Under review as submission to TMLR

TOAST ' #: Transformer Optimization using Adaptive and
Simple Transformations

Anonymous authors
Paper under double-blind review

Abstract

Foundation models achieve State-of-the-art (SOTA) performance across different tasks, but
their size and computational demands raise concerns about accessibility and sustainability.
Existing efficiency methods often require additional retraining or fine-tuning, limiting their
practicality. Recent findings suggest that deep neural networks exhibit internal represen-
tation similarities. While such similarities across different models have been exploited for
enabling techniques such as model stitching and merging, intra-network redundancy remains
underexplored as a source for efficiency gains. In this paper, we introduce Transformer Opti-
mization using Adaptive and Simple Transformations (TOAST)B a framework that exploits
these redundancies to approximate entire transformer blocks with lightweight closed-form
mappings, such as linear transformation or even the identity, without any additional training.
Across SOTA pretrained vision models (e.g., ViT, DINOv2, DeiT) and datasets ranging from
MNIST to ImageNet-1k, TOAST reduces parameters and computation while preserving, and
in some cases improving, downstream performance. These results show that large portions
of transformer depth can be replaced by trivial functions, opening a new perspective on
efficient foundation models.

1 Introduction
-

/_\

= = = = = = = = .-

] X (s) e X (e

Figure 1: Framework Description. Given two latent spaces X(*) and X(¢) corresponding to the outputs of
blocks s and e for a random subset of 500 training samples, TOAST estimates a lightweight transformation 7
such that X(®) ~ 7(X(*)). This allows entire transformer blocks to be approximated by simple closed-form
mappings (e.g., linear or identity), reducing parameters and computation without retraining.

As Neural Networks (NNs) continue to grow in size and complexity, their demand for computational resources
has become a critical bottleneck. While larger models consistently achieve SOTA performance, this comes
at the cost of substantial memory usage and power consumption, limiting their accessibility and deployment.
This challenge is for instance most relevant in on-device scenarios, where saving memory, latency, and energy,
even by little margins, is critical (Pan et al., 2022; |Li et al} [2022). This has motivated a growing body of work
on reducing model complexity. However, most existing approaches either require additional, resource-intensive
training phases or lead to significant drops in accuracy. Recent studies reveal that there exists strong
representational similarities both within and between NNs. In other words, when focusing on intra-network
similarities, different blocks often perform overlapping functions or produce highly correlated outputs.

IThe anonymized code is available at: https://anonymous.4open.science/r/layskip-27A3/

https://anonymous.4open.science/r/layskip-27A3/

Under review as submission to TMLR

This redundancy suggests an opportunity: instead of retraining or pruning, can we approxrimate these
blocks with simpler transformations? To address this question, we propose Transformer Optimization using
Adaptive and Simple Transformations (TOAST), a novel framework that exploits block-level representational
redundancy to replace transformer blocks with lightweight transformations. By doing so, TOAST reduces
parameter count and computational cost, while maintaining (and in some cases even improving) downstream
task performance. Crucially, our method is training-free, making it simple, efficient, and widely applicable,
even in resource-constrained scenarios such as deployment on edge devices, where even the smallest available
models may exceed memory or power budgets. Our main contributions are as follows:

o We propose TOAST, a simple yet effective framework that replaces transformer blocks with lightweight
transformations (e.g., linear maps or even the identity), significantly reducing parameters and
computational cost while preserving downstream performance (Figure .

e We introduce linear approximation error as a stable and computationally lightweight criterion for
identifying redundant transformer blocks (Tables |§| and |11} and Algorithms |1 and [2)) and we present
a systematic analysis of block-wise representational similarities in pre-trained vision transformers,
revealing consistent redundancy patterns across diverse models and motivating the possibility of
approximating entire blocks (Figures [2[and @

e We empirically demonstrate that accurate block approximations can be obtained from only a few
hundred samples, showing that block redundancy can be exploited without requiring large-scale
retraining (Tables [I| and 4| and Figure .

o We extensively validate our approach across a wide spectrum of vision models (e.g., DiNO-B, ViT-L,
DEiT-8, ViT-S, DiNO-S, ViT-T) and datasets ranging from MNIST to ImageNet1k, confirming both
the generality and efficiency of the method (Tables [1f to [3[and [12] to .

o We preliminarily validate the application of TOAST beyond vision classification, including seman-
tic segmentation using ViT-S and DiNO-B on SceneParsel50, and and text classification using
ModernBERT-B on AG News (Tables [5 and [6] and Section [A.2.4)).

2 Related work

Measuring Similarities A range of metrics have been introduced to assess the similarity between latent
spaces generated by different NNs (Klabunde et al.) |2023; Ballester et al., 2023). One established approach is
Canonical Correlation Analysis (CCA) (Hotelling, [1992), known for its invariance to linear transformations.
Variants of CCA, such as Singular Value CCA (SVCCA) (Raghu et al., 2017)), aim to enhance robustness,
while techniques like Projection Weighted CCA (PWCCA) (Morcos et al, 2018) mitigate sensitivity to small
perturbations. Another widely used metric, Centered Kernel Alignment (CKA) (Kornblith et al., [2019),
captures the similarity between latent spaces while ignoring orthogonal transformations. However, recent work
(Davari et al., [2022)) highlights that this metric can be sensitive to shifts in the latent space. Additionally,
Barannikov et al.| (2021]) proposes a method to compare two data representations by measuring the multi-scale
topological dissimilarity, while [Fumero et al.| (2024) leverages the principles of spectral geometry to model
and analyze the relationships between distinct latent spaces.

Leveraging Similarities [Valeriani et al| (2024]) examines the intrinsic dimensionality and neighbor
compositions of representations in transformer models. [Kvinge et al.| (2022)) investigates how models process
variations in data points across layers, while Nguyen et al. (2020]) assesses the impact of network depth
and width on hidden representations. Additionally, |Crisostomi et al.| (2023)) studies the conditions under
which two latent spaces can be merged into a unified one. Moschella et al.| (2023]) constructs a unified
space shared by different NNs, enabling zero-shot stitching of independently trained models across different
modalities (Norelli et al.|, [2023]). More recently, Cannistraci et al. (2024) enables model stitching without
explicit assumptions about the transformation class connecting the latent manifold embeddings, or with only
partial correspondence between latent spaces (Cannistraci et al. 2023). Finally, [Lahner & Moeller| (2024));
Maiorca et al.| (2024)) demonstrate that representations learned by distinct NNs can be aligned using simple
transformations.

Under review as submission to TMLR

Architectural Efficiency While large-scale models with billions or even trillions of parameters continue
to achieve state-of-the-art performance, their growth comes with trade-offs, such as slower inference times
and significantly higher computational costs. Improving the efficiency of Deep Neural Network (DNN) has
been a long-standing area of research. For instance, |Veit et al. (2016]) shows that removing residual blocks
from deep Convolutional Neural Networks (CNNs) only marginally impacts performance, which inspired
approaches to reduce inference time by dynamically deciding which layers to execute based on the input (Wu
et al., [2018; [Veit & Belongie, |2018). Additionally, various techniques to enhance efficiency have emerged,
such as early exiting and model pruning. Early exit strategies, which introduce intermediate output layers
at different stages of the network, have been shown to reduce inference time (Xin et al., |2020; |Zhou et al.l
2020; [Yu et al., |2022; 'Tang et al, [2023). However, these approaches require the training of intermediate
classifiers to enable exits at predefined layers. Alternatively, model pruning reduces computational load by
either removing individual weights based on specific criteria, such as gradient information (Ma et al., |2023),
entropy (Liao et al. 2023), or second-order information (Singh & Alistarhl |2020)), or by eliminating larger
structural components, like channels or residual blocks in ResNets (Bai et al., 2023; Wang & Wu, 2023)),
weights in LLMs (Sun et al., 2023) and self-attention layers in Transformers (Zhang & Hel [2020; Sajjad et al.,
2023; [Venkataramanan et al., [2024; |Zhang et al., 2024)). Although effective, these approaches require training
the model from scratch and, in the best case, fine-tuning. However, Bai et al.| (2023) shows that for CNNs,
this additional training step can sometimes be avoided.

Unlike other methods, TOAST leverages intra-network similarities to reduce vision transformers complexity
without the need for additional training steps while maintaining competitive performance.

3 Blocks Approximation

The central idea of our approach is that it is possible to leverage representation similarities within transformer-
based architectures to replace entire blocks with simpler transformations. In this work, a block refers to a
sequence of layers including multi-head self-attention, normalization, and feed-forward layers, that function
together as a cohesive unit. By replacing these blocks with simpler transformations, we can reduce the
computational complexity of the network while maintaining its core functionality.

Approximating Transformer Blocks Given two blocks s and e, our goal is to replace the intermediate
blocks s + 1,...,e with a single, lightweight transformation that maps the output of block s directly to
an approximation of the output of block e. This approach allows us to skip the computation of blocks
s+1,...,e, effectively reducing the overall computational costs. This approximation can be repeated for
multiple, non-overlapping blocks, i.e., blocks (s;,e;) and (s;,e;) with e; < s;. An overview of the method is
provided in Figure

Let X ¢ RIPsuwnlxds apd X(€) ¢ RIPsunl*de pepresent the output representations from block s and e
respectively, for the data points in Dgyp, C D, sampled uniformly at random from the full training dataset D.
Our objective is to find a transformation 7 : R% — R% such that:

X (€) ~ T(X(S))

In this work, we consider T to be the identity or a linear transformation T. We can compute the linear
transformation T by minimizing the squared error between the transformed output T(X(S)) and the actual
X (€);
T = arg min||X(®) — 7(X)|
T

This optimization problem allows for a closed-form solution that efficiently computes the optimal transfor-
mation T. The solution bypasses the computation of all layers between any two blocks s and e, replacing
them with T. This approximation reduces computational complexity while minimally affecting internal
representations, as illustrated in Figures[7] to[II] and preserves compatibility with downstream classifiers,
achieving significant compression as shown in Tables [I] to 3] and [12] to [I5}

Patterns of Similarity between Transformer Blocks Inspired by existing results Venkataramanan
et al.| (2024), which show that multi-head attention modules exhibit similarity in learned representations,

Under review as submission to TMLR

we investigate whether pre-trained foundation models contain entire blocks that produce highly similar
representations. Rather than using CKA to measure representational similarity, we quantify how well the
output of a later block can be reconstructed from an earlier one using a simple linear transformation. All
representations are computed using only the [CLS] token, providing a consistent and semantically aligned
basis for comparing blocks.

Given representations H; and H, extracted from blocks s < e, we learn the optimal linear map W* that
solves

W* = argmin |[H, — H,W||%..
w
We measure similarity via the normalized residual error

(s, e) = —HHe ~ H W p
’ [Hell ’

where lower values indicate that block e’s representations are well explained by a linear transformation of
block s.

By computing the metric for all block pairs, using only a small random subset of the training data (i.e., 50
samples), and ranking them, we can automatically identify blocks whose computations contribute minimally
beyond a near-linear mapping. We additionally perform an ablation study comparing several candidate
similarity metrics for block selection, and we report these results in Section The procedure used to
automatically extract the top-k skip candidates is summarized in Algorithm [I} and the linear approximation
error is detailed in Algorithm [2]

4 Experiments

In this section, we first analyze the similarities between different transformer blocks to motivate their
approximation using simple transformations. We then present comprehensive results on image classification
across various models and datasets to demonstrate the effectiveness and efficiency of the proposed method.
Beyond these core results, we further study the robustness of TOAST through ablations on the number of
samples required for approximation and the choice of translator architecture. Overall, our findings show that
TOAST achieves strong performance while producing lighter and faster models. Due to space constraints,
additional results on zero-shot image classification, as well as further qualitative and quantitative analyses,

are provided in the Appendix (Sections and [A.2.3]).

4.1 Latent analysis

In this section we investigate similarities in the latent representations of DiNO-B and DEiT-S on five datasets:
CIFAR-10, CIFAR-100, MNIST, F-MNIST, and ImageNet1lk. We compute the linear approximation error using
only the [CLS] token, averaged over a small subset of 50 training samples. This is sufficient to reveal block-
level similarity patterns while remaining computationally efficient. Additional results with other pretrained
vision transformers (ViT-T, ViT-S, DiNO-S, ViT-B) are provided in Section showing consistent patterns
for each model across different datasets.

Do vision transformer models exhibit block-wise similarity patterns? The results in Figure
reveal that while the similarity patterns differ across models, they remain largely consistent for the same
model across different datasets. This suggests that the similarity structure between computational blocks
is predominantly influenced by the model itself. Although the general similarity pattern remains the same,
the differences in values become more pronounced (i.e., the block structure becomes more evident) as the
complexity of the dataset increases (e.g., from MNIST to ImageNet1k). These finding aligns with observations
from [Nguyen et al.| (2020)), where DNN trained from scratch exhibit a distinctive "block structure" in their
representations, which is linked to model overparameterization. Our results extend this observation to vision
pre-trained foundation models, showing that such a structure is primarily an intrinsic property of the model.
Moreover, these consistent block-wise patterns indicate potential targets for approximation, suggesting that

Under review as submission to TMLR

CIFAR-10 CIFAR-100 ImageNetlk

DiNO-B

DEiT-8

Figure 2: Block Similarities. Block-by-block similarities in DiNO-B, and DEiT-S models across five datasets:
MNIST, F-MNIST, CIFAR-10, CIFAR-100 and ImageNetlk. Each matrix quantifies the linear approximation
error using only the [CLS] token, averaged over a small subset of 50 training samples. The matrices reveal
that the similarity between blocks is predominantly influenced by the model rather than the specific dataset.
Additional results in Section

entire blocks may be replaced with simpler transformations without substantially altering the model’s internal
representations.

Takeaway Pre-trained vision foundation models present block-wise similarity patterns that are
primarily determined by the model itself.

How does TOAST affect latent representations? We next analyze the impact of the proposed
transformations on the final block’s latent representations, which are used for downstream classification. We
approximate these blocks using a shared linear transformation applied across all tokens, estimated on a subset
of 500 training samples. For consistency, we use the same models and datasets as in Figure 2] To quantify
the effect of the approximation, following (Venkataramanan et al., 2024} [Kornblith et al. [2019) we compute
the CKA similarity between the final block representations of the original and the TOAST-approximated
model for each block k using its preceding block as input. As shown in Figure [3] the model-specific similarity
patterns re-emerge after approximation. The plots highlight more specific trends. Approximating blocks is
= Ghnao

-~ CIFAR-100
04 ImageNet-1k

DiNQO-B

DEiT-S

1 2 3 a4 5 6 7 8 9 10 11

Figure 3: Approximation vs. Representation Similarity. CKA similaritybetween the last block
representations of the original and the approximated model when approximating the i*" block.

easier on simpler tasks (e.g., image classification on MNIST or F-MNIST), yielding representations that closely
match the originals, whereas on more complex datasets (e.g., ImageNet1k or CIFAR-100), the approximated
representations deviate more from the original ones. Furthermore, the final blocks of DEiT-S exhibit high
similarity, suggesting that approximating these layers preserves the final representations, while earlier blocks
remain more critical. To provide a more intuitive view, Figure {4 visualizes the final-layer representations using

Principal Component Analysis (PCA). We compare the original representations with those obtained after
approximating the final block (10 — 11) using TOAST on F-MNIST, with colors indicating the 10 classes. The

Under review as submission to TMLR

Original TOAST

DiNO-B

DEiT-S

Figure 4: PCA Visualization. Final block representations for the original and TOAST models on F-MNIST
reveal DiNO-B’s stronger reliance on final block compared to DEiT-S.

visualization confirms that approximating the final block of DiNO-B results in noticeable deviations from the
original representations, whereas for DEiT-S the approximated representations remain highly similar. These
observations align with the CKA analysis in Figure |3 highlighting that the effect of block approximation
depends strongly on the model and its internal block structure. Additional results across other models and
datasets are provided in Section [A.2.3]

Takeaway Transformer blocks can be approximated using simple transformations, without compro-
mising representation fidelity.

Can entire transformer blocks be approximated without losing accuracy? Initial results, reported
in Table [T} support the qualitative analysis and empirically demonstrate that entire vision transformer blocks
can be effectively approximated using simpler transformations (e.g., linear projections or, in some cases, the
identity function). Such approximations reduce both the number of parameters and Giga Floating-Point
Operations (GFLOPs), thereby improving throughput (images per second), while incurring only a slight to
negligible decrease in downstream task performance. For instance, consistent with our earlier analysis, we
find that approximating the final block of DEiT-S when using ImageNetlk (e.g., approximating blocks 10 —
11 or 9 — 11 with a linear transformation) yields modest performance drops going from 73.85% to 73.78%
and 70.01%, respectively, while providing substantial efficiency gains. Importantly, we also show that even
the identity transformation, achieves competitive results, with accuracy drops as small as -0.24% and -5.44%,
respectively. However, the choice of translator naturally depends on the efficiency-accuracy trade-off: linear
translation guarantee in general most reliable accuracy—efficiency balance, whereas the identity yields the
leanest training-free approximation when maximum simplicity is required. Further methodological details and
the full evaluation are presented in Section [A1] and Section [I.2] respectively, while details on the efficiency
metrics and additional analysis on those are in Sections and respectively.

Table 1: TOAST Image Classification Performance. Performance comparison using the Identity
translator and the Linear Translator for DEiT-S and ImageNetik accross 3 seeds. The "Approx." column
specifies the blocks used for approximation, the first one represents the block whose output is used to
approximate the second block’s output. Additional results in Tables 2] and [3| and Section

Identity Translator Linear Translator
Approx. Params. Accuracy % 1 GFLOPS | imgs/s T Accuracy % 1 GFLOPS | imgs/s T
2 —4 -3.25M 63.74 +0.19(—13.69%) 4.15 7222.5 69.87 +0.14(—5.39%) 4.18 7187.6
9 — 11 -3.25M 69.83 £ 0.33(—5.44%) 4.15 7224.6 70.01 £+ 0.27(—5.20%) 4.18 7203.8
0—1 -1.62M 64.02 + 0.08(—13.31%) 4.56 6755.8 62.32 + 0.15(—15.61%) 4.59 6748.9
10 - 11 -1.62M 73.67 +0.26(—0.24%) 4.56 6751.7 73.78 £0.28(—0.10%) 4.59 6756.3
original ~ 21.81M 73.85 £ 0.39 4.97 6349.2 73.85 +£0.39 4.97 6325.6

Under review as submission to TMLR

Takeaway TOAST effectively reduces model parameters and improve model efficiency without
significantly compromising the downstream task performance.

4.2 Image Classification Performance

We evaluate TOAST on image classification tasks using pretrained models of varying sizes (ViT-L, DiN0-B, and
DEiT-8) and two benchmark datasets (CIFAR-100F and ImageNetlk). Additional results with a broader set
of models (ViT-T, ViT-$, ViT-B, ViT-L, DiNO-S, DiNO-B, DEiT-S) and datasets (MNIST, F-MNIST, CIFAR-10,
CIFAR-100C) are provided in Section While in Section we complement the quantitative evaluations
with qualitative analyses of misclassifications after block approximation, providing further insight into model
behavior under TOAST. Additional implementation details, including model and dataset specifications,
computational resources, and software tools, are provided in Tables [7] and [§] and Sections [AT.5] to [ATT.7]
Block approximations in TOAST are calculated via a shared linear, or identity, transformation applied across
all tokens and are estimated using a subset of 500 training samples. A linear classifier is then trained on top
of the frozen backbone with the Adam optimizer (learning rate 0.001), batch size 256, for 5 epochs, over 3
different seeds. This setup simulates a realistic scenario where a pretrained feature extractor is adapted to a
new dataset unseen during pretraining. However, to assess the robustness of our method, we also report the
results using the original classification heads (Section , which confirm the consistency of our findings.

Table 2: TOAST Classification Performance on ImageNetik. Image classification accuracy, GFLOPs,
and throughput for DEiT-S, DiNO-B, and ViT-L using ImageNetlk. The "Approx." column indicates the
block pairs where the first block approximates the second. Additional results using other models and datasets

are provided in Table [3] and Section

Tdentity Linear

Approx. Params. Accuracy % 1 GFLOPs | imgs/s 1 Accuracy % 1 GFLOPs | imgs/s 1
3—4,9—11 -4.88M 66.96 £ 0.34(—9.33%) 3.74 7751.4 68.39 £+ 0.13(—7.39%) 3.80 7718.4
w 3—+4,9—-10 -3.25M 69.22 £ 0.13(—6.27%) 4.15 7210.9 71.35 £ 0.22(—3.38%) 4.21 7188.4
= 2—=3 -1.62M 70.80 £ 0.05(—4.12%) 4.56 6754.2 73.19 £ 0.19(—0.88%) 4.59 6736.7
A 10 — 11 -1.62M 73.67 + 0.26(—0.24%) 4.56 6752.6 73.78 + 0.28(—0.09%) 4.59 6740.5
original 21.81M 73.85 £ 0.39 4.97 6349.2 73.85+0.39 4.97 6325.6
0—4 -26.00M 3.58 £ 0.06(—95.20%) 16.32 3230.9 27.70 £+ 0.19(—62.71%) 16.47 3227.7
m 0—-1,2—3,4—5 -19.50M 6.98 & 0.18(—90.63%) 18.34 2947.0 61.02 £ 0.36(—17.86%) 18.80 2929.6
i 0—+1,2—>3 -13.00M 13.28 £+ 0.46(—82.18%) 20.37 2703.9 70.82 £ 0.49(—4.66%) 20.67 2681.2
= 0—1 -6.50M 65.47 £0.43(—12.14%) 22.39 2506.6 73.43 £0.02(—1.15%) 22.54 2487.0
_ 5—=6 -6.50M 28.84 4+ 0.51(—61.30%) 22.39 2503.1 73.01 £ 0.41(-1.71%) 22.54 2490.6
original 86.58M 74.52 4+ 0.26 24.42 2321.3 74.52 4+ 0.26 24.42 2316.5
2 — 4,18 — 23 -80.83M 62.92 £ 0.21(—19.89%) 45.05 1654.9 67.43 £+ 0.05(—14.16%) 45.47 1652.8
17 — 23 -69.28M 66.81 £ 0.34(—14.95%) 47.70 1572.4 66.87 &+ 0.52(—14.87%) 47.90 1567.0
3—4,19 - 23 -57.74M 70.97 £ 0.42(—9.65%) 50.34 1509.9 71.50 £ 0.14(—8.98%) 50.75 1499.5
3— 4,20 — 23 -46.19M 73.49 £ 0.18(—6.44%) 52.98 1440.4 74.03 £ 0.43(—5.76%) 53.39 1436.8
i 3—>4,21 — 23 -34.64M 75.80 £ 0.26(—3.50%) 55.62 1377.2 76.30 £ 0.14(—2.86%) 56.03 1345.6
fal 7— 8,15 - 16 -23.09M 76.81 £ 0.28(—2. 21%) 58.26 1318.2 77.32 £ 0.48(—1.56%) 58.67 1316.4
16 — 17,22 — 23 -23.09M 77.64 £0.32(—1.15%) 58.26 1318.8 77.64 £ 0.02(—1.16%) 58.67 1312.3
3—4 -11.55M 77.32 £0.29(—1. 57%) 60.90 1269.2 78.36 + 0.26(—0.24%) 61.11 1270.0
22 — 23 -11.55M 78.32 4+ 0.09(—0.29%) 60.90 1267.5 78.21 £ 0.19(—0.43%) 61.11 1270.9
original 304.35M 78.55 +0.20 63.54 1219.8 78.55 +£0.20 63.54 1225.2

Are TOAST results competitive? As shown in Tables [2] and [3] TOAST consistently reduces model
size and GFLOPs while maintaining, and in some cases improving, image classification accuracy. This
aligns with our representational analyses in Section [{:1} for instance, approximating the final block of
DEiT-S produces latent representations nearly identical to the original (Figures |3| and , making it an ideal
candidate for approximation. Even when multiple consecutive blocks are approximated (e.g., 9—11), models
maintain performance comparable to or exceeding the original while significantly reducing parameters. This
demonstrates that a simple linear transformation, or even the identity in certain cases, is sufficient to capture
the functionality of full transformer blocks without additional training, provided the transformation is shared

Under review as submission to TMLR

across all tokens. Additionally, efficiency gains are notable: throughput (imgs/s) increases while GFLOPs
decreases, highlighting practical benefits for deployment, as also shown in Section Additional results
across other models (DiNO-B, ViT-L) and datasets confirm that TOAST generalizes across architectures
and scales (Section [A.2.2)). Finally, while approximations are easier for simpler datasets (e.g., CIFAR-100F),
TOAST still achieves meaningful compression with minimal accuracy loss on complex datasets like ImageNet 1k.
Additional results across models and datasets are provided in Tables[I2]to[I5} To assess scalability, we applied
TOAST to ViT-L. Approximating selected blocks, e.g., 17 — 23, reduces the parameter count by 69.3M,
lowers GFLOPs from 63.54 to 47.79, and increases throughput from 1223.1 to 1578.8 imgs/s, while incurring
a minimal accuracy drop of 1.16%. This shows TOAST’s utility in balancing substantial computational
savings with a modest performance trade-off, even in large models.

Table 3: TOAST Classification Performance on CIFAR-100F. Image classification accuracy, GFLOPs,
and throughput for DEiT-S, DiNO-B, and ViT-L using CIFAR-100F. The "Approx." column indicates the block
pairs where the first block approximates the second. Additional results using other models and datasets are

provided in Section @

Identity Linear

Approx. Params. Accuracy % 1 GFLOPs | imgs/s 1 Accuracy % 1 GFLOPs | imgs/s
354,911 -4.88M 68.48 +0.34(—3.44%) 3.74 7755.1 70.64 £ 0.37(—0.39%) 3.80 7713.7
0 911 -3.25M 72.28 + 0.36(-+1.92%) 415 72266 72.04 £ 0.42(+1.57%) 418 6791.7
5 8—9 -1.62M 71.34 £ 0.10(4+0.60%) 4.56 6755.2 70.80 + 0.12(—0.17%) 4.59 6739.9
A 9 — 10 -1.62M 71.66 & 0.39(+1.04%) 4.56 6692.1 71.49 £ 0.20(+0.80%) 4.59 6741.3
original 21.81M 70.92 +0.18 4.97 6349.0 70.92 +0.18 4.97 6249.4
0—4 -26.00M 18.29 + 0.86(—79.09%) 16.32 3233.8 62.25 +0.54(—28.83%) 16.47 3204.9
m 0—1,2-34-5 -19.50M 29.05+ 0.31(—66.79%) 18.34 2943.1 79.06 + 0.27(—9.60%) 18.80 2922.6
& 0—-1,2—3 -13.00M 33.25 £ 0.18(—61.99%) 20.37 2705.6 84.18 + 0.18(—3.76%) 20.67 2690.1
= 0—1 -6.50M 78.83 £0.22(—9.87%) 22.39 2492.8 86.64 + 0.37(—0.94%) 22.54 2493.8
a 23 -6.50M 47.51 & 0.52(—45.68%) 22.39 2484.2 86.06 + 0.20(—1.60%) 22.54 2484.6
original 86.58M 87.46 +0.04 24.42 2315.5 87.46 £ 0.04 24.42 2317.3
2 —4,18 — 23 -80.83M 74.41 +0.44(—13.79%) 45.05 1655.7 84.02 £ 0.39(—2.66%) 45.47 1649.6
17 — 23 -69.28M 85.32 £ 0.45(—1.16%) 47.69 1578.8 84.55 £ 0.44(—2.05%) 47.90 1552.1
3—4,19 — 23 -57.74M 84.23 £ 0.08(—2.43%) 50.34 1503.6 85.81 + 0.39(—0.59%) 50.75 1497.4
3—4,20 — 23 -46.19M 84.68 £ 0.18(—1.90%) 52.98 1445.2 86.30 + 0.11(—0.03%) 53.39 1431.0
A 20 — 23 -34.64M 86.61 £+ 0.07(+0.33%) 55.62 1381.2 86.55 £ 0.22(+0.27%) 55.82 1372.6
% 34,21 - 23 -34.64M 84.86 £ 0.28(—1.70%) 55.62 1376.7 86.37 £ 0.28(+0.06%) 56.03 1372.7
= 20 — 22 -23.09M 86.30 £ 0.23(—0.03%) 58.26 1317.5 86.52 + 0.12(40.24%) 58.47 1314.6
3—4,21 — 22 -23.09M 84.58 £ 0.19(—2.02%) 58.26 1315.8 86.20 + 0.11(—0.14%) 58.67 1317.6
20 — 21 -11.55M 86.44 £ 0.24(+0.14%) 60.90 1268.5 86.39 £ 0.08(+0.08%) 61.11 1266.7
21 — 22 -11.55M 86.55 £ 0.01(+0.26%) 60.90 1270.7 86.72 + 0.24(+0.46%) 61.11 1269.2
original 304.35M 86.32 £ 0.08 63.54 1223.1 86.32 £ 0.08 63.54 1224.3

Takeaway Approximating selected blocks enables efficiency gains with minimal impact on the accuracy.

Are 500 training samples enough? We study the sensitivity of block approximation to the number
of training samples using DiNO-B and DEiT-S on ImageNetik. As shown in Figure[5] performance typically
plateaus quickly: 500 samples are sufficient to obtain stable and reliable approximations. Increasing the
sample count beyond this threshold provides only marginal gains, while substantially fewer samples lead to
noticeable degradation. Interestingly, when the representational spaces of consecutive blocks are already
highly aligned, even as few as 10 or 50 samples suffice to achieve competitive approximations. Conversely, for
blocks that are harder to approximate, such as the early layers of DEiT-S (e.g., 0—1), even 4000 samples are
insufficient to estimate a linear transformation that maintains competitive performance. We highlight that
these results are obtained on ImageNet1lk, which contains 1000 classes. The 500 samples represent only a
small subset of the class space, yet reliable approximations are still achieved. This indicates that TOAST
primarily captures the block-level structure of representations rather than requiring exhaustive coverage of all
classes. Consequently, TOAST could be practical also in scenarios where a large labeled datasets is limited.

Under review as submission to TMLR

— = No Approximation
—e— 0-1
—— 12
—.— 23
—o— 354
4-5
—o— 596
—— 657
- 78
—o— 829
9-10
~o— 10-11

o
N
N

e
S
N}

e
~
o

Accuracy
o
&

0.60

Figure 5: Sample Size Ablation. Classification accuracy as a function of the number of training samples
used for approximating different layers of DiNO-B and DEiT-S with a linear transformation using ImageNet1k.
Accuracy stabilizes after approximately 500 samples.

Takeaway A small number of samples is sufficient to achieve stable and reliable representations when
approximating transformer blocks, balancing efficiency and accuracy.

What if a more complex transformation is used? We evaluate whether deeper approximators improve
downstream task performance. Specifically, we compare TOAST (Identity and Linear) to MultiLayer
Perceptron (MLP) and Residual MLP, trained for 300 steps with Adam (learning rate 10~3). These more
complex transformation, as for Identity and Linear, are applied across all tokens, and estimated using a
subset of 500 training samples.

Table 4: Transformations Comparison. Classification accuracy on CIFAR-100F and ImageNet1k using
ViT-L. The "Approx." column specifies the block mapping (output of the first block is used to approximate
the output of the second). MLP and Res-MLP are trained approximators, while Identity and Linear are
closed-form and training-free. Results are averaged over three seeds.

Accuracy 1

Approx. Params. Identity Linear MLP Res-MLP
17 — 23 -69.28M 84.58 £0.19 86.20+0.11 84.83+0.31 86.49+0.08
3—4,19— 23 -57.74M 84.23+0.08 85.81+0.39 83.63+0.42 85.58+0.06
§ 3—4,20 - 23 -46.19M 84.68+0.18 86.30+0.11 84.36+0.48 86.10+0.39
Z 20 — 23 -34.64M 86.61 £0.07 86.55+0.22 84.68+0.39 86.19+0.02
£ 344,21 -23 -34.64M 84.86+0.28 86.37+£0.28 84.90+0.71 86.10+0.37
—
© 20 — 22 -23.09M 86.30+0.23 86.52+0.12 84.97+£0.18 86.71+0.28
3—+4,21 522 -23.09M 84.58+0.19 86.20+0.11 84.83+0.31 86.49+0.08
20 — 21 -11.55M 86.44+0.24 86.39+0.08 84.40+0.70 86.63 = 0.06
21 — 22 -11.55M 86.55+£0.01 86.72+0.24 85.20+0.26 86.82+0.31
original 304.35M 86.32+0.08 86.32+0.08 86.32+0.08 86.32+0.08
17 — 23 -69.28M 84.58 £0.19 86.20+0.11 84.83+0.31 86.49 & 0.08
3—4,19—23 -57.74M 70.97+042 71.50+0.14 66.19+0.17 70.75+0.07
g 3—4,20 - 23 -46.19M 73.49+0.18 74.03+043 69.49+0.24 73.68+0.12
% 20 — 23 -34.64M 74.45+£0.07 74.45+0.24 70.19+£0.30 74.46+0.22
W 354,21 23 -34.64M 7580+026 76.30+£0.14 73.23+£0.29 76.14+0.22
g
= 20 — 22 -23.09M 75.49+0.19 74.84+0.21 70.56+£0.25 75.59+0.18
3—4,21 - 22 -23.09M 76.25+0.02 76.61+0.29 73.52+0.40 76.43+0.21
20 — 21 -11.55M 77.00+£0.27 77.19+0.25 72.72+0.31 76.24+0.21
21 — 22 -11.55M 77.244+0.28 77.06+0.24 74.20+£0.48 77.14+0.27
original 304.35M 78.55+0.20 86.32+0.20 86.32+0.20 86.32+0.20

Under review as submission to TMLR

Results in Table [4] show a consistent trend for ViT-L on both ImageNetilk and CIFAR-100F: the linear
transformation provides the most reliable trade-off across datasets. On CIFAR-100F, linear often achieves
the best or near-best accuracy (e.g., 21—22: 86.72% vs. 86.82% for Res-MLP and 85.20% for MLP), while
remaining training-free, thus more efficient. On ImageNet1k, the gap becomes even clearer: for the same
blocks linear reaches 77.24%, while Res-MLP and MLP reach 77.14% and 74.20%, respectively. Additionally,
also Linear obtain competitive results. TOAST operates in closed form, requires no optimization, and
consistently achieves strong efficiency—accuracy trade-offs. These findings confirm that a simple linear
transformation is sufficient to approximate transformer blocks in most settings, with deeper translators
offering little benefit despite their higher cost.

Takeaway TOAST consistently matches or outperforms deeper trained approximators while requiring
no gradient-based training.

4.3 TOAST Applicability to other Tasks or Domains

Table 5: TOAST Text Classification Performance on AG News. Text classification accuracy, GFLOPs,
and throughput for ModernBERT-B using AG News. The "Approx." column specifies the block mapping (output
of the first block is used to approximate the output of the second). MLP is a trained approximators, while
Linear is closed-form and training-free. Results are averaged over three seeds.

Linear MLP

Approx. Params | Accuracy% t GFLOPs | img/s T Accuracy% 1 GFLOPs | token/s 1
11 — 21 92.82M 0.81 £0.05 12.7 2264.0 0.73 £0.00 12.68 2216.50
48,11 = 14,18 — 21 92.82M 0.82 £ 0.07 12.7 2220.7 0.73 £0.01 12.68 2155.16
4—7,18—21 109.68M 0.82 £0.07 15.9 1803.9 0.71£0.02 15.85 1771.80
4 -8 126.54M 0.86 £+ 0.02 19.0 1636.0 0.82 £ 0.01 19.03 1632.65
11 — 14 132.16M 0.86 £ 0.02 20.1 1544.3 0.82+£0.01 20.08 1540.23
18 — 21 132.16M 0.85 £ 0.02 20.1 1472.8 0.82+£0.01 20.08 1467.56
4—5 143.40M 0.88 £0.00 22.2 1380.3 0.81 +£0.01 22.20 1384.42
11 — 12 143.40M 0.87 £ 0.02 22.2 1378.8 0.82+£0.01 22.20 1394.63
20 — 21 143.40M 0.87 £ 0.02 22.2 1340.2 0.84 £ 0.00 22.20 1332.27
original 149.01M 0.88 £ 0.00 23.25 1337.25 0.88 £0.00 23.25 1347.46

We further evaluate TOAST beyond vision classifica- Table 6: Segmentation Performance. mIoU results

tion by applying it to text classification and seman- for each single configuration using ViT-S and DiNO-B.
tic segmentation tasks. Additional implementation

details, including model and dataset specifications, mloU 1
computational resources, and software tools, are pro- - X

vided in Tables [/ and [§] and Sections [A-T.5] to [AT1.7] ViT-s DiNO-B
with complete results in Section For text Approx. Linear MLP Linear MLP
classification, we use ModernBERT-B on the AG News 0—1 0.27 0.26 0.29 0.29
dataset, while for segmentation we employ the same 12 0.29 0.29 0.29 0.29
backbone on the SceneParse150 dataset. For both 2—3 0.30 0.30 0.29 0.29
domains, we adopt the same setup as in the vision 3—>14 0.30 0.29 0.29 0.29
experiments: block approximations are implemented 4—5 030 029 029 029
via a shared linear map, identity, or small MLP trans- 56 0.28 0.27 0.29 0.29

6 —7 0.28 0.27 0.29 0.29
7— 8 0.29 0.28 0.26 0.23
8§ =9 0.28 0.27 0.28 0.27
9 — 10 0.29 0.29 0.27 0.26

formation applied across all tokens, estimated using
a subset of 500 training samples. In the text domain,
a linear classifier is trained on top of the frozen back-

bone for 5. epochs over 3' seeds. For segmentation, a 10— 11 0.30 0.29 0.27 0.26
segmentation head is trained on the frozen backbone —
for 10 epochs over 3 seeds. The results in Table original 0.31 0.29

show that, in this setting as well, the linear transfor-

10

Under review as submission to TMLR

mation outperforms the more complex MLP. Moreover, up to 10 blocks can be approximated (i.e., 11 — 21),
substantially reducing GFLOPs, improving throughput, and decreasing model size, while incurring only a
minimal drop in accuracy. Results in Table [6] further demonstrate that a linear transformation is sufficient
even for a more complex task such as segmentation, indicating that appropriately selecting which layers to
approximate enables model size reduction with minimal impact on downstream accuracy.

Takeaway TOAST extends beyond vision and standard classification, demonstrating broader applica-
bility across domains.

5 Limitations and future work

While TOAST efficiently approximates transformer blocks, our current investigation has primarily focused on
vision transformer architectures and their application to classification tasks with preliminary results also
extending to segmentation and text classification. Future research will explore the applicability of TOAST
to other modalities and to diverse downstream tasks (e.g., image reconstruction). Such an expansion will
be crucial for testing the universality of the observed block-similarity phenomena and assessing TOAST’s
adaptability. Furthermore, we aim to expand the analysis of these block-level similarities. This involves
investigating redundancies at finer granularities, such as within individual attention heads or feed-forward
layers, and consistently and developing more principled and reliable metrics for automatically selecting which
blocks to approximate. The heuristic used in the current work, while effective, is not yet fully accurate, and
improving it could enable more consistent identification of approximation-friendly layers with minimal impact
on downstream performance. Such advancements may lead to more refined, context-aware approximation
strategies that further enhance model efficiency.

6 Conclusion

In this work, we first analyze the emergence of consistent block-wise representation similarities within
pretrained transformer models and then propose a method to leverage these similarities to obtain smaller and
more efficient yet performant models. To this end, we propose Transformer Optimization using Adaptive and
Simple Transformations (TOAST), a novel method for easily approximate entire transformer blocks using a
simple transformation, without requiring additional training or fine-tuning. Our extensive empirical evaluations
across multiple pretrained vision models and datasets validate that TOAST significantly reduces model
parameters while maintaining, and sometimes even improving, downstream task performance. Furthermore,
TOAST’s straightforward linear approach often achieves better results than existing strategies like block
skipping, and can be more effective than complex, trained approximations. TOAST thus offers a practical
and efficient method for streamlining foundation models, making them more computationally accessible, and
towards deployment in resource-constrained scenarios such as on-device settings.

References

Shipeng Bai, Jun Chen, Xintian Shen, Yixuan Qian, and Yong Liu. Unified data-free compression: Pruning
and quantization without fine-tuning. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pp. 5876-5885, 2023.

Rubén Ballester, Carles Casacuberta, and Sergio Escalera. Topological data analysis for neural network
analysis: A comprehensive survey. arXiv preprint arXiv:2812.05840, December 2023.

Serguei Barannikov, Ilya Trofimov, Nikita Balabin, and Evgeny Burnaev. Representation topology divergence:
A method for comparing neural network representations. arXiv preprint arXiv:2201.00058, 2021.

Lucas Beyer, Xiaohua Zhai, and Alexander Kolesnikov. Better plain vit baselines for imagenet-1k, 2022.
Irene Cannistraci, Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, and Emanuele

Rodola. Bootstrapping parallel anchors for relative representations. In Krystal Maughan, Rosanne Liu, and

11

Under review as submission to TMLR

Thomas F. Burns (eds.), The First Tiny Papers Track at ICLR 2023, Tiny Papers @ ICLR 2023, Kigali,
Rwanda, May 5, 2023. OpenReview.net, 2023. URL https://openreview.net/pdf7id=VBuUL2IWlq.

Irene Cannistraci, Luca Moschella, Marco Fumero, Valentino Maiorca, and Emanuele Rodola. From bricks
to bridges: Product of invariances to enhance latent space communication. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=vngVydDWft.

Donato Crisostomi, Irene Cannistraci, Luca Moschella, Pietro Barbiero, Marco Ciccone, Pietro Lio, and
Emanuele Rodola. From charts to atlas: Merging latent spaces into one. In NeurIPS 2023 Workshop on
Symmetry and Geometry in Neural Representations, 2023. URL https://openreview.net/forum?id=
ZFu7CPtznY.

MohammadReza Davari, Stefan Horoi, Amine Natik, Guillaume Lajoie, Guy Wolf, and Eugene Belilovsky.
Reliability of cka as a similarity measure in deep learning. arXiv preprint arXiv:2210.16156, 2022.

Li Deng. The mnist database of handwritten digit images for machine learning research. IEEE Signal
Processing Magazine, 29(6):141-142, 2012.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An
image is worth 16x16 words: Transformers for image recognition at scale. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
URL https://openreview.net/forum?id=YicbFdNTTy.

Marco Fumero, Marco Pegoraro, Valentino Maiorca, Francesco Locatello, and Emanuele Rodola. Latent
functional maps: a spectral framework for representation alignment. In A. Globerson, L. Mackey, D. Belgrave,
A. Fan, U. Paquet, J. Tomczak, and C. Zhang (eds.), Advances in Neural Information Processing Systems,
volume 37, pp. 66178-66203. Curran Associates, Inc., 2024. URL https://proceedings.neurips.cc/
paper_files/paper/2024/file/79be41d858841037987964e3f5caf76d-Paper-Conference.pdf.

Harold Hotelling. Relations between two sets of variates. Breakthroughs in statistics: methodology and
distribution, pp. 162-190, 1992.

Max Klabunde, Tobias Schumacher, Markus Strohmaier, and Florian Lemmerich. Similarity of neural network
models: A survey of functional and representational measures. arXiv preprint arXiv:2305.06529, 2023.

Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural network
representations revisited. In International Conference on Machine Learning, pp. 3519-3529. PMLR, 2019.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Ruslan Kuprieiev, skshetry, Dmitry Petrov, Pawel Redzynski, Peter Rowlands, Casper da Costa-Luis,
Alexander Schepanovski, Ivan Shcheklein, Batuhan Taskaya, Gao, Jorge Orpinel, David de la Iglesia Castro,
Fébio Santos, Aman Sharma, Dave Berenbaum, Zhanibek, Dani Hodovic, daniele, Nikita Kodenko, Andrew
Grigorev, Earl, Nabanita Dash, George Vyshnya, Ronan Lamy, maykulkarni, Max Hora, Vera, and Sanidhya
Mangal. Dvc: Data version control - git for data & models, 2022. URL https://doi.org/10.5281/
zenodo. 7083378l

Henry Kvinge, Grayson Jorgenson, Davis Brown, Charles Godfrey, and Tegan Emerson. Internal represen-
tations of vision models through the lens of frames on data manifolds. In NeurIPS 2023 Workshop on
Symmetry and Geometry in Neural Representations, 2022.

Zorah L&hner and Michael Moeller. On the direct alignment of latent spaces. In Marco Fumero,
Emanuele Rodold, Clementine Domine, Francesco Locatello, Karolina Dziugaite, and Caron Mathilde
(eds.), Proceedings of UniReps: the First Workshop on Unifying Representations in Neural Models,
volume 243 of Proceedings of Machine Learning Research, pp. 158-169. PMLR, 15 Dec 2024. URL
https://proceedings.mlr.press/v243/lahner24a.html.

12

https://openreview.net/pdf?id=VBuUL2IWlq
https://openreview.net/forum?id=vngVydDWft
https://openreview.net/forum?id=ZFu7CPtznY
https://openreview.net/forum?id=ZFu7CPtznY
https://openreview.net/forum?id=YicbFdNTTy
https://proceedings.neurips.cc/paper_files/paper/2024/file/79be41d858841037987964e3f5caf76d-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/79be41d858841037987964e3f5caf76d-Paper-Conference.pdf
https://doi.org/10.5281/zenodo.7083378
https://doi.org/10.5281/zenodo.7083378
https://proceedings.mlr.press/v243/lahner24a.html

Under review as submission to TMLR

Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang, and Jian Ren.
EfficientFormer: Vision transformers at MobileNet speed. In Advances in Neural Information Processing
Systems, 2022.

Zhu Liao, Victor Quétu, Van-Tam Nguyen, and Enzo Tartaglione. Can unstructured pruning reduce the
depth in deep neural networks? In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 1402-1406, 2023.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large language
models. Advances in neural information processing systems, 36:21702-21720, 2023.

Valentino Maiorca, Luca Moschella, Antonio Norelli, Marco Fumero, Francesco Locatello, and Emanuele
Rodola. Latent space translation via semantic alignment. Advances in Neural Information Processing
Systems, 36, 2024.

Ari Morcos, Maithra Raghu, and Samy Bengio. Insights on representational similarity in neural networks
with canonical correlation. Advances in Neural Information Processing Systems, 31, 2018.

Luca Moschella, Valentino Maiorca, Marco Fumero, Antonio Norelli, Francesco Locatello, and Emanuele
Rodola. Relative representations enable zero-shot latent space communication. In Proc. ICLR, 2023.

Thao Nguyen, Maithra Raghu, and Simon Kornblith. Do wide and deep networks learn the same things?
uncovering how neural network representations vary with width and depth. arXiv preprint arXiv:2010.15327,
2020.

Antonio Norelli, Marco Fumero, Valentino Maiorca, Luca Moschella, Emanuele Rodola, and Francesco
Locatello. Asif: Coupled data turns unimodal models to multimodal without training. Advances in Neural
Information Processing Systems, 36:15303-15319, 2023.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023.

Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz Dudziak, Hongsheng Li, Georgios Tzimiropoulos,
and Brais Martinez. EdgeViTs: Competing light-weight CNNs on mobile devices with vision transformers.
In European Conference on Computer Vision (ECCV), 2022.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural
language supervision. In International conference on machine learning, pp. 8748-8763. PMLR, 2021.

Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha Sohl-Dickstein. Svcca: Singular vector canonical
correlation analysis for deep learning dynamics and interpretability. Advances in neural information
processing systems, 30, 2017.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large Scale
Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115(3):211-252, 2015.
doi: 10.1007/s11263-015-0816-y.

Hassan Sajjad, Fahim Dalvi, Nadir Durrani, and Preslav Nakov. On the effect of dropping layers of pre-trained
transformer models. Computer Speech € Language, 77:101429, 2023.

Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade Gordon, Ross Wightman, Mehdi Cherti, Theo
Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick Schramowski, Srivatsa Kundurthy,
Katherine Crowson, Ludwig Schmidt, Robert Kaczmarczyk, and Jenia Jitsev. Laion-5b: An open large-
scale dataset for training next generation image-text models. In S. Koyejo, S. Mohamed, A. Agarwal,
D. Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35,
pp. 25278-25294. Curran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/
paper/2022/file/a1859debfb3b59d094f3504d5ebb6c25-Paper-Datasets_and_Benchmarks.pdf|

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/a1859debfb3b59d094f3504d5ebb6c25-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a1859debfb3b59d094f3504d5ebb6c25-Paper-Datasets_and_Benchmarks.pdf

Under review as submission to TMLR

Sidak Pal Singh and Dan Alistarh. = Woodfisher: Efficient second-order approximation for neu-
ral network compression. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin
(eds.), Advances in Neural Information Processing Systems, volume 33, pp. 18098-18109. Cur-
ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
d1ff1ec86b62cd5£3903ff19c3a326b2-Paper. pdf.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for large
language models. arXiv preprint arXiv:2306.11695, 2023.

Shengkun Tang, Yaqing Wang, Zhenglun Kong, Tianchi Zhang, Yao Li, Caiwen Ding, Yanzhi Wang, Yi Liang,
and Dongkuan Xu. You need multiple exiting: Dynamic early exiting for accelerating unified vision language
model. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10781-10791, 2023.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Hervé Jégou.
Training data-efficient image transformers & distillation through attention. arxiv 2020. arXiv preprint
arXiv:2012.12877, 2(3), 2020.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and Herve
Jegou. Training data-efficient image transformers & distillation through attention. In Marina Meila
and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine Learning, volume

139 of Proceedings of Machine Learning Research, pp. 10347-10357. PMLR, 18-24 Jul 2021. URL
https://proceedings.mlr.press/v139/touvron2la.html.

Lucrezia Valeriani, Diego Doimo, Francesca Cuturello, Alessandro Laio, Alessio Ansuini, and Alberto
Cazzaniga. The geometry of hidden representations of large transformer models. Advances in Neural
Information Processing Systems, 36, 2024.

Andreas Veit and Serge Belongie. Convolutional networks with adaptive inference graphs. In Proceedings of
the European Conference on Computer Vision (ECCYV), September 2018.

Andreas Veit, Michael J Wilber, and Serge Belongie. Residual networks behave like ensembles of relatively
shallow networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett (eds.), Advances in Neural
Information Processing Systems, volume 29. Curran Associates, Inc., 2016. URL https://proceedings|
neurips.cc/paper_files/paper/2016/file/37bc2f75bf1bcfe8450ala41c200364c-Paper . pdf.

Shashanka Venkataramanan, Amir Ghodrati, Yuki M Asano, Fatih Porikli, and Amir Habibian. Skip-
attention: Improving vision transformers by paying less attention. In The Twelfth International Conference
on Learning Representations, 2024. URL https://openreview.net/forum?id=vI95kcLAoU.

Guo-Hua Wang and Jianxin Wu. Practical network acceleration with tiny sets. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023.

Benjamin Warner, Antoine Chaffin, Benjamin Clavié, Orion Weller, Oskar Hallstrém, Said Taghadouini,
Alexis Gallagher, Raja Biswas, Faisal Ladhak, Tom Aarsen, et al. Smarter, better, faster, longer: A modern
bidirectional encoder for fast, memory efficient, and long context finetuning and inference. In Proceedings
of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp.
2526-2547, 2025.

Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie, Larry S. Davis, Kristen Grauman, and
Rogerio Feris. Blockdrop: Dynamic inference paths in residual networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2018.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms. arXiv preprint arXiv:1708.07747, 2017.

Ji Xin, Raphael Tang, Jaejun Lee, Yaoliang Yu, and Jimmy Lin. Deebert: Dynamic early exiting for
accelerating bert inference. arXiv preprint arXiv:2004.12993, 2020.

14

https://proceedings.neurips.cc/paper_files/paper/2020/file/d1ff1ec86b62cd5f3903ff19c3a326b2-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/d1ff1ec86b62cd5f3903ff19c3a326b2-Paper.pdf
https://proceedings.mlr.press/v139/touvron21a.html
https://proceedings.neurips.cc/paper_files/paper/2016/file/37bc2f75bf1bcfe8450a1a41c200364c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2016/file/37bc2f75bf1bcfe8450a1a41c200364c-Paper.pdf
https://openreview.net/forum?id=vI95kcLAoU

Under review as submission to TMLR

Fang Yu, Kun Huang, Meng Wang, Yuan Cheng, Wei Chu, and Li Cui. Width & depth pruning for vision
transformers. In Proc. AAAIL 2022.

Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario Lucic,
Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, et al. A large-scale study of
representation learning with the visual task adaptation benchmark. arXiv preprint arXiv:1910.04867, 2019.

Hanxiao Zhang, Yifan Zhou, and Guo-Hua Wang. Dense vision transformer compression with few samples.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp.
15825-15834, June 2024.

Minjia Zhang and Yuxiong He. Accelerating training of transformer-based language models with progressive
layer dropping. Advances in neural information processing systems, 33:14011-14023, 2020.

Xiang Zhang, Junbo Jake Zhao, and Yann LeCun. Character-level convolutional networks for text classification.
In NIPS, 2015.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Semantic
understanding of scenes through the ade20k dataset. arXiv preprint arXiv:1608.05442, 2016.

Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela Barriuso, and Antonio Torralba. Scene parsing
through ade20k dataset. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017.

Wangchunshu Zhou, Canwen Xu, Tao Ge, Julian McAuley, Ke Xu, and Furu Wei. Bert loses patience: Fast
and robust inference with early exit. Advances in Neural Information Processing Systems, 33:18330-18341,
2020.

15

Under review as submission to TMLR

A Appendix

A.1 Implementation details

This section details the experiments conducted in Section [4) providing information to reproduce them.
Additionally, the anonymized code is available here.

A.1.1 Models and Datasets
Table [7] contains the full list of the pretrained models, while Table [§] contains dataset information.

Table 7: Pretrained models details. Details of the pretrained feature extractors with their HuggingFace
key, their alias, and their latent space dimensionality.

Modality HuggingFace Model Name Alias Enc. Dim
WinKawaks/vit-tiny-patch16-224 ViT-T (Dosovitskiy et al.| |2021) 192
WinKawaks/vit-small-patch16-224 ViT-8 (Dosovitskiy et al.|[2021) 384
facebook/dinov2-small DiNO-S (Oquab et al.|[2023) 384

Vision facebook/deit-small-patch16-224 DEiT-S (Touvron et al.|[2020) 384
google/vit-base-patch16-224 ViT-B (Dosovitskiy et al.|[2021) 768
facebook/dinov2-base DiNO-B (Oquab et al.|[2023) 768
laion/CLIP-ViT-B-16-laion2B-s34B-b88K OpenCLIP-ViT-B (Zhai et al.| 2019) 768
google/vit-large-patch16-224 ViT-L (Dosovitskiy et al.|[2021) 1024

Text answerdotai/ModernBERT-base ModernBERT-B (Warner et al.||2025) 768

Table 8: Dataset details. Details of the HuggingFace datasets used in the classification and reconstruction
experiments, with the associated number of classes.

Modality Name Alias # Classes
MNIST (Deng, [2012]) MNIST 10
Fashion-MNIST (Xiao et al., [2017) F-MNIST 10
CIFAR-10 (Krizhevsky et al., [2009]) CIFAR-10 10

Vision CIFAR-100 (coarse) (Krizhevsky et al.,|2009) CIFAR-100C 20
CIFAR-100 (fine) (Krizhevsky et al.l [2009) CIFAR-100F 100
SceneParsel50 (Zhou et al.; [2017} [2016)) SceneParse150 150
Imagenet-1k (Russakovsky et al., 2015) ImageNetlk 1000

Text AG News |Zhang et al.| (2015) AG News 4

A.1.2 Approximators

The first implementation, referred to as the Res-MLP, is composed of two normalization layers and a
feedforward submodule. The first layer normalization processes the input tensor, followed by a feedforward
submodule comprising a linear transformation, a SiLU activation, a dropout layer, and a final linear
transformation. The output of the feedforward submodule is added to the normalized input via a residual
connection. This sum is then passed through the second normalization layer to produce the final output. The
second implementation, referred to as the MLP, is a simplified MLP that employs a sequential architecture
with a first linear transformation that reduces the input dimensionality to half of the target dimension,
followed by a GELU activation function for smooth non-linearity, and a final linear transformation that
restores the reduced features to match the target dimensionality. Refer to Listings [I] and [2| for the code
snippet of the two translators.

16

https://anonymous.4open.science/r/layskip-27A3/

Under review as submission to TMLR

Listing 1: Python Code Snippet for the Res-MLP translator

class ResMLP (nn.Module):
def __init__(self, num_features: int, dropout_p: float):
super () .__init__Q)

self .norml = nn.LayerNorm(num_features)
self .norm2 = nn.LayerNorm(num_features)

self .ff = nn.Sequential(
nn.Linear (num_features, num_features),
nn.SiLU(),
nn.Dropout (p=dropout_p),
nn.Linear (num_features, num_features),

)

def forward(self, x: torch.Tensor) -> torch.Tensor:
x_normalized = self.normi(x)
x_transformed = self.ff(x_normalized)

return self.norm2(x_transformed + x_normalized)

Listing 2: Python Code Snippet for the MLP translator

translation = nn.Sequential(
nn.Linear(x.size (1), y.size(1) // 2),
nn.GELU(),

nn.Linear(y.size (1) // 2, y.size (1)),

A.1.3 Metric Ablation

We introduce linear approximation error as a simple, stable, and sample-efficient criterion for identifying
redundant transformer blocks, offering a practical alternative for guiding block approximation. This metric
measures how well the representation of a later block can be reconstructed from an earlier one through a
least-squares projection, providing a direct estimate of how much additional structure the skipped layers
contribute. Importantly, the error can be estimated using as few as 50 samples producing substantially more
stable and interpretable rankings compared to other metrics.

Table 9: Top-5 Block Approximation Recommendation. Top 5 recommended blocks to be approximated
based on linear approximation error using DEiT-S and CIFAR-100F.

Rank Approx # Layers Predicted Error Accuracy %

1 9—10 1 0.14 71.69 £ 0.11
2 10 —» 11 1 0.18 71.17+£0.19
3 8§ —9 1 0.23 70.83 £0.13
4 9—11 2 0.25 71.14 £ 0.15
5 8 — 10 2 0.26 71.06 +£0.19
- original 0 - 71.1

As shown in Table[0] linear approximation error correlates strongly with the actual accuracy impact of skipping
or approximating a block range: blocks with the lowest error consistently incur minimal or no downstream
performance degradation. This makes the metric both computationally lightweight and practically reliable
for identifying redundant or compressible transformer regions.

To further validate this choice, we conduct an ablation comparing several candidate similarity metrics (e.g.,
cosine distance, MSE, Euclidean distance, and CKA) and evaluate how well each predicts the true accuracy
drop after approximation. Results, summarized in Table [I0] show that linear approximation error achieves

17

Under review as submission to TMLR

the most consistent performance across architectures, with competitive or superior Precision@5 and Recall@5
scores. Notably, metrics such as cosine distance and Euclidean distance exhibit behavior that is highly
model-dependent, while CKA performs well in some cases but is less stable across architectures and budgets.

Table 10: Block Selection Strategy Ablation. Ranking evaluation metrics for approximation quality
prediction on CIFAR-100 using DEiT-S, DiNO-S, and DiNO-B. Precision@5 and Recall@5 are shown for each
model.

DEiT-S DiNO-S DiNO-B Mean
P@5 R@5 P@5 R@5 P@5 R@5 P@5 RQ5
Linear Error 0.6 0.6 0.6 0.6 0.6 0.6 0.60 0.60

Cosine 1.0 1.0 0.4 0.4 0.2 0.2 0.53 0.53
CKA 0.6 0.6 0.6 0.6 0.4 0.4 0.53 0.53
MSE 0.0 0.0 0.4 0.4 0.6 0.6 0.33 0.33

Euclidean 0.8 0.8 0.4 0.4 0.4 0.4 053 0.53

Overall, this ablation highlights that linear approximation error provides the best trade-off between stability,
computational cost, and predictive fidelity, making it a strong default metric for block selection in transformer
approximation.

A.1.4 Block Selection Pseudocode

Algorithm 1 Identify Top-k Layer Skip Configurations

Require: Model encoder M with L layers, dataset D, number of top configurations k, skip budget b
(optional)
Ensure: Top-k skip configurations S = {(s1,¢€1),...,(sk,€x)}
1: Extract layer representations: H; < encode(M, D, layer;) for i € [0, L]
2: Initialize error matrix E € REXE
3: fori=0to L—1do
4 for j=i+1to L do
5: E; ; < LinearApproximationError(H;, H;)
6 end for
7. end for
8: Initialize candidate list C < ()
9: fori=0to L—1do
10: for j=i+1to L do
11: if b is specified and j —i # b then
12: continue > Skip if not matching budget
13: end if
14: C(—CU{(Z',].,ELJ‘)}
15: end for
16: end for
17: Sort C by error in ascending order
18: § « top-k configurations from C
19: return S

A.1.5 Tools & technologies

All the experiments presented in this work employ the following tools:

e PyTorch Lightning, to ensure reproducible results while also getting a clean and modular codebase;

o NN-Template GrokAI (2021), to easily bootstrap the project and enforce best practices;

18

Under review as submission to TMLR

Algorithm 2 Linear Approximation Error

Require: Source layer representations X € R™*? target layer representations Y € R"*¢
Ensure: Normalized residual error €

. Solve least-squares: W* = arg minw ||[Y — XW||%

. Compute prediction: Y = XW*

_ I¥=Yir

1

2

3: Compute normalized error: € ~Tr
4

: return €

Table 11: Top-3 Block Approximation Recommendation. Top 3 recommended blocks to be approxi-
mated based on linear approximation error and number of blocks to skip using DEiT-S and CIFAR-100F.

Blocks Rank Approx. Predicted Error Accuracy %

1 9—10 0.14 71.69 £0.11
1 2 10 —» 11 0.18 71.17 £ 0.19

3 8—9 0.23 70.83 £0.13

1 9—11 0.25 71.14£0.15
2 2 8 —10 0.26 71.06 £0.19

3 7T—9 0.36 69.00 £+ 0.43

1 8 — 11 0.36 68.22 £+ 0.40
3 2 7— 10 0.38 69.08 £ 0.24

3 6—9 0.45 65.64 £ 0.03
0 - original - 71.1

o Transformers by HuggingFace, to get ready-to-use transformers for both text and images;
e Datasets by HuggingFuace, to access most of the datasets;
o DVC (Kuprieiev et al.l [2022)), for data versioning;

o fucore analysis library (), for calculating GFLOPs;

A.1.6 Computational resources

Experiments involving larger models, specifically DiNO-B, OpenCLIP-ViT-B, and ViT-L, were conducted on
an NVIDIA H100 GPU equipped with 93 GB of memory. All the other experiments utilized an NVIDIA
GeForce RTX 5090 GPU with 31 GB of memory.

A.1.7 Efficiency metrics

We evaluated model efficiency using two primary metrics. GFLOPs were used to measure the hardware-
independent theoretical complexity of a single forward pass, calculated using the fvcore analysis library.
Throughput, measured in samples per second, was used to quantify the practical, hardware-dependent
inference speed. This was benchmarked by averaging the wall-clock time over numerous iterations on a single
NVIDIA H100 GPU with a consistent batch size of 256.

A.2 Additional Experiments
This section presents supplementary experiments to extend those detailed in Section [4

A.2.1 Latent Analysis

This section extend the analysis conducted in Section to analyze block-wise internal similarities, to
additional models of different dimensionality: ViT-T, ViT-S, ViT-B and DiN0-S. Additionally, we provide

19

Under review as submission to TMLR

visualization using PCA for DiN0-S, DEiT-S, ViT-S, with different datasets and approximating both early
and late blocks (see Figures [7] to [T1)).
CIFAR-10 CIFAR-100

< Jowo]

ImageNetilk

= Jono

ViT-S ViT-T

DiNO-S

ViT-B

Figure 6: Block Similarities: Block-by-block similarities in ViT-T, ViT-S, DiNO-S and ViT-B models across
five datasets: MNIST, F-MNIST, CIFAR-10, CIFAR-100 and ImageNet1lk. Each matrix quantifies the linear
error between latent representations of different blocks, showing potential blocks for approximation. The
matrices reveal that the similarity between blocks is predominantly influenced by the model rather than the
specific dataset.

20

Under review as submission to TMLR

Original TOAST Original

MNIST
F-MNIST

CIFAR-10

CIFAR-100

Figure 7: Last Block Approximation. PCA visualization of the final layer representations for both the
original model and the model with its last block approximated from the preceding one. The representations are
generated using the DiNO-S model across four datasets. The plots highlight that the last layer representations
in this model are crucial, making it more effective to approximate earlier blocks instead. Note that for
CIFAR-100 (bottom right), only the overall structure of the space can be observed, as the 100 classes make it
challenging to distinguish labels based on color.

Original TOAST Original

MNIST
F-MNIST

CIFAR-10
CIFAR-100

Figure 8: Last Block Approximation. PCA visualization of the final layer representations for both the
original model and the model with its last block approximated by the preceding one. The representations
are generated using the DEiT-S model across four datasets. The plots highlight that in this model, the
representations in the last layer are redundant and can be effectively approximated, offering potential
performance improvements while reducing model complexity and parameter count. Note that for CIFAR-100
(bottom right), only the overall structure of the space can be observed, as the 100 classes make it challenging
to distinguish labels based on color.

21

Under review as submission to TMLR

Original TOAST Original

MNIST
F-MNIST

CIFAR-10

CIFAR-100

Figure 9: Last Block Approximation. PCA visualization of the final layer representations for both the
original model and the model with its second block approximated by the preceding one. The representations
are generated using the DiNO-S model across four datasets. Note that for CIFAR-100 (bottom right), only
the overall structure of the space can be observed, as the 100 classes make it challenging to distinguish labels

based on COloﬁriginal TOAST Original TOAST

MNIST
F-MNIST

CIFAR-10
CIFAR-100

Figure 10: Last Block Approximation. PCA visualization of the last layer representations for both the
original model and the model with its second block approximated using the previous one. Representations

refer to the uﬂggg\%gis model across %Hs(ilatasets. Original TOAST

o3 . i

MNIST
F-MNIST

CIFAR-10
CIFAR-100

Figure 11: Last Block Approximation. PCA visualization of the last layer representations for both the
original model and the model with its last block approximated from the previous one. Representations refer
to the using ViT-S model across four datasets.

22

Under review as submission to TMLR

A.2.2 Image Classification

This section presents additional experiments that complement and extend those detailed in Section
Datasets and models are the ones detailed in Tables [and

Table 12: ViT-S Image Classification Performance Across Seeds. Classification accuracy scores for
ViT-S using multiple datasets, and 3 seeds. The “Approx.” column specifies the blocks used for approximation,
where the first value represents the block whose output is used to approximate the second block’s output,
while the “Params.” column shows the number of parameters removed by the approximation compared to the
original model.

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNetilk
1 =5 15.31M 92.28 £0.81 86.90+£0.72 85.07£0.55 68.01+0.31 59.21£0.12 44.04 £0.42
2 =5 16.94M 94.76 £0.20 88.57+0.31 91.01£0.37 77.77+£0.22 69.75+£0.36 60.38 £0.12
7 —10 16.94M 94.58 £0.28 88.44+0.35 87.36£0.17 72.584+0.69 62.03£0.56 35.80£0.11
1 =3 18.56M 94.60 £0.78 88.36+0.44 91.97+£0.16 79.36+£0.54 7241+£0.08 64.99 £0.29
2 =4 18.56M 95.08 £0.18 88.83+£0.21 92.86+0.11 81.454+0.44 7443+£0.27 67.52£0.16
3 =5 18.56M 94.75+0.57 88.81+£0.19 94.09£0.06 83.16+0.34 76.17£045 67.27+0.45

1—2,3—4 18.56M 94.68+£0.69 88.30+0.25 91.91+£0.25 79.72+£0.16 7217+0.15 65.38£0.03
1—2,4—-5 18.56M 94.584+0.77 88.95+0.07 92.29+£0.28 80.144+0.10 72.45+0.35 64.42+0.24

0—1 20.43M 95.69+0.29 88.81+0.19 93.68+£0.22 83.55+£0.23 76.49+0.29 65.11+£0.27
1 =2 20.43M 95.40£0.57 88.53+0.63 93.90+£0.11 83.98£0.22 76.99+0.26 70.32+£0.38
2 =3 20.43M 9543+£045 88.93+0.62 9490+£0.26 85.72+£0.48 78.96+0.05 71.26+£0.03
3 =4 20.43M 9543+£0.39 88.77+0.36 95.05+£0.17 85.99£0.37 79.494+0.32 71.40=+0.22
4 =5 20.43M 95.39+£0.35 89.18+0.51 9541+0.12 86.27£0.27 79.61£0.14 70.98+£0.16
5 =6 20.43M 95.14+£0.56 89.30+0.54 94.89+£0.27 86.49+0.33 79.294+0.19 69.25+0.09
6 —7 20.43M 95.11+£0.42 88.94+0.66 94.81+£0.26 85.33£0.30 78.06+0.17 67.41£0.08
7 =8 20.43M 95.64+£0.46 89.414+0.45 94.50+£0.34 85.30£0.50 78.03+0.12 66.22+0.10
8 =9 20.43M 9536 £0.47 89.64+£0.37 94.36+£0.14 84.66£0.25 77.884+0.20 64.03£0.29
9 —10 20.43M 95.52+£0.41 89.57+0.10 94.58+0.27 81.76+£0.34 76.45+0.22 61.82+£0.24

10 —11 20.43M 94.83+£0.20 89.11+0.43 94.08+£0.27 82.13£0.70 77.454+0.29 63.92+£0.25
original 22.06M 95.59 £0.42 89.04+0.85 95.684+0.24 87.61+0.39 81.50+0.39 73.244+0.13

23

Under review as submission to TMLR

Table 13: DiNO-S Image Classification Performance Across Seeds. Classification accuracy scores for
DiNO-S using multiple datasets, and 3 seeds. The “Approx.” column specifies the blocks used for approximation,
where the first value represents the block whose output is used to approximate the second block’s output,
while the “Params.” column shows the number of parameters removed by the approximation compared to the
original model.

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNetlk
1 =5 16.31M 96.254+0.30 86.504+1.42 80.11+0.95 59.15+0.45 51.24+0.51 18.70 £0.09
2 =5 16.94M 95.86 £0.52 87.99+0.30 85.28£0.99 67.50+1.02 59.57+£0.45 40.63 £ 0.59
7 —10 16.94M 96.05+1.44 88.28+1.25 91.00£0.82 7847+0.61 70.56£0.25 45.66 £ 0.69
1 =3 18.56M 96.61+£0.34 88.48+0.61 91.73£0.36 78.62+0.87 7233+£0.37 56.85+0.21
2 =4 18.66M 96.79 £0.58 88.34+0.33 91.31+0.16 76.41+0.44 69.71+£0.31 60.16 £0.41
3 =5 18.56M 96.76 £1.02 88.65+0.92 91.00£0.49 75.51+045 69.31+£0.05 57.47=£0.11

1—-2,3—=4 18.56M 96.71£0.62 88.69+0.46 92.57+£0.54 79.16£1.02 72.88+0.57 59.79+£0.19
1—2,4—-5 18.56M 96.81£0.31 88.67+1.23 93.50+£0.26 79.35£1.00 73.55+0.38 58.62+£0.25

0—1 20.43M 96.71£0.79 88.97+1.12 95.67+0.12 85.89+0.56 80.15£0.35 61.25+£0.22
1 =2 20.43M 96.69£0.90 88.26+1.10 95.38+£0.09 84.86+£0.84 79.384+0.23 64.86£0.36
2 =3 20.43M 96.42+£0.36 88.31+1.20 94.71+£0.33 84.15£0.94 77.74+£0.85 65.16£0.69
3 —4 20.43M 96.82£0.68 88.77+0.78 94.87+0.30 83.96£0.62 77.71+0.08 65.35%0.56
4 =5 20.43M 96.82+£0.60 89.15+0.72 94.63+£0.26 83.04£0.62 77.13+0.17 64.28+£0.24
5 —6 20.43M 96.81£0.85 88.75+0.86 95.33+£0.19 84.83£0.04 79.37+0.25 64.88+£0.43
6 =7 20.43M 96.99+0.88 89.42+0.68 95.21+0.10 83.82£0.53 7854+0.64 63.61+£0.62
7T =8 20.43M 96.76 £0.38 89.056+1.29 95.37+£0.14 84.57£0.42 7895+0.37 61.59+0.31
8 =9 20.43M 96.62+£0.85 88.45+1.21 9521+£0.36 84.98+£0.22 79.354+0.22 61.73+£0.43

9 =10 20.43M 96.66 £0.33 88.53+0.71 94.55+£0.25 83.97£1.25 77.06+£0.36 58.56+£0.25
10 —11 20.43M 94.61£0.66 86.96+1.18 92.11+£0.32 79.85£0.26 73.014+0.51 50.76 £0.33

original 22.06M 96.57 £0.64 88.07+1.40 96.24+0.08 87.53+0.45 82.044+0.42 67.45+0.45

Table 14: ViT-T Image Classification Performance. Classification accuracy scores for ViT-T using
multiple datasets, and 3 seeds. The “Approx.” column specifies the blocks used for approximation, where the
first value represents the block whose output is used to approximate the second block’s output, while the
“Params.” column shows the number of parameters removed by the approximation compared to the original
model.

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F ImageNetlk
1 =5 16.31M 87.66 £0.57 85.10+£0.42 73.68+0.46 53.46+0.29 44.61+£0.42 22.21+£0.39
2 =5 16.94M 90.59+£0.79 85.84+£0.18 8241+0.11 62.87+0.21 54.68+£0.21 35.14£0.38

7 —10 16.94M 92.414+0.47 86.50+£0.19 8248=£0.85 69.26+0.65 61.15+£0.28 39.03 £0.13
1 =3 18.66M 90.55+1.04 85.91+0.22 80.48+0.29 63.43+0.25 54.57+£0.32 43.68+£0.26
2 =4 18.56M 92.81+0.56 86.58 £0.05 86.85+0.17 70.49+0.30 63.53+£0.23 49.94+0.27
3 =5 18.56M 91.84+0.69 86.80+£0.04 88.00£0.04 72.67+0.30 65.66+£0.14 48.48 +0.37

1—2,3—4 18.56M 91.94+£0.78 86.71+0.20 83.43+£041 66.92+0.42 60.07+£0.48 45.14+£0.15
1—2,4—=5 18.56M 90.86 £0.66 86.57+0.24 84.61+£0.14 68.07£0.55 60.11+0.61 44.84 £0.26

0—1 20.43M 91.74£048 86.22+0.23 83.324+0.22 6858 £0.41 61.05+£0.36 44.124+0.20
1 -2 20.43M 91.65+£0.61 86.26+0.24 85.84+0.08 71.12+£0.06 63.85+0.37 54.34+£0.44
2 =3 20.43M 9289 £0.18 86.49+0.06 88.89+£0.08 74.90£0.25 68.03+0.37 57.83+£0.07
3 —4 20.43M 93.10£043 87.34+£0.03 89.73+£0.37 76.45+£0.17 70.04+0.35 57.55+£0.14
4 =5 20.43M 9243+£0.20 87.224+0.10 90.11+£0.32 76.40£0.42 69.97+0.37 55.91+£0.10
5 —6 20.43M 93.57+0.11 86.80+0.13 90.17x£0.27 76.47£0.35 70.694+0.49 55.43+£0.38
6 =7 20.43M 92.13+£0.37 86.77+0.02 87.73+£0.22 7235£0.31 66.73+£0.45 47.39+£0.45
7T =8 20.43M 93.20£0.06 86.90+0.30 88.584+0.26 75.80+£0.29 69.28£0.41 53.484+0.24
8 =9 20.43M 9276 £0.11 87.18+£0.17 89.57+£0.33 76.43£0.50 71.07+£0.33 56.07£0.77
9 =10 20.43M 92.39+£0.10 86.74+0.18 89.86+0.31 77.34£0.04 71.70+£0.37 57.45+£0.29

10 —11 20.43M 90.92+048 86.89+0.12 90.98+0.21 7885+0.38 72.29+042 58.94+0.22
original 22.06M 93.22+0.18 86.994+0.29 91.29+0.06 79.27+£0.23 73.454+0.38 63.02+0.22

24

Under review as submission to TMLR

Table 15: ViT-B Image Classification Performance. Classification accuracy scores for ViT-B using
multiple datasets, and 3 seeds. The "Approx." column specifies the blocks used for approximation, where the
first value represents the block whose output is used to approximate the second block’s output, while the
"Params." column shows the number of parameters removed by the approximation compared to the original

model.

Accuracy 1

Approx. Params. MNIST F-MNIST CIFAR-10 CIFAR-100C CIFAR-100F
1—5 -25.99M 87.06+0.53 84.33+0.61 73.54+£0.57 51.67+1.10 38.98+0.72
2—5 -19.49M 94.20+£0.21 87.80+0.24 87.10£0.83 71.68+0.50 61.19+0.37
1—3 -13M 96.51 £0.42 88.72+0.41 93.714+0.13 83.05+£0.23 74.74+£0.29
3—5 -13M 95.59 £0.09 88.28+0.20 93.11+£0.06 83.50+£0.17 74.35+0.47
24 -13M 96.21 £0.33 89.21+0.64 94.59+£0.32 85.13+0.24 76.82+£0.41
8 —+ 10 -13M 96.54 £0.21 89.72+0.52 95.064+0.26 85.78 £0.37 79.62+0.14
9—11 -13M 95.59£0.52 89.49+0.26 93.224+0.56 82.23+£044 76.33+£0.10
3—4 -6.5M 96.86 £0.35 89.69+1.09 96.18+0.09 89.18+0.06 82.50+£0.17
4—=5 6.5M 96.55 £0.23 89.13+£0.50 95.394+0.23 87.43+0.15 80.30£0.16
0—1 -6.5M 96.75+£0.29 88.97+0.26 93.74+£0.15 84.49+0.20 76.54+0.29
1—=2 -6.5M 96.88£0.01 89.294+0.24 95.63£0.11 87.46+0.20 80.64 £0.23
23 -6.5M 96.91 +0.17 89.69+0.61 96.00£0.18 88.38£0.13 81.59 +0.35
- 86.39M 95.61 +0.22 89.64+0.57 96.25+0.17 89.52+0.23 83.41 +£0.20

25

Under review as submission to TMLR

A.2.3 Zero-shot Image Classification

To further assess the effectiveness of our approach, we evaluate TOAST in a zero-shot image classification
setting. This evaluation utilizes the OpenCLIP-ViT-B model (Radford et al., 2021)), which was pretrained
on LAION-2B [Schuhmann et al. (2022), with ImageNetlk serving as the downstream evaluation dataset.

Table 16: Zero-shot image classification. Ac-
curacy scores for OpenCLIP-ViT-B on ImageNet1k.
The "Approx." column specifies the blocks being ap-
proximated, where the first value represents the block
whose output is used to approximate the second
block’s output. The “A” column indicates the change
in accuracy.

Params. Approx. Accuracy T A
0—1 57.93 -17.41%
1—2 64.20 -8.56%
2—=3 66.35 -5.51%
34 64.65 -7.90%
45 64.86 -7.60%
-6.49M 5—6 58.05 -17.32%
6 —7 61.56 -12.31%
7T— 38 58.53 -16.64%
8—=9 52.32 -25.50%
9 — 10 59.21 -15.68%
10 — 11 22.64 -67.75%
149.07M original 70.21 -

model size reduction in this challenging setting.

The analysis is conducted only on the base ver-
sion, as larger versions (e.g., OpenCLIP-ViT-L or
OpenCLIP-ViT-H) contain too many parameters and
are thus beyond the scope of this paper. As in previ-
ous experiments, the model remains frozen, and block
approximations are computed using a shared linear
transformation applied across all tokens, based on a
subset of 3,000 training samples. Importantly, we ap-
ply these approximations only to the vision encoder,
leaving the text encoder unchanged. We follow the
standard ImageNetlk prompt templates. The results
in Table lead to the conclusion that the impact
on zero-shot accuracy is highly dependent on the tar-
geted block’s position. The choice of which blocks to
approximate is therefore crucial. For instance, approx-
imating an early block (e.g., 1 — 2 or 2 — 3) results
in a modest accuracy drop (e.g., 5.51%), yielding a
competitive model with fewer parameters. In contrast,
approximating the final block (i.e., 10 — 11) causes a
catastrophic performance collapse of 67.75%. Meaning
that, for OpenCLIP-ViT-B, later layers in the vision en-
coder appear to capture uniquely critical information
for zero-shot generalization that cannot be effectively
replicated by earlier ones. To the best of our knowl-
edge, this work is the first to investigate training-free

A.2.4 TOAST Applicability to other tasks or domains

This section presents additional experiments that complement and extend those detailed in Section
Datasets and models are the ones detailed in Tables [7l and

26

Under review as submission to TMLR

Table 17: TOAST Text Classification Performance on AG News. Text classification accuracy, GFLOPs,
and throughput for ModernBERT-B using AG News. The "Approx." column specifies the block mapping (output
of the first block is used to approximate the output of the second). MLP is a trained approximators, while
Linear is closed-form and training-free. Results are averaged over three seeds.

Linear MLP
Approx. Params | Accuracy% t GFLOPs | img/s T Accuracy% 1t GFLOPs | img/s 1
11 — 21 92.82M 0.81 +£0.05 12.7 2264.0 0.73 +£0.00 12.68 2216.50
4 — 8,11 — 14,18 — 21 92.82M 0.82 +£0.07 12.7 2220.7 0.73+£0.01 12.68 2155.16
4718 =21 109.68M 0.82 +0.07 15.9 1803.9 0.71 4+ 0.02 15.85 1771.80
4—38 126.54M 0.86 £ 0.02 19.0 1636.0 0.82£0.01 19.03 1632.65
11— 14 132.16M 0.86 +0.02 20.1 1544.3 0.82+£0.01 20.08 1540.23
18 — 21 132.16M 0.85 4+ 0.02 20.1 1472.8 0.82 +0.01 20.08 1467.56
1—2 143.40M 0.84 £0.01 22.2 1386.0 0.84 +0.00 22.20 1385.20
2—3 143.40M 0.86 4+ 0.00 22.2 1379.8 0.86 4+ 0.00 22.20 1388.06
3—4 143.40M 0.82£0.01 22.2 1391.6 0.83 £0.00 22.20 1392.14
4—5 143.40M 0.88 £ 0.00 22.2 1380.3 0.81 £0.01 22.20 1384.42
5—6 143.40M 0.86 = 0.02 22.2 1385.0 0.83 £0.00 22.20 1392.14
6—7 143.40M 0.86 £ 0.02 22.2 1387.8 0.85£0.01 22.20 1387.81
77— 8 143.40M 0.87 £ 0.01 22.2 1384.8 0.85 4+ 0.00 22.20 1365.78
8—9 143.40M 0.84 £0.01 22.2 1384.4 0.83 +£0.01 22.20 1383.31
9 — 10 143.40M 0.82 +0.08 22.2 1385.3 0.71+£0.01 22.20 1385.92
10 — 11 143.40M 0.81 +£0.08 22.2 1383.2 0.724+0.03 22.20 1381.78
11 — 12 143.40M 0.87 +£0.02 22.2 1378.8 0.82 +£0.01 22.20 1394.63
12 — 13 143.40M 0.86 +0.02 22.2 1384.5 0.83 +£0.01 22.20 1390.65
13— 14 143.40M 0.80 + 0.06 22.2 1385.2 0.73 +£0.02 22.20 1385.23
14 — 15 143.40M 0.84 £0.04 22.2 1390.0 0.79 £0.01 22.20 1387.43
15 — 16 143.40M 0.85 +0.02 22.2 1402.7 0.82 £ 0.00 22.20 1381.80
16 — 17 143.40M 0.87 +£0.01 22.2 1402.8 0.85 4+ 0.00 22.20 1387.02
17 — 18 143.40M 0.85 +0.02 22.2 1402.3 0.83 £0.01 22.20 1389.71
18 — 19 143.40M 0.87 +£0.01 22.2 1403.5 0.85+0.01 22.20 1393.53
19 — 20 143.40M 0.85 £+ 0.02 22.2 1403.9 0.82 £ 0.00 22.20 1390.19
20 — 21 143.40M 0.87 £0.02 22.2 1340.2 0.84 £ 0.00 22.20 1332.27
original 149.01M 0.88 +0.00 23.25 1337.25 0.88 +0.00 23.25 1347.46

27

Under review as submission to TMLR

A.2.5 Evaluation with original classification heads

Table 18: Comparison of Original vs. Retrained Classification Heads. TOAST performance on
ImageNet1k using the frozen, pre-trained head (Original) versus a linear classifier trained on the frozen
backbone (Retrained). The relative ranking of approximations remains consistent across both settings.

Encoder Approximation Original Head Acc. T Retrained Head Acc. 1

354,911 72.44 68.39 +0.13
0 34,910 77.25 71.35 4+ 0.22
& 23 78.69 73.19 +0.19
e 10 — 11 78.78 73.78 +0.28
original 79.66 73.85£0.39

152 76.62 70.32 + 0.38

0 23 78.25 71.26 + 0.03
= 34 78.25 71.40 & 0.22
= 45 77.66 70.98 +0.16
original 79.86 73.24 +0.13

As mentioned in the main paper, our primary evaluation involves training a new linear classifier on top of
the frozen model backbone to simulate a realistic transfer learning scenario. However, the original papers
for DEiT-S (Touvron et al.,2021) and ViT-S (Beyer et al.| [2022)) report performance using the classification
head that was part of the original pre-training.

To confirm that our conclusions are robust and not an artifact of our evaluation protocol, we conducted
an additional set of experiments using the official, pre-trained classification heads from the original model
checkpoints. For consistency with our main experiments, we use the same number of samples (500) for the
approximation. In this setup, we do not train a new classifier; we simply evaluate the accuracy of the frozen,
approximated models using their original heads.

The results, presented in Table are fully consistent with the main conclusions of our paper. They confirm
that our block approximation method provides a favorable accuracy-efficiency trade-off, even when evaluated
with the original model heads. The relative drop in accuracy when approximating different layers follows the
same patterns observed in our primary experiments, reinforcing the validity of our approach.

A.2.6 Computational efficiency vs. accuracy

To quantify the effectiveness of different approximation methods, we analyze the trade-off between down-
stream accuracy and computational cost. Figure [12| presents this analysis on a DiNO-B model using both
CIFAR-100F and ImageNetlk against three standard efficiency metrics: parameter count, GFLOPs, and
inference throughput. Across all metrics, the proposed linear translator (green) establishes a more favorable
Pareto frontier compared to the baseline identity-based approach (blue). This indicates that for any given
efficiency budget (e.g., a specific GFLOPs target), the linear translator consistently yields a model with
higher accuracy.

A.2.7 Analysis of misclassifications

In this section, we examine changes in per-class accuracy and misclassification patterns. As shown in Figure
models behave differently at block approximations. DiNO-S remains remarkably stable across blocks and
classes, with the only degradation appearing for classes dog (when approximating blocks 10 or 11) and deer
(for block 10 approximation). ViT-S shows a similar drop for class dog on its final block. Instead, the most
noticeable hit occurs for class cat when the earlier blocks are approximated. For DEiT-S, several mid-to-late
block approximations improve accuracy for various classes, whereas the very first block causes a clear relative
decline in nearly every class. These observations suggest strategies like preferring late-block approximation for
DEiT-S, or reserving extra samples for the linear transformation in order to recover the accuracy of difficult
classes for the model.

28

Under review as submission to TMLR

—— Original —— Identity —— Linear * CIFAR-100 B ImageNet-1k
100

> * * %
e [I
5 50
Q
(&)
< [m——= t -
60 70 80 17.5 20.0 225 2500 3000
Params (M) GFLOPs img/sec

Figure 12: Accuracy-efficiency trade-off for different approximation strategies. Each subplot shows
the accuracy against a different efficiency metric: the number of parameters (left), GFLOPs (center), and
inference throughput (right). The image shows that the linear translator achieves a superior accuracy-efficiency
trade-off.

ViT-8 DiNO-S DEiT-8

airplane
automobile 0.000 - 0.0 0.02
bird
cat 0.00
deer —0.025
dog - —0.1 —0.02
frog —0.050
horse ~0.04
Shlﬁ —0.075
true - —0.2 - _0.06

T T TTrTTTTTY

9 — 10
10 — 11
9 — 10
10 — 11
9 — 10
10 — 11

Figure 13: Per-class accuracy delta on CIFAR-10 when a single block is approximated in ViT-S,
DiNO-S and DEiT-S. Cell values indicate the relative change in the accuracy with respect to the original
model. Brighter (green) cells indicate an accuracy gain for the class, while darker (blue) cells indicate an
accuracy drop.

In order to further investigate how the predictions change while approximating blocks, we plot the difference
in the normalized confusion matrix before and after the approximation. In Figure we show the delta
confusion matrix for DEiT-S on CIFAR-100C. Also, here we can see how approximating the very first block
makes the model puzzling and lose per-class accuracy (i.e., negative delta along the diagonal). On the other
hand, approximating the last block acts as a regularizer, resulting in an overall gain in the per-class accuracy
and, as a consequence, fewer misclassifications (negative deltas off-diagonal). This supports results shown in
Figure I3 and Table [3]

Additionally, Figure [L5| shows representative CIFAR-10 images that become misclassified after approximating
a block of ViT-S. The patterns we observe mirror the trends in Figures[I3]and [[4 when approximating earlier
blocks, we observe many images belonging to class cat to be misclassified. Instead, when approximating later
blocks, we observe images of the class dog to be misclassified. Together, these qualitative examples show that
understanding these block-specific vulnerabilities allows us to steer the approximation procedure, informing
choices about which blocks to approximate based on the observed impact on the final model’s class-wise
performance.

29

Under review as submission to TMLR

12 2—3 354 4—5 556
" = . u B ey | - - '

o |' ot Rl ooz W ooes WL 002 T il oos
2 "] .:_-"-ﬁ * = 0.000 - - 0.000 « " e _ 0.000 =L 500
= b I— 0.1 st |- _0.025 i | —o.025 ! :'-._I- —0.025 I_ 005
>
= 6—>7 7—8 8—9 9—10 10— 11
5 P ey 8 0.025 = 0.05
< L o.es - |- 0.025 s I 0.025 —I:_. I .)

*-0000 ™7 = -0.000 ¢ W C§ -0.000 5 T - 0.000 i = 0.00

e ol i "a
.-'-.__l——o.025 . ._..--_|- —0.025 = “r I— —0.025 * "-""'l_

Predicted values

—0.025 I‘ —0.05

Figure 14: Normalized relative confusion matrix when single blocks are approximated for DEiT-S
on CIFAR-100C. Diagonal cells capture the per-class change in accuracy, whereas off-diagonal cells capture
changes in misclassifications between classes. Red (positive) values on the diagonal mean the approximation
improves that class’s accuracy. Red off-diagonal values mean more misclassifications. Conversely, blue
(negative) off-diagonal values indicate fewer misclassifications, and blue values on the diagonal indicate a
drop in per-class accuracy.

1 =2
horse — deer cat — dog cat — bird horse — cat bird — frog
n .I
6—7
bird — cat dog — cat automobile — truck dog — cat cat — dog
‘ d I
10— 11
ship — airplane frog — cat bird — cat dog — cat truck — airplane

L

e W u
Figure 15: Visualization of misclassified samples after approximating a block of ViT-S on CIFAR-10.

Images from CIFAR-10 whose label flips from correct to incorrect when specific blocks are approximated. The
title reports the true class followed by the wrong prediction.

	Introduction
	Related work
	Blocks Approximation
	Experiments
	Latent analysis
	Image Classification Performance
	TOAST Applicability to other Tasks or Domains

	Limitations and future work
	Conclusion
	Appendix
	Implementation details
	Models and Datasets
	Approximators
	Metric Ablation
	Block Selection Pseudocode
	Tools & technologies
	Computational resources
	Efficiency metrics

	Additional Experiments
	Latent Analysis
	Image Classification
	Zero-shot Image Classification
	TOAST Applicability to other tasks or domains
	Evaluation with original classification heads
	Computational efficiency vs. accuracy
	Analysis of misclassifications

