to segmentation
network to help segmentation network to generate similar distributions in target domain to natural
variation. Detailed information will be covered in the following sections.

3.3 SEMANTIC MEANING INVARIANCE

Images under different kinds of natural variations have huge visual perspective difference. For
domain adaptation problem in computer vision, the motivation of most works is based on the fact
that annotating images in a new domain setting is time-consuming and extremely expensive. In this
paper, we are trying to simulate the real-world setting when the model is trained with annotated
images under normal condition in the source domain but natural variation conditions from target
domain occur during inference time. Most of the current works focus on improving the performance
from the image side. AdaptSegNet tries to solve this problem from the prospective of the label side.
The experiment conducted in this work has proved that spatial layout and local context of labels are
similar for different datasets for semantic segmentation problem Tsai et al. (2020).

Inspired by the idea of minimizing the gap on label size, we found the semantic information will
remain the same from the label perspective regardless of the types of natural variation on the image.
For example, the car in the image under strong brightness will remain the semantic meaning as a car
compared to normal setting. Take Figure 2 as an example, left side is the same image with different
brightness condition compared to the right side. Since the image is only changed into a brighter
version while all the objects remain the same, the semantic information will be unchanged under
natural variation. In the context of semantic segmentation, unchanged semantic information means
labels will be the same. Thus, labels in the feature map will remain unchanged when we apply
natural variation model on source domain image to transform into target domain.

Figure 2: Semantic meaning of an object will not change with natural variation

4



Under review as a conference paper at ICLR 2022

3.4 MODEL-BASED ROBUST ADAPTIVE TRAINING ALGORITHM

Different from AdaptSegNet where the goal was to minimize the gap between the label from source
domain and target domain, we build on top of model-based robust training algorithm with different
optimization goal. Using the idea of semantic meaning invariance, we treat the generated natural
variation image generated as "source" domain image. For the reason that the generated natural varia-
tion image is chosen by model-based robust training algorithm is aiming to represent the worst-case
scenario of natural variation. The objective of our proposed model-based robust adaptive training
algorithm is trying to reduce the gap on both image and label side.

Here we formulate the optimization task as a min-max problem, which will be minimizing the
segmentation loss for source and natural variation images, while maximizing the probability of
natural variation predictions being treated as target domain feature map. Our proposed algorithm is
an integration of model-based robust training algorithm and generative adversarial network.

max
D

min
G
L(Is, It, Inv) (2)

3.4.1 MODEL-BASED ROBUST TRAINING FORMULATION

The objective of the model-based robust semantic segmentation algorithm is to train the model
so that it can be robust to natural variations such changes in the weather or lightning conditions.
Given that we only have labeled data for source domain images while labels for target domain are
unavailable, our goal is to simulate and transform the normal condition training data into natural
variation cases and then, the model can be trained until it generates high accuracy prediction under
abnormal conditions. In general, the concept of this algorithm can be treated as a data augmentation
method that widens the range of conditions under which the model can attain high performance. The
objective of the robust model-based training algorithm can be formulated as Robey et al. (2020):

Lnv = min
w

1

n

n∑
j=1

[
max
δ∈∆
L
(
V (x, δ), y;w

)]
(3)

The inner maximization represents the loss inferred by the natural variation model. Given an input
image x from source domain, we need to search in the nuisance space ∆ for a local optimal parameter
δ that generates the worst-case scenario of natural variation. The optimal nuisance parameter is
denoted as δ∗ that infers biggest loss between prediction and original label map. The objective of
the inner maximization problem is to maximize the segmentation loss of the model under natural
variation. The objective of outer minimization problem is to train the weights of the model w to be
robust against worst-case natural variation condition upon convergence, which is represented in the
form of minimizing the sum of the loss in this case.

During actual implementation, we assume the number of datapoints being trained is a finite num-
ber N . This means a dataset being recognized as training set will contain N image-label pairs:
{xi, yi}Ni=1. Also, the natural variation model being applied in the algorithm is learned from data.
Model-based Robust Training generates random domain-specific style code for input images from
source domain and filters the style codes which infer maximal loss out for weights update. That
means, for every mini-batch size of input images (x, y) from source domain, we apply the natural
variation model to transform the image into target domain, where we will treat the transformed im-
age and original label as a new image-label pair denoted as (V (x, δ), y). Then we utilize both pairs
of datapoints to train the network for the outer minimization problem.

3.4.2 NETWORK TRAINING PROCEDURES

For the segmentation network G, we define the segmentation loss as a weighted sum from both the
loss inferred from source domain images as well as the highest loss derived from natural variation
images using model-based robust training algorithm. Two losses are connected via λnv and λori,
which represent the contributions of generated natural variation images and source domain images
to the segmentation network respectively:

Lseg (Is, Inv) = λnvLnv + λoriLori = min
w

[
λnv max

δ∈∆
L(V (x, δ), y;w) + λoriL(x, y;w)

]
(4)
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Algorithm 1 Model-Based Robust Training Algorithm

1: δ∗ ← 0, Lmax ← 0
2: foreach Batch (x, y) do
3: for k steps do
4: Sample δ from ∆ uniformly random
5: Lcurrent ← L(V (x, δ), y;w)
6: if Lcurrent > Lmax then
7: Lmax ← Lcurrent
8: δ∗ ← δ
9: end if

10: end for
11: ∇ ← ∇w(λnvL(V (x, δ∗), y;w) + λoriL(x, y;w))

12: end

For target domain images, we feed them into segmentation network and obtain an adversarial loss,
which aims to fool the discriminator and maximize the probability of target domain predictions Pt
being considered natural variation predictions. For the reason that we do not have the ground truth
feature map of target domain images, segmentation loss will not be calculated.

Ladv (It) = −
∑
h,w

log
(
D (Pt)

(h,w,1)
)

(5)

For the discriminator training, we forward a given segmentation softmax output P to a fully-
convolutional discriminator using cross-entropy loss for two classes (natural variation and target
domain). The loss can be written as:

Ld(P ) = −
∑
h,w

(1− z) log
(
D(P )(h,w,0)

)
+ z log

(
D(P )(h,w,1)

)
(6)

So the min-max problem can be rewritten into the following form, where segmentation lossLseg and
adversarial loss Ladv is summed by applying corresponding weights representing the contribution
to the network:

max
D

min
G

[
λsegLseg(Is, Inv) + λadvLadv(It)

]
(7)

4 IMPLEMENTATION

4.1 DATASET PREPROCESSING

Brightness Characteristic of an image can be represented using Hue-Saturation-Value (HSV), where
hue, saturation and value represent the color, grayness and brightness respectively Latifah et al.
(2020). In this paper, we use natural variation model to simulate target domain images. To achieve a
better simulation result, we arrange our data preprocessing for brightness condition into two phase:
Phase 1: divide original dataset into three subsets: bright, medium and dark by calculating the av-
erage Hue-Saturation-Value of each image. In this paper, we divide the three subsets by their HSV
values with 72 and 90 representing the boundary of dark-medium and medium-bright on Cityscapes
dataset, using 75 and 130 for Synthia dataset. For training set, use bright subset as source domain
and dark subset as target domain to simulate the fact that most current dataset is constrained in day-
time condition. Dark subset is referring to the case when a vehicle is moving at nighttime under
low brightness condition. There are 931 adjusted source domain images representing bright condi-
tion, and 486 target domain images representing dark condition for Cityscapes dataset. For Synthia
dataset, bright and dark images are 1200 and 1174 respectively. Phase 2: adjust the overall bright-
ness of bright subset by applying OpenCV library to enlarge the difference of brightness between
training set and testing set.
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Snow For snow weather as natural variation, we eliminate the effect of brightness and rearrange the
training set with different configuration. For Cityscapes, we have source domain subset with 1046
images and target domain subset with 1064 images. For Synthia, source domain and target domain
have 1000 and 1170 images respectively. Both subsets contain images in bright and dark condition,
which allows the network to be exposed to images from different brightness condition. So the natural
variation of brightness effect discussed in previous section is minimized. We remained unchanged
for source domain images, referring to the case that we train our model in normal condition. Then we
apply the snow corruption operation being used in ImageNet-C with severity of 1 to target domain
images, referring to the case that our model would be exposed to natural variation images during
inference. Due to the limitation of computing resources, the image size being trained in this paper is
relatively small. So we apply a proper level of severity for snow effect so that the performance will
not break down completely.

Figure 3: Example frames of both natural variations

4.2 IMPLEMENTATION DETAILS

In this paper, natural variation model is powered by MUNIT Huang et al. (2018b) on Cityscapes
dataset and RAIN proposed by Luo et al. (2020) on Synthia dataset.

PSPNet With the natural variation model derived from either known a priori or model learning from
data. For the latter one, we apply MUNIT on Cityscapes dataset and RAIN on Synthia dataset,
we use PSPNet Zhao et al. (2017) to do semantic segmentation. In PSPNet, we use ResNet He
et al. (2015) model as backbone with the dilated network method Yu & Koltun (2016), then plug in
the robust training module to generate new datapoints and obtain feature map using the weighted
combination. Pyramid pooling module with 4 level representing different size of the sub-regions in
the feature map is applied to gather both local and global region information. Then we concatenate
the feature map obtained by pyramid pooling module with original feature map to generate final
feature map.

MUNIT For MUNIT Huang et al. (2018b) model that captures natural variation model, we set the
training iterations into 300000. Weight decay is set to 0.0001 with image size fixed at 200 ∗ 200.
The architecture of MUNIT is consisted of two auto-encoders, one for each domain. For each auto-
encoder, it is composed by one content encoder, one style encoder and one decoder. Content encoder
is consisted of strided convolutional layers for down-sampling purposes followed by residual blocks.
Instance normalization is attached at the end of each convolutional layer in content encoder. Style
encoder first down-samples the images by convolutional layer, then global pooling and fully con-
nected layer are applied. For the decoder, style code being generated is fed to a multilayer perceptron
to generate parameters for Adaptive Instance Normalization (AdaIN). The AdaIN is applied to the
residual blocks which are processing the content code. The output will then be up-sampled and serve
as the final reconstructed image. LSGAN is serving as discriminator while VGG is applied for the
domain-invariant perceptual loss calculation.
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RAIN For RAIN Luo et al. (2020) model proposed by Luo. We set the training iterations to 100K
and learning rate as 0.0001. This model is the composition of AdaIN Huang & Belongie (2017) and
auto-encoder. For AdaIN, VGG model is applied as encoder.

5 EXPERIMENT

Due to computation resources limitation, the experiments in this paper are done on Google Cloud
Platform (GCP) using 16 GB of memory and one NVIDIA Tesla T4 GPU with 16 GB GDDR6 of
graphic memory. The operating system being used in the experiment is Ubuntu 18.04. The code
is implemented based on Python 3.6 and PyTorch 1.5.1. For fair comparison, all the images being
trained in this paper will have the same size of 201 ∗ 201 with batch size of 8 for all the methods
being applied in the experiment. For evaluation metrics, we use pixel-wise accuracy and mean
of class-wise intersection over union (mIoU) to define evaluation metrics. Pixel-wise accuracy is
calculated using the number of pixels common between prediction output and ground truth divided
by the number of pixels in ground truth feature map. The Intersection over Union metric is also
named as Jaccard index to calculate the overlap between prediction and ground truth. To be specific,
IoU (IoU = Area of Overlap

Area of Union ) calculates the number of pixels common between prediction output and
ground truth divided by number of pixels across both feature maps. Inspired by Zhao et al. (2017),
we use ResNet-101 to generate basic feature map. ResNet-101 keeps a proper balance between
high performance and proper complexity. Serving as baseline of the experiment, we train and test
PSPNet using source domain images as training set and test the performance in target domain.
Source domain only PSPNet tends to present how natural variation affects the performance in normal
configuration. To compare our model in a comprehensive way, we also evaluate the performance
of PSPNet when it is trained using labeled images from target domain (dark condition) and test
the performance using images from target domain. We train all models for 200 epochs with basic
learning rate of 0.01. For the MUNIT network being trained in this experiment, we use batch size
of 1, weight decay of 0.0001 and learning rate of 0.0001 with step side of 10000 referring to the
frequency of learning rate decaying.

Comparison Methods We compare our method with several recent domain adaptation methods, in-
cluding AdaptSegNet Tsai et al. (2020), ADVENT Vu et al. (2019), and FDA Yang & Soatto (2020).
AdaptSegNet introduces generative adversarial network technique to reduce the gap on the label side
of source domain and target domain. Two methods are proposed in ADVENT, namely MinEnt and
AdvEnt. MinEnt maximize prediction certainty in the target domain by using a proposed entropy
loss Lent. AdvEnt shares similarity with the concept of AdaptSegNet and minimize the entropy by
making target entropy distribution similar to the source domain. We evaluate the performance of
both methods being proposed by ADVENT in this paper. FDA utilize Fast Fourier Transform (FFT)
and replace the low-level frequencies of target domain images into source domain images. From
the original literature of these proposed methods, the semantic segmentation baseline being applied
is DeepLabV2 Chen et al. (2017a) with ResNet101 using SGD. To compare the performance from
the same backbone of segmentation network, we replace the DeepLabV2 into PSPNet in this paper.
All the configurations including initial learning rate of 0.1, momentum of 0.9 and weight decay of
0.0001 keep unchanged.

Cityscapes

From Table 1, segmentation model that only trained with source domain images will have huge
performance drop during the inference time under natural variations. Model-based robust training
algorithm (MRT) has 11% and 7% of improvement in terms of IoU compared to the model only
trained with source domain images. The other domain adaptation methods such as AdaptSegNet,
AdvEnt and MinEnt have stable and better performance compared to the model-based robust training
algorithm. FDA method has 15% of improvement in mIoU compared to source only PSPNet for
brightness case yet not promising result on snow effects. Our proposed method has 16% and 12%
of mIoU increase compared to baseline, which outperforms all other comparison methods. For
brightness condition, our proposed MRTAdapt even has higher accuracy than segmentation model
trained with target domain images.

Synthia For Synthia dataset, we apply RAIN model in stead of MUNIT model to capture natu-
ral variation effect. As results shown in Table 2, comparing with all other methods, our proposed
MRTAdapt outperforms other state-of-the-art domain adaptation models and also reach similar per-
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Brightness Snow
method mIoU mAcc AllAcc mIoU mAcc AllAcc

PSPNet(Source) 0.2221 0.2663 0.7801 0.2230 0.2731 0.7785
MRT 0.3384 0.4037 0.8642 0.2928 0.3511 0.8372

AdaptSegNet 0.3509 0.4061 0.8476 0.3222 0.3849 0.8356
AdvEnt 0.3570 0.4153 0.8714 0.3091 0.3787 0.8250
MinEnt 0.3536 0.4088 0.8642 0.3254 0.3947 0.8492

FDA 0.3706 0.4308 0.8804 0.1892 0.2348 0.7175
MRTAdapt(Ours) 0.3804 0.4453 0.8805 0.3443 0.4108 0.8591
PSPNet(Target) 0.3753 0.4288 0.8922 0.3936 0.4466 0.8959

Table 1: Performance Comparison for Brightness and Snow on Cityscapes

formance to the case when we have the ground truth label of target domain. Meanwhile, our method
shows high robustness in different abnormal conditions.

Brightness Snow
method mIoU mAcc AllAcc mIoU mAcc AllAcc

PSPNet(Source) 0.4910 0.5741 0.8567 0.2675 0.3436 0.7490
AdaptSegNet 0.4506 0.5278 0.8555 0.2471 0.3279 0.7367

AdvEnt 0.3250 0.4018 0.7956 0.3503 0.4322 0.8272
MinEnt 0.3049 0.3944 0.7698 0.2526 0.3280 0.6990

FDA 0.5888 0.6521 0.9159 0.2895 0.3758 0.7621
MRTAdapt(Ours) 0.6861 0.7577 0.9430 0.4516 0.5292 0.8788
PSPNet(Target) 0.7178 0.7076 0.9540 0.3173 0.4144 0.7494

Table 2: Performance Comparison for Brightness and Snow on Synthia

6 CONCLUSION

In this paper, we addressed the problem of fragility in current learning-based semantic segmenta-
tion methods against natural variation effects that typically occur in real-world conditions. Using
industry-level segmentation architecture PSPNet as backbone network, we adopted a model-based
robust training algorithm that was originally proposed for image classification problem to design
a robust semantic segmentation method. By applying a model which can capture the changes that
lie within source and target domain, we challenge the network with the worst-case scenario natural
variation images by finding the biggest loss inferred. Also, building upon the AdaptSegNet that min-
imizes the distribution gap of source and target domain from the label perspective, we showed that
natural variation will not alter the semantic meaning of the label. Based on this idea, we proposed
a model-based robust adaptive training algorithm that achieves higher performance than several do-
main adaptation methods do. Our future research directions will focus on reducing and eventually
eliminating the dependence of the proposed method on the performance of the model that captures
natural variation effects
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7 APPENDIX

Image Ground Truth

PSPNet (Source) PSPNet (Target)

MinEnt AdvEnt

AdaptSegNet FDA

MRT MRTADV

Table 3: Brightness Test Example - Cityscapes
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Image Ground Truth

PSPNet (Source) PSPNet (Target)

MinEnt AdvEnt

AdaptSegNet FDA

MRT MRTADV

Table 4: Snow Test Example - Cityscapes
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Image Ground Truth

PSPNet (Source) PSPNet (Target)

MinEnt AdvEnt

AdaptSegNet FDA

MRTADV

Table 5: Brightness Test Example - Synthia
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Image Ground Truth

PSPNet (Source) PSPNet (Target)

MinEnt AdvEnt

AdaptSegNet MRTADV

Table 6: Snow Test Example - Synthia
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