SimLTE: Simple Contrastive Learning for Long Text Embeddings

Anonymous ACL submission

Abstract

This paper presents SIMLTE, the first unsuper-
vised pretraining method designed specifically
for long text (e.g., documents, paragraphs).
SIMLTE uses the contrastive learning frame-
work, and our main contribution is a simple
but effective data augmentation technique for
generating similar text pairs. Specifically, we
pretrain a language model to distinguish if two
texts have the same topic without any super-
vision or specific model architectures, and so
it is widely applicable. The positive pairs are
constructed by our key information redundancy
assumption for long text. On standard classifi-
cation datasets, SIMLTE improves all baseline
models, with an average improvement of 3.9%
macro F1 score. We also consider a few-shot
setting where we show an average improvement
of 12.0%.

1 Introduction

Generating high quality text embeddings for long
text is a long-standing open problem. Most pre-
vious studies focus on either sentence-level repre-
sentations (Hill et al., 2016; Logeswaran and Lee,
2018; Gao et al., 2021) where training data usually
contain short text or specific model structures al-
lowing larger-range dependencies (Beltagy et al.,
2020; Zaheer et al., 2020), but high-quality pre-
trained long text representations are less explored.

In this paper we present the SIMLTE which is
the first unsupervised training method designed
specifically for long text. The training procedure
of SIMLTE can work with any model architecture
to improve long text representations. Specifically,
SIMLTE uses contrastive learning, and our key
contribution is a new method for generating the pos-
itive samples for contrastive learning. To this end,
we first investigate the information redundancy (de-
tails in Appendix A) on five datasets for different
lengths of text. We find the information redundancy
is larger as the length of the text is increasing. This
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Figure 1: Overall framework of SIMLTE. The long
text is randomly divided into two exclusive subsets of
sentences and the two subsets work as positive pairs for
contrastive learning. Other instances in the same batch
are used as negatives.
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result indicates long text usually contains repeated
information. Based on this observation, we can as-
sume that the model can still learn the main topic of
a long text even if we drop some sentences. Hence,
as shown in Figure 1, we randomly divide the origi-
nal long text into two texts by sentences as positive
pairs. Due to redundancies, our model can still
recognize the two texts have the same topic. The
intuition behind this method is that we expect the
model will pull representations of two subsets to-
gether in the latent space by paying more attention
to common keywords so that the model can learn
key information from text automatically.

To evaluate the quality of long text embeddings,
we conduct standard and few-shot text classifica-
tion on five long text datasets involved in News and
scientific articles. The experimental results show
that SIMLTE with two kinds of model structures
(i.e., BERT and Longformer) can both achieve sig-
nificant improvements compared to state-of-the-art
baselines.

Our paper is organized as follows. In Section 2
we formally define the contrastive learning problem
and our novel SIMLTE training method. In Sec-
tion 3 we develop a new experimental evaluation
procedure for long text. We conclude in Section 4
by emphasizing that all of our models and datasets
are open source.



2 Method

In this section, we first formally define contrastive
learning, then we describe our SIMLTE method.

2.1 Contrastive Learning

Contrastive Learning aims to learn effective repre-
sentations by pulling semantically close neighbors
together and pushing apart non-neighbors in the
latent space (Hadsell et al., 2006). It assumes a con-
trastive instance {z,z", 2] ,..., 2 _,} including
one positive and /N — 1 negative instances and their
representations {h,h™ hy,... hy ;}, where z
and x ™ are semantically related. we follow the con-
trastive learning framework (Chen et al., 2020; Li
et al., 2022) and take cross-entropy as our objective
function:
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where 7 is a temperature hyperparameter and
. . . Ce h] h;
sim(hy, hg) is the cosine similarity o Tha] In

this work, we encode input texts using a pre-trained
language model such as BERT (Devlin et al., 2019).
Following BERT, we use the first special token
[CLS] as the representation of the input and fine-
tune all the parameters using the contrastive learn-
ing objective in Equation 1.

2.2 SimLTE

The critical problem in contrastive learning is how
to construct positive pairs (z,z"). In representa-
tion learning for visual tasks (Chen et al., 2020),
an effective solution is to take two random transfor-
mations of the same image (e.g., flipping, rotation).
Similarly, in language representations, previous
works (Gao et al., 2021; Karpukhin et al., 2020;
Meng et al., 2021; Li et al., 2022) apply augmen-
tation techniques such as dropout, word deletion,
reordering, and masking.

In this paper, we propose a new method to con-
struct positive instances for long text. The ba-
sic idea of positive instance construction for con-
trastive learning is adding random noises to the
original data for augmentation. The augmented
data should have similar representations to the orig-
inal data. Models trained by contrastive losses on
augmented data will have an increased ability to
learn important features in the data. To add random
noises in long text, we find long text (e.g., para-
graphs) usually has higher information redundancy

than short text (e.g., sentences) (Table 3 in Ap-
pendix). With this observation, we can have an
assumption: the semantics of a long text will not
be changed even if we drop half of the text. We can
construct positive pairs under this assumption eas-
ily on any text dataset without supervision. Specifi-
cally, for each long text in the dataset, we randomly
split sentences in the long text into two subsets and
the two sentence sets do not have intersections. In
the two subsets, we keep the order of sentences
in the original long text to form two new texts.
According to our assumption, the two new texts
should have the same semantics and hence they are
used as a positive pair in contrastive learning.

Consider an example (in Figure 1) to understand
our positive instance construction process: Suppose
we have a long text 7" = (s, s2, .. ., S, ) Where s;
is the ¢-th sentence in long text and n is the number
of sentences, each sentence will be sent to anchor
set or positive set with the same probability (50%).
The sentences in the same set (i.e., anchor or posi-
tive) will be concatenated in the same order of T’
to form one positive pair (7", T,") for contrastive
learning. Positive pairs constructed by this method
will not contain the same sentence and hence pre-
vent models from overfitting on recognizing the
same sentences. Instead, models are guided to learn
keywords appearing in positive instances so as to
improve the ability to recognize key information.
We split the long text at sentence level instead of
word level (e.g., word deletion for augmentation)
because the word-level splitting will cause the dis-
crepancy between pretraining and finetuning and
then lead to performance decay.

For negative instances, we use in-batch instances
following previous contrastive frameworks (Gao
etal., 2021; Li et al., 2022).

3 Experiments

In this section, we evaluate the effectiveness of our
method by conducting text classification tasks. To
eliminate the influence of different model structures
and focus on the quality of text embeddings. We
freeze the parameters of different text encoders and
fine-tune only a multi-layer perceptron (MLP) to
classify the embeddings of text encoders. We also
visualize the attention weights between baselines
and SIMLTE.



Datasets \ Data Size  Classes Ave. Med.
FakeNews | 8,558,957 15 467 299
20News 18,846 20 258 153
arXiv 2,162,833 38 138 131
NYT 13,081 5 650 683
BBCNews 2,225 5 133 130

Table 1: Statistics of datasets. Ave. and Med. stand for
the average and median number of words respectively
in one data instance.

3.1 Pretraining Details

For pre-training, we start from the pretrained BERT-
BASE model (Devlin et al., 2019) and the Long-
former (Beltagy et al., 2020) model ! We follow
previous works (Gao et al., 2021; Li et al., 2022):
the masked language model (MLM) loss and the
contrastive learning loss are used concurrently with
in-batch negatives. We use English Wikipedia 2 ar-
ticles as pretraining data and each article is viewed
as one training instance. The total number of train-
ing instances is 6,218,825. Our pretraining learning
rate is S5e-5, batch size is 36 and 12 for BERT and
Longformer structure respectively. Our model is
optimized by AdamW (Kingma and Ba, 2014) in
1 epoch. The temperature 7 in the contrastive loss
is set to 0.05 and the weight of MLM is set to 0.1
following previous work (Gao et al., 2021).

3.2 Datasets

We use the following classic long text datasets to
evaluate our method: (1) Fake News Corpus *; (2)
20NewsGroups (Lang, 1995); (3) arXiv articles
dataset *; (4) New York Times Annotated Corpus
(NYT) (Sandhaus, 2008); and (5) BBCNews °.
We do not use semantic textual similarity (STS)
tasks (Agirre et al., 2012) because the sentences
in these tasks are short which is not suitable to
evaluate long text embeddings.

3.3 Baselines

We compare our pre-trained model to the base-
lines of two groups. (1) BERT based models in-
clude BERT (Devlin et al., 2019), SimCSE (Gao
et al., 2021), CT-BERT (Carlsson et al., 2021).
For a fair comparison, we also train a SimCSE

!"The Longformer checkpoint is pretrained on long docu-
ments by MLM task and is available from Huggingface.

Zhttps://en.wikipedia.org/

3https://github.com/several27/FakeNewsCorpus

*“https://www.kaggle.com/datasets/Cornell-
University/arxiv

Shttp://mlg.ucd.ie/datasets/bbc.html

with our pretraining dataset (SimCSEjq,e). (2)
Transformers specified for long sequences in-
clude Longformer (Beltagy et al., 2020) and Big-
Bird (Zaheer et al., 2020). We train two ver-
sions of SIMLTE with BERT and Longformer
(i.e., SIMLTEy¢¢ and SIMLTE,y,s) for compari-
son. We do not include RoOBERTa (Liu et al., 2019)
and IS-BERT (Zhang et al., 2020) as our baselines
because SimCSE achieves better results than these
methods according to the paper.

3.4 Text Classification

In the standard text classification task, we classify
text embeddings with the full training set. Training
details are in Appendix B.

Results. Table 2 shows the evaluation results
on different datasets. Overall, we can see that
SIMLTE achieves the best performance over the
5 long text datasets and consistently improves the
long text embeddings with BERT and Longformer
structures. Specifically, methods pretrained with
contrastive objectives (i.e., CI-BERT, SimCSE)
outperform general language representations (i.e.,
BERT) which indicates contrastive objectives de-
signed for text embeddings can largely improve the
ability of language models to produce high-quality
text embeddings. SimCSE pretrained with our long
text data (i.e., SImCSEj,,¢) has similar results as
the original SimCSE which indicates simplely in-
creasing the length of pretraining text cannot im-
prove long text embeddings. Compared to SimCSE
and Longformer, our model achieves 3.9% and
9.4% average macro-F1 improvements with BERT
and Longformer structures respectively. Hence, our
contrastive learning method is effective for long
text embeddings.

3.5 Few-shot Text Classification

To show the performance of different text embed-
dings under low-resource settings, we evaluate our
model with few-shot training instances. Training
details are in Appendix B.

Results. Table 2 shows the results of few-shot
text classification on these five datasets. We can see
that SIMLTE (i.e., SIMLTEe; and SIMLTE)q,,)
achieves 12.0% and 24.3% macro-F1 improve-
ments compared to SImCSE and Longformer re-
spectively. These improvements are higher than
standard text classification. Besides, we also com-
pare the performance of different baselines and
SIMLTE},+ with different numbers of training in-
stances on 20News. The results in Figure 2 show



Datasets \ FakeNews 20News arXiv NYT BBCNews
Metrics \ Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
Text Classification
BERT 5498 42.17 6234 5419 68.52 2046 95.11 92.65 91.06 90.34
CT-BERT 55.19 4253 6576 63.37 71.61 2609 9569 91.59 90.32 88.87
SimCSE 5848 4746 74.02 72,57 7446 30.01 97.17 94.69 94.12 93.86
SimCSEiong | 58.37 47.56 73.51 72.05 73.16 29.41 9725 93.83 9422 94.30
SIMLTEpet | 60.04 50.14 76.89 7485 76.66 3224 9820 96.05 95.56 95.58
LongFormer | 65.72 57.66 73.69 7247 71.66 2592 9436 8839 96.33 94.75
BigBird 5744 4787 7035 6891 71.58 25.05 97.13 9433 94.11 94.62
SIMLTEiong | 71.60 61.66 7544 7438 77.68 33.26 97.90 9543 96.67 9591
Few-shot Text Classification

BERT 2396 2373 1994 18.71 24.08 10.14 51.85 4390 5422 52.73
CT-BERT 2371 23.06 24.11 2353 27.02 13.53 4723 36.83 59.56 5895
SimCSE 25.04 2268 42.63 4142 3261 17.19 86.51 7841 83.56 83.75
SimCSEiong | 26.39 2326 48.65 47.81 2342 1266 8536 7590 8444 83.96
SIMLTEypert | 27.79 24.65 55.79 5543 3579 18.52 90.52 83.71 86.86 86.31
LongFormer | 26.56 25.12 4442 4241 25.04 13.36 73.06 54.87 84.89 8547
BigBird 2536 2328 39.14 39.06 23.62 10.18 86.66 7896 79.11 76.63
SIMLTEiong | 29.17 2713 51.18 5096 3433 18.80 89.78 82.88 86.78 86.66

Table 2: For all performance measures, larger numbers are better. Our pre-trained model achieves the best results in

all cases.
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Figure 2: Performance of different models with different
numbers of instances per class under few-shot setting.

the improvements from our method become larger
as the number of training instances decreases indi-
cating the importance of high-quality long text em-
beddings for low-resource settings. Furthermore,
our method achieves the best results under different
numbers of training instances.

3.6 Attention Weights

To explore the difference between SIMLTE and
other models, we analyze the attention weights
of Transformers in different models on the NYT
dataset (details in Appendix C). The average
weights of different kinds of words are shown in
Figure 3. We can see that our model has more than
40% higher attention weights on nouns compared
to BERT and SimCSE. Martin and Johnson (2015)
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Figure 3: Attention weights from different models on
the NYT dataset.

shows nouns are more informative than other words
in the document understanding. Hence, our pre-
training method increases the attention weights of
models on nouns which results in higher perfor-
mance on long text classification.

4 Conclusion

In this work, we propose an unsupervised con-
trastive learning framework for long text embed-
dings. Our method provides a new method for long
text data augmentation without any supervision and
language models can get large-scale pretraining on
any long text. We conduct extensive experiments
on text classification tasks under fully supervised
and few-shot settings. Results show that our pre-
trained model greatly outperforms state-of-the-art
text embeddings, especially when the training data
is limited.



5 Ethical Concerns

We do not anticipate any major ethical concerns;
learning text embeddings is a fundamental prob-
lem in natural language processing. We did not
observe any such issues in our experiments, and
indeed these considerations seem low-risk for the
our datasets studied here because they are all pub-
lished.

References

Eneko Agirre, Daniel Matthew Cer, Mona T. Diab, and
Aitor Gonzalez-Agirre. 2012. Semeval-2012 task 6:
A pilot on semantic textual similarity. In *SEMEVAL.

Iz Beltagy, Matthew E. Peters, and Arman Cohan. 2020.
Longformer: The long-document transformer. ArXiv,
abs/2004.05150.

Fredrik Carlsson, Amaru Cuba Gyllensten, Evan-
gelia Gogoulou, Erik Ylipdi Hellqvist, and Magnus
Sahlgren. 2021. Semantic re-tuning with contrastive
tension. In ICLR.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey E. Hinton. 2020. A simple framework for
contrastive learning of visual representations. ArXiv,
abs/2002.05709.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. In NAACL.

Tianyu Gao, Xingcheng Yao, and Danqi Chen. 2021.
Simcse: Simple contrastive learning of sentence em-
beddings. ArXiv, abs/2104.08821.

Raia Hadsell, Sumit Chopra, and Yann LeCun. 2006.
Dimensionality reduction by learning an invariant
mapping. 2006 IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition
(CVPR’06), 2:1735-1742.

Felix Hill, Kyunghyun Cho, and Anna Korhonen. 2016.
Learning distributed representations of sentences
from unlabelled data. In NAACL.

Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick
Lewis, Ledell Yu Wu, Sergey Edunov, Danqi
Chen, and Wen tau Yih. 2020. Dense passage re-
trieval for open-domain question answering. ArXiv,
abs/2004.04906.

Diederik P. Kingma and Jimmy Ba. 2014. Adam:
A method for stochastic optimization. CoRR,
abs/1412.6980.

Ken Lang. 1995. Newsweeder: Learning to filter net-
news. In ICML.

Jiacheng Li, Jingbo Shang, and Julian McAuley. 2022.
UCTopic: Unsupervised contrastive learning for
phrase representations and topic mining. In Proceed-
ings of the 60th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 6159-6169, Dublin, Ireland. Association
for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. ArXiv, abs/1907.11692.

Lajanugen Logeswaran and Honglak Lee. 2018. An
efficient framework for learning sentence representa-
tions. ArXiv, abs/1803.02893.

Fiona Martin and Mark Johnson. 2015. More efficient
topic modelling through a noun only approach. In
Proceedings of the Australasian Language Technol-
ogy Association Workshop 2015, pages 111-115, Par-
ramatta, Australia.

Yu Meng, Chenyan Xiong, Payal Bajaj, Saurabh Tiwary,
Paul Bennett, Jiawei Han, and Xia Song. 2021. Coco-
Im: Correcting and contrasting text sequences for
language model pretraining. ArXiv, abs/2102.08473.

Evan Sandhaus. 2008. The new york times annotated
corpus. Linguistic Data Consortium, Philadelphia,
6(12):€26752.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava
Dubey, Joshua Ainslie, Chris Alberti, Santiago
Ontafién, Philip Pham, Anirudh Ravula, Qifan
Wang, Li Yang, and Amr Ahmed. 2020. Big
bird: Transformers for longer sequences. ArXiv,
abs/2007.14062.

Yan Zhang, Ruidan He, Zuozhu Liu, Kwan Hui Lim,
and Lidong Bing. 2020. An unsupervised sentence
embedding method by mutual information maximiza-
tion. In Conference on Empirical Methods in Natural
Language Processing.


https://doi.org/10.18653/v1/2022.acl-long.426
https://doi.org/10.18653/v1/2022.acl-long.426
https://doi.org/10.18653/v1/2022.acl-long.426
https://aclanthology.org/U15-1013
https://aclanthology.org/U15-1013
https://aclanthology.org/U15-1013

A Redundancy

Lengh | (D 2 (3 @& () Al
FakeNews | 1.06 121 29 135 152 137
20News .12 1.8 124 131 150 1.8
arXiv 112 125 136 149 162 134
NYT 100 1.14 121 131 148 145

BBCNews | 1.05 1.14 120 129 146 1.19

Table 3: Information redundancies for different lengths
(i.e., word numbers) of text: (1) 0-50 (2) 51-100 (3)
101-200 (4) 201-300 (5) more than 300.

We evaluate the redundancy of the text by count-
ing the repeated verbs and nouns in the text. Specif-
ically, we first use SpaCy © to find verbs and nouns
and get their lemmatizations. Intuitively, if the re-
dundancy of a document is high, nouns and verbs
will be repeated frequently to express the same
topic. Hence, redundancies R in our paper are
computed as:

Nnouns verbs
R = —hounsyverbs 2)

D nouns,verbs

where Ny guns verbs denotes the number of nouns
and verbs in a document and D) uns verbs 1S the
number of distinct nouns and verbs.

B Training Details

For text classification, the learning rate for fine-
tuning is 3e-4; the batch size is 8; the maximum
sequence length is 512 tokens. We fine-tune the
last MLP layer on these five datasets and evaluate
the classification performance with accuracy and
macro-F1 scores. For few-shot text classification,
we sample 10 data instances per class for the Fak-
eNewsCorpus dataset and the arXiv dataset and 5
data instances per class for the other three datasets.
Other settings are the same as the standard text clas-
sification. Since there is randomness in sampling,
we repeat every experiment 10 times and take the
average value of metrics.

C Attention Weights

We compute the attention weights for Transform-
ers as follows: (1) we first extract the attention
weights between [CLS] token and all the other
tokens; (2) we compute the averaged weights along
different heads in multi-head attention; (3) the at-
tention weights of the last layer in Transformers are

®https://spacy.io/

used as the weights for words. Averaged values are
computed for nouns, verbs, adjectives, and other
words.



