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Abstract

This paper presents SIMLTE, the first unsuper-001
vised pretraining method designed specifically002
for long text (e.g., documents, paragraphs).003
SIMLTE uses the contrastive learning frame-004
work, and our main contribution is a simple005
but effective data augmentation technique for006
generating similar text pairs. Specifically, we007
pretrain a language model to distinguish if two008
texts have the same topic without any super-009
vision or specific model architectures, and so010
it is widely applicable. The positive pairs are011
constructed by our key information redundancy012
assumption for long text. On standard classifi-013
cation datasets, SIMLTE improves all baseline014
models, with an average improvement of 3.9%015
macro F1 score. We also consider a few-shot016
setting where we show an average improvement017
of 12.0%.018

1 Introduction019

Generating high quality text embeddings for long020

text is a long-standing open problem. Most pre-021

vious studies focus on either sentence-level repre-022

sentations (Hill et al., 2016; Logeswaran and Lee,023

2018; Gao et al., 2021) where training data usually024

contain short text or specific model structures al-025

lowing larger-range dependencies (Beltagy et al.,026

2020; Zaheer et al., 2020), but high-quality pre-027

trained long text representations are less explored.028

In this paper we present the SIMLTE which is029

the first unsupervised training method designed030

specifically for long text. The training procedure031

of SIMLTE can work with any model architecture032

to improve long text representations. Specifically,033

SIMLTE uses contrastive learning, and our key034

contribution is a new method for generating the pos-035

itive samples for contrastive learning. To this end,036

we first investigate the information redundancy (de-037

tails in Appendix A) on five datasets for different038

lengths of text. We find the information redundancy039

is larger as the length of the text is increasing. This040

Deep learning is part of a broader family of machine 
learning methods based on artificial neural 
networks with representation learning. Artificial 
neural networks were inspired by information 
processing and distributed communication nodes in 
biological systems. Artificial neural networks have 
various differences from biological brains. 
Specifically, artificial neural networks tend to be static 
and symbolic, while the biological brain of most living 
organisms is dynamic and analog.
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Figure 1: Overall framework of SIMLTE. The long
text is randomly divided into two exclusive subsets of
sentences and the two subsets work as positive pairs for
contrastive learning. Other instances in the same batch
are used as negatives.

result indicates long text usually contains repeated 041

information. Based on this observation, we can as- 042

sume that the model can still learn the main topic of 043

a long text even if we drop some sentences. Hence, 044

as shown in Figure 1, we randomly divide the origi- 045

nal long text into two texts by sentences as positive 046

pairs. Due to redundancies, our model can still 047

recognize the two texts have the same topic. The 048

intuition behind this method is that we expect the 049

model will pull representations of two subsets to- 050

gether in the latent space by paying more attention 051

to common keywords so that the model can learn 052

key information from text automatically. 053

To evaluate the quality of long text embeddings, 054

we conduct standard and few-shot text classifica- 055

tion on five long text datasets involved in News and 056

scientific articles. The experimental results show 057

that SIMLTE with two kinds of model structures 058

(i.e., BERT and Longformer) can both achieve sig- 059

nificant improvements compared to state-of-the-art 060

baselines. 061

Our paper is organized as follows. In Section 2 062

we formally define the contrastive learning problem 063

and our novel SIMLTE training method. In Sec- 064

tion 3 we develop a new experimental evaluation 065

procedure for long text. We conclude in Section 4 066

by emphasizing that all of our models and datasets 067

are open source. 068
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2 Method069

In this section, we first formally define contrastive070

learning, then we describe our SIMLTE method.071

2.1 Contrastive Learning072

Contrastive Learning aims to learn effective repre-073

sentations by pulling semantically close neighbors074

together and pushing apart non-neighbors in the075

latent space (Hadsell et al., 2006). It assumes a con-076

trastive instance {x, x+, x−1 , . . . , x
−
N−1} including077

one positive and N −1 negative instances and their078

representations {h,h+,h−
1 , . . . ,h

−
N−1}, where x079

and x+ are semantically related. we follow the con-080

trastive learning framework (Chen et al., 2020; Li081

et al., 2022) and take cross-entropy as our objective082

function:083

l = − log
esim(h,h+)/τ

esim(h,h+)/τ +
∑N−1

i=1 esim(h,h−
i )/τ

(1)084

where τ is a temperature hyperparameter and085

sim(h1,h2) is the cosine similarity h⊤
1 h2

∥h1∥·∥h2∥ . In086

this work, we encode input texts using a pre-trained087

language model such as BERT (Devlin et al., 2019).088

Following BERT, we use the first special token089

[CLS] as the representation of the input and fine-090

tune all the parameters using the contrastive learn-091

ing objective in Equation 1.092

2.2 SimLTE093

The critical problem in contrastive learning is how094

to construct positive pairs (x, x+). In representa-095

tion learning for visual tasks (Chen et al., 2020),096

an effective solution is to take two random transfor-097

mations of the same image (e.g., flipping, rotation).098

Similarly, in language representations, previous099

works (Gao et al., 2021; Karpukhin et al., 2020;100

Meng et al., 2021; Li et al., 2022) apply augmen-101

tation techniques such as dropout, word deletion,102

reordering, and masking.103

In this paper, we propose a new method to con-104

struct positive instances for long text. The ba-105

sic idea of positive instance construction for con-106

trastive learning is adding random noises to the107

original data for augmentation. The augmented108

data should have similar representations to the orig-109

inal data. Models trained by contrastive losses on110

augmented data will have an increased ability to111

learn important features in the data. To add random112

noises in long text, we find long text (e.g., para-113

graphs) usually has higher information redundancy114

than short text (e.g., sentences) (Table 3 in Ap- 115

pendix). With this observation, we can have an 116

assumption: the semantics of a long text will not 117

be changed even if we drop half of the text. We can 118

construct positive pairs under this assumption eas- 119

ily on any text dataset without supervision. Specifi- 120

cally, for each long text in the dataset, we randomly 121

split sentences in the long text into two subsets and 122

the two sentence sets do not have intersections. In 123

the two subsets, we keep the order of sentences 124

in the original long text to form two new texts. 125

According to our assumption, the two new texts 126

should have the same semantics and hence they are 127

used as a positive pair in contrastive learning. 128

Consider an example (in Figure 1) to understand 129

our positive instance construction process: Suppose 130

we have a long text T = (s1, s2, . . . , sn) where si 131

is the i-th sentence in long text and n is the number 132

of sentences, each sentence will be sent to anchor 133

set or positive set with the same probability (50%). 134

The sentences in the same set (i.e., anchor or posi- 135

tive) will be concatenated in the same order of T 136

to form one positive pair (T+
1 , T+

2 ) for contrastive 137

learning. Positive pairs constructed by this method 138

will not contain the same sentence and hence pre- 139

vent models from overfitting on recognizing the 140

same sentences. Instead, models are guided to learn 141

keywords appearing in positive instances so as to 142

improve the ability to recognize key information. 143

We split the long text at sentence level instead of 144

word level (e.g., word deletion for augmentation) 145

because the word-level splitting will cause the dis- 146

crepancy between pretraining and finetuning and 147

then lead to performance decay. 148

For negative instances, we use in-batch instances 149

following previous contrastive frameworks (Gao 150

et al., 2021; Li et al., 2022). 151

3 Experiments 152

In this section, we evaluate the effectiveness of our 153

method by conducting text classification tasks. To 154

eliminate the influence of different model structures 155

and focus on the quality of text embeddings. We 156

freeze the parameters of different text encoders and 157

fine-tune only a multi-layer perceptron (MLP) to 158

classify the embeddings of text encoders. We also 159

visualize the attention weights between baselines 160

and SIMLTE. 161
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Datasets Data Size Classes Ave. Med.

FakeNews 8,558,957 15 467 299
20News 18,846 20 258 153
arXiv 2,162,833 38 138 131
NYT 13,081 5 650 683
BBCNews 2,225 5 133 130

Table 1: Statistics of datasets. Ave. and Med. stand for
the average and median number of words respectively
in one data instance.

3.1 Pretraining Details162

For pre-training, we start from the pretrained BERT-163

BASE model (Devlin et al., 2019) and the Long-164

former (Beltagy et al., 2020) model 1 We follow165

previous works (Gao et al., 2021; Li et al., 2022):166

the masked language model (MLM) loss and the167

contrastive learning loss are used concurrently with168

in-batch negatives. We use English Wikipedia 2 ar-169

ticles as pretraining data and each article is viewed170

as one training instance. The total number of train-171

ing instances is 6,218,825. Our pretraining learning172

rate is 5e-5, batch size is 36 and 12 for BERT and173

Longformer structure respectively. Our model is174

optimized by AdamW (Kingma and Ba, 2014) in175

1 epoch. The temperature τ in the contrastive loss176

is set to 0.05 and the weight of MLM is set to 0.1177

following previous work (Gao et al., 2021).178

3.2 Datasets179

We use the following classic long text datasets to180

evaluate our method: (1) Fake News Corpus 3; (2)181

20NewsGroups (Lang, 1995); (3) arXiv articles182

dataset 4; (4) New York Times Annotated Corpus183

(NYT) (Sandhaus, 2008); and (5) BBCNews 5.184

We do not use semantic textual similarity (STS)185

tasks (Agirre et al., 2012) because the sentences186

in these tasks are short which is not suitable to187

evaluate long text embeddings.188

3.3 Baselines189

We compare our pre-trained model to the base-190

lines of two groups. (1) BERT based models in-191

clude BERT (Devlin et al., 2019), SimCSE (Gao192

et al., 2021), CT-BERT (Carlsson et al., 2021).193

For a fair comparison, we also train a SimCSE194

1The Longformer checkpoint is pretrained on long docu-
ments by MLM task and is available from Huggingface.

2https://en.wikipedia.org/
3https://github.com/several27/FakeNewsCorpus
4https://www.kaggle.com/datasets/Cornell-

University/arxiv
5http://mlg.ucd.ie/datasets/bbc.html

with our pretraining dataset (SimCSElong). (2) 195

Transformers specified for long sequences in- 196

clude Longformer (Beltagy et al., 2020) and Big- 197

Bird (Zaheer et al., 2020). We train two ver- 198

sions of SIMLTE with BERT and Longformer 199

(i.e., SIMLTEbert and SIMLTElong) for compari- 200

son. We do not include RoBERTa (Liu et al., 2019) 201

and IS-BERT (Zhang et al., 2020) as our baselines 202

because SimCSE achieves better results than these 203

methods according to the paper. 204

3.4 Text Classification 205

In the standard text classification task, we classify 206

text embeddings with the full training set. Training 207

details are in Appendix B. 208

Results. Table 2 shows the evaluation results 209

on different datasets. Overall, we can see that 210

SIMLTE achieves the best performance over the 211

5 long text datasets and consistently improves the 212

long text embeddings with BERT and Longformer 213

structures. Specifically, methods pretrained with 214

contrastive objectives (i.e., CT-BERT, SimCSE) 215

outperform general language representations (i.e., 216

BERT) which indicates contrastive objectives de- 217

signed for text embeddings can largely improve the 218

ability of language models to produce high-quality 219

text embeddings. SimCSE pretrained with our long 220

text data (i.e., SimCSElong) has similar results as 221

the original SimCSE which indicates simplely in- 222

creasing the length of pretraining text cannot im- 223

prove long text embeddings. Compared to SimCSE 224

and Longformer, our model achieves 3.9% and 225

9.4% average macro-F1 improvements with BERT 226

and Longformer structures respectively. Hence, our 227

contrastive learning method is effective for long 228

text embeddings. 229

3.5 Few-shot Text Classification 230

To show the performance of different text embed- 231

dings under low-resource settings, we evaluate our 232

model with few-shot training instances. Training 233

details are in Appendix B. 234

Results. Table 2 shows the results of few-shot 235

text classification on these five datasets. We can see 236

that SIMLTE (i.e., SIMLTEbert and SIMLTElong) 237

achieves 12.0% and 24.3% macro-F1 improve- 238

ments compared to SimCSE and Longformer re- 239

spectively. These improvements are higher than 240

standard text classification. Besides, we also com- 241

pare the performance of different baselines and 242

SIMLTEbert with different numbers of training in- 243

stances on 20News. The results in Figure 2 show 244
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Datasets FakeNews 20News arXiv NYT BBCNews

Metrics Acc F1 Acc F1 Acc F1 Acc F1 Acc F1

Text Classification

BERT 54.98 42.17 62.34 54.19 68.52 20.46 95.11 92.65 91.06 90.34
CT-BERT 55.19 42.53 65.76 63.37 71.61 26.09 95.69 91.59 90.32 88.87
SimCSE 58.48 47.46 74.02 72.57 74.46 30.01 97.17 94.69 94.12 93.86
SimCSElong 58.37 47.56 73.51 72.05 73.16 29.41 97.25 93.83 94.22 94.30
SIMLTEbert 60.04 50.14 76.89 74.85 76.66 32.24 98.20 96.05 95.56 95.58

LongFormer 65.72 57.66 73.69 72.47 71.66 25.92 94.36 88.39 96.33 94.75
BigBird 57.44 47.87 70.35 68.91 71.58 25.05 97.13 94.33 94.11 94.62
SIMLTElong 71.60 61.66 75.44 74.38 77.68 33.26 97.90 95.43 96.67 95.91

Few-shot Text Classification

BERT 23.96 23.73 19.94 18.71 24.08 10.14 51.85 43.90 54.22 52.73
CT-BERT 23.71 23.06 24.11 23.53 27.02 13.53 47.23 36.83 59.56 58.95
SimCSE 25.04 22.68 42.63 41.42 32.61 17.19 86.51 78.41 83.56 83.75
SimCSElong 26.39 23.26 48.65 47.81 23.42 12.66 85.36 75.90 84.44 83.96
SIMLTEbert 27.79 24.65 55.79 55.43 35.79 18.52 90.52 83.71 86.86 86.31

LongFormer 26.56 25.12 44.42 42.41 25.04 13.36 73.06 54.87 84.89 85.47
BigBird 25.36 23.28 39.14 39.06 23.62 10.18 86.66 78.96 79.11 76.63
SIMLTElong 29.17 27.13 51.18 50.96 34.33 18.80 89.78 82.88 86.78 86.66

Table 2: For all performance measures, larger numbers are better. Our pre-trained model achieves the best results in
all cases.

0 50 100 150 200 250
Number of Samples per Class

20

30

40

50

60

70

Ac
cu

ra
cy

SimLTE
SimCSE
BERT
CT-BERT
SimCSE_long

Figure 2: Performance of different models with different
numbers of instances per class under few-shot setting.

the improvements from our method become larger245

as the number of training instances decreases indi-246

cating the importance of high-quality long text em-247

beddings for low-resource settings. Furthermore,248

our method achieves the best results under different249

numbers of training instances.250

3.6 Attention Weights251

To explore the difference between SIMLTE and252

other models, we analyze the attention weights253

of Transformers in different models on the NYT254

dataset (details in Appendix C). The average255

weights of different kinds of words are shown in256

Figure 3. We can see that our model has more than257

40% higher attention weights on nouns compared258

to BERT and SimCSE. Martin and Johnson (2015)259
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Figure 3: Attention weights from different models on
the NYT dataset.

shows nouns are more informative than other words 260

in the document understanding. Hence, our pre- 261

training method increases the attention weights of 262

models on nouns which results in higher perfor- 263

mance on long text classification. 264

4 Conclusion 265

In this work, we propose an unsupervised con- 266

trastive learning framework for long text embed- 267

dings. Our method provides a new method for long 268

text data augmentation without any supervision and 269

language models can get large-scale pretraining on 270

any long text. We conduct extensive experiments 271

on text classification tasks under fully supervised 272

and few-shot settings. Results show that our pre- 273

trained model greatly outperforms state-of-the-art 274

text embeddings, especially when the training data 275

is limited. 276
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5 Ethical Concerns277

We do not anticipate any major ethical concerns;278

learning text embeddings is a fundamental prob-279

lem in natural language processing. We did not280

observe any such issues in our experiments, and281

indeed these considerations seem low-risk for the282

our datasets studied here because they are all pub-283

lished.284
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A Redundancy363

Length (1) (2) (3) (4) (5) All

FakeNews 1.06 1.21 29 1.35 1.52 1.37
20News 1.12 1.18 1.24 1.31 1.50 1.28
arXiv 1.12 1.25 1.36 1.49 1.62 1.34
NYT 1.00 1.14 1.21 1.31 1.48 1.45
BBCNews 1.05 1.14 1.20 1.29 1.46 1.19

Table 3: Information redundancies for different lengths
(i.e., word numbers) of text: (1) 0-50 (2) 51-100 (3)
101-200 (4) 201-300 (5) more than 300.

We evaluate the redundancy of the text by count-364

ing the repeated verbs and nouns in the text. Specif-365

ically, we first use SpaCy 6 to find verbs and nouns366

and get their lemmatizations. Intuitively, if the re-367

dundancy of a document is high, nouns and verbs368

will be repeated frequently to express the same369

topic. Hence, redundancies R in our paper are370

computed as:371

R =
Nnouns,verbs

Dnouns,verbs
(2)372

where Nnouns,verbs denotes the number of nouns373

and verbs in a document and Dnouns,verbs is the374

number of distinct nouns and verbs.375

B Training Details376

For text classification, the learning rate for fine-377

tuning is 3e-4; the batch size is 8; the maximum378

sequence length is 512 tokens. We fine-tune the379

last MLP layer on these five datasets and evaluate380

the classification performance with accuracy and381

macro-F1 scores. For few-shot text classification,382

we sample 10 data instances per class for the Fak-383

eNewsCorpus dataset and the arXiv dataset and 5384

data instances per class for the other three datasets.385

Other settings are the same as the standard text clas-386

sification. Since there is randomness in sampling,387

we repeat every experiment 10 times and take the388

average value of metrics.389

C Attention Weights390

We compute the attention weights for Transform-391

ers as follows: (1) we first extract the attention392

weights between [CLS] token and all the other393

tokens; (2) we compute the averaged weights along394

different heads in multi-head attention; (3) the at-395

tention weights of the last layer in Transformers are396

6https://spacy.io/

used as the weights for words. Averaged values are 397

computed for nouns, verbs, adjectives, and other 398

words. 399

6


